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a b s t r a c t

A swarm-based metaheuristic algorithm, like artificial bee colony (ABC), embraces four key elements of
collective intelligence: positive feedback, negative feedback, multiple interactions, and fluctuation.
Fluctuation refers to population diversity which can be measured using dimension-wise diversity. This
paper performed component-wise analysis of ABC algorithm using diversity measurement. The analysis
revealed scout bees component as counterproductive and onlooker bees component with poor global
search ability. Subsequently, an ABC algorithm without scout bees component and modified onlooker
bees component is proposed in this paper. The effectiveness and efficiency of the proposed
ScoutlessABC is validated on test suite of a dozen of benchmark functions. To further evaluate the perfor-
mance, ScoutlessABC is employed on the parameter training problem of fuzzy neural network for solving
eight classification problems. The experimental results show that ScoutlessABC maintains strong conver-
gence ability than the original ABC algorithm. Overall, this study has two major contributions: (a) an
effective component-wise analysis approach using diversity measurement and (b) a simplified and mod-
ified ABC variant with enhanced search efficiency.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In metaheuristic research, swarm-based algorithms have
earned significant place as compared to evolutionary and other
population-based metaheuristic algorithms (Ab Wahab et al.,
2015). There exist at-least over fifty swarm-based metaheuristic
algorithms which have been successfully implemented in a wide
variety of applications related to civil engineering, mechanical
design, energy, transportation, electrical and electronics, business
and economics, arts, etc. (Hussain et al., 2018). The collective intel-
ligence of swarm individuals extracted from nature in the form of
foraging behaviors of birds, ants, and bees, etc., has led to crafting
efficient optimization techniques. Among such methods are
classical swarm-based metaheuristic algorithms; such as, particle
swarm optimization (PSO) (Eberhart and Kennedy, 1995), ant
colony optimization (ACO) (Dorigo et al., 2006), and artificial bee
colony (ABC) (Karaboga, 2005). Besides, some of the recently
introduced swarm-based algorithms are bacterial foraging
optimization (BFO) (Passino, 2012), chicken swarm optimization
(CSO) (Meng et al., 2014), animal migration optimization (AMO)
(Li et al., 2014), and crow search algorithm (CSA) (Askarzadeh,
2016).

When compared with classical and some of the recent methods,
ABC has produced promising results. Hussain et al. (2017) found
ABC as an efficient optimizer for fuzzy neural network while solv-
ing classification problems, as compared to PSO and mine blast
algorithm (MBA) (Sadollah et al., 2013). ABC also generated signif-
icant results in clustering analysis problem when compared with
AMO (Ma et al., 2015). Uymaz et al. (2015) and Anuar et al.
(2016) verified effectiveness of ABC over bat algorithm (BA)
(Yang, 2010), cuckoo search (CS) (Yang and Deb, 2009), and firefly
algorithm (FA) (Yang, 2010) when implemented on several
global optimization problems. In the domain of petroleum and
oil-field operations, Nozohour-leilabady and Fazelabdolabadi
(Nozohour-leilabady and Fazelabdolabadi, 2016) applied ABC and
PSO on discovering optimal well locations. Results confirmed the
proficiency of ABC over PSO. Garg (2014) applied ABC on various
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structural engineering design problems, where researchers mini-
mized the cost of design more effectively than other metaheuristic
algorithms. Garg et al. (2013) proposed an efficient two-phased
approach to solving reliable redundancy allocation problems. In
this approach, ABC was applied on finding optimal solution of
the reliability-redundancy allocation, which is further improved
in the second phase. The ABC algorithm was employed on optimiz-
ing parameters of fuzzy logic-based industrial system. In compar-
ison with conventional methods and other evolutionary
algorithms, ABC achieved better results.

As ABC is an efficient and easy to implement algorithm, hence it
is relatively more commonly used than other algorithms modeled
over honey swarm; such as, mutable smart bee algorithm (MSBA)
(Mozaffari et al., 2012), virtual bee algorithm (VBA) (Yang, 2005),
honey bee colony algorithm (HBCA) (Chong et al., 2006), bee col-
ony optimization (BCO) (Teodorovic and Dellrco, 2005), and bee
swarm optimization (BSO) (Drias et al., 2005). Similar to other
swarm-based metaheuristic algorithms, ABC also embraces key
elements of swarm intelligence; i.e., positive feedback, negative
feedback, multiple interactions, and fluctuation. ABC employs
three different groups of bees to pursue the said features.
Employed bees and onlooker bees endorse positive feedback and
multiple interactions, whereas scout bees focus on the element
of negative feedback and fluctuation. Fluctuation helps avoid trap-
ping in sub-optimal locations by injecting diversity in population.
Scout bees perform this task by bringing solutions from far-
fetched totally random locations, in search process. Employed
and onlooker bees also add randomness up-to some extent. Here,
question arises that how much fluctuation or randomness is suffi-
cient for efficient performance.

In literature, there has been introduced various modifications
and hybrids of the ABC algorithm, in order to induce enough pop-
ulation diversity so that the trade-off balance between exploration
and exploitation can be achieved. However, mostly the research
related to ABC is inclined towards high-level experimental analysis
(Bansal, 2018), as there are several questions yet to be addressed
with practical evidence, such as:

� Why ABC suffers from poor exploitation ability?
� Why ABC occasionally stops proceeding to global optimum?
� Why ABC performance downgrades on complex optimization
problems?

