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aIRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium;
bDepartment of Management, University Ca’ Foscari,

Cannaregio 873, Venice 30121, Italy

(Received 6 December 2010; final version received 20 November 2011)

In this article we propose a formalisation of the concept of exploration performed
by metaheuristics. In particular, we define and test a method for studying this
aspect regardless of the specific approach implemented. Understanding the
behaviour of metaheuristics is important for being able to boost their results.
Measuring the exploration performed may help increase this understanding. We
propose an experimental analysis to show how the measure of exploration defined
may be used to this aim. We quantify the different level of exploration implied by
different parameter settings in an ant colony optimisation and in a genetic
algorithm for the travelling salesman problem. The results suggest that it may be
possible to establish a relation between exploration and performance of the
algorithm.

Keywords: metaheuristics; cluster analysis; exploration; ant colony optimisation;
genetic algorithm

1. Introduction

Metaheuristics are stochastic approaches that are widely used for tackling difficult
optimisation problems. Understanding and being able to guide their behaviour may
contribute to the achievement of high quality results. As Wolpert and Macready (1997)
state in their ‘No Free Lunch Theorem for Optimisation’, for any algorithm, any elevated
performance over one class of problems is exactly paid for in performance over another class.
Each single class of instances may require a procedure with particular characteristics in
order to be solved effectively. Thus, both choosing the appropriate approach and fitting its
behaviour to the specific problem to be tackled play a major role in the design of a
well-performing algorithm. One concept that may guide the evaluation of an algorithm is
the exploration it performs. Exploration is the act of investigating a space to the aim of
gaining information on its structure and features. In optimisation, an algorithm explores
the feasible region of a problem for identifying local and global optima according to the
objective function.

The behaviour of metaheuristics may be described in terms of exploration and
exploitation (Blum and Roli 2003). Finding the right balance of these concepts is crucial
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for quickly identifying regions of the search space with high-quality solutions. Blum and

Roli (2003) affirm that although the relevance of these two concepts is commonly agreed, so

far there is no unifying description to be found in the literature. Descriptions are very generic

and metaheuristic specific. To the best of our knowledge, a formal definition of exploration

is still missing in the field. A measurement of such phenomenon independent from the

approach used is not yet available. The papers that deal with this topic focus on some

specific procedures. Among others, Amor and Rettinger (2005), Eshelman and Schaffer

(1991), Bhattacharya (2008) and Wineberg and Oppacher (2003a,b) deal with the

behaviour of genetic algorithms (GAs). Herault (2000), Desai, (1999) and Orosz and
Jacobson (2002) study simulated annealing, while Devarenne, Mabed, and Caminada

(2006) and Watson, Whitley, and Howe (2005) propose interesting observations on tabu

search. Finally, Dorigo and Stützle (2004), Merkle and Middendorf (2001) and Pellegrini

and Ellero (2008) consider ant colony optimisation (ACO). Other authors describe the

behaviour of metaheuristics based on intuitive observations (Blum and Roli 2003). Finally,

some authors deal with the exploration performed by different approaches focusing on the

specific characteristics of a problem (see, e.g. Schuurmans and Southey 2001).
In this article, we propose a definition and a measure of exploration independent both

on the algorithms implemented and on the problem to be tackled. Through such a measure

it is possible to observe the behaviour of any metaheuristic without needing a deep

knowledge on the internal state of the algorithm. Moreover, it gives the possibility of

comparing the behaviour of very different approaches. We show how this can be done

through an experimental analysis. We tackle ten TSP instances with an ACO and a GA.

First, we assess the difference in the level of exploration performed that is implied by
different parameter settings for each algorithm. Second, we compare the exploration

performed by the two algorithms. The results suggest that it may be possible to identify a

relation between the exploration performed and the quality of the solutions obtained.
The rest of this article is organised as follows. In Section 2 we define the exploration

and we describe how it can be measured in practice. In Section 3 we report the algorithms

implemented for the experimental analysis depicted in Section 4. Finally, in Section 5 we

draw some conclusions.

2. Exploration

In this section, we propose an original definition of the exploration performed by a

metaheuristic algorithm, and we deal with some technical aspects that need to be tackled

for turning the new definition into a practically implementable measure.

