
Information Sciences 512 (2020) 1503–1542

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

A time-varying mirrore d S-shape d transfer function for binary

particle swarm optimization

Zahra Beheshti a , b

a Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
b Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran

a r t i c l e i n f o

Article history:

Received 18 February 2018

Revised 8 October 2019

Accepted 14 October 2019

Available online 30 October 2019

Keywords:

Particle swarm optimization (PSO)

Binary particle swarm optimization (BPSO)

S-shaped and V-shaped transfer functions

Local and global topologies

the 0-1 multidimensional knapsack problem

(MKP)

Time-varying mirrored S-shaped (TVMS)

transfer function

a b s t r a c t

Binary Particle swarm optimization (BPSO) is one of the most popular swarm intelligence

algorithms to solve binary optimization problems. It has a few parameters, simple struc-

ture, and high execution speed. A transfer function is applied in BPSO to convert the con-

tinuous search space to the binary one. This algorithm and its variants can sometimes find

local optima or exhibit slow convergence speed. Thus, many researchers have improved

the structure of BPSO and its transfer function to overcome these shortcomings. In this

study, a new time-varying mirrored S-shaped transfer function for BPSO (TVMS-BPSO) is

introduced to enhance global exploration and local exploitation in the algorithm. The per-

formance of the proposed transfer function has been compared with some well-known

BPSO algorithms and binary meta-heuristic algorithms. These algorithms have been evalu-

ated by CEC 2005 benchmark functions and set of 0–1 multidimensional knapsack problem

(MKP) benchmark instances. The experimental results showed that the new transfer func-

tion significantly enhances the efficiency of BPSO for both local and global topologies in

terms of solution accuracy and convergence speed.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Particle Swarm Optimization (PSO) was introduced by Kennedy and Eberhart in 1995 [22] . Due to its simple structure and

low computational cost, PSO has been applied to solve wide range optimization problems. This algorithm has shown a good

performance in many problems; however, due to poor exploration, it can sometimes find local optima and show slow con-

vergence speed. Hence, many researchers have proposed several improved PSO algorithms to overcome these disadvantages

[10 , 38 , 46] .

A binary version of PSO (BPSO) using a sigmoid transfer function was introduced by Kennedy and Eberhart to solve

discrete optimization problems [23] . BPSO uses the velocity of PSO; therefore, it faces the disadvantages of PSO [35] . The

results of various transfer functions show that the role of an appropriate transfer function in BPSO is very important to

enhance the performance of BPSO [3 , 18 , 33] . As a result, three categories of transfer functions namely S-shaped [23 , 33] ,

V-shaped [3 , 4 , 33 , 35] , and linear [1 , 47] have been introduced to convert the continuous search space to the binary one.

The S-shaped transfer functions apply the variants of sigmoid functions. In these transfer functions, if the velocity is

positive, the next position will be zero or one. If a random number in the range [0,1] is not greater than the velocity, the

next position will be one; otherwise, it will be zero. If the velocity has a negative value, the next position will be zero

because the random number is positive. The BPSO with S-shaped transfer function encounters some shortcomings [35] . In
E-mail address: z-beheshti@iaun.ac.ir

https://doi.org/10.1016/j.ins.2019.10.029

0020-0255/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2019.10.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2019.10.029&domain=pdf
mailto:z-beheshti@iaun.ac.ir
https://doi.org/10.1016/j.ins.2019.10.029

1504 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

the standard PSO, the value of velocity in the negative and the positive directions shows that the particle, based on its

previous position, should have a movement toward the best solution. If the velocity is zero in PSO, the next position will

be equal to current position. In other words, the zero velocity shows that the new position should not be changed in PSO.

But the new position in BPSO can be changed to zero or one by probability of 0.5. The linear transfer function faces these

drawbacks, as well.

Nezamabadi-pour et al. proposed V-shaped transfer functions to cover these disadvantages [35] . There is no difference

between the negative and positive velocity in the transfer function and a great movement is required to reach the optimum

position. Also, if the velocity is zero, the next position will be the current position as PSO. The V-shaped transfer func-

tions have shown better performances than the S-shaped transfer functions in solving many optimization problems [3 , 4 , 35] ;

however, due to the fact that they employ the velocity of PSO, they may trap in local optima. In PSO, if the best position

found by all particles is a local optimum, all particles may converge to this position. According to the structure of V-shaped

transfer functions, if the current position is a local optimum and the velocity tends to be zero, the new position will be the

current position (local optimum).

In this study, a new time-varying mirrored S-shaped (TVMS) transfer function is introduced to improve the performance

of BPSO. TVMS enhances global exploration and local exploitation in BPSO. In early steps, the proposed function provides

stronger global exploration. In middle steps, it starts switching from exploration to exploitation and in final steps; the trans-

fer function provides a low probability of changing bits that increases exploitation. The mirrored S-shaped functions also

help to get better results. Sigmoid functions and their rules generate different results and the best result is selected. The

proposed transfer function can be applied in all versions of BPSO algorithms to achieve better solutions as shown in the ex-

perimental results. The transfer function has been employed for the local topology of BPSO. The performance of global and

local topologies of BPSO with the proposed transfer function has been evaluated by CEC 2005 benchmark functions [43] as

well as 0–1 MKP benchmark instances [2] . The results have been compared with some various BPSO algorithms and several

well-known binary swarm intelligence algorithms. The results showed that the efficiency of BPSO has been considerably

improved by the proposed transfer function, compared with others, in terms of global optimality and convergence speed.

The rest of this study is organized as follows: A brief overview of PSO and BPSO algorithms is presented in Sections 2 and

3 , respectively. TVMS-BPSO is described in great details in Section 4 . The proposed transfer function is evaluated by CEC

2005 benchmark functions and 0–1 MKP benchmark instances and its results is compared with several BPSO algorithms

and binary meta-heuristic algorithms in Section 5 . Finally, concluding remarks and future research directions are presented

in Section 6 .

2. Particle swarm optimization for the continuous search space

PSO simulates the flocking behavior of birds to solve continuous optimization problems [22 , 38] . It is a population-based

algorithm in which each particle (solution) of the swarm has a position, X i , and a velocity, V i , in the D -dimensional search

space as follows:

X i =

(
x 1 i , x

2
i , ..., x

d
i , ..., x

D
i

)
, f or i = 1 , 2 , ..., N . (1)

V i =

(
v 1 i , v

2
i , ..., v

d
i , ..., v

D
i

)
, f or i = 1 , 2 , ..., N . (2)

where D is the number of dimensions)problem parameters(and N is the population size.

Every particle moves based on its personal best position and the swarm best position. Hence, the particle has the ability

of flying towards a better space. The velocity and position of the i th particle in the d th dimension are computed as follows:

v d i (t + 1) = w (t) ∗ v d i (t) + C 1 ∗ ran d 1 () ∗
(

pbest d i (t) − x d i (t)
)

+ C 2 ∗ ran d 2 () ∗
(
gbest d (t) − x d i (t)

)
, (3)

x d i (t + 1) = x d i (t) + v d i (t + 1) , (4)

where w (t) is the inertia weight applied to make a balance between exploration and exploitation. C 1 and C 2 are the acceler-

ation coefficients, rand() is a random number in [0,1]. Also, pbest
i
= (pbest 1

i
, pbest 2

i
, ..., pbest D

i
) is the personal best position

of the i th particle and gbest = (gbest 1 , gbest 2 , ..., gbest D) is the best position found by the swarm so far.

Clerc and Kennedy proposed a variant of PSO with constriction factor χ to enhance the convergence rate of PSO [16] as

follows:

v d i (t + 1) = χ ∗
[
v d i (t) + C 1 ∗ ran d 1 () ∗

(
pbest d i (t) − x d i (t)

)
+ C 2 ∗ ran d 2 () ∗

(
gbest d (t) − x d i (t)

)]
(5)

χ =

2 ∣∣∣2 − ϕ −
√

ϕ

2 − 4 ϕ

∣∣∣ , where ϕ = C 1 + C 2 , ϕ > 4 (6)

where C and C were set to 2.05 and χ was set to 0.729.
1 2

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1505

Although PSO algorithm was proposed in 1995, many researchers are still interested to improve the performance of

PSO. As a result, various PSO algorithms have been suggested focusing on parameters control, multi-swarm and population

topology, hybrid methods, and novel learning strategies.

As shown in (3) , w, C 1 and C 2 are the parameters of PSO. In study [42] , a linearly decreasing inertia weight was proposed

to control exploration and exploitation in PSO. Taherkhani and Safabakhsh introduced an adaptive multi-dimensional inertia

weight [44] . The inertia weight is determined in different dimensions for each particle.

In an early experience [17] , C 1 and C 2 were set to constant values (equal to 2). After that, a time-varying acceleration

coefficients PSO was proposed by Ratnaweera and Halgamuge [40] . The algorithm, called PSO-TVAC, uses the following

equation to change C 1 and C 2 parameters in (3) . The experimental results showed that the best ranges for C 1 and C 2 are

2.5–0.5 and 0.5–2.5, respectively.

C j (t) = C j,min +

(
C j,max − C j,min

)
T

× t, j = 1 , 2 , 3 (7)

where C min and C max are two constant values. Additionally, t and T are current iteration and the maximum number of itera-

tions, respectively.

Cheng and Yao introduced time-varying parameters for PSO, based on a novel operator [12] . The acceleration parameters

C 1 and C 2 are adaptively determined, based on the value of the inertia weight in each dimension.

PSO uses two types of topologies to search, namely local and global topologies [23] . In the local PSO (LPSO), the next

velocity is calculated based on the best position achieved by particle’s neighbors lbest ; whereas, in the global topology, the

next velocity is computed using the best position obtained by all particles (gbest) . The velocity of the local topology in the

d th dimension is computed as follows:

v d i (t + 1) = w (t) ∗ v d i (t) + C 1 ∗ ran d 1 () ∗
(

pbest d i (t) − x d i (t)
)

+ C 2 ∗ ran d 2 () ∗
(
lbest d i (t) − x d i (t)

)
(8)

LPSO has shown a better performance compared with PSO to solve multimodal optimization problems [5 , 6 , 10] . To have

better solutions, several topological structures have been proposed such as ring, star, square and von Neumann topologies

[24] . A fully informed PSO (FIPS) was introduced by Mendes et al. [32] . In this algorithm, the velocity of each particle is up-

dated based on all of the particle’s neighbors, not just the best neighbor. In another study, Liang and Suganthan suggested a

dynamic multi-swarm PSO (DMS-PSO) with a dynamic neighborhood structure [27] . In this algorithm, first the small groups

of particles are created then, the particles are regrouped so that the information obtained by particles is shared among

new groups. Marinakiset et al. proposed a hybrid PSO algorithm with variable neighborhood search (VNS) algorithm [31] .

The algorithm, called PSOLGENT, solves the constrained shortest path problem as an NP-hard problem. In this algorithm,

the velocity of each particle is computed, based on the local and global topologies. Local search of VNS algorithm helps a

better search in the search space of the problem. In other PSO algorithms such as unified PSO (UPSO) [37] and fusion global-

local-topology PSO (FGLT-PSO) [7] , both local and global topologies are combined to improve exploration and exploitation

in PSO.

In some variant PSO algorithms, different meta-heuristic algorithms such as genetic algorithm, fruit fly optimization algo-

rithm (FOA), gravitational search algorithm (GSA) and ant colony optimization (ACO) have been combined with PSO. Beheshti

et al. [6] enhanced the performance of PSO, using Newton’s laws of motion in centripetal acceleration PSO (CAPSO). They

also improved CAPSO and used both local and global topologies to increase exploration and exploitation in PSO [8] .