This study is an attempt to answer the core questions related
to ABC performance analysis using component-wise diversity
measurement. The core motivation of this study is an interesting
research by Sörensen (2015) which entails the need of in-depth
analysis, instead of merely high-level analysis, by deconstruction
approach with component-view of metaheuristic algorithms.
With this motive, this study is able to answer ‘‘how and why it
happened” question related to ABC performance, as mostly litera-
ture is focused on shallow analysis related to ‘‘what happened”
(Yang, 2012; Karaboga et al., 2014; Sörensen et al., 2018). As a
result of in-depth practical analysis, this research is able to sim-
plify ABC by eliminating scout bees component, as well as, effec-
tively modifying onlooker bees component. Generally, this paper
has twofold contributions: (a) practically illustrating useful
component-wise analysis approach using population diversity
measurement and (b) proposing simplified and efficient ABC
variant.

The outline of the study is as follows. Section 2 briefs about ABC
and the variants introduced by different researchers. Section 3
explains the methodology designed to achieve the objectives of
this research. In this section, the components of ABC are theoreti-
cally analyzed using population diversity measurement. Based on
analysis, ABC is improved in this section. For practical evidence
of the proposed modification, experiments on test functions and
classification problems are performed – detail of experiments is
given in Section 4. Section 5 reports and discusses results with
in-depth analysis. This empirical work is finally concluded in
Section 6.

2. Artificial bee colony (ABC) algorithm and variants

ABC algorithm was introduced by Karaboga (Karaboga, 2005)
which is based on how honeybees work together for collecting nec-
tar from flowers. In ABC, the objective is to find the patch of flowers
with maximum nectar amount (optimal solution). For achieving
this, ABC divides the bee swarm into three groups: employed
bees, onlooker bees, and scout bees. Each bee represents a
D-dimensional solution, the bee which finds the best food source
among all is most likely to be followed by other bees for converg-
ing to the best location.

Similar to PSO, ABC also utilizes the concept of memory for stor-
ing personal best location. A bee visits new location and later on
compares with the best location it visited previously. If the new
location is better, the old one is forgotten and the new location is
memorized; otherwise, the memory remains unchanged. Initially,
ABC starts with sending bees to random places. When returning
back to beehive, the employed bees share information with onloo-
ker bees which choose the employed bee to follow based on prob-
ability of selection (1):

pi ¼
fitiPSN
n¼1fitn

ð1Þ

where fiti is objective function value (nectar amount) of a solution i
and SN is the total number of food sources. Roulette- wheel selec-
tion method is performed on employed bees’ probability values.
The more is the amount of nectar shared by an employed bee, the
more are the chances of selection by onlooker bees. The onlooker
bee moves to new location v i, guided by chosen employed bee, with
the help of (2):

v i ¼ xi þ Randiðxi � xjÞ ð2Þ

where xi is the current location in memory, xj is the selected
employed bee based on probability, and the randomness added to
find nectar around location xj. After multiple iterations, when any
bee that is unable to find better food source for some time, it is
replaced with scout bee vnew. The scout bee invoked for the failed
bee roams around any random or unexplored region to explore
the environment using (3):

vnew ¼ lbi þ Randiðubi � lbjÞ ð3Þ

where lbi;ubi, and Randi is the lower bound, upper bound, and ran-
domness between [0,1]. The next cycle starts again with employed
bees which visit the neighborhoods of locations present in memory.
The summarized three steps procedure of ABC is outlined in Algo-
rithm 1 and depicted via flow chart given in Fig. 2a.

Original ABC was proposed for solving unconstrained optimiza-
tion problems, however research related to ABC has produced
many modifications and hybrids of the algorithm, to implement



Algorithm 1: ABC Procedure.
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on wider variety of applications. Some of the recent ABC variants
are highlighted as following.

Yurtkuran and Emel (2016) proposed ABC variant with
enhanced explorative and exploitative capability. Instead of greedy
selection between old and new solutions in original ABC, this vari-
ant employed solution acceptance rule and probabilistic multi-
search method to allow ABC early explore the search space by
using probability of worse solutions to be selected. With proba-
bilistic multisearch strategy and new selection rule providing three
alternate solutions to be selected based on predetermined proba-
bilities, the balance between exploration and exploitation was
achieved. Experimental results of well-known benchmark test
functions, when compared with PSO, DE and their variants, proved
improvement in ABC performance.

To improve the search pattern of employed and onlooker bees,
Xu et al. (2013) proposed the use of a pool of good solutions to
select from in employed bees and onlooker bees processes. With
this change, the new solutions are generated around some of the
best solutions in order to improve convergence speed of the algo-
rithm. The new ABC (NABC) was compared with ABC and its vari-
ants on benchmark test functions, the results verified the enhanced
search efficiency.

