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Feature Selection (FS) is an important aspect of knowledge extraction as it helps to reduce dimensional-
ity of data. Among the numerous FS algorithms proposed over the years, Gravitational Search Algorithm
(GSA) is a popular one which has been applied to various domains. However, GSA suffers from the
problem of pre-mature convergence which affects exploration leading to performance degradation.
To aid exploration, in the present work, we use a clustering technique in order to make the initial
population distributed over the entire feature space and to increase the inclusion of features which
are more promising. The proposed method is named Clustering based Population in Binary GSA
(CPBGSA). To assess the performance of our proposed model, 20 standard UCI datasets are used, and
the results are compared with some contemporary methods. It is observed that CPBGSA outperforms
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other methods in 12 out of 20 cases in terms of average classification accuracy.

The relevant codes of the entire CPBGSA model can be found in the provided link: https://github.
com/ManosijGhosh/Clustering-based-Population-in-Binary-GSA.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Technological advances in recent times have fueled an in-
crease in application of machine learning in a variety of domains.
Classification, an import aspect of machine learning, is being
widely adopted. In an effort to improve the classification accu-
racy, many features descriptors are used for feature extraction.
With the increase in feature dimension, interpretation and use
of features to accomplish any task become cumbersome due to
the curse of dimensionality. As a result, several sophisticated
techniques are employed in order to efficiently extract useful
features. These techniques use various characteristics of datasets
for feature extraction. Amidst this huge pool of features, not all
are useful or relevant. These unnecessary and misleading pieces
of information make the classification models inefficient and in
turn degrade the performance of the employed methods both in
terms of accuracy as well as computation time. This makes direct
feeding of data (or features) to classification models an improper
practice and hence, data pre-processing becomes a pre-requisite.
One well-regarded pre-processing technique is Feature Selection
(FS) which searches for an optimal subset of features from the
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entire feature vector under consideration; thereby increasing the
efficiency of the classification model.

Searching for an optimal subset of features becomes a vital
issue in FS problems. The main objective when selecting these
features is to find an optimal set of N features from the total set
of M features where N < M, such that there is no degradation in
classification performance. The brute-force solution of this prob-
lem is to exhaustively generate all possible feature subsets and
selecting the one with the best performance [1]. However, this
approach is impractical for large datasets because for a dataset
with M features, 2V solutions need to be generated and evaluated.
This results in an extremely computationally expensive solution
with exponential growth.

Another strategy is to search for this optimal feature sub-
set randomly, or using heuristic information about the search
space [2-4] to guide the search. Unlike the brute-force approach,
a heuristic strategy does not guarantee a globally optimal feature
subset. But it usually finds a near optimal solution within a
reasonable amount of time, resulting in acceptable solutions for
most practical problems. Meta-heuristics are a class of general-
purpose heuristic algorithms which are applicable to a wide
range of problems including FS. In recent years, a number of
meta-heuristic algorithms [5-9] inspired by the interaction and
behavior of physical and biological systems in nature have been
proposed in the literature. They exhibit satisfactory performance
when applied to FS problems.
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Since no one algorithm can be found to be best for FS on all
kinds of datasets, a number of meta-heuristic algorithms have
been proposed by the researchers over time. Methods for FS
can be of two types namely, single entity-based and population-
based. The former revolves around improvement of a single fea-
ture subset over the iterations, while the latter improves the
results of a set of feature subsets. Most of the population-based
FS methods use many candidate solutions which interact with
each other globally as well as locally to find the optimal subset
of features. While searching, each candidate uses history (posi-
tions visited in previous iterations) along with the information
gained from the others to improve its own accuracy. Single entity
based FS approaches include Simulated Annealing (SA) [2], Hill
climbing [10], etc and population-based approaches include Ge-
netic Algorithm (GA) [7], Particle Swarm Optimization (PSO) [6],
Gravitational Search Algorithm (GSA) [8], etc.

FS algorithms can also be divided based on the way they eval-
uate features. Filter methods perform FS based on the intrinsic
properties derived from the data. They mostly assess statisti-
cal (e.g. chi-square [11]), distance (e.g. relief [12]) or entropy
(e.g. symmetrical uncertainty) aspects of the features. Despite
being fast, they are unable to provide high accuracy due to the
absence of a learning model or a classifier. Wrapper methods, on
the other hand, employ a classifier and are much more useful
in generating highly accurate feature subsets. They are widely
used and some of the most popular wrapper methods are GA [7],
PSO [6], Ant Colony Optimization (ACO) [5] and GSA [13] to
name a few. Hybrid methods [14,15] use both filter and wrap-
per methods, but a suitable combination of filter and wrapper
methods is challenging as well as application-specific at times.
Although wrapper methods are computationally expensive, they
improve accuracy to a significant extent when compared to their
filter counterparts. Hence, in this paper, we have proposed a
wrapper-based meta-heuristic called Clustering based Population
in Binary Gravitational Search Algorithm (CPBGSA). To ensure
that particles explore the search space a better way, the initial
population taken in Binary GSA (BGSA) is modified so that it
becomes more distributed over the search space. Enhancement in
explorability of search processes can be attempted through this
initial population initialization technique. Moreover, since this is
a generalized procedure, it is can be amalgamated with any other
wrapper-based FS problem. However, to show the utility of this
method, we have chosen GSA.

GSA was first proposed in 2009 by Rashedi et al. [8] as a
general-purpose optimizer. In 2010 [13], it was employed to
solve FS problems. GSA uses the concept of Newtonian law of
gravitational forces among heavenly bodies. According to this
theory, every body attracts every other body in the universe with
a force which is dependent on their masses and the distance
between their centers. When applied to FS, each body becomes
a candidate solution which attracts other solutions depending on
various parameters under consideration. The force of attraction
generates some velocity in the candidates allowing them to move
in the search space. Thus, this concept became applicable to FS.
The problem with this approach is that whenever a candidate
becomes a good solution, it produces a large force of attraction
and converges rapidly. Due to this high convergence rate, can-
didates of GSA cannot explore the search space properly i.e. it
suffers from pre-mature convergence. To avoid this problem we
propose CPBGSA, which starts with a population which is more
distributed over the search space. This helps in diversifying the
initial candidate solutions so that GSA can achieve the required
exploration of the search space.

The rest of the paper is organized as follows: Section 2 pro-
vides a literature review of meta-heuristics and FS methods. The
CPBGSA is detailed in Section 3. Section 4 presents and discusses
the results. Finally, Section 5 concludes the work and suggests
some future plans.

2. Related work

The nature-inspired evolutionary algorithms can be broadly
classified into three categories based on their sources of inspira-
tion: physical phenomenon-based algorithms (e.g. GSA [8], SA [2],
etc.), Evolutionary algorithms (EA) (e.g. GA [16], Differential Evo-
lution (DE) [17], etc.), and Swarm-based algorithms (e.g. PSO [6],
ACO [5], Artificial Bee Colony (ABC) Algorithm [18], Grey Wolf
Optimizer (GWO) [19], etc.).

GA [16] was one of the first EAs proposed in the literature
mimicking the natural process of evolution through reproduction
and natural selection. Various GA approaches have been proposed
over the years to deal with the FS problems [7,20,21]. GA has
been applied in various domains of pattern recognition like hand-
written digit recognition [21], biomedical data [22], handwritten
word recognition [23], etc. Memetic Algorithm (MA) [24] is a
variation of GA where a local search is added to enhance the
exploitation ability of GA. This EA has also been applied to various
pattern recognition problems [25,26]. In general, such EAs do not
possess good balance of exploitation and exploration as compared
to swarm-based algorithms. This is primarily because EAs change
the population at the same rate.

An interesting subclass of the population-based meta-heuristic
algorithms is the swarm-based algorithms, commonly known as
Swarm Intelligence (SI) algorithms. These algorithms are inspired
from and imitate the social behavior of swarms, flocks and herds
in nature. Unlike the EAs, the SI algorithms utilize the information
gathered from the search space over the previous iterations to
guide their search.

One of the most popular SI techniques is the PSO algorithm,
which was first proposed by Kennedy and Eberhart in 1995 [6].
Here, each solution is thought of as a particle characterized by its
position, fitness and velocity. To deal with binary optimization
problems, a binary version of the PSO algorithm (BPSO) was
proposed in [27]. PSO has been effectively applied to FS problem
in [28]. A hamming distance based BPSO algorithm (HDBPSO) for
FS on high dimensional datasets was proposed in [29]. Some of
the reasons for the popularity of PSO and other SI algorithms in
general, are the requirement for tuning fewer parameters and
also employing fewer operators as opposed to elitism, crossover
and mutation of EAs. PSO, however, converges only to positions
the swarm can reach ie. in many cases PSO converges to a
local optimum [30]. Another limitation of PSO when applied to
the FS problem is that the personal and global best updating
mechanisms may miss some feature sets with small number of
features and high classification accuracy [31].