2.1. Definition

An optimisation problem is a pair (S, f ) in which the solution space S is a set of feasible
solutions and the cost function f is a mapping f : S!R. In the case of minimisation, the

problem is to find a globally-minimal solution, i.e. a solution s*2S such that f(s*)� f(s),

8s2S. A set of n variables is given, each in a defined domain: xi2Di, i¼ 1, . . . , n.

A feasible solution is a vector s¼ (x1, x2, . . . , xn) in which each variable is instantiated for

satisfying the problem’s constraints.
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Let B be the set of metaheuristic algorithms of interest, I be the set of instances to be
tackled andR be the set of possible combinations of computational resources, such as time
and memory space. A run is a function

r : B � I �R�R! S, ð1Þ

where the fourth independent variable is the seed of the random number generator and S is
the set of all possible sets of feasible solutions. We consider the available computational
resources as exogenous inputs: indeed, an algorithm is executed on a specific hardware.
The characteristics of this hardware have an impact on the performance of the algorithm
over time. Similarly, the set of solutions visited varies as a function of the elapsed
computational time.

In this context, the exploration performed in a run can be defined as a function

E : B � I �R�R! Nnf0g ð2Þ

such that, given a set of inputs B1, B22B, I2I , R1, R22R, h1, h22R, the following
relation must hold:

rðB1, I,R1, h1Þ � rðB2, I,R2, h2Þ ) EðB1, I,R1, h1Þ � EðB2, I,R2, h2Þ: ð3Þ

In this framework, we propose the following definition:

The exploration performed by a metaheuristic algorithm is represented by the number of clusters
of solutions visited:

EðB, I,R, hÞ ¼ jCðB, I,R, hÞj, ð4Þ

where C(B, I,R, h) is the set of clusters resulting from the solutions visited by algorithm
B2B when solving instance I2I using resources R2R and seed h2R for the random
number generator.

Given this definition, the representation of solutions in the space plays a central role in
the quantification of exploration. We propose here a representation that takes into
account the perspective of the algorithm that explores the space: we aim at capturing the
exploratory attitude of the algorithm beyond the topological dispersion of the solutions
visited.

Let Pz
i ðxiÞ be the probability distribution associated by the algorithm to the domain Di

of variable xi, i¼ 1, . . . , n, at iteration z, and let PiðxiÞ ¼ maxzfP
z
i ðxiÞg. Each solution

s¼ (x1, x2, . . . ,xn) is represented as �s ¼ ðx1P1ðx1Þ, x2P2ðx2Þ, . . . ,xnPnðxnÞÞ. In this way, a
solution embodies information both on the actual evaluation of each variable and on the
probability associated to it. By considering the maximum value of the probability across
all iterations, we obtain that s1¼ s2 implies �s1 ¼ �s2, regardless of the iterations in which s1
and s2 are visited. Moreover, suppose that at the beginning of a run the probability
distribution is uniform. If, after some time, few values become very likely for a variable,
the information that needs to be recorded is the emergent intensification.

2.2. The clustering procedure

For exploiting the definition of exploration proposed, an appropriate clustering procedure
needs to be identified. An agglomerative hierarchical procedure (Jardine and Sibson 1968)
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appears suitable: at each step, the two closest solutions are grouped together to form a

cluster. In the following we define how to compute the distance between a new cluster and

the others, and the stopping criterion implemented.
Initially, each cluster contains one solution. The distance between the starting clusters

is the distance between solutions. For what concerns the distance between a new-born

cluster and the others, let g1 and g2 be two clusters that are being grouped in ĝ. The

distance between ĝ and a third cluster �g is

distanceðĝ, �gÞ ¼ maxfdistanceð g1, �gÞ, distanceð g2, �gÞg: ð5Þ

For what concerns the stopping criterion implemented, the agglomerative procedure

terminates when the distance between the two closest clusters is greater than a predefined

threshold �. Such a threshold must be coherent with the magnitude of the distance matrix

analysed. As shown by Pellegrini et al. (2009), the exact value is not relevant to the results.
Given a run, the exploration is a function of �: the higher �, the larger and then the

fewer the clusters. Still, for any pair �0 and �00, and for any B1, B22B, I2I , R1, R22R,

h1, h22R,

E�0 ðB1, I,R1, h1Þ � E�0 ðB2, I,R2, h2Þ ) E�00 ðB1, I,R1, h1Þ � E�00 ðB2, I,R2, h2Þ, ð6Þ

where E�0 is the exploration computed by setting �¼ �0.
E� measures the exploration in relative terms: it identifies which algorithm, or which

algorithm configuration, explores the most, rather than indicating an absolute value for

the exploration of a single algorithm.
The pseudo-code of the procedure used for computing exploration is reported in

Figure 1.