In another related work, Karaboga and Akay (2011) modified
the ABC algorithm to solve problems with constraints and com-
pared results with state-of-the-art metaheuristics including
genetic algorithm, differential evolution, and PSO, etc. The variant
made two changes in ABC: (a) modified parameter update equation
of employed bee, and (b) used Deb’s rules with tournament selec-
tion instead of greedy selection. The statistical analysis including
ANOVA and ANOM suggested best suitable parameters for the vari-
ant. The same authors in another work (Akay and Karaboga, 2012)
presented improved ABC with modifications in perturbation pro-
cess while determining the number of parameters to be updated
in new location. This variant overcame the problem of poor conver-
gence of ABC on non-separable and composite constrained opti-
mization problems. The results of experiments, when compared
with the standard and variants of ABC as well as other popular
population-based algorithms, suggested that the proposed modifi-
cation improved ABC performance significantly.

In order to deal with another type of optimization problems
called binary optimization, Ozturk et al. (2015) proposed genetic
operators based ABC (GB-ABC) which modified initialization and
employed bee equations by using crossover and swap operators.
The robustness of the variant algorithm is verified by testing it
on image clustering and 0–1 knapsack problem, as well as, on
CEC2005 benchmark test functions. The comparisons with similar
binary algorithms like binary PSO and binary GA proved the effi-
ciency of the proposed algorithm.

Another important modification in ABC was recently proposed
by Sharma et al. (2016), where lévy flight was employed as bal-
anced randomization strategy to avoid extra exploration and poor
convergence ability. In the variant, the lévy flight local search strat-
egy was integrated as last (4th) step after employed bees step,
onlooker bees step, and scout bee step.

Inspired from PSO, ABC algorithm was modified by Zhu and
Kwong (2010) by incorporating the globally best bee (best solution
found so far) information into position update Eq. (2). According to
the paper, the modification improved exploitative capability of the
algorithm and produced better results on benchmark test functions
with low to high dimensions, as compared with the original ABC.

Qin et al. (2015) attempted to balance explorative and exploita-
tive capabilities of ABC by integrating time varying strategy in
order to vary the ratio between employed bees and onlooker bees
with the passage of iterations. Depending on the nature of varia-
tion in ratio, linear or nonlinear, this paper proposed ABC with lin-
ear time varying strategy (LTVS), so called ABC-LTVS, as well as
with nonlinear time varying strategy (NTVS), calling it ABC-NTVS.
Testing performance on 21 benchmark test functions, the proposed
ABC variants outperformed the standard ABC algorithm and the
variant Gbest-guided ABC (GABC).

The modifications mentioned earlier proposed significant
improvement in ABC algorithm, however none performed
component-based analysis to examine the role of each component
on the performance of the standard ABC algorithm. The research
mentioned earlier claimed to have balanced exploration and
exploitation of ABC algorithm, but no in-depth analysis is provided
except for convergence graph and averaged end results of certain
number of runs. Even though, such results and graphs provide
enough prove of the end results; nevertheless, how and why the
proposed modifications improved ABC performance and why the
original algorithm performed poor is still practically and partially
unknown. Furthermore, the modifications and enhanced strategies
often supplement extra parameters and complexity to the algo-
rithm. It is therefore significantly mandatory for any analytical
research to perform in-depth and component-wise analysis in
order to solve ‘‘black box” issue attached with metaheuristic per-
formance. Hence, this research performed component-wise analy-
sis of ABC algorithm to determine the effect of each component on
search performance of the algorithm, the methodology is explained
in subsequent section.
3. Methodology

The basic motivation of this current work is Sörensen’s paper
(Sörensen, 2015) which presented the idea of breaking metaheuris-
tics into components so that a connection between components
and the performance can be established. Moreover, Cheng et al.
(2014) inspired this work to investigate swarm behavior by
measuring diversity in population, it is discussed further in this



Fig. 1. Research methodology.
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section. This helps empirically determine that how much fluctua-
tion is suitable for efficient search.

The methodology adopted in this work is depicted in Fig. 1. As it
is expressed via Fig. 1, ABC algorithm is broken into its three com-
ponents: employed bees, onlooker bees, and scout bees compo-
nents. The swarm agents created by these components
individually are taken into account to measure dimension-wise
diversity. This implied how effectively the search agents visit the
environment – influencing exploration and exploitation capabili-
ties of ABC algorithm. Based on hypothetical observation that scout
bees generate solutions from randomly selected far-fetched loca-
tions, it makes this component highly fluctuating. Hence, an ABC
algorithm without scout bees component was tested. Furthering
the possibilities of improvement, modification on onlooker bees
component was made and validated against the standard ABC.

The ABC algorithm is deconstructed in the following subsection
which theoretically analyzes components.
3.1. ABC components

Based on the research gap discussed earlier, it is highly imper-
ative to analyze ABC algorithm from component-view. Since, ABC
algorithm divides its workforce into three groups: employed bees
(EB), onlooker bees (OB), and scout bees (SB), these groups can
be viewed as components of ABC algorithm. Theoretically speak-
ing, EB component is responsible for focusing search in the neigh-
borhoods already present in memory. OB component takes care of
exploiting potential neighborhoods, whereas SB component is to
generate random solutions from far-fetched unseen neighborhoods
to foster exploration in ABC.