Binary Bat Algorithm (BBA) [32] creates binary solutions mim-
icking the use of ultrasonic sounds by bats to locate prey (here
best solution). A v-shaped transfer function is used to allow the
flipping of bit values when velocities are high. This allows for
a balanced combination of extensive local search capacity and
search ability of PSO. However, since only the best bat is used to
direct exploration, this hampers exploration capacity. In Binary
Grey Wolf Optimization (BGWO) [19], the three best wolves are
used to direct exploration. The sigmoid function is used to convert
the continuous values to a probability distribution for determin-
ing the state of a feature. However, use of the whole population
for exploration gives added information about the search space,
leading to a more informed search.

BGSA [13] uses the tanh function for flipping the state of a
feature. So, if the velocity is high it calls for a change of the
value representing the feature (‘0’ becomes ‘1’ or vice versa).
While this is applied to discrete functions, the same algorithm
has been applied to FS in [31]. GSA frequently stagnates and to
counter this in [33] the transfer function is modified to have a
minimum output value which depends on number of times the
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best particle remains unchanged in consecutive iterations. Also,
an elitism strategy is used to allow for better retention of good
particles in the population and a normalized hamming distance
is used for better distance estimation.

Operators have also been suggested to enhance exploration
and exploitation in GSA such as the disruption operator [34].
Here, the ratio of the distance from a particle to its nearest
neighbor and the distance to the best particle is measured. If this
ratio is less than a threshold, either exploration (if the particle
is far away from the best) or exploitation (if the particle is
close to the best) is performed. Another approach to enhance
exploitation is to include the best particle’s (gbest’s) position
in the velocity equation to accelerate movement towards the
optimum point [35]. Similarly, in [36] both the gbest and the
best position of the particle in its history (pbest) are used in
the velocity equation. Therefore, GSA is enhanced by borrowing
the style of movement of particles from PSO and combining that
with its own movement style during the calculation of particle
velocity.

A few different approaches have also been proposed in the
literature. In Quantum GSA [37], the particles are represented
with a complex number having unit modulus and the value of
the angle varies. The velocity of the particles is considered equal
to angular velocity which provides the change in angles of the
quantum state of the particles. The square of the cosine of the
angle is the probability of the state of the feature being ‘1’. A
hybrid approach is reported in [38] where after performing BGSA,
Mutual Information-based FS (MIFS) is used to further refine the
feature subsets.

For quick reference, a tabular summary of the above-
mentioned nature-inspired evolutionary algorithms is provided
in Table 1.

3. Proposed CPBGSA algorithm

Any population-based algorithm, like GSA, PSO or ACO, intro-
duces a random initial population from where they start their
search for the optimal feature subset. But if the random ini-
tial population is not generated properly, it may lead to poor
exploration of the search space. Moreover, GSA has a higher
convergence rate compared to other algorithms like PSO or ACO.
GSA suffers from premature convergence and to avoid this, we
have made an attempt to aid exploration by creating a more
distributed initial population. In GSA, each point moves towards
the best points. The movement is synonymous to the movement
of particles in space. The mass of each particle is defined using the
fitness of that particle. In BGSA [13], the particles are encoded
by binary strings of length m where each ‘1’ (‘0’) represents
inclusion (exclusion) of the corresponding feature in the feature
subset, respectively. The number of features in the population is
denoted by m. The particles (x;) are also referred to as agents. The
flowchart showing the steps of the proposed FS model is depicted
in Fig. 1.

Fitness function used in case of any wrapper-based FS is gener-
ally a learning model or a classifier and fitness value is the ability
of the particle (features selected by the particle) to predict the
classes i.e. classification accuracy of the feature set fed to the clas-
sifier. BGSA refers its candidate solutions as masses. Each mass,
therefore, has a fitness value and BGSA tries to optimize these
fitness values. The mass of the ith particle at time t (mass;(t)) is
assigned based on the fitness values using Eq. (1).

) fitness; (t) — minimum(t)
mass;(t) =
! maximum (t) — minimum(t)

(1)

The maximum fitness value (maximum (t)) and minimum fitness
value (minimum(t)) of the population at time t are used to nor-
malize the masses. The masses are re-calculated after one unit

of time (t). From the value of mass;(t), the value of Mass;(t) is
calculated by dividing mass;(t) by sum of all masses as shown in
Eq. (2) where n represents total number of particles. The masses
represent the goodness of a particle in BGSA. Therefore, as t
increases, BGSA tries to improve (increase) the masses assigned
to each candidate.

mass;(t)
Z};] mass;(t)

One mass applies force on other masses, where the force (force of
Jjth particle on ith particle - Fy(t)) is a vector of size m. The force
has a component for every feature. The kth position of the vector
stores the force exerted on the kth feature. Therefore, Fi’f(t) de-
notes the force exerted on the kth feature of the ith particle by the
jth particle and is calculated using Eq. (3). The distance between
two particles (dist (x,», xj)) is the hamming distance between them
where x; and x; denote current positions of ith and jth particles
respectively in the search space.

Mass; (t) * Mass; (t)
dist (x;, x;)

Mass; (t) = (2)

Fi(t) = G(t) x

* (Xf(£) = X} (1)) (3)

Where G(t) refers to the gravitational constant which is calculated
using Eq. (4).

G(t) = ewine (4)

where the value of §2 is taken as —20, t is the current time while
total time is the maximum time till which the algorithm runs.

The net force on the ith particle’s kth feature denoted as Fi" (t)
is calculated using Eq. (5). Here random; is random number in the
range of 0 to 1 both inclusive.

m
Fi" (t) = Z randomj*Fg (t) (5)
J=1, j#i
Following the rules of Physics, the velocity of the ith particle’s

kth feature is affected by the force being applied on it. The new
velocity is calculated using Eq. (6).

F¥ (t)
Mass; (t)

For FS, the velocity of a feature is interpreted as the probability
of changing state of that feature (whether feature is included in
subset - ‘1’ or excluded - ‘0’) in a particle. If velocity for a feature
is high, that means the state of that feature in that particle is dif-
ferent from that of the better particles (at that time) and therefore
the value needs to be changed. Eq. (7) calculates the probability of
flipping using the velocity values. If a random number generated
is less than the value of probability, the corresponding feature
state is flipped i.e. a ‘1’ becomes a ‘0’ and vice versa. It should be
noted that in this step, sigmoid function is widely utilized whose
problems were pointed out in [39]. So, instead of that we have
used tanh function to overcome those problems.

vf (t + 1) = random; * v¥ (t) + (6)

probability = tanh(vf (t + 1)) (7)

BGSA has a high rate of convergence and therefore it is possible
for GSA to get stuck in local optima. Moreover, if a particle
achieves high fitness value, it exerts enormous force on other
particles, thereby attracting all other particles towards itself. Due
to this massive external influence, the particles start converging
till all particles have similar values i.e. till all of them represent
very similar feature sets. This harms the exploration ability of
BGSA severely. To prevent the occurrence of this problem, the key
would be selection of an initial population which is sufficiently
distributed.

To avoid premature convergence of the candidate solutions, p
random initial particles are created. Then the number of clusters
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Table 1
Summary of some related nature-inspired evolutionary algorithms.

Meta-heuristic Algorithm Variants and Application Domains Reference(s)
FS methods
BGSA for binary optimization problems [13], [31]
. GSA Quantum GSA or QGSA for feature [37]
Physical .
selection
phenomenon-based
algorithms Hybrid of BGSA and mutual information [38]
for feature selection in intrusion
detection systems
SA Various application for SA [2]
GA for feature selection [7,20,21]
GA GA for classification of biomedical data [22]
Evolutionary GA for handwritten word recognition [23]
algorithms Memetic Algorithm or MA for PR [24], [25], [26]
DE Application of fuzzy theory in numeral [17]
function optimization
Binary PSO or BPSO for binary [27]
PSO optimization problems
PSO for FS [28]
Swarm-based Hamming distance based BPSO or [29]
. HDBPSO for FS on high dimensional
algorithms
datasets
ACO Various applications of ACO in routing, [5],
assignment, scheduling, etc.
ABC Numeral function optimization [18]
GWO BGWO for binary optimization problems [19],
- Each agent is assigned
Initializen cluster || Initializep agents |  totheclusteritis
centres
nearest to
The newly generated feature set Thresholding is done to For each cluster, value
forms the initial population for [«~—— select a set of features =——  of each featureis
GSA for each cluster calculated
Is termination Masses of all the Force on each agent is
: condition satisfied? agents are calculated calculated
Velocity of each agent
is updated
i:es:taiei:tts atl;le Fitness of the agents New agents are created
BGSA serte othe are calculated from the velocities
memory
Fig. 1. Flowchart of the proposed FS model - CPBGSA.
n is calculated using Eq. (8). The clustering procedure starts by Si = B*(1/Hy)+ n=(1/Dg) (9)

creating n cluster centers which are randomly created candidate
solutions. Then the similarity (defined by Eq. (9)) of each par-
ticle with the cluster centers are calculated and each particle
is allocated to the center for which it has maximum similarity.
There are two terms in the expression of the similarity. The first
term is the inverse of the hamming distance of a particle from
a cluster center. The second term is the inverse of the difference
in accuracies of the particle and a cluster center. The first term
represents how easily a particle can be brought to the cluster
center and the second term represents the similarity between the
classification abilities of the current particle and cluster center.
Both of these terms are used with some weightages to generate
the similarity of a particle to all the cluster centers.