Figure 1. Pseudo-code of the procedure for computing exploration.
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2.3. Constructive and perturbative methods

Several metaheuristic algorithms have been proposed in the literature for tackling
optimisation problems. They can be grouped in two families: constructive and perturbative
search. Constructive search is a search paradigm in which the process starts from an empty
candidate solution and iteratively instantiates variables one at a time, until a complete
candidate solution is obtained. ACO and bee swarm optimisation are typical examples of
constructive search methods. Perturbative search is a paradigm in which candidate
solutions are iteratively perturbed by modifying the value of one or more variable in each
search step. Tabu search, simulated annealing, iterated local search and GAs are typical
examples of perturbative search methods (Hoos and Stützle 2004).

Measuring exploration is quite straightforward for the algorithms belonging to the first
family: the value of each variable is chosen according to an explicitly defined probability
distribution. This distribution only needs to be recorded for representing solutions. In the
second family of approaches, instead, probabilities are in general assigned to complete
solutions. In this case, we define the probability associated to each instantiation of variable
xi, i¼ 1, . . . , n, as the sum of the probabilities of all the solutions in which xi assumes the
same value.

3. The algorithms implemented

For the experimental analysis proposed for showing the potential application of the
measure of exploration described in Section 2, we implement two metaheuristic
algorithms, namely MAX–MIN ant system and a GA. We compute the exploration they
perform both with and without the introduction of a local search procedure. In this section
we report a short description of the algorithms and of the local search procedures tested.

3.1. MAX–MIN ant system

In the first part of the experimental analysis described in this article, we apply the measure
of exploration proposed for studying the behaviour of MAX–MIN ant system (MMAS)
for the travelling salesman problem (TSP) (Stützle and Hoos 1997, 1998, 2000; Dorigo and
Stützle 2004).

The idea at the basis of MMAS consists in exploiting artificial ants that construct
solutions incrementally. The variables of the problems are typically mapped into binary
variables, discretising the continuous space if necessary. At each step, an ant chooses
stochastically one variable in a feasible set. The value of this variable is set to 1. If the
constraints of the problem impose it, the value of other variables is set consequently.
The probability of setting variable xi¼ 1 is determined by the heuristic measure �i and by
the pheromone trail �i. In MMAS the pheromone associated to setting xi¼ 1, i¼ 1, . . . , n,
is updated after the activity of each colony of m ants, according to

�i ¼ ð1� �Þ�i þ D�si , ð7Þ

where � is a parameter of the algorithm, 05 �5 1, named evaporation rate. Being
solution s the best one - considering either the last iteration (iteration-best solution) the
whole run (best-so-far solution) or the best since a reinitialisation of the pheromone trails
(restart-best solution) (Stützle and Hoos 2000) - D�si ¼ 1=Cs if xi¼ 1, and D�si ¼ 0
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otherwise. Cs is the cost associated to solution s. The schedule according to which the
solution to be used is chosen, is described by Dorigo and Stützle (2004).

Pheromone trails in MMAS are bounded between �min and �max. Following
Dorigo and Stützle (2004), we set �max¼ 1/(�Cbest�so�far), and �min ¼ ½�maxð1�

ffiffiffiffiffiffiffiffiffi
0:05n
p

�=
½ðn2� 1Þ

ffiffiffiffiffiffiffiffiffi
0:05n
p

�: At the beginning of a run, the best solution corresponds to the one found
by a problem specific heuristic. The pheromone trails are set equal to �max for all variables.