From the view of collective intelligence, EB and OB components
implement the two key elements: positive feedback and multiple
interactions. The rest of the two elements, negative feedback and
fluctuation are implemented by SB component in ABC algorithm.
Fluctuation or randomness is also incorporated in the swarm by
EB and OB components as Rand in (2). The scale of randomness is
often controlled by a coefficient which can be set to a higher or
lower value for increased or limited diversity. In case of SB compo-
nent, the level of diversity is significantly high since solutions are
generated completely randomly as compared to EB and OB
components.

The appearance of SB component in the search process can be
controlled by the Limit parameter. Nevertheless, scout bees are
used to replace any existing solutions which have failed to improve
for a number of times; however, these solutions can be potential or
the best found so far. Generally, based on implementations of SB in
literature with Limit ¼ SN � D, where SN is swarm size and D is
problem dimensions, SB component appears towards the later part
of search process when ABC is about to converge to an already
identified potential neighborhood. At this stage, the introduction
of completely random solutions may disrupt convergence and
other swarm agents may choose neighborhoods of scout bees
which are far from the neighborhoods of employed and onlooker
bees. This may introduce population diversity, but the level of
diversity in this case will be unnecessarily high that it may diverge
search from already identified potential locations in the environ-
ment. It can be inferred that population diversity is a useful ele-
ment of fluctuation in search process, but unnecessarily high
diversity may inversely affect the search efficiency of a meta-
heuristic algorithm. For better and adequate diversity, acceleration
coefficient of EB and OB components can be adjusted accordingly.
Based on the theoretical analysis presented above, this work first
tried elimination of scout bees component and verified perfor-
mance on optimization problems, also validated in comparison
with standard ABC algorithm. Later, this work modified OB
component.

In the original ABC algorithm, the position update Eq. (2) of OB
component is based on distance from the selected potential
employed bee location xj with the perspective of current position
xi, that is (xi � xj). When observed particle swarm optimization
(PSO) and firefly algorithm (FA)(Yang, 2009), it is reverse. The dis-
tance is calculated from the perspective of the selected potential
location xj, hence it should be (xj � xi). Therefore, we proposed
modification in the position update equation of OB component as
(4):

v i ¼ xj þ Randiðxj � xiÞ ð4Þ
where xi is current position and xj is the selected promising location
found by employed bees.

To summarize, the proposed modification in standard ABC algo-
rithm includes the elimination of scout bees component and mod-
ification in OB component. The flowchart of standard ABC and the
proposed ScoutlessABC algorithm is presented via Fig. 2. As
depicted in Fig. 2b, the ScoutlessABC algorithm was simplified by
elimination of the SB component and modification in the OB com-
ponent as well.

3.2. Population diversity measurement

In any swarm-based metaheuristic algorithm, the diversity of
solutions offered by swarm individuals can be measured through
its dimensions. As each swarm individual represents D-
dimensional vector of parameters to be optimized, the large differ-
ence between dimensions implies that the swarm individuals are
placed at distant locations. Inversely, in case of close distance
between dimensions, the swarm individuals are converging or
focusing on specific neighborhood in the search space. For the
measurement of dimension-wise diversity of each swarm individ-
ual and whole as a swarm, we considered the equation proposed in
Cheng et al. (2014) with modification as in (5):

Div j ¼ 1
n

Xn
i¼1

medianðxjÞ � xij
�� ��;

Div ¼ 1
D

Xn
i¼1

Div j;

ð5Þ



Fig. 2. Flowcharts of standard ABC and the proposed ScoutlessABC algorithms.
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where medianðxjÞ is median of dimension j in whole swarm,
whereas xij is the dimension j of bee i and n is the total number
of bees. When measuring diversity of each bees group, n represents
number of bees in that particular group. After taking dimension-
wise distance of each bee i from the median of dimension j, we take
average Div j of the bees.

With diversity measurement in hand, it is now possible to
determine exploration and exploitation abilities of the ABC algo-
rithm. To calculate exploration and exploitation in each iteration
of search process, (6) can be used:

Exploration ¼ Div
Divmax

� 100;

Exploitation ¼ 1� Div
Divmax

� �
� 100;

ð6Þ

where Div is the diversity measurement of whole swarm in an iter-
ation, Divmax is the maximum diversity of swarm in all iterations.

It is noteworthy to mention that exploration and exploitation
are two corner-stones of metaheuristic performance. Exploration
is discovering new neighborhoods in search space, whereas
exploitation is furthering search in already identified potential
neighborhoods. Any metaheuristic algorithmwith high exploration
ability may make long jumps in search space and avoid potential
solutions, whereas with high exploitation ability it may suffer from
lack of diversity in solutions and trap in local optimum locations.
Measuring these two features may significantly help maintain
the trade-off balance between exploration and exploitation or
make effective modifications in the algorithm where necessary.

The theoretical analysis and improvement in the algorithm dis-
cussed above are further validated via experiments performed in
the upcoming section and analyses are presented in results and
discussion section.
4. Experiments

In order to achieve better comprehension of the theoretical
analysis presented in this work and to obtain sufficient practical
evidence, we performed experiments on commonly used bench-
mark test functions, as well as, on classification problems. We
aimed at providing not only end results but also to present sound
illustrations to investigate swarm behavior, in terms of population
diversity and measurement of exploration and exploitation, during
the process of search for an optimal solution. Hence, the influence
of each component of the ABC algorithm, i.e., employed bees,



Table 1
Numerical optimization problems with D ¼ 30.