(8)

n=|ax*pl;

Where « is a value in (0, 1), p is the number of particles used to
generate the initial population, Hy represents the hamming dis-
tance, D, shows the difference in accuracies (between particle and
cluster center) and S; shows the similarity of a cluster center to an
agent. 8 and n represent the weightage of the two terms present
in the expression of S; where 8 = 1 — 5. In order to calculate
D, a classifier is used to compute the classification accuracies of
every particle and cluster center. Then D, is computed using the
differences in the classification accuracies between every particle
and every cluster center.

Each cluster now has a set of particles allocated to it. The
next step is to generate a feature set from each cluster. It can be
assumed that better features lead to a rise in accuracy. Suppose
we have q particles in a cluster. Considering the dth cluster, the
features in the particles of that cluster are evaluated to select the
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useful ones. Eq. (10) is proposed to measure goodness measure
(hf is how good the ith feature of the dth cluster is). The best
features are the features whose goodness values are greater than
that of the mean of all goodness measures in a cluster.

q
hd = ij‘.’i x Accjd (10)
=

where kﬁ is position of jth particle in dth cluster and Accf repre-
sents accuracy of the jth particle in dth cluster.

The entire steps of our proposed FS model, namely CPBGSA are
listed hereafter with a suitable example presented in Tables 2-5:

1. Randomly create a set of n cluster centers and compute
the fitness of each cluster center using a classifier. Con-
sider Table 2 which contains the representation and fitness
(i.e. classification accuracy) values of 4 randomly created
cluster centers.

2. Initialize a random population (of size p) and find the
fitness of each particle. Table 3 contains representation
and fitness values of a population of 10 agents (randomly
initialized).

3. Find the hamming distance between the cluster centers
and each particle. For each particle, similarity (S;) to the
cluster center is calculated. The distance is defined in
Eq. (9), where i varies from 1 to n. One field in Table 4
contains hamming distance values between each agent and
each cluster center.

4. Each particle is assigned to a cluster from which S; is
maximum. The assignment of each agent to one of the
cluster centers is shown in Table 4.

5. Each cluster now contains a related set of particles. In each
cluster, we proceed to assign a value (h;) to the ith feature
using the Eq. (10).

6. For each cluster, a threshold (cut-off) is calculated which is
the mean of the values assigned to the features as h;.

7. In each cluster, the features whose h; values are above
cut-off are taken into a new particle i.e. if the ith feature
has value greater than cut-off then the ith position for the
particle is made 1, O otherwise. For each cluster, the final
cluster centers derived via histogram are represented in
Table 5.

8. Now we have a set of n particles which is then used as
the initial population for BGSA. BGSA is then performed to
optimize the initial population.

The method takes some random search agents as its input and
produces the final agents by application of clustering and GSA.
The shapes of clusters are totally dependent on how different
agents or candidate solutions scattered over the search space are
assigned to specific clusters.

Most of the population based meta-heuristic algorithms start
with a random initial population and hence they suffer from the
problem of premature convergence. The main problem lies in
the randomness of the procedures. Random procedures may or
may not produce expected results every time. But our proposed
model tries to reduce the degree of randomness by converting
the random initial population to a guided one. The proposed
model selects its initial population from different portions of
the search space which increases its exploration ability. Hence,
theoretically CPBGSA is expected to give better results than other
state-of-the-art algorithms which use unguided random initial
population.

4. Results and analysis

This section contains all the experimental outcomes obtained
by the proposed model and its comparison with other well-
established FS techniques. Here, experimentations are done on a
machine with 4 GB RAM and Intel Core-i3 (5th gen.) processor
and MATLAB as programming platform.

4.1. Dataset description

We have evaluated our FS model on 20 UCI datasets which
are publicly available [40]. We have classified the datasets into 3
categories — small, medium and large depending on the number
of features present therein. The description of the datasets is
provided in Table 6. We have selected 2 small, 15 medium and
3 large datasets for the evaluation of our model.

Brief descriptions of the popular datasets (2 small, 10 medium
and 3 large datasets) are given below:

(1) Small Datasets:

e BreastCancer: The Original Wisconsin Breast Cancer dataset
is widely used for classification of breast cancer. The goal
is to distinguish between two classes of breast cancer —
benign and malignant and for that it uses attributes such
as clump thickness, uniformity of cell size and shape, etc.

e Tic-tac-toe: The Tic-tac-toe Endgame dataset encodes the
complete set of possible board configurations at the end of
a tic-tac-toe game. The aim is to distinguish between two
outcomes - win or loss - for the player who made the first
move. There are nine attributes, each corresponding to one
of the nine squares of the board, representing the state of
that square at the end of a game.

(2) Medium Datasets:

e BreastEW: The goal is to distinguish between two classes of
breast cancer diagnosis — benign and malignant. The fea-
tures are extracted from a digitized image and they describe
the characteristics of the cell nuclei present in the image. It
is called the Diagnostic Wisconsin Breast Cancer dataset.

e CongressEW: The Congressional Voting Records dataset con-
tains information about the votes for each of the U.S. House
of Representatives Congressmen based on different key is-
sues. The attributes are categorical. The goal is to classify
each instance into either a democrat or a republican.

e HeartEW: The target is to predict the presence or absence
of heart disease in an individual based on certain character-
istics represented by the attributes such as age, sex, chest
pain type, etc. It is also called the Statlog (Heart) dataset.

o lonosphereEW: The Ionosphere dataset is used for the bi-
nary classification of radar returns from the ionosphere into
‘good’ returns, which show evidence of some sort of struc-
ture in the ionosphere, and ‘bad’ returns, which do not.

e Lymphography: Lymphography refers to the use of X-rays
for visualizing the body’s lymphatic system. This is a multi-
class dataset. The aim is to divide the data into four classes,
namely, normal, metastases, malign lymph and fibrosis.

e Zoo: This dataset contains information about the charac-
teristic features of various animals. The target is to distin-
guish between seven classes of animals based on the given
boolean attributes, indicating the presence or absence of
various features such as hair, feathers, milk, etc.