A social learning PSO (SL-PSO) was proposed by Cheng and Jin [13] . The algorithm applies social learning mechanisms in

a way that every particle, except the best one, learns from better particles in the current sorted swarm. The population is

sorted, based on the fitness values of particles. The algorithm also employs a dimension-dependent parameter method for

parameter settings. In another study, Zhang et al. presented an improved SL-PSO algorithm using a differential mutation and

a novel social learning PSO (DSPSO) to improve exploration and exploitation in SL-PSO algorithm [50] .

Liang et al. presented a comprehensive learning PSO (CLPSO) [28] . In CLPSO, particles’ positions are updated by learning

from different historical personal best positions. To enhance the performance CLPSO, an improved CLPSO with a local optima

topology (LOT) structure (CLPSO-LOT) was introduced by Zhang et al. [49] . The LOT sorts the dimensions of positions and

generates a topology structure. Then, random elements from the topology are applied by the particle for learning. Moreover,

a heterogeneous CLPSO algorithm (HCLPSO) was introduced by Lynn and Suganthan [30] . In this algorithm, the population is

divided into two subpopulations to focus on exploration and exploitation. The comprehensive learning strategy is applied to

create samples for both subpopulations. The samples of exploration-subpopulation are generated based on particles’ personal

best positions. In exploitation-subpopulation, samples are created based on the personal best positions of entire swarm. Also,

some adaptive control parameters are applied in the sub groups to improve exploration and exploitation.

Wang et al. introduced a hybrid PSO algorithm with an adaptive learning strategy (ALPSO) [48] . In this algorithm, a self-

learning based candidate generation strategy is used to enhance exploration. At first, all particles learn from the best particle

(gbest). If the swarm is trapped into a local optimum, particles adjust their search direction and learn from a new particle

to jump from this situation. In this algorithm, a tolerance based search direction adjustment mechanism has been designed

to balance exploration and exploitation.

Tanweer et al. proposed a self-regulating PSO (SRPSO) algorithm [45] . This algorithm combines the best human learning

strategies to find the optimum solution in PSO. Two learning strategies self-regulating inertia weight and self-perception are

1506 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

used in this algorithm. The best particle applies the self-regulating inertia weight to have a better exploration and the rest

of particles use the self-perception to have an intelligent exploitation.

Jensi and Jiji introduced a levy flight method to update the particle’s velocity in PSO [19] . The particle moves slowly

towards its pbest and gbest to enhance the diversity of swarm for the global exploration. The levy walk is computed and

applied to modify the particles’ velocity.

A neighbor-based learning PSO with short-term and long-term memory was introduced for dynamic optimization prob-

lems [11] . In this algorithm, a neighbor-based learning strategy is incorporated into the particle’s velocity. Besides, the worst

replacement strategy is applied to update the particles. The worst particle’s position is replaced by a better position newly

created. The solutions from the most recent environment and the historical best solutions from previous environments are

stored by the short-term and long-term memories, respectively. After detecting an environmental change, some particles’

positions are replaced by some particles from the short-term memory, and the best member in the long-term memory is re-

introduced to the active swarm along with its Gaussian neighborhood. Then, the other particles’ positions are re-initialized.

This algorithm and above various PSO algorithms have been introduced for the continuous search space. In the next section,

the binary PSO and its variants are described for the discrete search space.

3. Particle swarm optimization for the binary search space

PSO algorithm has been designed for the continuous search space but many optimization problems are discrete (binary)

optimization problems. Therefore, it is necessary to map the continuous search space to the binary one for solving these

problems. A binary version of PSO (BPSO) was first introduced by Kennedy and Eberhart in 1997 [23] . The standard BPSO

uses (3) to compute the next velocity. The algorithm applies a sigmoid transfer function to modify the continuous search

space to the binary one as follows:

S
(
v d i (t + 1)

)
= sigmoi d

(
v d i (t + 1)

)
=

1

1 + e −v d
i (t+1)

. (9)

Also, the new binary position of the i th particle in the d th dimension is calculated as follows:

xb d i (t + 1) =

{

1 i f rand() < S
(
v d

i (t + 1)
)

0 i f rand() ≥ S
(
v d

i (t + 1)
) , (10)

where | v d
i
(t + 1) | < v max and v max is set to a constant value and xb d

i
(t + 1) is the next position in the binary search space.

Although BPSO has a simple structure, it suffers from some inherent disadvantages [35] . Some of the drawbacks are

directly tied to the shortcomings of PSO and the others are related to the transfer function. PSO has poor exploration;

therefore, it may trap into the local optimum. Since BPSO employs the velocity of PSO, it can sometimes find local optima

or show slow convergence rate.

Another disadvantage of BPSO depends on the sigmoid function [35] . In the standard PSO, there is no difference between

big values of velocity in positive or negative directions. A big absolute value of the velocity indicates that the current parti-

cle’s position is not suitable and a great movement is required to reach the optimum position. Also, a small absolute value

of the velocity shows that the current particle’s position is close to the optimum solution and a small distance is needed

to reach the optimum position. In BPSO, a value in the positive direction generates a bigger probability (probability of 1)

and a value in the negative direction makes the probability of zero for the next particle position. In other words, the new

solutions in different directions are obtained by different ways.

To overcome these drawbacks, many improved BPSO algorithms have been proposed so far. Shen et al. proposed a mod-

ified binary PSO (MBPSO) [41] which selects variables in MLR and PLS, based on the following rule. Ten percent of swarm

randomly moves in the search space without following any rule to avoid entrapment by local optimum; however, this algo-

rithm may find local optima in some cases.

xb d i (t + 1) =

⎧ ⎪ ⎨

⎪ ⎩

xb d i (t) i f 0 < v i ≤ a

pbest d i (t) i f a < v i ≤ 1
2
(1 + a)

gbes t d (t) i f 1
2
(1 + a) < v i ≤ 1

, (11)

where v i is a random number in [0,1] and a is a static probability changed from 0.5 to 0.33.

Lee et al. introduced a modified BPSO using the concepts of genotype and phenotype [26] . The binary and real positions

are called phenotype and genotype, respectively. Moreover, a mutation operator is employed in this method to enhance

exploration. The algorithm applies the binary position to update the velocity. It acquires the new position based on the real

velocity and the current real position. Therefore, the new position has a real value, and it should be converted to a binary

value by a sigmoid function as follows:

S
(
x d g,i (t + 1)

)
= sigmoid

(
x d g,i (t + 1)

)
=

1

1 + e −x d
g,i (t+1)

, (12)

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1507

x d p,i (t + 1) =

{

1 i f rand() < S
(
x d

g,i (t + 1)
)

0 i f rand() ≥ S
(
x d

g,i (t + 1)
) , (13)

where x p and x g are the phenotype and genotype positions, respectively.

Wang et al. presented a probability binary PSO (PBPSO) algorithm using a new strategy to obtain the new position [47] .

In this algorithm, the following transfer function and rule are applied to determine the next binary position:

L
(
x d i (t + 1)

)
=

(
x d

i (t + 1) − R min

)
(R max − R min)

, (14)

xb d i (t + 1) =

{

1 i f rand() ≤ L
(
x d

i (t + 1)
)

0 i f rand() > L
(
x d

i (t + 1)
) , (15)

where x d
i
(t + 1) is the next position in the continuous search space and L(x) is a linear function in (0,1). [R max , R min] is a

predefined range for the L (x) function and xb d
i
(t + 1) is the next binary position.

They claimed that the computational complexity of BPSO reduced by this method, but the algorithm still traps in local

optima when solving some optimization problems.

Nezamabadi-pour et al. introduced a new BPSO (NBPSO) to overcome the disadvantages of sigmoid function in BPSO

[35] as follows:

S
(
v d i (t + 1)

)
=

∣∣tanh

(
α. v d i (t + 1)

)∣∣, (16)

xb d i (t + 1) =

{

Complemen t
(
xb d

i (t)
)

i f rand() < S
(
v d

i (t + 1)
)

xb d
i (t) i f rand() ≥ S

(
v d

i (t + 1)
) , (17)

where α is a constant to change the gradient of transfer function.

When the random number is less than the transfer function value, the next position is computed by changing the bits

of current position from 0 to 1 or vice versa. Otherwise, the next position will be equal to the current position. The results

revealed that NBPSO may get stuck into local optima due to the velocity of standard PSO. To solve this problem, an improved

NBPSO (INBPSO) was introduced by Nezamabadi-pour et al. [35] as follows:

S
(
v d i (t + 1)

)
= A + (1 − A) ∗

∣∣tanh

(
αv d i (t + 1)

)∣∣, (18)

where A is a parameter to avoid the stagnation of the algorithm. When the algorithm falls into the local optimum, the gbest

may not change during successive iterations. Therefore, the value of A increases so that the algorithm can get out of the

local optimum.

An improved BPSO using Catfish effect (CatfishBPSO) was proposed by Chuang to improve the performance of BPSO [15] .

The Catfish particles guide those particles that were trapped in local optima towards new search spaces to achieve better

solutions. Mirjalili and Lewis introduced six new transfer functions which are divided into two categories, namely S-shaped

and V-shaped transfer functions [33] . The performances of transfer functions were evaluated by the benchmark functions

of CEC 2005 special session [13] . The best transfer function selected to be applied in some well-known versions of BPSO.

The results showed that the following V-shaped transfer function (VBPSO8) has a better performance than the others on the

tested functions.

S
(
v d i (t + 1)

)
=

∣∣∣ 2

π
arctan

(
π

2

v d i (t + 1)

)∣∣∣. (19)

The next binary position is created based on the standard BPSO for S-shaped transfer functions. It is also generated

based on NBPSO for V-shaped transfer functions. Although the V-shaped model shows a better performance in solving some

problems, it may trap into local optima. If the best solution found by swarm is the local optimum, the second and third

terms in (3) will be zero due to pbest i = gbest = x i . Also, the inertia weight is linearly decreased. Therefore, the next velocity

becomes very near to zero and the next binary position will be the current binary position (the local optimum).

In another study, a memetic binary hybrid topology PSO (BHTPSO) was introduced by Beheshti et al. [3] . This algorithm

combined local and global topologies to enhance exploration and exploitation in BPSO. In addition, a variant of BHTPSO,

binary hybrid topology PSO quadratic interpolation (BHTPSO-QI), was proposed to improve the global searching ability. The

algorithm applies (8) to update the particle’s velocity. It also uses the following relations to compute the next position:

a d i (t + 1) = v d i (t + 1) + C(t) × rand() × (gbest d (t) − xb d i (t)) , (20)

S
(
a d i (t + 1)

)
= E + (1 − E) ×

∣∣tanh

(
a d i (t + 1)

)∣∣, (21)

1508 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

i f rand() < S
(
a d i (t + 1)

)
then xb d i (t + 1) = complement (xb d i (t))

else xb d i (t + 1) = xb d i (t) , f or i = 1 , 2 , ..., N . (22)

where C is a time-varying acceleration coefficient. E is obtained as follows:

E = er f

(
NF

T

)
=

2 √

π

∫ NF
T

0

e −t 2 dt, (23)

where T is the maximum number of iterations and t is the current iteration. erf is an error function and NF is number of

times failed to get better solution by the best particle.