Test Function Equation Range Optimum

Sphere f 1 ¼ PD
i¼1x

2
i ½�100;100�D 0

Step f 2 ¼ PD
i¼1bxi þ 0:5c2 ½�100;100�D 0

SumSquares f 3 ¼ PD
i¼1ix

2
i ½�10;10�D 0

Quartic f 4 ¼ PD
i¼1ix

4
i þ Randomð0;1Þ ½�1:28;1:28�D 0

Schwefel 1.2
f 5 ¼ PD

i¼1
Pi

j¼1xj
� �2 ½�100;100�D 0

Schwefel 2.22 f 6 ¼ PD
i¼1jxij þ

QD
i¼1jxij ½�10;10�D 0

Dixon and Price f 7 ¼ ðx1 � 1Þ2PD
i¼1ið2x2i � xi�1Þ2 ½�10;10�D 0

Rosenbrock f 8 ¼ PD�1
i¼1 ½100ðxiþ1 � x2i Þ

2 þ ðxi � 1Þ2� ½�30;30�D 0

Rastrigin f 9 ¼ PD
i¼1½x2i � 10 cosð2pxiÞ þ 10� ½�5:12;5:12�D 0

Ackley
f 10 ¼ �20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
i¼1x

2
i

q� �
� exp 1

D

PD
i¼1 cosð2pxiÞ

� �
þ 20þ e ½�32:768;32:768�D 0

Griewank f 11 ¼ PD
i¼1

x2i
4000 �

QD
i¼1 cos

xiffi
i

p
� �

þ 1 ½�600;600�D 0

Penalized f 12 ¼ p
D � 10 sin2ðpy1Þ þ

PD�1
i¼1 ðyi � 1Þ2�

n
½1þ sin2ðpyiþ1Þ� þ ðyD � 1Þ2

o
þPD

i¼1uðxi;10;100;4Þ
whereyi ¼ 1þ 0:25ðxi þ 1Þand

uðxi; a; k;mÞ ¼
kðxi � aÞm; xi > a

0; �a 6 xi 6 a
kð�xi � aÞm; xi < �a

8<
:

½�50;50�D 0

Table 2
Classification problems.

Dataset ID Dataset Name Features Instances

D1 Iris 4 150
D2 Banana 2 5300
D3 Haberman’s Survival 3 306
D4 Post-Operative Patient 8 90
D5 Hayes-Roth 5 160

K. Hussain et al. / Journal of King Saud University – Computer and Information Sciences 32 (2020) 794–808 799
onlooker bees, and scout bees, was recorded to present as results.
The results are reported in this study in terms of diversity mea-
surement, exploration and exploitation percentage, and best fit-
ness value found in maximum iterations.

In order to test the search efficiency of ABC and the Scout-
lessABC, twelve commonly used benchmark numerical optimiza-
tion test functions with different modalities were employed as
test-bed. The functions along with characteristics and equations
are given in Table 1. In our test-bed, unimodal functions are from
f 1 to f 7 and from f 8 to f 12 are multimodal functions in nature.

For further comprehensive analysis and stress testing on high
dimensional problems, we evaluated ABC and ScoutlessABC also
on real-world optimization problems, apart from benchmark
numerical optimization problems. Unlike numerical optimization
problems, training of Adaptive Neuro-Fuzzy Inference System
(ANFIS) (Jang, 1993) parameters for solving classification problems
is highly complex and non-convex problem. Hence, performing
component-wise analysis on such problems helps comprehend
swarm behavior of ABC on real-life problems. Since, ABC and
ScoutlessABC algorithms were employed on training ANFIS param-
eters (membership function parameters and consequent parame-
ters) for solving five classification problems, hence the feature
length of the dataset determines the problem dimensions. Table 2
lists datasets, taken from UCI (University of California Irvin)
machine learning repository1 and KEEL (Knowledge Extraction
based on Evolutionary Learning) repository2, which include different
range of features. Accordingly, our classification problems dimen-
sions range from 39 to around 60000 (Table 3).

Briefly, ANFIS (Jang, 1993) is a neural network type machine
learning algorithm, which involves fuzzy logic and inference mech-
anism to generate fuzzy rules. It is a five-layer architecture in
which first layer is membership function layer, second layer per-
forms product operation on fuzzy membership degrees to compute
rule strength, third layer normalizes a rule’s strength against all the
rules in ANFIS architecture, fourth layer is simple polynomial equa-
tion that computes output of each rule and it contains nþ 1 train-
able parameters, and lastly fifth layer simply aggregates the
1 https://archive.ics.uci.edu/ml/datasets.html.
2 http://sci2s.ugr.es/keel/datasets.php.
outputs of all the rules to generate single output. The parameters in
first and fourth layers are trainable. Originally, ANFIS trains these
parameters using gradient-based method, instead in our experi-
ments, we used ABC and ScoutlessABC algorithms to train ANFIS
parameters. The greater detail of ANFIS can be found in Jang
(1993). In this experimental study, we used grid partitioning
method to generate mn rules where m is the number of member-
ship functions per input and n are inputs. For each input, we used
three membership functions of Gaussian shape which uses two
parameters. To calculate total trainable parameters, or in other
words problem dimensions, following formula can be used (7):