Another element characterising MMAS is the random-proportional rule. In particular,
let Xk be the set of variables that may be instantiated by ant k. Each component xi2Xk has
a probability of being chosen pi:

pi ¼
��i �

�
iP

j:xj2Xk
��j �

�
j

: ð8Þ

In the TSP, the problem instance is mapped to a graph in which nodes correspond to cities,
and edges correspond to routes connecting cities. Variables represent edges of the graph:
given a solution s, xi¼ 1 if edge i belongs to s, and xi¼ 0 otherwise. The heuristic measure
�i is set equal to the inverse of the cost of edge i. In the current implementation, the first
population is generated using the nearest neighbour heuristic with randomised starting
node.

The definition of probabilities described in Equation (8) may not represent the
cumulated knowledge on the convenience of setting a variable equal to 1. Consider, for
example, the case of the last variable instantiated in a solution: its probability is 1,
independently on the product of pheromone trail and heuristic measure. In the
computation of exploration, this situation is an inconvenience. In fact, the values of
probabilities may depend more on randomness that affects solution construction than on
the real indication of the algorithm.

In order to better represent this indication, the probability used for representing
solutions is computed considering a different set for the normalisation of the product of
pheromone and heuristic measure. The variables considered in this case are all the ones
that would be alternative to each other if the partial solution under construction was
empty: all the arcs exiting from a node are taken into account in the denominator.

3.2. Genetic algorithm

The second application of the method proposed for measuring exploration concerns a GA.
The main procedure that characterises such an approach is inspired by the ability shown
by populations of living beings to evolve and adapt to changing conditions, under the
pressure of natural selection (Darwin 1859). This metaheuristic is based on the selection of
individuals representing candidate solutions. From generation to generation, individuals
evolve through crossover and mutation.

In the implementation considered here for tackling the TSP, the initial population is
generated using the nearest neighbour heuristic with randomised starting node. At each
iteration it is completely replaced by new individuals: pop new solutions are created
starting from parent ones. Parents are chosen stochastically among the solutions belonging
to the previous population with objective function value lower than or equal to the
average. In this set, the probability associated to each individual is proportional to
its fitness. According to a predefined probability pcross, new individuals are obtained
through crossover. The crossover operator consists in a procedure beginning with the
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random selection of the starting element of the new solution. In the TSP the starting city is
randomly selected. Then, the edges that, in the parent solutions, exit from this city are
considered. One of them is randomly drawn. It may be the case in which they are both
infeasible. In the TSP this happens if the ending node of both edges already belong to the
new solution. Then, an edge is randomly selected among the feasible ones. The selection is
based on uniform distributions. With probability 1� pcross the parent solutions are not
modified. In addition to crossover, with probability pmut the solutions are subjected
to mutation, which is represented in this implementation by the swap of two
consecutive cities in a randomly chosen position. Inserting edge i in solution s implies
setting xi¼ 1.

For computing the probability of setting each variable equal to 1, one must take into
account all the potential parent solutions, with their probability of being actually selected.
Then the probabilities pcross and pmut must be considered. In the crossover phase the
algorithm is behaving as a typical constructive search procedure, actually attaching a
probability to each edge. During mutation, instead, probability is attributed to solutions,
and the method proposed in Section 2.3 for perturbative procedures is applied.

The mechanisms described have been selected without focusing on the efficiency of the
algorithm. A multitude of possibilities are proposed in the literature for tackling the TSP
(Radcliffe and Surry 1994, Potvin 1996, Back, Fogel, and Michalewicz 1997; Merz and
Freisleben 2001). Nonetheless, obtaining state-of-the-art results is out of the scope of this
article: the aim of this study is observing the characteristics of the exploration performed.
The quality of the solutions obtained is considered only in terms of its relation with the
emergent behaviour.

3.3. Local search procedures

In the literature, metaheuristics are very often hybridised with a local search procedure.
Their performance are thus boosted through a problem-specific approach. Following this
trend, we hybridise the algorithms described at the beginning of this section. We
implement two classical local search approaches for the TSP, namely 2-opt and 3-opt.
They are based on the idea of �-optimality (Lin 1965): a solution is �-optimal if it is not
possible to improve it by replacing any � of its edges. As the name itself tells, in 2-opt �¼ 2
and in 3-opt �¼ 3.