e WineEW: The wine dataset encodes the results of a chemical
analysis of wines to determine their origins. They are grown
in the same region but have different origins and the goal
is to distinguish the data with respect to their origin based
on the quantities of some key constituents found in each
instance.
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Table 2
Details of 4 random cluster centers used in worked out example.
Cluster center Representation of cluster centers Classification
# accuracy
1 1 1 0 0 0 1 0 0 1 1 0.9599
2 1 1 1 0 0 1 1 0 1 0 0.9766
3 1 0 0 1 0 0 0 0 1 1 0.9599
4 1 0 1 0 1 0 0 0 1 1 0.9732
Table 3
Details of initial agents of the population in the example.
Agent # Representation of initial population Classification
accuracy
1 1 0 0 1 1 0 1 1 1 0 0.9833
2 1 1 1 1 1 0 1 0 1 0 0.9799
3 1 0 1 1 0 0 1 0 1 1 0.9732
4 0 1 1 1 1 1 0 1 1 0 0.9766
5 1 1 1 1 1 0 0 0 1 0 0.9732
6 1 0 1 1 1 0 1 0 0 1 0.9732
7 0 1 0 1 1 1 0 1 1 0 0.9766
8 1 1 1 0 1 1 1 1 0 0 0.9833
9 1 0 1 1 1 1 0 0 0 0 0.9732
10 0 1 1 1 0 0 1 1 1 1 0.9833
Table 4
Values of hamming distance, difference in classification accuracy and S; of every agent corresponding to each cluster center in the
example.
Agent # Cluster center Hamming Difference in Similarity Cluster
number distance (Hy) classification measure (S5;) assignment
accuracy (Dg)
1 7 0.024 124
2 6 0.0077 39.1
1 3 4 0.024 12.46 Cluster 2
4 5 0.011 27.33
1 6 0.021 12.36
2 3 0.004 69.29
2 3 5 0.021 1438 Cluster 2
4 4 0.008 39.19
1 5 0.014 21.005
2 4 0.0043 69.23
3 3 2 0.014 21.22 Cluster 4
4 3 0.001 300.233
1 6 0.018 17.04
2 5 0.001 300.14
4 3 7 0017 17.028 Cluster 2
4 6 0.0043 69.17
1 5 0.014 21.005
2 4 0.0043 69.228
> 3 4 0.014 21.0403 Cluster 4
4 3 0.001 300.233
1 7 0.0144 20.9653
2 6 0.0043 69.17
6 3 4 0.0144 21.0403 Cluster 4
4 3 0.001 300.233
1 5 0.0172 17.07
2 6 0.001 300.116
4 3 6 00172 17.044 Cluster 2
4 7 0.0043 69.153
1 6 0.0244 12.406
2 3 0.0077 39.2502
8 3 9 0.024 12.37 Cluster 2
4 6 0.011 27.31
1 6 0.0144 20.982
2 5 0.0043 69.193
9 3 5 00143 21.0053 Cluster 4
4 4 0.001 300.175
1 6 0.0244 12.406
2 5 0.0077 39.16
10 3 5 0.0244 12.43 Cluster 2
4 6 0.011 27.31
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Table 5
Representation of agents present in each cluster and final agents produced via histogram for each cluster.
Cluster # Agents present in the cluster Final cluster center derived via histogram
1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1
1 1 1 0 0 1 1 0 1 0
1 0 0 1 1 0 1 1 1 0
1 1 1 1 1 0 1 0 1 0
2 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0
0 1 0 1 1 1 0 1 1 0
1 1 1 0 1 1 1 1 0 0
0 1 1 1 0 0 1 1 1 1
3 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1
1 0 1 0 1 0 0 0 1 1
1 0 1 1 0 0 1 0 1 1
4 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0
1 0 1 1 1 0 1 0 0 1
1 0 1 1 1 1 0 0 0 0
Table 6
Description of 20 UCI datasets used for evaluation of CPBGSA.
Type Dataset Number of Number of Number of
features instances classes
Small (No. of BreastCancer 9 699 2
features < 10) Tic-tac-toe 9 958 2
BreastEW 30 569 2
CongressEW 16 435 2
Exactly 13 1000 2
Exactly2 13 1000 2
HeartEW 13 270 2
lonosphereEW 34 351 2
. KrVsKpEW 36 3196 2
oMfe?e lautrLIl]re(s]O<§] (l)\g; Lymphography 18 148 4
m-of-n 13 1000 2
Vote 16 300 2
Zoo 16 101 7
WineEW 13 178 3
Waveform 40 5000 3
SpectEW 22 267 2
SonarEW 60 208 2
PenglungEW 325 73 7
%:;ffréy‘l 01f00) Arrhythmia 279 452 16
- Madelon 500 4400 2

e Waveform: he Waveform dataset is used for the purpose
of classifying waves into three waveform domains based on
certain noisy attributes.

e SpectEW: The SPECT Heart dataset classifies each patient
into two categories — normal and abnormal, based on
features extracted from the analysis of cardiac Single Proton
Emission Computed Tomography (SPECT) images.

e SonarEW: The Connectionist Bench (Sonar, mines vs. Rocks)
dataset encodes various patterns which are obtained by
bouncing sonar signals off a metal cylinder and rocks at
various angles and under various conditions. The goal is to
discriminate between these sonar signals and classify them
into two classes.

(3) Large Datasets:

e PenglungEW: This dataset is a large dataset with 325 at-
tributes and 73 samples. It is also a multiclass dataset with
7 classes. It has been widely used as a large dataset to test
feature selection algorithms.

e Arrythmia: This dataset is also multiclass. The aim is to
distinguish between the presence and absence of cardiac
arrhythmia and to classify the results into 16 classes.

e Madelon: This is an artificial dataset which is used for binary
classification purpose. The data points are grouped into 32
clusters corresponding to the vertices of a five-dimensional
hypercube and randomly labeled +1 or —1. Each dimension
represents a feature and to these 15 linear combinations
of these features were added to get a total of 20 features,

which are then used to classify the data into two classes
corresponding to the +1 or -1 labels.

4.2. Parameter selection

e Our proposed method mainly has three parameters for
which we need to set the optimal values and those are —
population size, number of iterations, the value of 8, n and «.
We have varied all the parameters while experimentation
and finally we have found an optimal set of values for the
three parameters. The obtained optimal set is-

e Population size — 30

o Number of iterations — 20
e -04

e 3-07

en-03

For rest of the experimentations, we have used this set of val-
ues for the parameters. The detailed parameter variation results
are presented in a graphical manner in Figs. 2-17. Figs. 2-6 repre-
sent results for parameter variations in small datasets. Figs. 7-12
show the same for medium datasets and Figs. 13-17 for large
datasets. Sections 4.3 and 4.4 explain the experimental results
obtained by parameter variation in detail. This section contains
the graphs representing the results obtained by the variation of
parameters used in CPBGSA. These graphs illustrate variation of
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Accuracy vs No. of iterations for different datasets
using KNN
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Fig. 2. Accuracy (using KNN) versus no. of iterations for CPBGSA over 2 small
datasets.

No. of features vs No. of iterations for different
datatsets using KNN

60
) l
0
10 20 30

No. of iterations

No. of features (in %)
S o

mTictactoe W BreastCancer

Fig. 3. No. of features selected (in %) versus no. of iterations for CPBGSA over
2 small datasets.

all the parameters used in the process — no. of iterations, pop-
ulation size, 8 (or 1) and «. The interpretation and conclusions
drawn from the graphs are provided in Section 4.2.1 to 4.2.3.

4.2.1. Group 1 (small datasets)

Figs. 2 and 3 represent the variation of the classification ac-
curacy and the percentage of total features selected respectively
by CPBGSA using the KNN classifier against the number of it-
erations, keeping the population size fixed at 30, over the 2
small datasets. For the Tic-tac-toe dataset, although our proposed
model achieves the best classification accuracy when the number
of iterations is set to 20, it selects all of the features under those
conditions, as can be seen from Fig. 2. In case of BreastCancer
dataset, the proposed model achieves almost 100% classification
accuracy for all iteration values while the percentage of selected
features is considerably low for the iteration value of 30.

Figs. 4 and 5 show the variations of the classification accuracy
and the percentage of features selected respectively by CPBGSA
using the KNN classifier against the population sizes, keeping the
number of iterations constant at 20, over the small datasets. Fig. 4
illustrates that our proposed FS model achieves the best accuracy
for both the small datasets corresponding to population size of 30.
This initial population size also results into minimum number of
selected features for the BreastCancer dataset as can be seen from
Fig. 5.

Based on the above discussion and taking both the small
datasets into consideration, it can be concluded that the proposed
model gives the best overall performance for iteration count of 20
and initial population size of 30.

In addition to the initial population size and no. of iterations,
further experimentations have been performed to find a suitable
value for B (or 7). For these experimentations, the values of
initial population size and no. of iterations are fixed at 30 and 20

Accuracy vs Population size for different datasets
using KNN

0 I I I I I I I I
10 20 30 40

Population size

Accuracy (in %)
& & 8

~
(=]

mTic-tac-toe W BreastCancer

Fig. 4. Accuracy (using KNN) versus population size for CPBGSA over 2 small
datasets.

No. of features vs Population size for different
datasets using KNN
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Fig. 5. No. of features selected (in %) versus population size for CPBGSA over 2
small datasets.

Accuracy vs B for different datasets using KNN
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Fig. 6. Accuracy variation for different values of g for CPBGSA over 2 small
datasets.

respectively. Fig. 6 provides the classification accuracy obtained
by varying the value of 8 as 0.1, 0.3, 0.5, 0.7, 0.9 for two small
datasets. The graph presented in Fig. 6 clearly illustrates that 0.7
is the most suitable value for g8 in case of small datasets.