Nr ¼ mn;

NMF
p ¼ n�m� 2;

NCon
p ¼ Nr � ðnþ 1Þ;
NT

p ¼ NMF
p þ NCon

p

ð7Þ

where Nr;N
MF
p , NCon

p , and NT
p are total rules in ANFIS architecture,

total membership function parameters, total consequent parame-
ters of fourth layer of ANFIS architecture, and total trainable param-
eters or problem dimensions. Table 2 lists dimension size associated
with each dataset. Accordingly, minimum dimension-size is 39 for
Banana dataset and maximum dimensions reach up to around
60000 for Post-Operative Patient dataset, which form significantly
large and complex optimization problem.

Since experiments were performed on two different kinds of
problems: numerical optimization problems and ANFIS parameters
training for classification problems, the ABC and ScoutlessABC
algorithms employed separate parameter settings given in Table 4.
For numerical optimization problems, the algorithms were run 30

https://archive.ics.uci.edu/ml/datasets.html
http://sci2s.ugr.es/keel/datasets.php


Table 3
ANFIS training complexity (problem dimensions).

Dataset Inputs MFs per Input Rules Premise Parameters Consequent Parameters Total Parameters (Dimensions)

D1 4 3 81 24 405 429
D2 2 3 9 12 27 39
D3 3 3 27 18 108 126
D4 8 3 6561 48 59049 59097
D5 5 3 243 30 1458 1488

*MF = Membership function.
*Gaussian MF is used with two parameters (center and width).

Table 4
Parameter settings for ABC and ScoutlessABC for experiments.

Parameters Values

ABC/ScoutlessABC Settings
Numerical
Problems

Classification
Problems

Swarm size 50 50
a 0.6 0.6
Limit SN � D 50
Lower and upper bounds Refer Table 1 [-10,10]
Maximum iterations 2000 50

ANFIS Settings

Membership function type Gaussian
Membership functions per

input
3

Rule generation method Grid partitioning
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times and 10 times for classification problems. The results pre-
sented in the following section are averaged over specified runs.
5. Results and discussion

Since the objective of this study is to investigate contribution of
each ABC component in overall algorithm’s performance, we mea-
sured diversity and fitness values of swarm agents in the related
components separately during iterations. Overall performance of
the algorithm is also reported so that comparison of the proposed
ScoutlessABC can be made with the standard ABC. The experimen-
tal results of numerical optimization problems, as well as, training
of fuzzy neural network for solving classification problems have
been presented in this section. Furthermore, a Friedman test at
0:05 significance level is also performed to statistically validate sig-
nificance of the proposed modification.

Component-wise diversity measurement and fitness values
obtained on numerical problems are presented in Table 5 whereas
Table 5
Component-wise diversity and performance on numerical optimization problems.

Fun. ABC

EB OB SB Swarm F

f 1 0.0758 0.2021 6.1382 0.0803 9
f 2 0.0792 0.2048 6.6040 0.0846 2
f 3 0.0765 0.2040 6.5716 0.0811 1
f 4 0.0868 0.2222 6.2738 0.0979 7
f 5 0.0866 0.2168 6.2591 0.0939 6
f 6 0.0649 0.1825 6.4268 0.0654 5
f 7 0.0799 0.2054 6.2591 0.0853 6
f 8 0.0741 0.2040 6.3098 0.0784 2
f 9 0.0891 0.2166 5.7014 0.0983 1
f 10 0.0796 0.2067 6.0782 0.0851 3
f 11 0.0626 0.1670 6.5644 0.0640 4
f 12 0.0811 0.2090 6.1280 0.0887 3

*EB = Employed bees component, OB = Onlooker bees component, SB = Scout bees comp
results of classification problems are presented in Table 6. Further-
more, for illustrative evidence of swarm behavior, Figs. 3–14 pre-
sent component-wise diversity of ABC and ScoutlessABC on
numerical problems, whereas Figs. 15–26 provide exploration
and exploitation measurement during search process on numerical
problems; on the other hand, Fig. 27 shows convergence abilities of
ABC and ScoutlessABC on numerical problems. The results of clas-
sification problems are shown via Figs. 28–32 for component-wise
diversity measurement. Figs. 33–37 demonstrate exploration and
exploitation abilities of ABC and ScoutlessABC on classification
problems, whereas convergence of ABC and ScoutlessABC on clas-
sification problem are illustrated via Figs. 38.

According to component-wise diversity provided in Table 5, the
diversity of SB component is significantly higher than EB and OB
components in all twelve test functions, which shows that SB com-
ponent is extra-ordinarily divergent as it generates solutions com-
pletely randomly far from EB and OB components. In all the test
functions, SB component in original ABC achieved average diversity
over 6 which is extravagantly higher than maximum average
diversity 0.09 achieved by EB component and 0.22 by OB compo-
nent. When the random solutions generated by SB component
are incorporated in EB component in the next iteration, an unnec-
essarily high diversity is injected into the swarm. This disrupts
convergence of swarm to already identified potential neighbor-
hoods. With this in view, the SB component was eliminated in
the proposed ScoutlessABC algorithm. Another modification in
ScoutlessABC was a small but useful change in the position update
Eq. (4) of OB component. The modified OB component did not
make much difference in diversity, however it focused on more
promising regions in search environment. This change also affected
EB component in ScoutlessABC as it was guided by agents located
in global optimum locations, as compared to the same component
in ABC.

