
Koichiro Ochimizu, JAIST

UML&UP outline 1

Outline of
UML and Unified Process

Koichiro OCHIMIZU

School of Information Science

JAIST

Schedule
• Feb. 27th

– 13:00 Scope and Goal
– 14:30 Basic Concepts on Representing the World

(object, class, association, …)
• Feb. 28th

– 13:00 Basic Concepts on Interaction
(message passing, operation, method,

polymorphism)
– 14:30 Basic Concepts on Reuse

(super class, class inheritance, interface
inheritance)

• March 1st
– 13:00 Introduction to Java Programming
– 14:30 Outline of UML and Unified Process

The world view：We can
represent the domain
simply by “A set of objects
and their interaction)

Abstraction of entities in the
domain from the viewpoint
of satisfy-one’s-hunger

h2

h1 a1

a2

hungry
person

Description of
possibility

state of
hunger

eat

apple

volume

eatensatisfy
hunger

Definition of static structure
and dynamic behavior

：hungry person ：apple

public class hungry-
person {

int state-of-hunger

void eat ()

}

public class apple {

int volume

void eaten ()

}

Program

Reproduction of the
Domain in the main
memory

state-of-
hunger

eat()

state-of-
hunger
eat()

volume

eaten()

volume

eaten()

Modeling the Domain Object Oriented
Analysis/Design/Programming

Definition of
the problem

Construction of
the solution

Domain ProgramModel

OOA OOD/OOP

Iterative and Incremental

Relationship
between

Methods and UML

UML

Method 1 Method 2 Method 3

Description

UML1.5
• Very popular now and help us make and analyze:

– Use-case Diagrams for defining functional requirements
– Collaboration Diagrams for finding analysis classes
– Class Diagrams for designing the static structure
– Sequence Diagrams for defining objects interaction
– State Diagrams for defining the behavior of each object
– Deployment Diagrams for allocating objects to machines
– Component Diagrams for packaging

Koichiro Ochimizu, JAIST

UML&UP outline 2

The Views in UML

Use-Case
View

Concurrency
View

Logical
View

Deployment
View

Component
View

H.E. Eriksson and M. Penker, “UML Toolkit” John Wiley & Sons, Inc.

Relationships between
views and diagrams in UML

• Use-Case View
– Use-Case Diagram

• Logical View
– Class Diagram, Object Diagram
– State Diagram, Sequence Diagram, Collaboration Diagram,

Activity Diagram
• Concurrency View

– State Diagram, Sequence Diagram, Collaboration Diagram,
Activity Diagram

– Component Diagram,, Deployment Diagram
• Deployment View

– Deployment Diagram
• Component View

– Component Diagram

The Unified Software
Development Process

• Use-Case Model
– Use-Case Diagram

• Analysis Model
– describe “Realization ｏｆ a Use-Case” by a Collaboration

Diagram and a Flow of Event Description
• Design Model

– Class Diagram , Sequence Diagram, and Statechart Diagram
• Deployment Model

– Deployment Diagram
• Implementation Model

– Component Diagram
• Test Model

– Test Case

Use Case

System

Actor

Use Case Description

Event Sequences between actors
and the system

Functional Requirements

Use Case

Actor

Use Case Description

Event Sequences between actors and
the system

Collaboration

Collaboration

Collaboration

Analysis of inside of the system

Use case

Actor

Use Case Description

Event Sequences between actors and the System

Collaboration

Collaboration

Collaboration

Collaboration
Diagram

Event Flow
Description

Analysis Classes

Koichiro Ochimizu, JAIST

UML&UP outline 3

Use Case

Actor

Class Diagram (Analysis Class + Design Class)

Use case

Actor

Final Step of Modeling (Definition of Static Structure
and Dynamic Behavior)

A Use-Case diagram with
an actor and three use cases

Bank
Customer

Transfer between Accounts

Deposit Money

Withdraw Money

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

ActorActor
Use CaseUse Case

Use CaseUse Case

Use CaseUse Case

UML Notations

Bank Customer

Actor: icon for Stereotype Actor

Withdraw Money

Use Case

G.Booch, J.Rumbaugh, I. Jacobson , ”The Unified Modeling Language User
Guide”, Addison Wesley, 1999.