4.2.2. Group 2 (medium datasets)

Figs. 7 and 8 illustrate the variation of the classification ac-
curacy and the percentage of total features selected respectively
by CPBGSA using the KNN classifier against the number of itera-
tions, keeping the population size fixed at 30, over the medium
datasets. Fig. 8 shows that our proposed model achieves greater
than 95% classification accuracy in 10 out of the 15 datasets for
iteration count of 20. This value also results in less than 60%
feature selection in 12 datasets, thus exhibiting better overall
performance than other iteration values.
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Accuracy vs No. of iterations for different datasets using

KNN
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Fig. 7. Accuracy (using KNN) versus no. of iterations for CPBGSA over 15

medium datasets.
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Fig. 8. No. of features (in %) versus no. of iterations for CPBGSA over 15 medium
datasets.

Figs. 9 and 10 demonstrate the variation of the classification
accuracy and the percentage of features selected respectively
by CPBGSA using the KNN classifier against the population size,
keeping the number of iterations constant at 20, over the medium
datasets. These figures, on being subjected to similar analysis as
Figs. 7 and 8, exhibit similar trends. The initial population size
of 30 leads to greater than 90% accuracy for 11 out of the 15
datasets, while 12 datasets have less than 60% of their features
selected.

Therefore, a similar conclusion can be reached, that the pro-
posed model exhibits the best performance for the medium
datasets, using the same parameter values applied for small
datasets.

Figs. 11 and 12 provide the classification accuracy obtained by
varying the value of 8 as 0.1, 0.3, 0.5, 0.7, 0.9 for 8 and 7 medium
datasets respectively. In Fig. 11, we can see that the algorithm
could not achieve highest accuracy for 8§ = 0.7 in case of Exactly
and HeartEW. On the other hand, the same value of 8 does not
result into maximum accuracy in Fig. 12 for Zoo and SonarEW.
But for other 11 out of 15 medium datasets, assigning 0.7 to 8
produces highest classification accuracy. Hence, we conclude that
0.7 is the most suitable value for 8 for medium datasets as well.

4.2.3. Group 3 (large datasets)

We have used 3 large datasets namely PenglungEW, Arrhyth-
mia and Madelon for evaluation of the proposed model. Figs. 13
and 14 display accuracy obtained and no. of features selected
respectively by CPBGSA with respect to changing no. of itera-
tions (keeping population size fixed at 30) over all the 3 large
datasets. Similarly, Figs. 15 and 16 represent accuracy obtained

Accuracy vs Population size for different datasets
using KNN
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Fig. 9. Accuracy (using KNN) versus population size for CPBGSA over 15 medium
datasets.
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Fig. 10. No. of features (in %) versus population size for CPBGSA over 15 medium
datasets.
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Fig. 11. Accuracy variation for different values of 8 for CPBGSA over 8 medium
datasets.

and no. of features selected respectively by CPBGSA with respect
to changing population size (keeping no. of iterations fixed at 20)
over the same datasets. For the large datasets, slight deviations
can be observed. Although accuracy obtained by the model over
PenglungEW and Madelon have reached their maximum value for
population size 30 and no. of iterations 20, it could not achieve
the best feature reduction for the same pair of values.

So, as a conclusion to these graphical representations, it is
clearly visible that keeping population size and no. of iterations
fixed at 30 and 20 respectively give the best output in terms of
classification accuracy but not in terms of percentage of selected
features. However, as increase in classification accuracy is a more
important parameter than number of selected features, for rest
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Accuracy vs B for different datasets using KNN
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Fig. 12. Accuracy variation for different values of B for CPBGSA over other 7

medium datasets.
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Fig. 13. Accuracy (using KNN) versus no. of iterations for CPBGSA over 3 large

datasets.
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Fig. 14. No. of features (in %) versus no. of iterations for CPBGSA over 3 large
datasets.

of the experimentations, we have used the above-mentioned
parameter values.

Fig. 17 provides the classification accuracy obtained by varying
the value of 8 as 0.1, 0.3, 0.5, 0.7, 0.9 for three large datasets. The
graph presented in Fig. 17 clearly illustrates that 0.7 is the most
suitable value for g in case of large datasets too.

4.2.4. Cluster validity analysis

After fixing the values of population size, no. of iterations and
B (and n), we have performed another set of experimentations
to find a proper value for « mentioned in Eq. (8). The number of
clusters used in the proposed guidance method is decided by the
value of o which is a very important parameter in the process. To
evaluate the impact of different values of « on the formation of
clusters, we have used a popular cluster validation index called

Accuracy vs Population size for different datasets
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Fig. 15. Accuracy (using KNN) versus population size for CPBGSA over 3 large
datasets.
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Fig. 16. No. of features (in %) versus population size for CPBGSA over 3 large
datasets.
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Fig. 17. Accuracy variation for different values of B for CPBGSA over 3 large
datasets.

Davies-Bouldin (DB) index [41]. The index value is computed
using Eq. (11) shown below:

K

DB(C) = 1 Zmax{w}
K i 8(Gi, G)
where C = (Cy, Gy, ....., Cg)is the set of all clusters and K is
the total number of clusters. A (G) is the intra-cluster distance of
the ith cluster and 8(G;, Gj) is inter-cluster distance between ith
and jth cluster where i#j.

From Eq. (11), we can clearly see that a clustering technique
is said to perform well if the DB value of the clusters is low
because it will result into small intra-cluster distance and high
inter-cluster distance which are the most important objectives of
clustering. The value of « is varied as 0.1, 0.2, 0.3, 0.4 and 0.5.

(11)
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Table 7

DB values for the proposed clustering technique for varying o values over 20 datasets.

Dataset Davies-Bouldin (DB) Value
a=0.1 a=0.2 a=0.3 a=0.4 a=0.5

BreastCancer 4.414196 2.994526 2.35515 1.938426 2.004465
BreastEW 3.623333 2.720222 2.421556 2.158087 2.400567
CongressEW 3.737727 2.554261 1.861572 2.279896 2.138538
Exactly 3.404304 3.075041 3.500292 2.184364 2.473248
Exactly2 4798773 3.116076 3.009258 2.478885 2.477764
HeartEW 4.514785 3.546698 3.291837 2.023946 2.488591
IonosphereEW 3.002876 2.964739 2.839696 2.218197 2.321103
KrVsKpEW 4.239587 3.535245 2.59886 2.126689 2.268521
Lymphography 3.639455 3.0927 2.806083 2.368344 2.534663
M-of-n 34112 3.333034 2.922217 2.28907 2.483904
PenglungEW 4.546997 3.1936 2.635774 2.078518 2.073403
SonarEW 4245935 3.133103 2.646555 2.167747 2.170887
SpectEW 3.491593 3.345392 2.855128 1.970907 2.216221
Tic-tac-toe 2.800961 2.877239 2.608736 2.321402 2.343808
Vote 3.7066 3.286053 2.238519 1.878741 2.050918
Waveform 3.978715 2.953695 3.061707 2.117501 2.271444
WineEW 3.826538 3.178374 3.069182 2.226068 2.184569
Zoo 3.739837 3.515495 2.567063 2.037598 2.192491
Arrhythmia 457179 3.41216 2.908513 2.101353 2.300187
Madelon 4.441881 3.144074 2.79312 2.238099 2.211511

The DB values of the proposed clustering technique for varying «
values over all the datasets is presented in Table 7. From the table,
we can clearly see that the proposed clustering technique has
performed the best when o = 40. That is why we have selected
the most optimal value of « as 0.4.

4.3. Experimental results

The detailed results obtained by our model are recorded in
Tables 8 and 9. The experiments have been run using three pop-
ular classifiers namely KNN, MLP (Multi-layer Perceptron) and RF
(Random Forest - a decision tree-based classifier). The classifier
settings used to find the results are also provided in Tables 8 and
9. Table 8 contains the results for first 10 UCI datasets and Table 9
contains the second 10 UCI dataset results.

The following observations can be made by inspecting the
results given in Tables 8 and 9:

e For KNN classifier, CPBGSA obtains greater than 90% accu-
racy for 10 datasets, greater than 80% but less than 90%
accuracy for 6 datasets, greater than 70% but less than 80%
accuracy for 2 datasets and between 50% and 70% accuracy
for 2 datasets. Similarly, using MLP classifier, CPBGSA ob-
tains greater than 90% accuracy for 13 datasets, greater than
80% but less than 90% accuracy for 5 datasets and between
60% and 80% for remaining 2 datasets. For RF classifier,
CPBGSA achieves more than 90% accuracy in 8 datasets,
between 80 and 90% accuracy for 3 datasets, between 70 and
80% in 6 datasets and less than 70% accuracy in remaining 3
datasets. Note that, CPBGSA obtains 100% (full) accuracy for
1 dataset using KNN, for 1 dataset using RF and for 5 datasets
using MLP. Such high values of accuracies over such diverse
datasets certainly prove the applicability of the proposed
model.

e Best, worst and average accuracies are almost equal and
very low value of standard deviation indicates the ability of
the proposed model to increase the accuracy of every can-
didate solution in the population which is a very important
evaluation criterion of any population-based model.

e Using MLP as a classifier gives the best results in term of
accuracy among all three classifiers but it takes much more
time as compared to the rest of the classifiers. RF takes
moderate amount of time which is in between the time
requirements of KNN and MLP classifiers. From Tables 8 and

9, it is evident that RF classifier is not able to achieve bet-
ter “Average accuracy” than the other classifiers (KNN and
MLP). We can draw another interesting conclusion from the
results which is that the standard deviation for RF classifier
is on the higher side compared to KNN and MLP. Hence,
although even in some cases, RF classifier obtains better
“Best accuracy” when compared to KNN but could not get
better “Average accuracy”.