ScoutlessABC achieved significantly better global optimum
solutions as compared to ABC. In fact, for two test functions, one
unimodal function Step (f 2) and one multimodal function
ScoutlessABC

itness EB OB Swarm Fitness

.30E�16 0.0713 0.1977 0.0738 8.88E�45

.92E�15 0.0881 0.2360 0.0977 0.00E+00

.61E�14 0.0901 0.2374 0.1008 4.74E�39

.72E�03 0.0896 0.2316 0.1029 4.63E�03

.60E+01 0.0622 0.1909 0.0654 9.61E�03

.87E�07 0.0838 0.2264 0.0912 7.31E�21

.67E�01 0.1812 0.1812 0.0772 6.67E�01

.76E+01 0.0456 0.1074 0.0458 2.47E+01

.91E+02 0.0600 0.1735 0.0650 2.89E+01

.68E�08 0.0912 0.2394 0.1029 6.22E�15

.08E�06 0.0517 0.1750 0.0582 0.00E+00

.38E�02 0.0356 0.1407 0.0362 1.57E�32

onent.



Table 6
Component-wise diversity and performance on classification problems.

Dataset ABC ScoutlessABC

EB OB SB Swarm MSE EB OB Swarm MSE

D1 1.1534 2.9286 90.1870 1.1883 0.0034 1.2523 3.3240 1.3567 0.0015
D2 0.1083 0.2734 68.2350 0.1130 0.0034 0.3793 0.9907 0.4170 0.0014
D3 0.3486 0.8846 26.1463 0.3629 0.0013 0.3625 0.9626 0.3887 0.0015
D4 1.1765 2.9871 52.8222 1.2196 0.0277 1.2766 3.3730 1.4017 0.0221
D5 1.1840 2.9863 52.5076 1.2374 0.0326 1.2650 3.3360 1.3854 0.0145

Fig. 3. Component-wise diversity measurement on Sphere (f 1).

Fig. 4. Component-wise diversity measurement on Step (f 2).

Fig. 5. Component-wise diversity measurement on SumSquare (f 3).

Fig. 6. Component-wise diversity measurement on Quartic (f 4).

Fig. 7. Component-wise diversity measurement on Schwefel 1.2 (f 5).

Fig. 8. Component-wise diversity measurement on Schwefel 2.22 (f 6).

Fig. 9. Component-wise diversity measurement on Dixon and Price (f 7).

Fig. 10. Component-wise diversity measurement on Rosenbrock (f 8).
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Fig. 11. Component-wise diversity measurement on Rastrigin (f 9).

Fig. 12. Component-wise diversity measurement on Ackley (f 10).

Fig. 13. Component-wise diversity measurement on Griewank (f 11).

Fig. 14. Component-wise diversity measurement on Penalized (f 12).

Fig. 15. Exploration and exploitation measurement on Sphere (f 1).

Fig. 16. Exploration and exploitation measurement on Step (f 2).

Fig. 17. Exploration and exploitation measurement on SumSquares (f 3).

Fig. 18. Exploration and exploitation measurement on Quartic (f 4).
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Griewank (f 11), ScoutlessABC achieved the desired global optimum
value (0). Whereas, ABC hardly solved Step (f 2) with suboptimal
solution 2.92E�15 and Griewank (f 11) with solution 4.08E�06.
Other robust performances by ScoutlessABC were for Sphere (f 1),
SumSquares (f 3), and Penalized (f 12) which is considered as hard
optimization problem. ScoutlessABC generated optimum solutions
8.88E�45, 4.74E�39, and 1.57E�32 respectively for f 1; f 3, and f 12
as compared to solutions 9.30E�16, 1.61E�14, and 3.38E�02 gen-
erated by ABC respectively for the same functions. However, there
are problems where ScoutlessABC performed as equally better as
ABC; i-e, Quartic (f 4), Dixon and Price (f 7), and Rosenbrock (f 8).
Overall, the significance of ScoutlessABC can be validated by statis-
tical tools like Friedman Test. The p-value = 0.0164 obtained by
Friedman Test with significance level 0.05 suggests that there is
significant difference between the results of ScoutlessABC and
ABC. ScoutlessABC achieved considerably better results as com-
pared to ABC.

Knowing the end results in terms of diversity or objective func-
tion values may not fully help understand the swarm behavior
unless it is not revealed that how swarm behaved during the
course of iterations. For that reason, this study illustratively
explains swarm behavior in standard ABC and ScoutlessABC using



Fig. 19. Exploration and exploitation measurement on Schwefel 1.2 (f 5).

Fig. 20. Exploration and exploitation measurement on Schwefel 2.22 (f 6).

Fig. 21. Exploration and exploitation measurement on Dixon and Price (f 7).

Fig. 22. Exploration and exploitation measurement on Rosenbrock (f 8).