In the proposed method, a new particle, ˜ X , is created by three different particles. If the fitness value of ˜ X is better than

the gbest , ˜ X will be the best solution (gbest). ˜ X is generated as follows:

˜ X =

(
xb d j xor xb d k

)
or

(
xb d k xor gbest d

)
or

(
gbest d xor xb d j

)
, j � = k � = gbest , (24)

Moreover, several linear functions have been introduced for the binary search space. Bansal et al. proposed a binary

version of PSO using a linear normalized transfer function [1] . The function and the next position were defined as follows:

L
(
x d i (t + 1)

)
=

(
x d

i (t + 1) + v d
i (t + 1) + v max

)
1 + 2 v max

, (25)

xb d i (t + 1) =

{

1 i f rand() < L
(
x d

i (t + 1)
)

0 i f rand() ≥ L
(
x d

i (t + 1)
) . (26)

Since this algorithm uses the velocity of PSO, it still suffers from the shortcoming of BPSO. A time-varying transfer

function was introduced by Islam et al. [18] . The algorithm, namely TV T -BPSO, was evaluated by combinatorial problems for

low and high dimensions knapsack problems. The method applied the following transfer function and the next position is

created based on S-shaped transfer functions:

S
(
v d i (t + 1) , φ

)
=

1

1 + e −v d
i (t+1) /φ

, (27)

φ = φmax − iter

(
φmax − φmin

max iter

)
, (28)

where φmax and φmin are the control parameters of bound φ. iter is the current iteration and maxiter is the maximum

number of iterations.

Although TV T -BPSO has improved the balance between exploration and exploitation, it still faces the shortcomings of

employing the sigmoid function as the base of transfer function. Kiran proposed the following relation in order to convert a

continuous value to the binary value in the artificial bee colony (ABC) [25] :

xb d i (t + 1) = roun d
(∣∣ x d

i (t + 1) mod

2

∣∣) mod 2 . (29)

A new binary hybrid PSO with wavelet mutation (BHPSOWM) has been proposed by Jiang et al. [20] . In BHPSOWM, a mu-

tation operator that is based on wavelet theory is applied in PSO to improve the quality of the best solution. The algorithm

uses a sigmoid function to generate binary solutions; therefore, the algorithm encounters the mentioned disadvantages of

S-shaped transfer functions.

Lin and Guan introduced a hybrid BPSO to solve the obnoxious p -median problem as an NP-hard problem [29] . The

algorithm uses one of the three following relations to compute the new position. The selection of new position is based

on a random number in the range [0, 1] and probabilities prob p and prob g .Also, two tabu-based mutation operators and an

iterated greedy local search are used to avoid the premature convergence and enhance exploitation. The prob p and prob g are

set to constants less than one.

xb d i (t + 1) =

⎧ ⎨

⎩

xb d
i (t) �

(
pbest d

i (t) ∼ xb d
i (t)

)
i f 0 ≤ rand() < pro b p

xb d
i (t) �

(
gbest d

i (t) ∼ xb d
i (t)

)
i f pro b p ≤ rand() < pr o b p + pr o b g

xb d
i (t) �

(
pbest d

j (t) ∼ xb d
i (t)

)
i f pro b p + pro b g ≤ rand() < 1

(30)

where pbest d
j
(t) is the personal best position of the j th particle (j � = i). The particle j is randomly selected. Two operators,

�and ~, are defined as sum and difference operators, respectively.

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1509

Fig. 1. (a) S-shaped, (b) V-Shaped and (c) Linear normalized transfer functions.

Jordehi introduced a new BPSO with a quadratic transfer function (QBPSO) for optimal scheduling of appliances in smart

homes [21] . The algorithm obtains the new position based on a new transfer function as follows:

S
(
v d i (t + 1)

)
=

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

(
v d

i (t)

0 . 5 v d max

)2

i f v d
i (t) < 0 . 5 v d max

1 i f v d
i (t) ≥ 0 . 5 v d max

(31)

xb d i (t + 1) = Complement
(
xb d i (t)

)
i f rand < S

(
v d i (t + 1)

)
(32)

where v d max is the maximum velocity in the d th dimension.

4. TVMS-BPSO-The proposed method

The various BPSO algorithms with the S-shaped, V-shaped and linear transfer functions can sometimes find local optima

or exhibit slow convergence speed [3 , 18 , 33 , 35] . Fig. 1 shows the general forms of S-shaped, V-Shaped and linear normalized

transfer functions. Since, the velocity of PSO has poor exploration, this problem is led to a premature convergence rate.

Therefore, a new transfer function should create a balance between exploration and exploitation to avoid local optima and

to find the best solution.

1510 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 2. The proposed transfer function with different values of control parameter σ .

In this section, a new time-varying mirrored sigmoid transfer function is introduced to enhance exploration and exploita-

tion in BPSO. Fig. 2 shows the proposed transfer function. In the first steps, a strong exploration should be performed to

avoid local optima. In the last steps, exploration should be switched to exploitation to search around good results. As ob-

served in Fig. 2 , exploration decreases from the first steps to the last steps and exploitation increases in the last repetitions.

The general structure of the proposed method has been shown in Fig. 3 . As seen in this figure, two sigmoid functions

are applied to convert the real results to the binary ones as follows:

S
(
v d i (t + 1) , σ

)
=

1

1 + e σ (−v d
i
(t+1))

, (33)

S ′
(
v d i (t + 1) , σ

)
=

1

1 + e σ (v d
i
(t+1))

, (34)

where σ is a time-varying variable. It is initialized by σ max and gradually decreased to σ min in order to switch smoothly

from exploration to exploitation. σ is defined as follows:

σ = (σmax − σmin)

(
iter

max iter

)
+ σmin . (35)

The next binary positions of each transfer function are obtained by (36) and (37) , respectively. Then, a greedy selection

based on the objective function is done between P i and P’ i as shown in (38) . The best position is chosen as the next binary

position xb d
i
(t + 1) .

P d i (t + 1) =

{

1 i f ran d 1 () < S
(
v d

i (t + 1) , σ
)

0 i f ran d 1 () ≥ S
(
v d

i (t + 1) , σ
) , (36)

P ′ d i (t + 1) =

{

1 i f ran d 2 () > S ′
(
v d

i (t + 1) , σ
)

0 i f ran d 2 () ≤ S ′
(
v d

i (t + 1) , σ
) , (37)

xb i (t + 1) =

{

P
i (t + 1) i f f

(
P

i (t + 1)
)

is better than f
(
P ′ i (t + 1)

)
P ′ i (t + 1) i f f

(
P ′ i (t + 1)

)
is better than f

(
P

i (t + 1)
) . (38)

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1511

Fig. 3. The pseudocode of the proposed TVMS-BPSO.

To show how TVMS-BPSO algorithm achieves the best solution, all steps of the algorithm are described by an example

as seen in Table 1 . The Max-Ones function is selected for this purpose. This is a binary function to be maximized. The

maximum value of the function depends on its dimension. For example, if the dimension is equal to 5, the best result will

be 5. The function is defined as follows:

f (x) =

D ∑

i =1

x i (39)

In this example, the population size and the maximum iteration are set to 4 and 3, respectively. The dimension is set to

5. Therefore, the velocity and the position of each particle are vectors with 5 dimensions.

Initialization step: Particles’ velocities are set to zero and the particles’ positions are randomly initialized. The best

solution (gbest) is computed, based on the fitness values of initialized particles (The best fitness value = 2).

1
5

1
2

Z
.
 B

eh
esh

ti
 /
 In

fo
rm

a
tio

n
 Scien

ces
 51

2
 (2

0
2

0
)
 15

0
3

–
15

4
2

Table 1

An example of solving Max-Ones function by TVSM-BPSO (N = 4, D = 5 and Maximum iteration = 3).

Iteration σ Particle No Particle’s Velocity (V) P P’ Particle’s Position (X) Global best

Initialization – Particle #1 0 0 0 0 0 – – 0 0 1 0 0 2

Particle #2 0 0 0 0 0 1 0 0 0 0

Particle #3 0 0 0 0 0 0 1 0 0 0

Particle #4 0 0 0 0 0 0 0 0 1 1

1 0.1 Particle #1 0 0 −0.219 1.1 1.415 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 3

Particle #2 −0.781 0 0 0.867 1.024 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0

Particle #3 0 −0.02 0 0.097 1.004 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1

Particle #4 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1

2 0.55 Particle #1 0 0 −0.219 1.1 1.415 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 5

Particle #2 0.203 −3.091 0 2.022 2.523 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1

Particle #3 1.707 −1.805 −0.407 0.938 1.004 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1

Particle #4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

3 1 Particle #1 1.382 0.159 −1.156 1.1 1.415 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 5

Particle #2 0.203 −2.20 1.354 2.022 2.523 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0

Particle #3 1.707 −0.430 −0.407 0.938 1.004 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1

Particle #4 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 1 1

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1513

Table 2

The parameter settings of tested algorithms.

BPSO, LBPSO, BPSO-bin,

LBPSO-bin, INBPSO,

LINBPSO, VBPSO8, LVBPSO8

MS-BPSO,

MS-LBPSO

TV-BPSO,

TV-LBPSO

T VMS-BPSO, T VMS-LBPSO,

TVMS-VLBPSO

HTBPSO-QI BBA BGSA GB-ABC

w max = 0 . 9

w min = 0 . 4

C 1 = C 2 = 2

w = 1

C 1 = C 2 = 2

w = 1

C 1 = C 2 = 2

φmax = 5

φmin = 1

V max = 10

w = 1

C 1 = C 2 = 2

σmax = 1

σmin = 0 . 1

V max = 10

w max = 0 . 6

w min = 0 . 2

C 1 , max = 2

C 1 , min = 0 . 5

C 2 , max = 2

C 2 , min = 1

C 3 , max = 1 . 5

C 3 , min = 0 . 5

F max = 2

F min = 0

A = 0.25

r = 0.5

ε =

[−1 , 1] γ =

0 . 9

a = 0.9

G 0 =

100 k 0 max =

N

k 0 min = 1

T h = 0 . 1 D

Iteration #1 (σ = 0 . 1) : The new velocity is computed according to (3) for all particles. Pi and Pi’ are obtained by (36) and

(37) , respectively. The best position between Pi and Pi’ is selected as the next position by (38) . The new best solution

(gbest) is calculated based on these new particles’ positions (The best fitness value = 3).

Iteration #2 (σ = 0 . 55) : The next particles’ velocities and particles’ positions are computed for the swarm . The best

position is [1 1 1 1 1] and the best fitness value is 5. The particle #4 has achieved the best solution.

Iteration #3 (σ = 1) : The algorithm is repeated until the stopping criterion (the maximum number of iterations) is met.

In the problem, the proposed method achieves the global optimum very fast. In the next section, the results of TVMS-

BPSO are compared with state-of-the-art BPSO algorithms and some binary algorithms as well.

5. Experimental results and discussion

The proposed TVMS-BPSO algorithm with local and global topologies is compared with various BPSOs on CEC 2005

benchmark functions. In addition, the best algorithms are selected in this step to evaluate their performances with some

well-known binary swarm intelligence algorithms on the 0–1 MKP benchmark instances. These results are presented in

Sections 5.2 and 5.3 .

As mentioned, the local topology shows a better efficiency compared with the global topology in many problems; thus,

some BPSO algorithms with the local topology are implemented in Section 5.2 . The performances of four S-shaped and four

V-shaped transfer functions have been compared with each other on CEC 2005 benchmark functions by Mirjalili and lewis

[33] . Among them, VBPSO8 (19) showed the best results; therefore, VBPSO8 and the local topology VBPSO8 (LVBPSO8) are

selected in the experiment. Also, the proposed transfer function with a fixed value σ(σ = 1) is applied in BPSO (MS-BPSO)

and LBPSO (MS-LBPSO) so that the performance of the time-varying transfer function is cleared in this study. TV-BPSO [18] ,

TV-LBPSO, INBPSO [35] and LINBPSO are chosen for the comparison. As described in Section 3 , a new method (29) has been

proposed by Kiran [25] to convert the continuous search space to the discrete one in the binary ABC. The method is also

applied in the BPSO (BPSO-bin) and LBPSO (LBPSO-bin).