4.4, Comparison of results

For establishing the superiority of our proposed model, we
have selected a variety of classical as well as recently proposed
FS algorithms having different kinds of exploration-exploitation
trade-offs. In Tables 10-12, we have provided comparison of
our proposed model — CPBGSA in terms of best classification
accuracy, average classification accuracy and average number
of selected features respectively. CPBGSA has been compared
with Ant-Lion Optimization (ALO), Binary Ant-Lion Optimization
(BALO-1), BALO-S, BALO-V, BBA, GA, PSO, GSA, Deluge based Ge-
netic Algorithm (DGA) [42], Wrapper Filter based Ant Colony Op-
timization for Feature Selection (WFACOFS) [43] and Histogram
based Multi-Objective Genetic Algorithm (HMOGA) [21]. GA is
well-known in the literature for its exploration ability through
crossover. Though GA achieves exploitation to some extent using
mutation, its weak local search capability makes GA inefficient in
terms of exploitation. PSO on the other hand, achieves impressive
local search which in turn increases its exploitation ability. BBA
is a combination between PSO and intensive local search but bal-
ance between the two methods depend on the values of loudness
and pulse emission rate. A good balance between exploitation and
exploration is shown by all the versions of ALO. Adaptive bound-
ary shrinking mechanism and elitism applied in ALO result in
good exploration and high convergence rate. On the other hand,
roulette wheel selection and random walk procedures enable ALO
to achieve good exploration of the search space. Binary version
of ALO is proposed in BALO replacing the idea of average in ALO
with crossover. BALO-S and BALO-V use squashing functions of
shape-S (sigmoidal function) and shape-V (hyperbolic tan func-
tion) respectively which force search agents to move in binary
space. DGA uses Great Deluge Algorithm (GDA) to enhance the
local search capability of GA which in turn improves the extent of
exploitation in GA. WFACOFS introduces a filter-based evaluation
method in the system of search agents (ants in ACO) which
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Table 8

Results obtained by our proposed FS model on first 10 UCI datasets. The best, worst and average accuracies along with the number of features are given. Computation

time for execution is also provided.

Dataset Type CPBGSA (with KNN) CPBGSA (with MLP) CPBGSA (with RF)
Accuracy No. of k-value Accuracy No. of No. of neurons Accuracy No. of No. of
features features in hidden layer features trees
Best 0.9899 6 0.9966 7 0.9900 6
Worst 0.986 5 0.9833 6 0.9766 5
BreastCancer Average 0.9895 5.87 6 0.9866 6 110 0.9869 6.667 70
STD 0.001 0.34 0.004 1.142 0.0044 2.309
Time (s) 24.46 486.84 44.2266
Best 0.988 19 1 21 0.9588 13
Worst 0.976 15 0.9882 30 0.9235 17
BreastEW Average 0.986 18.75 6 0.9907 21.46 50 0.9461 14.25 70
STD 0.003 1.224 0.003 4.032 0.0083 2.417
Time (s) 22.58 502.563 39.1012
Best 0.969 8 0.9769 11 0.9308 6
Worst 0.961 7 0.969 4 0.8615 5
CongressEW Average 0.968 7.79 4 0.971 7.17 50 0.8994 9.333 100
STD 0.002 0.658 0.003 2.353 0.0175 2.348
Time (s) 23.34 443531 25.6159
Best 0.9075 7 1 8 0.6925 4
Worst 0.695 13 0.7125 7 0.6875 8
Exactly Average 0.881 7.75 5 0.9651 7.96 50 0.6921 7.83 85
STD 0.072 2.027 0.094 0.36 0.0014 1.80
Time (s) 24.942 490.76 40.8252
Best 0.76 7 1 11 0.7400 5
Worst 0.74 3 0.74 5 0.7400 13
Exactly2 Average 0.752 5.542 5 0.8852 9 110 0.7400 8.667 70
STD 0.009 1.933 0.115 3.426 0.0000 2.774
Time (s) 24.51 512.194 59.5465
Best 0.88 7 0.9012 13 0.8395 7
Worst 0.84 9 0.852 8 0.7778 6
HeartEW Average 0.87 7.25 6 0.873 9.75 50 0.8220 7.833 115
STD 0.013 0.68 0.014 3.22 0.0170 1.697
Time (s) 19.73 431.13 23.5446
Best 0.974 10 0.9867 19 0.9073 14
Worst 0.947 18 0.9669 21 0.7815 15
lonosphereEW Average 0.969 11.33 5 0.974 19.792 50 0.8676 18 70
STD 0.01 3.045 0.006 1.769 0.0346 6.715
Time (s) 17.78 431.162 25.2219
Best 0.9452 16 0.995 36 0.9171 24
Worst 0.9201 36 0.982 36 0.7496 20
KrVsKpEwW Average 0.9421 18.5 0.9875 36 110 0.8633 2425 70
STD 0.008 6.75 0.0031 0 0.0510 7.724
Time (s) 79.624 884.89 256.3547
Best 0.89 5 0.8863 18 0.7273 9
Worst 0.84 7 0.7954 9 0.4773 18
Lymphography Average 0.85 7.58 5 0.8106 13.42 50 0.5549 9.917 85
STD 0.019 2.16 0.0229 451 0.0831 4.100
Time (s) 16.61 411.05 22.6799
Best 0.652 92 0.717 165 0.4934 130
Worst 0.578 136 0.664 144 0.4934 279
Arrhythmia Average 0.617 99.3 4 0.675 165.71 50 0.4934 162.9 70
STD 0.017 16.75 0.012 21.12 0.0000 47.013
Time (s) 63.204 1608.75 52.5925

reduces the overall time requirement of the model. HMOGA uses
histogram to calculate relative importance of the features and
performs thresholding to select the final set of features. Thus, we
conclude that the algorithms we have selected for the compar-
ison with CPBGSA are from a large variety of families and have
different exploration-exploitation capabilities. For comparison of
CPBGSA with other well-established FS methods, we have chosen
KNN as our classifier. KNN is much faster than MLP and RF as can
be observed from the recorded time in Tables 8-9.

4.4.1. Comparison based on highest accuracy

Table 10 consists of the comparison of the highest classifi-
cation accuracies achieved by different models. Out of the 20
datasets, the proposed one works performs best for 9 datasets.
GSA performs best for 6 datasets, which is the highest for any
other algorithm, followed by BALO-1 which performs best for
4 datasets and WFACOFS which performs best in 1 dataset. For
remaining 11 datasets, in which CPBGSA failed to achieve the best
results, it can be seen that the proposed method is able to get
comparable accuracies. For further clarification, the rank of CP-
BGSA accuracy among the accuracies obtained by all the methods
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Table 9

Results obtained by our proposed FS model on second 10 UCI datasets. The best, worst and average accuracies along with the number of features are given. Time

for execution is also provided.