In the current implementation, local search is applied to all solutions generated at each
iteration by MMAS and GA, respectively. The search is randomised: equal probability is
associated to each feasible exchange. The number of possibilities tested is equal to the
number of edges included in one solution (Dorigo and Stützle 2004). The first
improvement pivoting rule is used (Hansen and Mladenović 2006). The search is fastened
through the application of the do not look bits mechanism (Hoos and Stützle 2004).

4. Experimental analysis

The measure of exploration proposed in Section 2 is applied for analysing the behaviour of
MMAS and GA for the TSP. The hybridisation of the same algorithms with two local
search procedures is also tested. For MMAS, we use the ACOTSP program implemented
by Thomas Stützle. The stopping criterion is the fulfillment of a fixed number of objective
function evaluations. We perform runs of different duration. The computational resources
available are equal for all the implementations tested. The code used for computing the
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exploration is available on the web page http://www.paola.pellegrini.it. We solved
ten instances from the TSPLIB repository. Here we report only the results achieved in
instance kroA200.tsp. The conclusions that can be drawn are qualitatively equivalent in
all the instances. In the following, we report the average value of exploration over 20
independent runs for each configuration and for each run-length. The difference among
these runs is represented by the seed used for the random number generator. The variance
of the values registered in the 20 runs is extremely low.

The algorithms are run with different parameter settings. According to the literature
(Eshelman and Schaffer 1991; Wineberg and Oppacher 2003a; Pellegrini, Favaretto, and
Moretti 2006; Bhattacharya 2008; Pellegrini and Ellero 2008), these values have an impact
on the exploration. We start from a reference configuration, and we modify one element at
a time. A configuration is a specific setting of all parameters. We analyse the impact of the
various parameter settings on the exploration considering them independently from each
other.

The parameters analysed forMMAS are �,�, � and m. The values �¼ 1, �¼ 3, �¼ 0.02
and m¼ 100 represent the reference configuration. The ones tested are: �2 {1, 2, 3, 4},
�2 {2, 3, 4, 5}, �2 {0.02, 0.05, 0.2, 0.7}, m2 {50, 100, 150, 200}. The parameters analysed
for GA are pcross, pmut and pop. The values used in the reference configuration are 0.5,
0.5 and 100, respectively. The ones tested are: pcross2 {0.1, 0.3, 0.5, 0.7}, pmut2

{0.1, 0.3, 0.5, 0.7} and pop2 {50, 100, 150, 200}.

4.1. MAX–MIN ant system

The exploration and the value of the best solution visited by various configurations of
MMAS are depicted in Figure 2. We show the percentage error with respect to the optimal
solution. Let us remark that, for example, if the graph concerns parameter �, then �, � and
m are set as in the reference configuration, i.e. 3, 200 and 100, respectively. The
graphs represent the number of objective function evaluations performed on the x-axis.
In Figure 2(a), (c), (e) and (g), the y-axis reports the exploration. We introduce a
logarithmic scale for a better visualisation of the results. In Figure 2(b), (d), (f) and (h), the
y-axis represents the percentage error in terms of objective function value. The value of the
threshold � used in the clustering procedure is equal to the mean of the average
distance between solutions, computed over the different run-lengths and configurations.
It is set to 7.859.

Figure 2(a) shows the impact of different values of parameter � on the exploration. The
higher the value of the parameter, the higher the exploration itself. The duration of the run
appears quite relevant: in short runs, the difference in the level of exploration is very low.
In longer ones, a clear distinction can be noticed. Finally, the separation of the curves
decreases again. At the limit, if a very high number of objective function evaluations is
allowed, the exploration is likely to become insensitive to the variation of �. This is
suggested both by the intuition and the final crossing of the curves referred to �¼ 3 and
�¼ 4 in the graph.

In Figure 2(b), we report the progressive value of the best solution found. In very short
runs, the performance achieved by the different configurations is comparable. This
comparability tends to re-emerge in the longest ones. When the run-length is intermediate,
instead, the quality of the result increases as a function of the value of �. It follows an
inverse trend with respect to exploration: the higher the exploration, the lower the cost of
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the best solution found, and thus the better the performance. This last observation,
of course, is strictly related to the problem instances and to the computational
resources considered. It cannot be taken as a general rule for obtaining good quality
results in combinatorial optimisation.