In Section 5.3 , some well-known binary swarm intelligence algorithms have been chosen to solve 0–1 MKP benchmark

instances such as binary gravitational search algorithm (BGSA) [39] , binary hybrid topology particle swarm optimization

quadratic interpolation (BHTPSO-QI) [3] , Binary bat algorithm (BBA) [34] and artificial bee colony algorithm with genetic

operators (GB-ABC) [36] . The best algorithms, based on their results from Section 5.2 , have been selected for Section 5.3 .

Moreover, a variable neighbors BPSO with time-varying mirrored S-shaped transfer function (TVMS-VLBPSO) is applied to

evaluate the proposed transfer function. The results of T VMS-VLBPSO and T VMS-LBPSO are compared with each other to

show the role of local topology in the performance of BPSO. In TVMS-VLBPSO, the neighbors of each particle are changed

per iteration. Each particle x i finds a new solution based on the best neighbor from its near neighborhood in the algorithm.

The information of near neighborhood is calculated by the Hamming distance (HD) between x i and near neighbors. A near

neighbor is defined as follows:

i f H D ik ≤ MeanH D i then k is a near neighbor of i,
else k is not a near neighbor of i

(40)

where MeanHD i is the average Hamming distance between i and other particles.

The distance between two neighbors i and k is computed based on Hamming distance as follows:

H D ik =

D ∑

j=1

(x i j − x k j)
i, k ∈ { 1 , 2 , ..., N} , j ∈ { 1 , 2 , ..., D } . (41)

1514 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Table 3

The best solution achieved by TVMS-BPSO on some CEC 2005 functions with different values of w, C 1 and C 2 .

Function No. W = 0.9–0.4, C1 = C2 = 2 W = 1, C1 = C2 = 2 W = 0.9–0.4, C1 = 2.5–0.5, C2 = 0.5–2.5 K = 0.729, C1 = C2 = 2.05

F1 −404.4383 −446.97 −387.2141 −176.7926

F2 −406.0657 −438.98 −384.3594 −181.5523

F3 256245.5093 98287 288093.6993 831363.379

F4 −379.9042 −441.77 −359.8661 −47.8106

F5 289.0189 −241.97 427.1282 1142.6469

F6 26608.7554 503.45 63492.8493 932100.5708

F7 350.2803 266.25 279.2058 389.5721

F8 −119.9698 −120.05 −119.9816 −119.8995

F9 −321.4709 −328.55 −321.3894 −317.0921

F10 −316.6379 −325.6 −317.115 −314.7437

F11 92.6191 91.167 92.745 93.1742

F12 −6.3943 −238.13 126.1142 1121.0191

F13 −129.0283 −129.77 −129.0012 −128.8447

F14 −298.5191 −298.87 −298.5324 −298.4165

F15 650.8381 379.16 644.2256 734.3625

F16 392.4665 261.86 412.626 414.8928

F17 424.8283 276.62 431.7592 456.6358

F18 1040.9231 795.26 1039.9108 1086.6817

F19 1024.2713 737.95 1054.2098 1094.2269

F20 1003.6173 748.04 1029.9527 1083.2416

F21 1559.2825 1183.3 1571.0258 1647.908

F22 1253.4124 1138 1268.0848 1345.2272

F23 1569.3373 1271.1 1590.0504 1655.2908

F24 1105.8885 526.23 1183.8923 1429.9303

F25 2107.0258 2007.8 2119.8243 2140.6466

Table 4

The results of functions achieved by TVMS-BPSO for different values of σ .

Function No. F8 F8 F10 F10 F25 F25

σ

0.01 −119.9557 −119.9390 −309.9281 −312.8649 2159.1821 2172.1226

0.02 −120.6322 −119.9548 −315.6055 −314.0571 2166.9891 2179.6723

0.03 −121.6686 −119.9175 −316.4295 −318.7756 2142.8119 2176.6815

0.04 −122.4442 −119.9098 −311.9856 −317.1489 2122.0798 2107.7887

0.05 −119.9708 −119.9262 −314.0304 −320.9332 2116.3920 2134.6600

0.06 −119.9735 −119.9586 −315.1207 −318.6501 2093.4844 2126.6118

0.07 −119.8819 −119.9104 −320.7575 −317.5448 2115.8212 2108.3428

0.08 −119.9807 −119.9557 −319.3405 −323.2278 2100.6859 2104.4754

0.09 −122.4001 −119.8965 −316.5014 −317.4313 2093.9501 2090.0655

0.1 −119.9752 −121.6934 −317.8969 −317.6542 2083.7640 2078.5430

0.14 −128.9610 −119.9755 −326.4695 −325.1045 2069.1585 2059.2847

0.2 −119.9562 −119.9559 −327.8170 −327.9123 2027.8582 2035.3040

0.3 −119.9527 −119.9627 −318.9417 −325.8113 1996.9452 2002.4808

0.4 −119.9815 −119.9614 −322.2314 −325.7731 1988.2775 1983.3925

0.5 −119.9913 −119.9522 −319.9014 −327.3937 1984.4718 1975.3279

0.6 −119.8646 −119.8763 −328.9960 −317.0760 1990.9568 1980.8515

0.7 −119.8478 −119.9647 −320.5213 −319.0555 1990.3480 1980.7978

0.8 −119.8825 −119.9015 −325.8652 −320.3386 1980.3532 1975.2823

0.9 −119.9391 −119.8992 −316.6491 −319.5188 1976.3472 1985.2341

0.91 −119.8996 −119.8805 −305.3470 −316.0833 1981.8810 1970.8766

0.98 −119.9507 −119.8229 −325.3033 −320.2227 1974.0571 1973.7776

1 −119.9258 −119.8907 −310.7832 −328.9983 1981.1081 1979.0480

1.1 −119.9578 −119.7886 −311.7171 −326.9786 1977.1598 1980.1110

1.2 −119.8987 −119.9343 −320.5557 −327.1565 1980.4103 1976.5116

1.3 −119.9942 −119.9040 −328.9916 −327.3621 1987.1147 1974.6740

1.4 −119.8488 −119.5705 −317.6549 −326.2246 1976.8226 1977.6369

1.5 −119.9663 −119.6678 −303.8462 −326.8653 1984.0809 1978.0868

5.1. Parameter settings

All parameters of algorithms applied in this study are based on their references as shown in Table 2 . In local topology

algorithms (except TVMS-VLBPSO), a ring topology is used as the neighbourhood structure and the number of neighbours is

2. In the proposed methods, different values of w, C 1 and C 2 [16-18 , 40] have been tested on CEC2005 benchmark functions

as shown in Table 3 . The best value for these parameters are w = 1, C 1 = C 2 = 2. The values of σ max and σ min for the proposed

transfer function were tested by some benchmark functions. The best values for σ max and σ are 1 and 0.1, respectively
min

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1515

Table 5

The mean and standard deviation (±SD) of the best solution for the CEC 2005 benchmark functions.

Algorithms F1 F2 F3 F4 F5

Global Topology

TVMS-BPSO −446.97 ±5.4981 −438.98 ±17.377 98 287 ±1.13e ±05 −441.77 ±12.37 −241.97 ±106.14

MS-BPSO −420.73 ±60.906 −395.92 ±181.1 3.4725e + 05 ±3.684e + 05 −406.59 ±56.808 225.78 ±694.32

TV-BPSO −446.1 ± 5.9235 −436.31 ±22.081 1.0534e + 05 ±1.11e + 05 −433.73 ±25.236 −127.65 ±270.05

BPSO −432.56 ±16.237 −421.95 ±24.169 2.9776e + 05 ±2.587e + 05 −409.16 ±31.834 −4.5091 ±106.95

PSO-bin −421.48 ±53.882 −429.29 ±23.722 1.7321e + 05 ±1.891e + 05 −417.53 ±44.676 −28.15 ±230.95

INBPSO −388.44 ±111.09 −343.49 ±260.67 4.2293e + 05 ±9.474e + 05 −257.83 ±405.01 314.78 ±777.11

VBPSO8 −440.99 ±15.999 −434.54 ±22.582 1.5006e + 05 ±1.417e + 05 −432.74 ±20.972 −140.78 ±142.44

Local Topology

TVMS-LBPSO −449 . 95 ±0.08195 −448 . 58 ±1.8448 42 613 ±34 193 −447 . 9 ± 2.9061 −300 . 46 ±16.03

MS-LBPSO −449.93 ±0.10321 −442.39 ±12.973 53740 ±45736 −443.93 ±6.1872 −240.49 ±86.221

TV-LBPSO −4 49.88 ±0.114 4 4 −446.16 ±4.1313 46468 ±47603 −445.95 ±6.322 −271.68 ±47.705

LBPSO −420.04 ±18.903 −411.31 ±18.258 2.7076e + 05 ±1.655e + 05 −391.81 ±25.165 151.69 ±143.66

LPSO-bin −416.56 ±24.474 −409.04 ±26.071 1.9264e + 05 ±1.08e + 05 −388.8 ± 44.287 226.64 ±223.99

LINBPSO −449.39 ±1.2979 −435.02 ±20.452 1.1082e + 05 ±1.016e + 05 −437.05 ±12.252 −161.17 ±168.01

LVBPSO8 −447.98 ±2.8167 −440.41 ±9.6179 85863 ±62192 −436.29 ±11.742 −147.08 ±110.47

Algorithms F6 F7 F8 F9 F10

Global Topology

TVMS-BPSO 503.45 ±146.36 266.25 ±265.91 −120.05 ±0.74112 −328.55 ±1.3196 −325.6 ± 1.9871

MS-BPSO 10293 ±22647 266.66 ±265.95 −120.01 ±0.31108 −328.03 ±1.3623 −322.63 ±4.0479

TV-BPSO 1625 ±7752.8 266.43 ±266.04 −120.24 ±1.7162 −328.54 ±1.1191 −325.14 ±2.6135

BPSO 4926.8 ± 9628.2 269.87 ±267.37 −120.05 ±0.62672 −323.75 ±2.2942 −320 ±3.6903

PSO-bin 10056 ±30363 267.48 ±266.49 −119.91 ±0.042468 −326.1 ± 1.8146 −322.1 ± 3.6177

INBPSO 4.6038e + 05 ±2.146e + 06 266.75 ±265.92 −120.02 ±0.64313 −325.78 ±2.7139 −321.43 ±4.6189

VBPSO8 3338.2 ± 13255 266.54 ±266 −120.23 ±1.6075 −327.56 ±1.5012 −323.15 ±3.0142

Local Topology

TVMS-LBPSO 402 . 95 ±24.191 266 . 09 ±266 −120 . 25 ±1.0603 −329 . 15 ±0.64132 −326 . 85 ±1.2275

MS-LBPSO 427.8 ± 57.128 266.11 ±266.01 −119.96 ±0.022946 −329 ±0.87708 −325.83 ±1.8089

TV-LBPSO 412.89 ±31.738 266.12 ±265.99 −119.95 ±0.16655 −328.56 ±0.79702 −326.51 ±1.198

LBPSO 16998 ±19042 272.98 ±268.97 −120 ±0.43143 −322.88 ±2.0375 −318.28 ±2.5028

LPSO-bin 24998 ±31607 273.56 ±268.62 −119.91 ±0.037455 −323.59 ±1.858 −318.07 ±3.2552