Stereotypes
Stereotype/keyword Applies to symbol Meaning

class
Specifies a coherent set of roles
that users of use cases play
when interacting these use
cases

Actor

The Withdraw Money
Use Case Description

1. The Bank Customer identifies himself or herself

2. The Bank Customer chooses from which account to
withdraw money and specifies how much to withdraw

3. The system decreases the amount from the account and
dispenses the money.

Use case are also used as “placeholders” for nonfuctional requirements

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

The Realization of a Use Case in
the Analysis Model

Withdraw Money Withdraw Money

Dispenser Cashier
Interface

Withdrawal Account

<<trace>>
CollaborationCollaboration

UseUse--Case ModelCase Model Analysis ModelAnalysis Model

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

Use CaseUse Case

Koichiro Ochimizu, JAIST

UML&UP outline 4

UML notation

Collaborationcollaboration name

<<trace>>

A collaboration gives a name to the mechanism
of the system

It also serve as the realization of a use case

It defines a group of objects and their
interaction

A directed dashed line means dependency

In this case, trace dependency

G.Booch, J.Rumbaugh, I. Jacobson , ”The Unified Modeling Language User
Guide”, Addison Wesley, 1999.

Analysis Stereotypes

Dispenser Cashier Interface
Boundary

Account
Entity

Withdrawal
Control

In the analysis model, three different stereotypes on
classes are used: <<boundary>>, <<control>>, <<entity>>.

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

Analysis Stereotypes
• <<boundary>> classes in general are used to

model interaction between the system and its
actors.

• <<entity>> classes in general are used to model
information that is long-lived and often persistent.

• <<control>> classes are generally used to
represent coordination, sequencing, transactions,
and control of other objects. And it is often used
to encapsulate control related to a specific use
case.

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

A collaboration diagram for the
Withdraw Money use-case realization in

the analysis model

: Account

: Cashier

Interface

:Dispenser

: Withdrawal

3: validate and withdraw

2: request withdrawal

4: authorize dispense

5: dispense money

: Bank

Customer

1: identify

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

UML notation

Message１： identify

G.Booch, J.Rumbaugh, I. Jacobson , ”The Unified Modeling Language User
Guide”, Addison Wesley, 1999.

Flow of Events Description
of a Use-Case Realization

A Bank Customer chooses to withdraw money and activates the Cashier
Interface object. The Bank Customer identifies himself or herself and specifies
how much to withdraw and from which (1).

The Cashier Interface verifies the Bank Customer’s identity and asks a
Withdrawal object to perform the transaction (2).

If the Bank Customer’s identity is valid, the Withdrawal object is asked to
confirm that the bank customer has the right to withdraw the specified amount
from the Account. The Withdrawal object confirms this by asking the Account
object to validate the request and, if the request Is valid, withdraw the amount (3) .

Then the Withdrawal object authorizes the Dispenser to dispense the amount that
the Bank Customer requested (4) .

The Bank Customer then receives the requested amount of money (5) .

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

Koichiro Ochimizu, JAIST

UML&UP outline 5

A Class Participating in Several Use-
Case Realizations in Analysis Model

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

UseUse--Case ModelCase Model Analysis ModelAnalysis Model

Bank
Customer

Withdraw Money

Deposit Money

Transfer between
Accounts

Dispenser

Bank
Customer

Cashier
Interface

Account

Withdrawal

Money
receptor

Deposit

Transfer

• Focus on functional requirements in defining analysis class.
Deal with non functional requirements in design phase or
implementation phase.

• Make the class responsibility clear
• Define attributes that exist in a real world
• Define association but do not Include details like

navigation
• Use stereotype classes; <<boundary>>, <<control>>, and

<<entity>>.

Analysis Class

Analysis Class and Design Class
Add solution domain classes to problem domain classes

AccountCashier Interface Dispenser Withdrawal

Card
Reader

Dispenser
Sensor

Cash
Counter

Dispenser
Feeder

<<trace>>

Display

Key Pad

withdrawal

Transaction
Manager

<<trace>>

Account
Manager

Persistent
Class

Account

<<trace>> <<trace>>

Analysis classesAnalysis classes

Design ClassesDesign Classes

Client
Manager

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

UML notation

Active Class

Has a thread and can initiate a control activity

Client
Manager

G.Booch, J.Rumbaugh, I. Jacobson , ”The Unified Modeling Language User
Guide”, Addison Wesley, 1999.