Figure 2. Exploration and value of of the best solution visited by MMAS with no local search.
(a) Exploration with own � – �. (b) Best solution value – �. (c) Exploration with own � – �. (d) Best
solution value – �. (e) Exploration with own � – �. (f) Best solution value – �. (g) Exploration with
own � – m. (h) Best solution value – m.
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Figure 2(c) and (d) report the same analysis for parameter �. The trend followed is very

similar to the one just described. The impact of the value of this parameter on the

exploration is quite strong. The increase of the magnitude of this impact as a function of

run-length appears smoother than in the case of the different values tested for �. The value
of the best so far solution varies consistently with the above observation.

The dependence of the exploration from the values of � and � is coherent with the role

of these parameters: consider the ratio between the probabilities associated to two solution

components xi and xj at a specific time instant

Pi

Pj
¼

�i
�j

� �� �i
�j

� ��
: ð9Þ

The further from one the value resulting from Equation (9), the stronger the probability of

selecting one component with respect to the other. During a run, the only variable

elements in Equation (9) are �i and �j. A high value of parameter � implies that a slight

change in the ratio between these pheromone trails, going from slightly below to slightly

above one (or vice versa), implies a strong variation of the ratio between probabilities.

A similar reasoning can be made for parameter �: a high value of this parameter amplifies

a lot any variation of �i/�j. The different impact of � and � on the slope of the curve is due

to the fact that � amplifies both the ratio of pheromone trails and the ratio of heuristic

measures. The former varies in an iteration-by-iteration basis. The latter is constant

throughout the run. This implies that the effect of the amplification of �i/�j imposed by � is

very low until some significant differences are reached in the pheromone trails, i.e. after

some pheromone updates. Instead, both �i/�j and �i/�j are amplified through �, and thus

the impact can be observed immediately, thanks to the different values of the heuristic

measure.
Figures 2(e) and (f) report the results achieved with different values of parameter �.

The relation between this parameter and the exploration is more complicated than in the

previous cases (Pellegrini et al. 2009). Up to a certain threshold the exploration is an

increasing function of �. The opposite holds above this threshold. For very low values of

� the amount of pheromone deposited and its evaporation are very low: several updates

may be necessary before changing the ranking of the pheromone trails on the edges, and

then before changing the area to be investigated with high probability. For �¼ 0.02 and

�¼ 0.05 the curves representing exploration are convex: marginal exploration is higher for

longer runs. The situation changes for high values of �: even with one single update, the

evaporation and the deposit of pheromone are quite marked. The pheromone trails on the

edges included in the best solutions, then, become much greater than the others in a very

short time. The higher the value of �, the stronger the effect. This implies a smaller distance

between solutions and a lower consequent exploration. For �¼ 0.2 and �¼ 0.7 the curves

representing exploration are concave.
Finally, Figures 2(g) and (h) report that the exploration is decreasing with respect to

the value of m. The greater m, the lower the number of iterations performed in a run.

Consequently, the lower the number of different probability distributions used. A high

value of m implies that the likely edges are often the same.
For what concerns the relation between exploration and performance, the

observations made for parameters � and � are mostly respected both for parameters

� and m.
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4.2. Genetic algorithm

In Figure 3, we report the exploration and the value of the best solution visited by GA for

the different values of the parameters. In addition, we show the percentage error with

respect to the optimal solution. As in Figure 2, the graphs represent the number of

objective function evaluations performed on the x-axis. The y-axis reports, in Figure 3(a),

(c) and (e), the exploration expressed in logarithmic scale, and, in Figure 3(b), (d) and (f),

the percentage error in terms of objective function value. The threshold used as stopping

criterion for the clustering procedure is �¼ 1.003.
The impact of parameter pcross on the exploration is quite evident in Figure 3(a).

In particular, the higher the value of the parameter, the lower the exploration.