LINBPSO 528.09 ±129.12 266.18 ±266.01 −119.99 ±0.53181 −327.29 ±1.5843 −323.9 ± 2.3508

LVBPSO8 886.16 ±936.86 266.3 ± 266 −120 ±0.66175 −327.05 ±1.5297 −323.22 ±2.6866

Algorithms F11 F12 F13 F14 F15

Global Topology

TVMS-BPSO 91.167 ±0.65567 −238.13 ±222.15 −129.77 ±0.095197 −298.87 ±0.28931 379.16 ±154.18

MS-BPSO 91.698 ±0.70823 −64.804 ±457.07 −129.66 ±0.21671 −298.75 ±0.35812 388.99 ±156.18

TV-BPSO 91.293 ±0.67296 −224.79 ±277.22 −129.78 ±0.10462 −298.86 ±0.31671 406.85 ±157.16

BPSO 92.4 47 ±0.4 4508 −98.765 ±237.39 −129.3 ± 0.22568 −298.57 ±0.17735 639.77 ±101.61

PSO-bin 92.01 ±0.70265 −158.95 ±363.95 −129.4 4 ±0.2484 4 −298.66 ±0.18228 459.67 ±132.06

INBPSO 91.831 ±0.70665 144.94 ±663.46 −129.61 ±0.28131 −298.65 ±0.33267 470.43 ±191.29

VBPSO8 91.612 ±0.63273 −292.89 ±110.17 −129.69 ±0.13986 −298.78 ±0.24185 348.82 ±109.29

Local Topology

TVMS-LBPSO 91 . 055 ±0.33737 −404 . 88 ±66.753 −129 . 85 ±0.068733 −299 ±0 . 26351 281 . 87 ±77.521

MS-LBPSO 91.309 ±0.41102 −322.43 ±90.273 −129.81 ±0.07994 −298.88 ±0.26877 286.21 ±40.789

TV-LBPSO 91.258 ±0.4221 −380.63 ±82.042 −129.83 ±0.076963 −298.93 ±0.23234 297.77 ±75.577

LBPSO 92.73 ±0.41745 −93.845 ±171.56 −129.23 ±0.21253 −298.51 ±0.13855 629.42 ±64.395

LPSO-bin 92.335 ±0.4855 −134.86 ±178 −129.34 ±0.2235 −298.53 ±0.17661 521.06 ±75.332

LINBPSO 91.949 ±0.50738 −237.62 ±147.33 −129.69 ±0.12899 −298.73 ±0.25447 347.63 ±70.853

LVBPSO8 91.871 ±0.36564 −294.22 ±105.33 −129.66 ±0.12615 −298.72 ±0.22373 369.64 ±56.591

Algorithms F16 F17 F18 F19 F20

Global topology

TVMS-BPSO 261.86 ±17.854 276.62 ±24.911 795.26 ±208.3 737.95 ±220.91 748.04 ±203.51

MS-BPSO 280.98 ±33.481 278.69 ±27.625 911.25 ±136.76 875.01 ±164.41 866.8 ± 155.9

TV-BPSO 267 ±18.718 270.22 ±22.168 776.61 ±207.36 782.17 ±195.41 812.13 ±193.14

BPSO 373.48 ±23.068 399.26 ±23.941 976.16 ±92.887 965.66 ±106.24 962.82 ±83.981

PSO-bin 336.12 ±26.462 376.83 ±35.905 920.38 ±123.51 914.27 ±113.77 868.68 ±161.03

INBPSO 291.4 ± 32.902 300.78 ±26.573 903.6 ± 150.76 923.5 ± 137.33 917.09 ±124.39

VBPSO8 281.99 ±24.545 295.43 ±29.32 862.6 ± 158.3 756.03 ±204.36 777.48 ±214.19

Local Topology

TVMS-LBPSO 248 . 25 ±11.188 269 . 86 ±13.777 651 . 28 ±152.91 674.26 ±164.1 655.55 ±151.15

MS-LBPSO 257.19 ±13.155 273.85 ±18.529 792.61 ±120.16 789.19 ±151.57 774.7 ± 153.95

TV-LBPSO 255.49 ±11.815 277.41 ±15.24 662.65 ±151.91 656 . 18 ±152.3 641 . 04 ±167.54

LBPSO 373.03 ±17.933 401.36 ±25.773 994.02 ±53.698 980.67 ±64.691 1001.2 ± 52.476

LPSO-bin 369.64 ±17.129 390.6 ± 24.902 986.3 ± 89.64 973.7 ± 83.393 999.8 ± 66.473

LINBPSO 297.93 ±20.526 314.41 ±21.132 860.19 ±111.6 890.73 ±84.47 867.31 ±131.58

LVBPSO8 315.27 ±17.965 318.44 ±18.385 867.79 ±80.257 845.89 ±103.67 858.99 ±114.48

Algorithms F21 F22 F23 F24 F25

Global Topology

TVMS-BPSO 1183.3 ± 282.89 1138 ±26.57 1271.1 ± 261.39 526.23 ±91.107 2007.8 ± 8.0833

MS-BPSO 1324.9 ± 256.63 1184.8 ± 54.054 1354.2 ± 253.33 624.07 ±127.68 2010.7 ± 10.665

TV-BPSO 1124.2 ± 272.74 1151.2 ± 41.59 1276.2 ± 247.75 595.67 ±187.08 2012.5 ± 8.7731

BPSO 1508 ±149.16 1224.9 ± 32.686 1516.5 ± 143.39 951.93 ±143.85 2067.8 ± 13.635

PSO-bin 1301.5 ± 236.36 1209.4 ± 49.421 1373.8 ± 238.43 714.97 ±192.4 2046.8 ± 13.484

INBPSO 1430.3 ± 208.56 1200.2 ± 62.768 1429.9 ± 220.11 873.01 ±326.81 2018.1 ± 13.646

VBPSO8 1238.1 ± 259.79 1158.3 ± 52.273 1275.6 ± 269.84 649.59 ±210.43 2023.2 ± 8.2016

Local Topology

TVMS-LBPSO 960 . 08 ±146.28 1129 . 4 ± 44.566 1018 . 1 ± 164.44 468 . 31 ±10.731 2005 . 9 ± 5.7765

MS-LBPSO 1137.7 ± 220.12 1134.3 ± 60.423 1091.3 ± 223.78 475.77 ±35.753 2009.9 ± 6.713

TV-LBPSO 1071.5 ± 176.39 1136.4 ± 47.679 1048.5 ± 205.9 478.5 ± 31.45 2010.5 ± 4.8097

LBPSO 1504.3 ± 100.85 1243.5 ± 24.371 1508.2 ± 106.95 1065.6 ± 93.717 2077.6 ± 11.085

LPSO-bin 1492.1 ± 130.63 1231.3 ± 27.627 1480.1 ± 118.58 1035.7 ± 139.9 2067 ±12.925

LINBPSO 1204.7 ± 231.74 1157.4 ± 71.476 1288.9 ± 222.52 533.83 ±78.492 2011.4 ± 6.5512

LVBPSO8 1285.1 ± 204.65 1171.3 ± 15.948 1287.2 ± 180.37 609.03 ±91.381 2028.5 ± 6.2044

1516 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Table 6

The results of Friedman test on CEC 2005 benchmark functions.

Algorithm Global Topology Local Topology

Function TVMS-BPSO MS-BPSO TV-BPSO BPSO PSO-bin INBPSO VBPSO8 TVMS-LBPSO MS-LBPSO TV-LBPSO LBPSO LPSO-bin LINBPSO LVBPSO8

F1 5.92 9.04 6.4 10.88 9.84 10.34 7.65 2.22 2.48 3.71 12.06 12.16 5.22 7.08

F2 5.52 8.3 6.26 9.94 8.5 10.26 6.8 2.52 5.34 4.32 11.58 11.4 7.16 7.1

F3 6.24 9.86 6.22 10.74 8.08 9.5 7.98 3.92 4.64 3.8 10.9 9.8 7.18 6.14

F4 5.28 8.94 5.9 10.44 8.42 9.44 6.72 2.88 5 4 11.78 11.72 7.04 7.44

F5 4.58 9.27 6.32 10.06 9.06 9.78 7.48 2.07 4.72 3.82 11.86 12.16 6.46 7.36

F6 5.32 7.28 5.8 11.52 9.3 8.92 7.14 2.28 4.18 3.28 12.78 12.52 6.58 8.1

F7 5.67 7.41 6.24 12.08 10.48 8.22 7.53 2.55 2.67 3.64 13.34 13.28 4.67 7.22

F8 5.16 5.84 6.78 8.64 9.54 7.62 9.66 4.4 4.14 7.96 7.8 9.34 8.78 9.34

F9 4.46 5.8 4.77 11.86 9.32 9.26 6.98 3.11 3.62 4.76 12.78 12.4 7.68 8.2

F10 4.88 8.04 5.04 10.76 8.92 8.96 7.88 3.12 4.62 3.7 12.34 12.08 7.08 7.58

F11 4.32 7.2 5 11.16 9.1 8.06 6.82 3.5 4.74 4.58 12.64 10.8 8.76 8.32

F12 6.94 8.62 6.86 9.8 8.6 10.42 6.34 3.14 5.84 4.04 10.68 9.68 7.64 6.4

F13 5.46 7.08 4.96 12 10.7 7.62 7 3.02 4.04 3.54 12.58 11.7 7.44 7.86

F14 5.4 7.9 5.74 10.44 8.64 8.92 6.5 3.54 5.3 4.62 11.26 11.22 7.58 7.94

F15 6.08 6.78 6.88 12.34 9.22 8.74 5.98 3.46 4.26 4.38 12.62 10.34 6.46 7.46

F16 4.24 6.12 5.02 12.86 10.62 7.1 6.48 2.42 3.6 3.62 12.92 12.68 7.92 9.4

F17 4.4 4.54 3.84 12.7 11.72 6.66 6.26 3.66 4.32 4.48 12.86 12.42 8.42 8.72

F18 6.4 8.96 5.8 10.76 9.06 8.96 7.68 2.96 4.9 3.12 11.4 11.14 7 6.86

F19 5.34 8.4 5.82 10.74 9.06 9.76 5.94 3.66 6.02 3.28 11.02 11.14 7.8 7.02

F20 5.18 7.84 6.6 10.48 8.26 9.26 6.52 3.24 5.44 3.36 11.8 11.84 7.84 7.34

F21 6.14 8.26 5.14 11.6 7.86 10.04 7.04 2.9 5.14 4.56 11.06 11.12 6.76 7.38

F22 3.54 7.76 4.32 11.44 10.32 9.08 6.54 3.2 4.68 4.3 12.62 12.04 7.14 8.02

F23 6.83 8.46 7.06 11.38 8.88 9.5 7.32 3.18 4.14 3.81 10.62 9.92 7.08 6.82

F24 4.88 7.54 5.92 12 9.12 10.36 7.7 2.08 2.74 3.42 12.86 12.58 6 7.8

F25 4.04 5.18 5.38 12.72 10.94 6.48 8.2 3.06 4.24 4.6 13.36 12.56 4.84 9.4

Sum 132.22 190.42 144.07 279.34 233.56 223.26 178.14 76 . 09 110.81 102.7 297.52 288.04 176.53 192.3

as shown in Table 4 . In this table, F8, F10 and F25 have been run twice and the best results have been shown in bold. As

seen in this table, the best solutions have been achieved by σ in the range [0.1, 1].