Card
Reader

Dispenser
Sensor

Cash
Counter

Dispenser
Feeder

Display

Key Pad withdrawal

Client
Manager

Transaction
Manager

Account
Manager

Persistent
Class

Account

Class Diagram
for use case “withdraw money”

Bank
Customer

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

：Card
Reader

：Cash
Counter：Display ：Key Pad ：Client

Manager
：Transaction

Manager

Sequence Diagram
for use case “withdraw money”

：Bank
Customer

Insert card
Card inserted (ID)

Ask for PIN code

PIN code (PIN)

Ask for amount to withdraw

Show request

Show request

Specify PIN code

Specify amount
Amount (A)

Request cash availability

Request PIN validation (PIN)

Request amount withdrawal (A)

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

Koichiro Ochimizu, JAIST

UML&UP outline 6

Account
Manager

Persistent
Class

Account

Group Classes into Subsystems

Card
Reader

Dispenser
Sensor

Cash
CounterDispenser

Feeder

Display

Key Pad

Client
Manager

Withdrawal

Transaction
Manager

<<service
subsystem>>

Withdrawal

Management

Withdrawal

Transfers

Dispensing

<<subsystem>>
ATM

interface

<<subsystem>>
Transaction
Management

<<sub
system>>

Account
Management

Bank
Customer

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

Dispenser
Sensor

Cash
Counter

Dispenser
Feeder

Client
Manager

Components that implements
Design Classes

<<file>>

client.c

<<file>>

dispenser.c

<<compilation>>

<<trace>>

<<trace>>

<<executable>>

client.exe

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

Test Cases are derived from Use Case

<<trace>>

Use Case Model Test Model

Withdraw money Withdraw Money
– Basic Flow -

I. Jacobson, G.Booch, J.Rumbaugh,”The Unified Software Development Process”,
Addison Wesley, 1999.

What do Software Engineering Projects
consider important? by Pete McBreen

• Traditional Waterfall Projects
– Specialization of staff into different roles to support the different phases is

claimed to promote efficiency by reducing the number of skills a person needs.
– With clear milestones between phases and known dependencies between

deliverables, it is easy to display a waterfall project on a PERT chart.
– Comprehensive documentation is important, so that at the end of the project it is

possible to justify the overall costs. This supports the tracking of the project
because it makes everything available for external review. A side benefit of all of
this documentation is traceability.

• Unified Process (supports Incremental development in the context of a
phased approach)

– Inception(evaluating the economic feasibility of the project, forcing the team to
define the overall project scope, plan the remaining phases, and produce
estimates)

– Elaboration (evaluating the technical feasibility of the project by creating and
validating the overall software architecture)

– Construction (at the end of each increment, new and changed requirements can
be incorporated into the plans, and the estimates can be refined based on
experiences in the previous increments)

Pete McBreen, “Questining eXtreme Programming”, Addison-Wesley, 2003.

What do Software Engineering Projects
consider important? by Pete McBreen

• Open Source Project
– Free, unrestricted access to the source code so that developers can share

and learn
– The reputation of the project’s developers
– Frequent releases back to the community

• Agile
– Individuals and interactions over processes and tools
– Working software over comprehensive documentation
– Customer collaboration over contract negotiation
– Responding to change over following a plan

• XP
– A predictable, sustained, and sustainable pace in the face of changing

requirements
– A collaborative, supportive environment for developers
– Enhancement of the skills and knowledge of the development team

Pete McBreen, “Questining eXtreme Programming”, Addison-Wesley, 2003.

Exercise
• Review the content of my lecture by answering the following

simple questions. Please describe the definition of each technical
term.

1. Please describe the relationship between UML and methods.
2. Why do we define the use case model?
3. What is a use case description ?
4. What is an collaboration of UML?
5. What are analysis (or problem domain) classes?
6. What are design classes?
7. How can we define the interaction among objects using UML

notations?
8. How can we define the behavior (or lifecycle) of an object using

UML notations?
9. What is a stereotype of UML?