Figure 3. Exploration and value of of the best solution visited by GA with no local search.
(a) Exploration with own � – Pcross. (b) Best solution value – Pcross. (c) Exploration with own � – pmut.
(d) Best solution value – pmut. (e) Exploration with own � – pop. (f) Best solution value – pop.
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This observation is strictly linked with the specific crossover operator included in the

algorithm. This operator implies that a high number of components are similarly likely to

be chosen. Their probability, then, is very small. As a consequence, if pcross is high, several

solutions with low positive coordinates (equal to the probability Pi(1), i¼ 1, . . . , n) are

visited. Their distance is, consequently, quite small. The impact of this parameter is not

very marked in terms of performance.
Figure 3(c)–(f) depict the analysis for pmut and pop. The trend of the performances is

very similar to the one observed for pcross. The exploration does not appear very sensitive

to the values of these parameters. In fact, the mutation operator implemented here is not

extremely powerful. On the other hand, for what concerns the impact of parameter pop,

remark that the values of both parameters pcross and pmut set in the reference configuration

is 0.5. Intuitively, then, an extreme diversity between subsequent populations is not likely.

Hence, observing a set of solutions constituting a unique generation will not be extremely

different from observing a set of solutions with the same cardinality, but corresponding to

two subsequent evolution steps.
The GA implemented tends to explore quite extensively a small area of the search

space. This behaviour allows to find quite early a local minimum, but then the search

stagnates with no further significant improvement.

4.3. Hybridisation with local search

Figures 4 and 5 depict the analysis on MMAS ant system hybridised with 2-opt and 3-opt

local search, respectively. The threshold � is equal to 17.520 in the first case and 35.842 in

the second. The influence of parameters is quite low in terms of both exploration and

quality of the results. The same conclusion can be drawn by observing the results obtained

hybridising the GA with local-search, reported in Figures 6 and 7. The respective values of

� are 16.564 and 46.588.
The sensitivity of the algorithms to the values of parameters is strongly reduced when a

local search procedure is applied. Moreover, the regularity of the trend followed by the

exploration as a function of parameter values is not clear under these experimental

conditions. This result is due to two main reasons. First of all, the type of exploration

during the local search runs is the same regardless of the values of the parameters of either

MMAS or GA. Second, the hybridisation implies that the role of parameters cannot be

defined as clearly as in the implementation with no local search. For example, let us

consider parameter � in MMAS. If no local search is applied, ants use with high-

probability solution components on which a high level of pheromone is present. With high

probability the solution used for pheromone deposit according to Equation (7) includes

such components. Thus, pheromone is gradually increased on the components that appear

to be convenient, and it is gradually decreased on the others. The role of parameter � is

controlling this gradualness. If local search is applied, instead, even if ants use component

with a high level of pheromone, the exploration of the neighbourhood through either 2-opt

or 3-opt may imply the inclusion of several components with a low pheromone level in the

final solution, with the exclusion of several others with a high pheromone level. Hence, the

gradualness in the variation of pheromone trails may be lost, and the role of parameter �
becomes less clear. The absence of a clear trend of exploration as a function of the value of

this parameter supports this intuition.
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Figure 4. Exploration and value of of the best solution visited by MMAS with 2-opt local search.
(a) Exploration with own � – �. (b) Best solution value – �. (c) Exploration with own � – �. (d) Best
solution value – �. (e) Exploration with own � – �. (f) Best solution value – �. (g) Exploration with
own � – m. (h) Best solution value – m.
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Figure 5. Exploration and value of of the best solution visited by MMAS with 3-opt local search.
(a) Exploration with own � – �. (b) Best solution value – �. (c) Exploration with own � – �. (d) Best
solution value – �. (e) Exploration with own � – �. (f) Best solution value – �. (g) Exploration with
own � – m. (h) Best solution value – m.
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4.4. Comparison of different configurations

Through the measure proposed, it is possible to compare the exploration performed by

different metaheuristic algorithms. In the experimental analysis described in this section,

MMAS and GA are analysed jointly, in the implementations with no local search, with

2-opt and 3-opt. The value of � is the mean over all the run-length, all the algorithms and

all the implementations. It is set to 18.813.
Figure 8 reports the exploration performed and the corresponding value of the best

solution visited. For ease of visualisation, we depict only the behaviour of the reference

configurations. The analysis of the other configurations tested suggests the same

conclusions. In particular, the exploration performed by the 3-opt implementations

Figure 6. Exploration and value of of the best solution visited by GA with 2-opt local
search. (a) Exploration with own � – Pcross. (b) Best solution value – Pcross. (c) Exploration with
own � – Pmut. (d) Best solution value – Pmut. (e) Exploration with own � – pop. (f) Best solution
value – pop.
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is the highest, followed by the 2-opt ones. When no local search is applied, the exploration
performed by both MMAS and GA is negligible, if compared to the implementations
including local search. 3-opt eliminates the difference between the exploration of the two
algorithms. When 2-opt is implemented, instead, GA explores more than MMAS.
Figure 8(b) shows that the performance of GA with 2-opt is better thanMMAS hybridised
with the same local search.