The other parameter settings are as follows: the population size (N) is set to 40 for CEC 2005 functions and 100 for 0–1

MKP benchmark instances [3] . The maximum number of iterations as the stopping criterion is set to 500 [33] for CEC 2005

functions. The results of 0–1 MKP benchmark instances are obtained for the maximum number of iterations 30 0 0 [3] and

50 0 0.

5.2. Results and discussion of nonlinear benchmark functions

Twenty five CEC 2005 benchmark functions are selected in this study. They are divided into four categories [43] : shifted

unimodal (F1-F5), shifted and rotated multimodal (F6-F12), expanded (F13 and F14) and hybrid composition (F15-F25) func-

tions.

The dimensions of functions F1-F14 are set to 5 [33] . For hybrid composition functions F15–F25 , the dimension is set to

10 [33] . In these test functions, 15 bits are considered to represent each continuous value [33] and the particle dimension

is computed as follows :

D = Dimension

f unction
×15 (42)

All binary algorithms are randomly initialized and run 50 times on minimum benchmark functions. The best results

achieved by algorithms and the standard deviation (SD) of the best solution in the last iteration are shown in Table 5 . In this

table, algorithms are divided into two groups: global topology and local topology. Seven algorithms, TVMS-BPSO, MS-BPSO,

TV-BPSO, BPSO, PSO-bin, INBPSO and VBPSO8, have been implemented, based on the global topology. The others, TVMS-

LBPSO, MS-LBPSO, TV-LBPSO, LBPSO, LPSO-bin, LINBPSO and LVBPSO8, are based on the local topology. The best results in

the group of local and global topologies have been separately shown in underline. The best results of all algorithms have

been demonstrated in bold.

From Table 5 , it can be concluded that the proposed transfer function has superior performance in both local and global

topologies. It shows that a good transfer function can considerably improve the efficiency of BPSO. For the first group,

unimodal functions, F1-F5 , T VMS-LBPSO, provides the best solution among all algorithms. Also, T VMS-BPSO shows better

results in the global topology. Although INBPSO shows the worst results for the global topology in this group, LINBPSO

performs better than INBPSO for the local topology.

As observed in Table 5 , TVMS-LBPSO performs superior on the second group of benchmark functions (F6-F12) . Among

the global topology algorithms, TVMS-BPSO provides the best results except for two functions F8 and F12 . In F8 , TV-BPSO

shows the best solution and VBPSO8 generates the best results for F12 .

In group 3 (F13 and F14), the results of all algorithms are near each other. These functions are expanded functions.The

binary algorithms return good results close to the best global optimum. The best results for these functions are achieved by

TVMS-LBPSO.

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1517

Fig. 4. The convergence curve of CEC 2005 benchmark functions.

1518 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 4. Continued

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1519

Fig. 4. Continued

1520 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 4. Continued

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1521

Fig. 4. Continued

1522 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 4. Continued

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1523

Fig. 4. Continued

1524 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 4. Continued

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1525

Fig. 4. Continued

1526 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 4. Continued

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1527

Fig. 4. Continued

1528 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 4. Continued

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1529

Fig. 4. Continued

The last group of functions is more difficult than the other functions to be solved because they have a very complex

structure with a lot of local optima like the real world optimization problems. They are hybrid composition functions (F15-

F25). As shown in Table 5 , the best results are obtained by TVMS-LBPSO for functions F16-F18, and F21-F25 . For functions

F19 and F20 , TV-LBPSO performs better and returns the best solutions.

Furthermore, the Friedman test is carried out on the results to analyze the obtained results statistically as reported in

Table 6 . The minimum value is better result in this table. According to Table 6 , TVMS-LBPSO achieves the best rank compared

with other algorithms. TVMS-BPSO shows a good rank among global topology algorithms. It means that the time-varying

transfer function creates a good balance between exploration and exploitation. As seen in the table, MS-LBPSO shows better

results compared with LBPSO, LPSO-bin, LINBPSO and LVBPSO8. Besides, the results of Table 6 show that VBPSO8 has a

better rank than LVBPSO8. By analyzing the results of Tables 5 and 6 , it is concluded that the performance of BPSO for the

local and the global topologies improves when the algorithm uses the proposed transfer function.

Fig. 4 demonstrates the convergence curve of all algorithms on CEC 2005 benchmark functions. As observed, TVMS-

LBPSO shows significantly better performance than the compared algorithms on different types of problems for four groups.

In addition, the proposed method performs robustly in terms of scaling dimensions, shift, rotation, hybrid and composition

of difficult test functions.

The particles distributions of TVMS-BPSO in different steps have been simulated in Fig. 5 . This figure shows how the

proposed method achieves the best result. The tested function in this figure is F2 as a shifted unimodal function. The di-

mension of F2 is set to 2 and the maximum number of iterations is set to 100. The global optimum is [35.6267, −82.9123]

in the range [−100, 100] with objective function value = −450 [43] . In the problem, the swarm is randomly initialized in the

binary search space. As shown in Fig. 5 , the best solution found by the swarm in the initialization phase is very far from

the best solution. At the third iteration, the particles try to move towards the global optimum point until all particles are

converged to the global optimum point in the 84th iteration. As seen in this figure, the proposed method outperforms to

make a balance between exploration and exploitation in BPSO.

5.3. Results and discussion of 0–1 MKP benchmark instances

The 0–1 MKP is one of the most well-known binary optimization problems. n items (or objects) and m knapsacks with

limited capacities are considered for the problem. Each item has a weight and profit. In the problem, the aim is to select

a subset of items with maximum profit, and without exceeding the capacity of knapsacks. The problem is defined [14]

1530 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 5. The performance of TVMS-BPSO on F2 in the different steps.

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1531

Fig. 5. Continued

Table 7

The 0–1 MKP benchmarks.

Benchmark NO. Benchmark Name Best Known n M

1. mknapcb1–5.100–00 24381 100 5

2. mknapcb1–5.100–01 24274 100 5

3. mknapcb2–5.250–00 59312 250 5

4. mknapcb2–5.250–01 61472 250 5

5. mknapcb3–5.500–00 120130 500 5

6. mknapcb3–5.500–01 117837 500 5

7. mknapcb4–10.100–00 23064 100 10

8. mknapcb4–10.100–01 22801 100 10

9. mknapcb5–10.250–00 59187 250 10

10. mknapcb5–10.250–01 58662 250 10

11. mknapcb6–10.500–00 117726 500 10

12. mknapcb6–10.500–01 119139 500 10

13. mknapcb8–30.250–29 150038 250 30

14. mknapcb9–30.500–29 301021 500 30

1532 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 6. The convergence curves of the 0–1 MKP (Maximum iteration = 30 0 0).

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1533

Fig. 6. Continued

1534 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 6. Continued

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1535

Fig. 6. Continued

1536 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 6. Continued

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1537

Fig. 6. Continued

1538 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Fig. 6. Continued

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1539

Table 8

The results of algorithms on the benchmarks of Table 4 , using PF technique (Maximum iteration = 30 0 0).

Benchmark Max Profit TVMS-LBPSO TVMS-VLBPSO HTBPSO-QI TV-LBPSO VBPSO8 BBA BGSA GB-ABC

mknapcb1–

5.100–

00

Best 24273 24330 24253 24228 24026 22092 24193 22174

Mean 24150.2 24245.9 23831.8 24007.8 23591.7 21146.8 23813.1 21353.6

Worst 24005 24094 23589 23760 23317 20481 23482 20527

STD 96.5549 80.307 236.38 155.181 198.995 428.068 210.976 476.218

mknapcb1–

5.100–

01

Best 24216 24258 24077 24038 23821 21497 24054 21690

Mean 24031.6 24105.6 23710.8 23883 23318.6 21024.5 23548 21023.3

Worst 23927 23904 23241 23697 22864 20776 22786 20086

STD 97.3301 95.9493 234.356 103.276 251.05 256.864 378.862 594.001

mknapcb2–

5.250–

00

Best 58497 58851 57527 58042 55131 48258 57369 51170

Mean 58173.9 58631.6 56731.5 57745.3 54408.8 47019.9 56663.7 49057.7

Worst 57856 58271 55030 57266 53616 45996 55852 47809

STD 209.187 178.053 731.228 259.476 532.764 652.205 492.747 1064.24

mknapcb2–

5.250–

01

Best 60414 61130 59706 60073 57053 49982 59444 52990

Mean 60118.9 60865.7 58542.2 59741.1 56654.6 48806 58521.7 51783.8

Worst 59863 60611 56544 59411 55630 47310 57930 49372

STD 167.681 131.321 971.68 238.506 454.979 904.028 512.883 1364.58

mknapcb3–

5.500–

00

Best 116763 118419 113322 115416 108388 96376 112052 99875

Mean 115806 117906 111288 114653 106895 93159.3 108882 97910

Worst 114790 116663 108513 113776 104417 90563 107461 94452

STD 649.206 546.345 1418.4 588.321 1464.83 1591.85 1317.06 1618.58

mknapcb3–

5.500–

01

Best 114080 116189 111533 112974 106132 94927 107026 97371

Mean 113547 115495 108770 112467 104259 91593.1 106054 95825.4

Worst 112574 114516 105269 112090 101824 88177 104160 93967

STD 492.407 451.36 2004.1 291.554 1220.43 2358.86 999.244 1348.57

mknapcb4–

10.100–

00

Best 23050 23055 22715 22763 22412 20479 22631 21303

Mean 22757.6 22906.6 22407.7 22632.1 22014.8 19739.5 22316.2 20392.3

Worst 22544 22777 21823 22427 21605 18867 21471 19381

STD 129.161 95.6268 261.561 117.378 222.513 564.708 333.24 597.074

mknapcb4–

10.100–

01

Best 22602 22753 22290 22572 22097 19916 22507 20667

Mean 22385.1 22553.5 21997.7 22229.6 21730.8 19449.2 21992.7 19768.9

Worst 22177 22470 21356 21907 21273 18617 21636 19166

STD 125.079 80.6202 272.849 179.335 315.888 432.69 274.026 565.647

mknapcb5–

10.250–

00

Best 57760 58424 57180 57653 55482 48231 56501 51035

Mean 57186.1 58231.8 55457.4 56884 54193.6 47126.7 55738.9 49047

Worst 56289 57965 52213 56071 51821 45948 54937 47315

STD 432.731 165.257 1410.04 471.341 1021.35 693.514 539.56 1358.08

mknapcb5–

10.250–

01

Best 57769 58214 56792 56744 54731 48255 55939 50554

Mean 56878.8 57901.3 55690.9 56351.8 54044.6 46892.6 55416.9 49318.4

Worst 56196 57620 55054 56054 53112 45479 55039 47151

STD 485.817 177.318 630.333 207.935 489.824 900.393 290.37 1021.32

mknapcb6–

10.500–

00

Best 111927 115343 111576 111257 105826 93471 107144 98930

Mean 111228 114866 106556 110135 103684 91387.4 105609 97451.2

Worst 109697 113818 100739 109273 101834 89532 104263 95929

STD 855.045 495.481 3389.74 712.441 1465.28 1193.36 868.752 999.849

mknapcb6–

10.500–

01

Best 114060 117793 111838 113348 106725 95397 109168 100049

Mean 112741 116576 109444 112081 105002 91964.2 107285 98103.2

Worst 110936 115637 107328 111085 103468 90149 105505 95874

STD 1018.8 746.423 1575.89 746.251 1230.73 1719.7 1183.74 1316.05

mknapcb8–

30.250–

29

Best 148509 149139 148222 148202 147238 135903 148018 143249

Mean 148139 148898 147039 147753 146228 134389 147243 142009

Worst 147293 148455 145804 147287 145353 130768 146771 140264

STD 333.064 185.733 730.989 229.276 556.81 1395.87 383.589 946.789

mknapcb9–

30.500–

29

Best 296459 299170 294265 296148 291343 252402 291481 284252

Mean 295532 298557 291962 294596 288869 247772 290066 281874

Worst 294190 298042 289155 293468 286071 242431 288837 278128

STD 807.211 384.621 1570.87 912.92 1609.32 3072.76 776.809 1723.29

Avg. error of Best profit (%) 1.88% 0.79% 3.10% 2.53% 5.84% 15.97% 4.17% 12.01%

Avg. error of Mean profit (%) 2.63% 1.29% 4.94% 3.28% 7.27% 18.25% 5.56% 14.33%

as follows:

Maximize

n ∑

i =1

p i x i

Sub ject to

n ∑

i =1

w i j x i ≤ W j

x i ∈ { 0 , 1 } , 1 ≤ i ≤ n, 1 ≤ j ≤ m , (43)

1540 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

Table 9

The results of algorithms on the benchmarks of Table 4 , using PF technique (Maximum iteration = 50 0 0).