Dataset Type CPBGSA (with KNN) CPBGSA (with MLP) CPBGSA (with RF)
Accuracy No. of k-value Accuracy No. of No. of neurons Accuracy No. of No. of
features features in hidden layer features trees
Best 0.9825 7 1 9 0.910 13
Worst 0.8625 13 1 13 0.738 7
M-of-n Average 0.9675 7.75 4 1 11 50 0.803 8 70
STD 0.04 0 2.043 0.062 2.730
Time (s) 2.027 435.14 73.757
Best 0.8966 169 0.8965 186 0.724 205
Worst 0.862 156 0.8276 186 0.69 161
PenglungEwW Average 0.878 131.958 4 0.8577 174.33 50 0.698 181.75 100
STD 0.018 36.823 0.0614 14.062 1.724 19.033
Time (s) 26.134 445.97 264.425
Best 0.72 26 0.866 29 0.746 16
Worst 0.66 6 0.761 25 0.493 27
SonarEW Average 0.71 235 14 0.787 24.79 140 0.600 26.5 70
STD 0.02 6.76 0.03 8.06 0.067 4.359
Time (s) 18.8 450.47 54.012
Best 0.92 1 0.904 15 0.797 13
Worst 0.73 8 0.743 11 0.75 22
SpectEW Average 0.89 2.16 13 0.786 12.92 50 0.77 17.5 70
STD 0.071 2.66 0.042 3.99 1.820 5.196
Time (s) 19.95 408.6 213.459
Best 0.82 9 0.943 9 0.739 6
Worst 0.77 5 0.804 6 0.708 4
Tic-tac-toe Average 0.82 8.5 5 0.848 8.375 140 0.724 5.5 85
STD 0.02 1.35 0.037 1.244 0.010 1.382
Time (s) 26.64 511.96 42.898
Best 0.9583 6 0.9583 16 0.933 10
Worst 0.925 5 0.9417 10 0.833 12
Vote Average 0.9486 5.67 6 0.9483 11.083 50 0.874 9 70
STD 0.016 0.761 0.006 3.549 0.028 2.486
Time (s) 21.498 418.493 64.942
Best 0.831 21 0.875 40 0.845 40
Worst 0.82 20 0.857 30 0.739 22
Waveform Average 0.83 20.87 10 0.869 38.75 50 0.814 26.75 115
STD 0.001 0.34 0.005 3.38 0.031 8.935
Time (s) 177.85 866.2807 306.221
Best 1 6 1 9 1.000 10
Worst 0.98 5 1 13 0.894 6
WineEW Average 0.99 5.88 5 1 9.333 50 0.973 8.25 70
STD 0.007 0.34 0 2.28 0.030 2.864
Time (s) 211 410.114 34.191
Best 0.85 9 0.878 9 0.854 9
Worst 0.83 10 0.805 13 0.854 11
Zoo Average 0.83 10.06 5 0.83 9.92 50 0.854 9 85
STD 0.008 1.06 0.015 2.083 0.000 2.892
Time (s) 19.54 442.75 207.160
Best 0.565 252 0.605 290 0.595 156
Worst 0.561 242 0.58 225 0.523 238
Madelon Average 0.564 250.75 5 0.587 290.458 70 0.584 287.3333 70
STD 0.001 3.38 0.0061 66.91 0.019 115.715
Time (s) 1163.006 8367.328 932.976

used for comparison is also provided in Table 10. Even though
CPBGSA could not achieve the best classification accuracy for all
the datasets, for most of the datasets, the difference between the
highest accuracy and CPBGSA accuracy is within 2%.

4.4.2. Comparison based on average accuracy

In Table 11, the comparison of average accuracies of the meth-
ods is given. Best accuracies are not always indicative of the
robustness of the model because some algorithms may increase
the accuracy of only few candidate solutions from the population
but the applicability of a model lies in the ability to increase
the accuracy of every candidate. So, to establish the effectiveness

of CPBGSA, we have compared its average accuracy with that of
other methods in Table 11. In case of average accuracy, CPBGSA
outperforms the rest of the algorithms 12 out of 20 times. Again,
for remaining 8 datasets, CPBGSA achieves comparable average
accuracies. So, we can see that the number of datasets in which
CPBGSA achieves best result in terms of average accuracy is more
than that in terms of highest accuracy. This happens because
CPBGSA focuses on improving all of its candidates by passing
information gained by one candidate to other which is clear by
the low values of standard deviation provided in Tables 8 and 9.
Unlike most of the other methods used for comparison, which
start with random candidates, CPBGSA clubs together similar
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Table 10

Comparison of CPBGSA with state-of-the-art FS methods in terms of highest classification accuracy achieved by them. The highest accuracy for each dataset is made

bold.
Dataset Methods Rank of

ALO  BALO-1 BALO-S BALO-V BBA  GA PSO GSA DGA  WFACOFS HMOGA  CPBGSA CPBGSA
(Proposed)

BreastCancer 0.971 0.974 0.969 0.97 0.975 0.95 0.9554 0.9933 0.99 0.99 0.962 0.9899 4
BreastEW 0.972 0.979 0.979 0.979 0.976 0.9379 0.9232 0.9941 0.98 0.978 0.981 0.988 2
CongressEW 0.961 0.97 0.961 0.963 0.967 0.931 0.9366 0.984 0.97 0.97 0.98 0.969 6
Exactly 0.701 0.856 0.723 0.856 0.748 0.7357 0.7381 0.855 0.86 0.88 0.72 0.9075 1
Exactly2 0.764 0.766 0.766 0.766 0.765 0.7538 0.7598 0.75 0.74 0.75 0.75 0.76 6
HeartEW 0.869 0.872 0.867 0.878 0.872 0.7778 0.7756 0.901 0.89 0.89 0.9 0.88 5
lonosphereEW 0.885 0.889 0.877 0.892 0.899 0.9 0.879 0.97 0.96 0.97 0.96 0.974 1
KrVsKpEW 0.948 0.967 0.946 0.966 0.957 0.9431 0.9423 0.961 0.95 0.95 0.95 0.9452 10
Lymphography 0.824 0.875 0.844 0.861 0.851 0.748 0.684 0.8863 0.89 0.84 0.85 0.89 1
M-of-n 0.93 0.994 0.917 0.99 0.95 0.8781 0.8799 1 0.94 0.95 0.95 0.9825 4
PenglungEW 0.788 0.774 0.754 0.781 0.774 0.589 0.6 0.8965 0.79 0.878 0.86 0.8966 1
SonarEW 0.827 0.868 0.825 0.846 0.865 0.825 0.837 0.742 0.69 0.57 0.68 0.72 9
SpectEW 0.85 0.89 0.863 0.891 0.875 0.8 0.8045 0.9197 0.84 0.88 0.74 0.92 1
Tic-tac-toe 0.772 0.787 0.779 0.787 0.781 0.765 0.766 0.8015 0.82 0.81 0.78 0.82 1
Vote 0.95 0.955 0.953 0.96 0.962 0914 0.908 0.9583 0.94 0.94 0.94 0.9583 3
Waveform 0.786 0.8 0.778 0.805 0.79 0.7759 0.7745 0.83 0.81 0.8 0.8 0.831 1
WineEW 0.989 0.989 0.989 0.994 0.992 0.983 0.983 1 1 1 0.976 1 1
Zoo 0.891 0.931 0.906 0.921 0.916 0.86 0.8788 0.878 0.8 0.83 0.84 0.85 9
Arrhythmia 0.61 0.638 0.62 0.625 0.618 0.53 0.51 0.57 0.61 0.64 0.61 0.652 1
Madelon 0.54 0.573 0.56 0.542 0.568 0.56 0.5 0.56 0.57 0.64 0.61 0.565 6

Table 11

Comparison of CPBGSA with state-of-the-art FS methods in terms of average classification accuracy. The highest accuracy for each dataset is made bold.
Dataset Methods Rank of

ALO BALO-1 BALO-S BALOV  BBA GA PSO GSA DGA  WFACOFS HMOGA  CPBGSA CPBGSA
(Proposed)