5. Conclusions

In this article we propose a definition of exploration of the search space that helps in
analysing the behaviour of metaheuristic algorithms, independently on the specific

Figure 7. Exploration and value of of the best solution visited by GA with 3-opt local
search. (a) Exploration with own � – Pcross. (b) Best solution value – Pcross. (c) Exploration with
own � – Pmut. (d) Best solution value – Pmut. (e) Exploration with own � – pop. (f) Best solution
value – pop.
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approach considered. We describe the steps that must be undertaken for translating this

definition into a practically usable tool, and we show how to apply it. We implement an

ACO algorithm and a GA for the TSP. We assess the impact on the exploration of the

values of the main parameters of the algorithms, evaluating the different behaviours in

absence of any local search procedure, or when either the 2-opt or the 3-opt are

implemented. The results achieved support the intuitions on the impact of parameter

values and of local search on the behaviour of the algorithms.
Measuring exploration with the novel methodology presented consents to point out

some connections between the behaviour of the algorithms and their performance. In fact,

the results obtained show that the higher the exploration, the better the performance.

Of course, this particular conclusion is strictly dependent on the problem instances and on

the computational resources available. In general, the best results are obtained by finding

the proper balance of exploration and exploitation. The measure proposed in this article
can be used for quantifying this concepts.

The results reported are not surprising for practitioners and researchers, experts in the

field of ACO and GA. Nonetheless, predictability does not coincide with obviousness.

A measure for testing the validity of predictions is extremely important in the field of

metaheuristics, where theoretical proofs are often unavailable. Furthermore, an objective

method for computing the exploration of metaheuristics helps in liberalising the research

in this field. In fact, for gaining the expertise that is necessary for understanding the

behaviour of a metaheuristic in the absence of a specific measure, requires a long time and

a lot of effort devoted to the analysis of the algorithm. Thanks to a formalised method as

the one proposed in this article, an implementer may skip this costly analysis, at least in

some part, and he may base his reasoning on hypothesis supported by experimental

results.
The research presented in this article is to be read in the context of a quite ambitious

project: it aims at giving a tool for getting some insight in the behaviour of metaheuristics.

Bezdek, Keller, Krishnapuram, and Nikhil (1999) state that in optimisation sometimes we

do not know why things work the way they do, but we should be happy if they work right

this time. Observing the peculiar behaviour of metaheuristics in terms of exploration may

Figure 8. Exploration and value of of the best solution visited by MMAS and GA with no
local search, with 2-opt and with 3-opt. We report the results achieved with the reference
configurations. (a) Exploration with common own �. (b) Best solution value.
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help in reducing the unawareness on the reasons why they do or do not work properly
under some given conditions.

This research offers two main hints for future developments. On the one hand, the high-
level analysis of the behaviour of metaheuristics may be further elaborated by finding a
functional relation linking the exploration performed, the topology of the search space and
the performance of the algorithm throughout the run. Finding such a functional relation
would allow making the most of the algorithms in virtually any optimisation framework.
The quantification of exploration represents a first step in this direction. On the other hand,
the measure of exploration we have defined may find a direct application in the design of
the algorithm. With this measure, the designer may control the behaviour of the algorithm
in various phases of the search, solving effectively the trade-off between exploration and
exploitation. This is typically done through the on-line parameter adaptation (Eiben,
Michalewicz, Schoenauer, and Smith 2007; Stützle et al. 2011). These adaptation methods
adjust the behaviour of the algorithm in response to the current state of the search, often
using the value of the objective function associated to the solutions visited as a proxy of the
current exploration. Replacing the proxy with the measure proposed in this article might
improve significantly the performance of these methods.
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