Benchmark Max Profit TVMS-LBPSO TVMS-VLBPSO HTBPSO-QI TV-LBPSO VBPSO8 BBA BGSA GB-ABC

mknapcb1–

5.100–

01

Best 24274 24274 23995 24274 23654 21676 23908 22638

Mean 24094.2 24152.7 23736.3 24081.8 23392.2 21066.1 23608.8 21294.6

Worst 23958 24006 23482 23936 22879 20249 23400 20051

STD 95.3494 100 141.401 88.8717 246 389.064 163.682 756.281

mknapcb2–

5.250–

01

Best 60909 61206 59320 60539 58730 50219 59983 54021

Mean 60655.1 60999.4 58287.6 60334.5 57360.6 49243.6 59005.7 52039.5

Worst 60161 60768 57324 59968 56506 47604 58094 49877

STD 209.342 145.785 785.449 189.925 666.892 854.219 670.519 1208.34

mknapcb3–

5.500–

01

Best 115575 116821 110053 115112 108056 94297 110796 99374

Mean 115187 116204 106902 114496 105738 91818.5 110049 97627.8

Worst 114568 115645 101456 113686 103008 89095 108078 95641

STD 384.629 375.255 3425.23 412.261 1524.63 1629.6 865.162 1125.17

mknapcb4–

10.100–

01

Best 22601 22680 22241 22533 22363 20040 22431 21021

Mean 22447.1 22513.4 21948.9 22388 21863 19561.8 22146 20192.7

Worst 22308 22187 21630 22216 21541 19007 21810 18600

STD 92.1695 148.366 186.17 95.4719 266.115 374.616 167.933 704.175

mknapcb5–

10.250–

01

Best 57763 58143 56554 57227 55544 48634 57226 51640

Mean 57371.7 57888.5 55464.2 56840.4 54440 47488.8 56063.8 50285.3

Worst 57050 57616 54225 56174 53449 46415 55396 48181

STD 241.612 153.42 853.253 357.512 676.017 759.774 512.103 1068.87

mknapcb6–

10.500–

01

Best 115662 117864 111216 114793 107813 95471 111237 101223

Mean 114895 117128 107540 113697 105537 92839.5 110271 99225.3

Worst 114147 116357 102090 112514 102469 89508 108898 96574

STD 465.911 487.53 2906.69 728.597 1497.92 1801.36 793.334 1686.4

mknapcb8–

30.250–

29

Best 148799 149202 147810 148686 147264 135977 148343 143403

Mean 148364 148964 147001 148152 146363 134394 147843 142554

Worst 148064 148725 145366 147469 145449 133036 147401 141848

STD 238.646 148.629 677.949 432.738 651.346 1031.47 295.793 609.961

mknapcb9–

30.500–

29

Best 297916 299270 294223 296969 291779 251731 296625 284595

Mean 296742 298763 292311 296296 289730 246956 294508 282328

Worst 295388 297580 289601 295718 286855 243066 293749 280501

STD 878.984 491.912 1403.31 395.098 1442.38 2730.51 840.627 1717.81

where the maximum capacity of each knapsack is W j . n and m are the numbers of objects and knapsacks, respectively. w i

and p i are the weight and the profit of the i th item. x i is one or zero and it shows whether the i th item has been selected

or not.

Meta-heuristic algorithms can be applied to solve the 0–1 MKP. In these algorithms, the population is randomly initial-

ized by ‘0 ′ and ‘1 ′ values. Some solutions in the population are infeasible because their total weights are more than the

knapsacks capacities. Hence, several methods have been proposed to improve the performance of these algorithms. The

penalty function (PF) technique is one of them. For each infeasible solution, a penalty is computed to decrease the proba-

bility of choosing infeasible solutions. The following PF is applied to test the efficiency of proposed algorithm in the binary

search space [9] .

P enalty =

∑ n
i =1 p i x i

Q + Max j=1 ..m

(∑ n
i =1 w ji x i − W j

) , (44)

where Q is a positive constant, n and m are the numbers of items and knapsacks, respectively.

As shown in Table 7 , fourteen 0–1 MKP benchmark instances have been selected from OR-Library [2] to evaluate the

performance of proposed method. In this table, the best known is the maximum profit; n and m are the numbers of objects

and knapsacks, respectively. The selected benchmarks are very difficult to be optimized.

All algorithms are run on 0–1 MKP benchmark instances and their results are illustrated in Table 8 . The best, the worst,

the mean and standard deviation of profits that are obtained by the algorithms are reported in this table. The average errors

obtained by algorithms have been reported at the end of the table. The average error is calculated as follows [3] :

Aerag e Error =

1

NS

NS ∑

i =1

t i − y i

t i
× 100 , (45)

where NS is the number of benchmarks, and y i is the best profit obtained by each algorithm on the i th benchmark. t i is the

maximum profit of the i th benchmark.

As shown in Table 8 , TVMS-VLBPSO provides the best results and obtained the minimum error among the other al-

gorithms. The second rank belongs to TVMS-LBPSO. These results show that the proposed transfer function has the best

performance among the other transfer functions for BPSO. Furthermore, the proposed transfer function has considerably

increased the performance of BPSO compared with other binary algorithms.

Z. Beheshti / Information Sciences 512 (2020) 1503–1542 1541

BBA shows the worst results compared to others. BBA applies the same transfer function of VBPSO8 but the results

of tested benchmarks are much weaker than VBPSO8. This indicates that the weaknesses of algorithms in the continuous

search space have a direct effect on the efficiency of algorithms in the binary search space.

The best results of TVMS-VLBPSO are concluded from Fig. 6 . As seen in this figure, TVMS-VLBPSO finds the maximum

profit faster than the other algorithms. It is noticeable that the complexity of TVMS-VLBPSO is similar to LBPSO. However,

the proposed method has faster convergence rate and higher solution accuracy than the compared algorithms as shown in

Fig. 6 .

In the next experiment, the maximum number of iterations is increased to determine the effect of time on the quality of

results. Some benchmarks from Table 7 have been chosen in the experiment. From each category, more complex benchmarks

are selected and their results are demonstrated in Table 9 . As shown in this table, the TVMS-VLBPSO is more powerful and

more robust than the others in achieving the best results; even when the number of iterations is increased. In all cases, the

mean profit obtained by TVMS-VLBPSO is better than the others. The second rank belongs to TVMS-LBPSO and BBA shows

poor results in the experiment.

6. Conclusion

This study proposes a time-varying mirrored S-shaped (TVMS) transfer function to convert the continuous search space

to the binary one in BPSO. The transfer function creates a good balance between exploration and exploitation in the binary

search space. The role of transfer function is very important in enhancing the performance of binary algorithms. The pro-

posed method applies two time-varying sigmoid functions that are mirrored for the positive and negative directions. This

kind of transfer function enhances the exploration of algorithm in the first steps; therefore, the algorithm has a good search

in the space. In the last steps, the algorithm switches from exploration to exploitation to search around better solutions.

The proposed transfer function is easy to be implemented in all binary versions of BPSO without increasing the complexity

of the algorithm. Also, it is not sensitive to the dimension of problem.

To evaluate the performance of TVMS_BPSO, the results of some well-known BPSO algorithms and binary swarm intelli-

gence algorithms have been compared with the proposed method on CEC 2005 benchmark functions and 0–1 MKP bench-

mark instances. The experimental results show that the suggested transfer function is more efficient than the S-Shaped and

V-shaped transfer functions in generating better quality solutions. As mentioned, the proposed transfer function can be ap-

plied in BPSO algorithms to enhance their performance in the binary search spaces and this claim was tested in this study.

The transfer function has been employed for the local topologies of BPSO. The results indicate that the efficiency of LBPSO

has been considerably improved by the transfer function. For further studies, the proposed transfer function can be applied

in other meta-heuristic algorithms to evaluate the performance and to solve various discrete optimization problems.

Declaration of Competing Interest

None.

References

[1] J.C. Bansal , K. Deep , A modified binary particle swarm optimization for knapsack problems, Appl. Math. Comput. 218 (2012) 11042–11061 .

[2] J.E. Beasley, OR-library: distributing test problems by electronic mail, J. Oper. Res. Soc. 41 (1990) 1069–1072, doi: 10.1057/jors.1990.166 .

[3] Z. Beheshti , S.M. Shamsuddin , S. Hasan , Memetic binary particle swarm optimization for discrete optimization problems, Inf. Sci. (Ny) 299 (2015)
58–84 .

[4] Z. Beheshti, BMNABC: binary multi-neighborhood artificial bee colony for high-dimensional discrete optimization problems, Cybern. Syst. 49 (2018)
452–474, doi: 10.1080/01969722.2018.1541597 .

[5] Z. Beheshti, S.M. Shamsuddin, Non-parametric particle swarm optimization for global optimization, Appl. Soft Comput. 28 (2015) 345–359, doi: 10.
1016/j.asoc.2014.12.015 .

[6] Z. Beheshti, S.M.H. Shamsuddin, CAPSO: centripetal accelerated particle swarm optimization, Inf. Sci. (Ny) 258 (2014) 54–79, doi: 10.1016/j.ins.2013.08.

015 .
[7] Z. Beheshti , S.M. Shamsuddin , S. Sulaiman , Fusion global-local-topology particle swarm optimization for global optimization problems, Math. Probl.

Eng. 2014 (2014) 1–19 .
[8] Z. Beheshti , S.M. Shamsuddin , S. Hasan , N.E. Wong , Improved centripetal accelerated particle swarm optimization, Int. J. Adv. Soft Comput. Its Appl. 8

(2016) 1–26 .
[9] Z. Beheshti, S.M. Shamsuddin, S.S. Yuhaniz, Binary accelerated particle swarm algorithm (BAPSA) for discrete optimization problems, J. Glob. Optim.

57 (2013) 549–573, doi: 10.1007/s10898- 012- 0006- 1 .

[10] M.R. Bonyadi, Z. Michalewicz, Particle swarm optimization for single objective continuous space problems: a review, 25 (2017) 1–54.
[11] L. Cao, L. Xu, E.D. Goodman, A neighbor-based learning particle swarm optimizer with short-term and long-term memory for dynamic optimization

problems, Inf. Sci. (Ny) 453 (2018) 463–485, doi: 10.1016/j.ins.2018.04.056 .
[12] R. Cheng , M. Yao , Particle swarm optimizer with time-varying parameters based on a novel operator, Appl. Math. Inf. Sci. 5 (2011) 33–38 .