BreastCancer 0.956 0.962 0.945 0.9531 0.9601 0.9326 0.9521 0.9875 0.98 0.987 0.954 0.9895 1
BreastEW 0.9591 0.962 0.9542 0.9532 0.9714 0.937 0.9295 0.9772 0.96 0.982 0.974 0.986 1
CongressEW 0.9433 0.9528 0.9446 0.957 0.9417 0.93 0.8967 0.9597 0.92 0.96 0.946 0.968 1
Exactly 0.682 0.8489 0.7164 0.8392 0.7303 0.7028 0.6992 0.7146 0.71 0.75 0.72 0.881 1
Exactly2 0.7462 0.7571 0.7491 0.757 0.765 0.7462 0.7481 0.7424 0.71 0.74 0.75 0.752 4
HeartEW 0.8432 0.8544 0.8414 0.8519 0.8464 0.7423 0.7562 0.8589 0.84 0.86 0.85 0.87 1
lonosphereEW 0.8672 0.8722 0.8592 0.8749 0.883 0.8705 0.8674  0.9477 0.93 0.95 0.96 0.969 1
KrVsKpEW 0.9344  0.9512 0.9311 0.9504 0.9421 0.9361 0.9334 0.9201 0.92 0.94 0.95 0.9421 4
Lymphography 0.8064 0.8574 0.8272 0.8439 0.8346 0.7114 0.6756 0.8015 0.79 0.8 0.85 0.85 2
m-of-n 0.9162 0.9788 0.9029 0.9751 0.9351 0.8765 0.8688 0.8528 0.85 0.91 0.95 0.9675 3
PenglungEW 0.7669 0.7556 0.7348 0.7625 0.7565 0.679 0.7018 0.7991 0.74 0.86 0.86 0.878 1
SonarEW 0.8081 0.8511 0.8077 0.8291 0.8486 0.8209 0.7938 0.7231 0.49 0.53 0.68 0.71 9
SpectEW 0.8336 0.8718 0.8471 0.8738 0.8574 0.8465 0.7987 0.7406 0.7 0.76 0.74 0.89 1
Tic-tac-toe 0.7567 0.7714 0.763 0.7712 0.7646 0.7499 0.7498 0.7622 0.77 0.8 0.78 0.82 1
Vote 0.9323 0.9378 0.9354 0.9429 0.9459 0.8987 0.8768 0.9334 0.9 0.93 0.94 0.9486 1
WaveformEW 0.7723 0.7839 0.7623 0.7887 0.774 0.7752 0.7735 0.7914 0.76 0.74 0.8 0.83 1
WineEW 0.9742 0.9733 0.9736 0.9778 0.9756 0.9709 0.9683 0.9957 0.96 0.976 0.96 0.99 2
Zoo 0.8743 0.9139 0.8896 0.9042 0.8996 0.859 0.8403 0.8091 0.78 0.8 0.84 0.83 9
Arrhythmia 0.6 0.595 0.58 0.601 0.571 0.51 0.51 0.57 0.56 0.6 0.61 0.617 1
Madelon 0.51 0.542 0.53 0.532 0.537 0.54 0.49 0.56 0.52 0.62 0.61 0.564 3

feature attributes (from the random initial candidates) to remove
redundancy from the system of solutions. Thus, when the GSA
phase starts, the solutions it gets are dissimilar in nature and
have information about different parts of the search space. So,
it can be assumed that when a candidate in CPBGSA receives
information (here velocity) from other candidates, they are likely
to be new information unknown to the candidate beforehand. On
the other hand, if only random agents or candidate solutions are
used, then the information received by the agent may be similar
to the information which it already has. So, it will not let the
agents to collectively explore the search space and hence will
limit their classification ability.

4.4.3. Comparison based on average number of selected features
Table 12 contains comparison of average number of features
selected by different FS approaches. In terms of average reduc-
tion of feature dimension, it can be seen that CPBGSA selects a
moderate number of features from the entire feature dimension.
CPBGSA selects neither too many features, nor too less which

helps it to achieve a stable feature dimension along with an
impressive classification accuracy.

Therefore, from all the comparative results given in Tables 10
and 11, we can conclude that CPBGSA is stable, capable of avoid-
ing premature convergence and clearly suitable for dimension-
ality reduction of feature sets. Table 13 contains p-values for
Wilcoxon test for 20 pairs (one for each dataset) of average
accuracy values. All the values are below 0.05 which show the
effectiveness of our method.

Taken together, the results of this work showed that the pro-
posed method is beneficial in improving the performance of BGSA
when applying to FS problems. The initial population is uniformly
spread around the search space, which eventually leads to a
better local optima avoidance and better exploration of search
space.

The key advantage of the proposed method is that it does
not work with completely random population. Even though it
allows initial population to be randomized, it creates a population
which is better distributed across the search space out of the
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Table 12

Comparison of CPBGSA with state-of-the-art FS methods in terms of average number of selected features.
Dataset Methods Rank of

ALO BALO-1 BALO-S  BALO-V BBA GA PSO  GSA DGA  WFACOFS HMOGA CPBGSA  CPBGSA
(Proposed)

BreastCancer 4671 3.771 4617 3.987 477 4.446 4.869 5.94 4.55 6.03 5.65 5.87 10
BreastEW 15.57 14.82 16.11 16.11 16.86 15.75 17.22 16.026 14.9 19.45 14 18.75 10
CongressEW 8.13 9.39 11.97 9.27 14.49 12.39 18.12 6.306 8.15 7.95 11.14 7.79 2
Exactly 5.278 5.668 6.721 6.006 6.331 5.005 5.551 8.04 7.25 9 10.2 7.75 8
Exactly2 5.941 4.394 7.111 4329 5.33 5.941 5.837 5.973 5.95 6.58 6.5 5.542 4
HeartEW 8.45 6.162 7.449 6.552 7.332 7.163 7.059 7.28 8.3 8.75 8.2 7.25 5
lonosphereEW  11.39 14.654 119 13.566 17 15.946 18.904 15.706 15.1 9.55 19 11.33 2
KrVsKpEW 24.768 16.452 20.124 16.848 19.872 19.836 21276  20.906 22.35 23.58 21 18.5 3
Lymphography  7.506 6.498 8.55 7.776 9.162 9.216 9.558 9.706 10.35 12.13 13.25 7.58 3
m-of-n 8.892 6.279 8.775 6.669 7.228 8.112 7.332 8.106 8.85 10.23 9 7.75 5
PenglungEW 136.075 127.725 106.925 121.55 154.05 138.775 149.5 138.1 161.15 207.3 194.15 131.958 4
SonarEW 17.16 26.58 26.64 27.72 29.58 27.36 30.36 29.56 32.05 36.3 27.36 23.5 2
SpectEW 11.176 8.602 11.946 8.558 10.164 10.824 9.284 8.72 9.85 10.7 13 2.16 1
Tic-tac-toe 6.219 5.886 5.553 5.67 5.22 6.498 5.607 5.756 6.55 7.8 8.22 8.5 12
Vote 456 5216 4,672 5.28 6.896 6.832 8.56 6.947 6.85 9.15 7 5.67 5
WaveformEW 33.88 23.72 26.16 22.68 24.44 28.28 26.28 22,8786 19.3 23.75 25.3 20.87 2
WineEW 6.838 5.772 6.11 5.057 6.11 6.552 7.11 5.893 11.25 7.48 8.22 5.88 3
Zoo 7.056 5.776 7.328 6.336 7.056 6.224 7.552 8.413 8.25 8.58 10.35 10.06 11
Arrhythmia 2345 219.8 178.2 220.3 80.83 217.76 147.28 81 139.9 27.6 166 99.3 3
Madelon 256.4 267.4 2514 298.4 122.167  276.08 17324 2183 23895 315.08 297 250.74 5

Table 13

P-values of Wilcoxon test for comparison between the proposed algorithm and other methods.
Methods ALO BALO-1 BALO-S BALO-V BBA GA PSO GSA DGA WFACOFS  HMOGA
p values of 405E—03 3.33E-02 573E—03 3.04E—-02 1.58E-02 1.71E-03 7.79E—04 4.49E—-04 883E—05 151E-03 0

Wilcoxon test

initial population. This helps the system to get rid of redun-
dancy at initial stage. When this distinct set of candidates enters
into the GSA phase, it is able to successfully explore the entire
search space. Thus, the speedy convergence problem faced by
GSA is removed in the proposed method. As CPBGSA is able to
explore a larger portion of the entire search space in comparison
to other methods, it has a better probability of providing the
best candidate solution which is clearly proved by the obtained
results.

5. Conclusion

Most of the population-based FS approaches suffer from pre-
mature convergence which lead to a lack of exploration. As a
remedy to this problem, a guiding strategy is used in which
the members of the initial population are picked up from all
over the search space. This guidance strategy clusters the initial
population to a number of groups depending on the similarity
of the members of the population. From each cluster, a repre-
sentative member can be generated. A set of such representative
members are used as the population of the FS algorithm under
consideration. As the primary population of the FS algorithm are
selected from different parts of the search space, the chances of
exploration get increased which in turn reduce the possibility
of premature convergence. In this paper, our proposed model
CPBGSA uses this very idea to guide the initial population of
GSA. One of the advantages of this guidance procedure is the
fact that it is totally independent of the underlying FS approach.
So, it can be used in conjunction with any population-based FS
method without any modification in the FS strategy. Moreover, it
reduces the need for a large initial population. Due to the diverse
set of backgrounds of the initial population, the FS algorithm
can work effectively even with a low-size population using this
guidance procedure. The proposed guidance strategy, however,
suffers from a drawback. It uses difference in accuracies as a
measure of similarity between the members of the population
which requires classification using a learning algorithm resulting

in some additional time requirement. This makes the overall
model computationally a bit expensive if a complex classifier is
used for classification. The effectiveness of this strategy is verified
by the obtained results. Evaluation outcomes of CPBGSA over
small, medium and large datasets confirm the robustness of the
method. An interesting future scope of our work is application
of this model to any population-based FS algorithm, we plan to
amalgamate this model with other FS techniques.
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