[13] R. Cheng, Y. Jin, A social learning particle swarm optimization algorithm for scalable optimization, Inf. Sci. (Ny) 291 (2015) 43–60, doi: 10.1016/j.ins.
2014.08.039 .

[14] P.C. Chu, J.E. Beasley, A genetic algorithm for the multidimensional knapsack problem, J. Heuristics 4 (1998) 63–86, doi: 10.1023/A:1009642405419 .

[15] L.-Y. Chuang, S.-W. Tsai, C.-H. Yang, Improved binary particle swarm optimization using catfish effect for feature selection, Expert Syst. Appl. 38 (2011)
12699–12707, doi: 10.1016/j.eswa.2011.04.057 .

[16] M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput. 6
(2002) 58–73, doi: 10.1109/4235.985692 .

[17] R.C. Eberhart, Y. Shi, Particle swarm optimization: developments, applications and resources, Evol. Comput. (2001) 81–86 Proc. 2001 Congr. 1 (2001),
doi: 10.1109/CEC.2001.934374 .

http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0001
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0001
https://doi.org/10.1057/jors.1990.166
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0003
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0003
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0003
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0003
https://doi.org/10.1080/01969722.2018.1541597
https://doi.org/10.1016/j.asoc.2014.12.015
https://doi.org/10.1016/j.ins.2013.08.015
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0007
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0008
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0008
https://doi.org/10.1007/s10898-012-0006-1
https://doi.org/10.1016/j.ins.2018.04.056
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0011
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0011
https://doi.org/10.1016/j.ins.2014.08.039
https://doi.org/10.1023/A:1009642405419
https://doi.org/10.1016/j.eswa.2011.04.057
https://doi.org/10.1109/4235.985692
https://doi.org/10.1109/CEC.2001.934374

1542 Z. Beheshti / Information Sciences 512 (2020) 1503–1542

[18] M.J. Islam, X. Li, Y. Mei, A time-varying transfer function for balancing the exploration and exploitation ability of a binary PSO, Appl. Soft Comput. 59
(2017) 182–196, doi: 10.1016/j.asoc.2017.04.050 .

[19] R. Jensi, G.W. Jiji, An enhanced particle swarm optimization with levy flight for global optimization, Appl. Soft Comput. 43 (2016) 248–261, doi: 10.
1016/j.asoc.2016.02.018 .

[20] F. Jiang, H. Xia, Q.A. Tran, Q.M. Ha, N.Q. Tran, J. Hu, A new binary hybrid particle swarm optimization with wavelet mutation, Knowledge-Based Syst.
130 (2017) 90–101, doi: 10.1016/j.knosys.2017.03.032 .

[21] A.R. Jordehi, Binary particle swarm optimisation with quadratic transfer function: a new binary optimisation algorithm for optimal scheduling of

appliances in smart homes, Appl. Soft Comput. 78 (2019) 465–480, doi: 10.1016/j.asoc.2019.03.002 .
[22] J. Kennedy , R.C. Eberhart , Particle swarm optimization, in: Proc. 1995 IEEE Int. Conf. Neural Networks, Perth, Australia, Piscataway, NJ, IEEE Service

Center, 1995, pp. 1942–1948 .
[23] J. Kennedy , R.C. Eberhart , A discrete binary version of the particle swarm algorithm, in: Proc. IEEE Int. Conf. Syst. Man, Cybern., Washington, DC, USA,

IEEE Computer Society, 1997, pp. 4104–4108 .
[24] J. Kennedy , R. Mendes , Population structure and particle swarm performance, Evol. Comput. (2002) 1671–1676 CEC’02. Proc. 2002 Congr., 2002 .

[25] M.S. Kiran , The continuous artificial bee colony algorithm for binary optimization, Appl. Soft Comput. 33 (2015) 15–23 .
[26] S. Lee, S. Soak, S. Oh, W. Pedrycz, M. Jeon, Modified binary particle swarm optimization, Prog. Nat. Sci. 18 (2008) 1161–1166, doi: 10.1016/j.pnsc.2008.

03.018 .

[27] J.J. Liang, P.N. Suganthan, Dynamic multi-swarm particle swarm optimizer, in: Proc. 2005 IEEE Swarm Intell. Symp., SIS, 2005, pp. 124–129, doi: 10.
1109/SIS.2005.1501611 . 2005., 2005.

[28] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE
Trans. Evol. Comput. 10 (2006) 281–295, doi: 10.1109/TEVC.2005.857610 .

[29] G. Lin, J. Guan, A hybrid binary particle swarm optimization for the obnoxious p-median problem, Inf. Sci. (Ny) 425 (2018) 1–17, doi: 10.1016/j.ins.2017.
10.020 .

[30] N. Lynn, P.N. Suganthan, Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation, Swarm Evol.

Comput. 24 (2015) 11–24, doi: 10.1016/j.swevo.2015.05.002 .
[31] Y. Marinakis, A. Migdalas, A. Sifaleras, A hybrid particle swarm optimization – variable neighborhood search algorithm for constrained shortest path

problems, Eur. J. Oper. Res. 261 (2017) 819–834, doi: 10.1016/j.ejor.2017.03.031 .
[32] R. Mendes , J. Kennedy , J. Neves , The fully informed particle swarm: simpler, maybe better, IEEE Trans. Evol. Comput. 8 (2004) 204–210 .

[33] S. Mirjalili, A. Lewis, S-shaped versus V-shaped transfer functions for binary particle swarm optimization, Swarm Evol. Comput. 9 (2013) 1–14, doi: 10.
1016/j.swevo.2012.09.002 .

[34] S. Mirjalili, S.M. Mirjalili, X.-S. Yang, Binary bat algorithm, Neural Comput. Appl. 25 (2014) 663–681, doi: 10.10 07/s0 0521- 013- 1525- 5 .

[35] H. Nezamabadi-pour , M. Maghfoori-Farsangi , Binary particle swarm optimization: challenges and new solutions, J. Comput. Soc. Iran Comput. Sci. Eng.
6 (2008) 21–32 .

[36] C. Ozturk , E. Hancer , D. Karaboga , A novel binary artificial bee colony algorithm based on genetic operators, Inf. Sci. (Ny) 297 (2015) 154–170 .
[37] K.E. Parsopoulos , UPSO: a unified particle swarm optimization scheme, Lect. Ser. Comput. Comput. Sci. 1 (2004) 868–873 .

[38] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intell. 1 (2007) 33–57, doi: 10.1007/s11721-007- 0002- 0 .
[39] E. Rashedi , H. Nezamabadi-Pour , S. Saryazdi , BGSA: binary gravitational search algorithm, Nat. Comput. 9 (2010) 727–745 .

[40] A. Ratnaweera, S.K. Halgamuge, H.C. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE

Trans. Evol. Comput. 8 (2004) 240–255, doi: 10.1109/TEVC.2004.826071 .
[41] Q. Shen , J.-H. Jiang , C.-X. Jiao , G. Shen , R.-Q. Yu , Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR

studies of antagonism of angiotensin II antagonists, Eur. J. Pharm. Sci. 22 (2004) 145–152 .
[42] Y. Shi , R.C. Eberhart , A modified particle swarm optimizer, in: Proc. IEEE Congr. Evol. Comput., 1998, pp. 69–73 .

[43] P.N. Suganthan , N. Hansen , J.J. Liang , K. Deb , Y.-P. Chen , A. Auger , S. Tiwari , Problem definitions and evaluation criteria for the CEC 2005 special session
on real-parameter optimization, KanGAL Rep. 20 050 05 (20 05) 20 05 .

[44] M. Taherkhani, R. Safabakhsh, A novel stability-based adaptive inertia weight for particle swarm optimization, Appl. Soft Comput. J. 38 (2016) 281–295,

doi: 10.1016/j.asoc.2015.10.004 .
[45] M.R. Tanweer, S. Suresh, N. Sundararajan, Self regulating particle swarm optimization algorithm, Inf. Sci. (Ny). 294 (2015) 182–202, doi: 10.1016/j.ins.

2014.09.053 .
[46] D. Wang, D. Tan, L. Liu, Particle swarm optimization algorithm: an overview, Soft Comput. 22 (2018) 387–408, doi: 10.10 07/s0 050 0- 016- 2474- 6 .

[47] L. Wang , X. Wang , J. Fu , L. Zhen , A novel probability binary particle swarm optimization algorithm and its application, J. Softw. 3 (2008) 28–35 .
[48] F. Wang, H. Zhang, K. Li, Z. Lin, J. Yang, X.-L. Shen, A hybrid particle swarm optimization algorithm using adaptive learning strategy, Inf. Sci. (Ny).

436–437 (2018) 162–177, doi: 10.1016/j.ins.2018.01.027 .

[49] K. Zhang, Q. Huang, Y. Zhang, Enhancing comprehensive learning particle swarm optimization with local optima topology, Inf. Sci. (Ny) 471 (2019)
1–18, doi: 10.1016/j.ins.2018.08.049 .

[50] X. Zhang, X. Wang, Q. Kang, J. Cheng, Differential mutation and novel social learning particle swarm optimization algorithm, Inf. Sci. (Ny). 480 (2019)
109–129, doi: 10.1016/j.ins.2018.12.030 .

https://doi.org/10.1016/j.asoc.2017.04.050
https://doi.org/10.1016/j.asoc.2016.02.018
https://doi.org/10.1016/j.knosys.2017.03.032
https://doi.org/10.1016/j.asoc.2019.03.002
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0021
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0022
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0023
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0024
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0024
https://doi.org/10.1016/j.pnsc.2008.03.018
https://doi.org/10.1109/SIS.2005.1501611
https://doi.org/10.1109/TEVC.2005.857610
https://doi.org/10.1016/j.ins.2017.10.020
https://doi.org/10.1016/j.swevo.2015.05.002
https://doi.org/10.1016/j.ejor.2017.03.031
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0031
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0031
https://doi.org/10.1016/j.swevo.2012.09.002
https://doi.org/10.1007/s00521-013-1525-5
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0034
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0034
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0034
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0035
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0035
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0035
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0035
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0036
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0036
https://doi.org/10.1007/s11721-007-0002-0
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0038
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0038
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0038
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0038
https://doi.org/10.1109/TEVC.2004.826071
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0040
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0040
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0040
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0040
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0040
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0040
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0041
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0042
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0042
https://doi.org/10.1016/j.asoc.2015.10.004
https://doi.org/10.1016/j.ins.2014.09.053
https://doi.org/10.1007/s00500-016-2474-6
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0046
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0046
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0046
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0046
http://refhub.elsevier.com/S0020-0255(19)30982-X/sbref0046
https://doi.org/10.1016/j.ins.2018.01.027
https://doi.org/10.1016/j.ins.2018.08.049
https://doi.org/10.1016/j.ins.2018.12.030

	A time-varying mirrored S-shaped transfer function for binary particle swarm optimization
	1 Introduction
	2 Particle swarm optimization for the continuous search space
	3 Particle swarm optimization for the binary search space
	4 TVMS-BPSO-The proposed method
	5 Experimental results and discussion
	5.1 Parameter settings
	5.2 Results and discussion of nonlinear benchmark functions
	5.3 Results and discussion of 0-1 MKP benchmark instances

	6 Conclusion
	Declaration of Competing Interest
	References