Fig. 23. Exploration and exploitation measurement on Rastrigin (f 9).

Fig. 24. Exploration and exploitation measurement on Ackley (f 10).

Fig. 25. Exploration and exploitation measurement on Griewank (f 11).

Fig. 26. Exploration and exploitation measurement on Penalized (f 12).
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diversity measurement and exploration and exploitation measure-
ment during iterations. From the graphical evidence provided by
Figs. 3a–14a showing component-wise diversity and measurement
during 2000 iterations, there are three major deliberations that can
be made about the ABC algorithm: (a) in most of the test functions,
diversity in OB component remained higher than EB component
during search process; (b) SB component in ABC mostly appeared
in middle of the search process with significantly high diversity
(reaching up to 7) as compared to EB and OB components; (c)
the appearance of SB component in middle of the search process
created a jolt in the diversity of EB and OB components, which indi-
cates disruption in convergence.

The diversity measurement of the proposed ScoutlessABC is
illustrated by Figs. 3b–14b. It is obvious from graphs that the
absence of SB component in ScoutlessABC helped avoid any disrup-
tion in convergence, as opposite to ABC. Moreover, the proposed
modification in OB component made it more vibrant throughout
iterations in most of the test functions. For example, OB compo-
nent in ScoutlessABC was specially more dynamic than in ABC on
Sphere (f 1), Quartic (f 4), Schwefel 1.2 (f 5), Rastrigin (f 9), and Penal-
ized (f 12).



Fig. 27. Convergence of ABC and ScoutlessABC on numerical optimization problems.

Fig. 28. Component-wise diversity measurement on Iris (D1). Fig. 29. Component-wise diversity measurement on Banana (D2).
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Fig. 30. Component-wise diversity measurement on Haberman’s Survival (D3).

Fig. 31. Component-wise diversity measurement on Post-Operative Patient (D4).

Fig. 32. Component-wise diversity measurement on Hayes-Roth (D5).

Fig. 33. Exploration and exploitation measurement on Iris (D1).

Fig. 34. Exploration and exploitation measurement on Banana (D2).

Fig. 35. Exploration and exploitation measurement on Haberman’s Survival (D3).

Fig. 36. Exploration and exploitation measurement on Post-Operative Patient (D4).

Fig. 37. Exploration and exploitation measurement on Hayes-Roth (D5).
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The deliberations made earlier about ABC and ScoutlessABC are
further validated via exploration and exploitation graphs provided
via Figs. 15–26. It is obvious that abnormal jumps in exploration
and exploitation indicate appearance of SB component in middle
of the search process of ABC. The fluctuations suggest that the SB
component in ABC created disruption in the smooth convergence.
On the other hand, the graphs clearly show relatively smooth
exploration and exploitation ratios during iterations in Scout-
lessABC. For example, Figs. 15b, 17b, 20b, and 24b for Sphere
(f 1), SumSquares (f 3), Schwefel 2.22 (f 6), and Ackley (f 10), respec-
tively, show that exploration and exploitation ratios remained con-
sistent during most part of search process in ScoutlessABC.

The results of proposed elimination of SB component and effec-
tive modification in OB component are clearly evident in conver-
gence ability of ScoutlessABC on numerical optimization
problems. According to convergence graphs provided via Figs. 27
show that ScoutlessABC converged efficiently on global optimum
locations, as compared to ABC. Other than test functions Quartic
(f 4) and Dixon and Price (f 7), ScoutlessABC converged to global
optimum locations much faster than ABC.



Fig. 38. Convergence of ABC and ScoutlessABC on classification problems.
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The ABC and ScoutlessABC algorithms were also implemented
on the parameter training problem of ANFIS for solving five classi-
fication problems. Results of experiments are averaged over 10
independent runs and presented in Table 6. According to
component-wise mean diversity measurement of ABC, OB compo-
nent was more vibrant than EB component while solving classifica-
tion problems, except for Banana (D2). The mean diversity
measurement in EB component remained within the range of
0.1083 and 1.1840 as compared to OB component diversity which
ranged from 0.2734 to 2.9871. Moreover, as in numerical prob-
lems, SB component of ABC behaved similarly in classification
problems as well. The diversity measurement of SB component
was significantly higher than EB and OB components, ranging from
26.15 to 90.19. This much diversity of SB component is enough to
diverge swarm from convergence to already identified potential
neighborhood. To cater this, the elimination of SB component
was proposed in ScoutlessABC. Furthermore, to enhance conver-
gence ability to global optimum locations, the modification in OB
componentworked positively in ScoutlessABC. As shown in Table 6,
the modification in OB component of ScoutlessABC enhanced its
diversity as compared to OB in ABC, while solving classification
problems. The mean diversity measurement of OB component in
ScoutlessABC remained within the range of 0.9626 and 3.3730,
which is higher than OB in ABC. However, diversity in EB compo-
nent of ScoutlessABC remained almost same as in ABC. As far as
error measure is concerned, the proposed ScoutlessABC achieved
smaller mean squared error (MSE) on four out of five classification
problems as compared to ABC. ABC obtained MSE of 0.0013 as
compared to 0.0015 achieved by ScoutlessABC on Haberman’s Sur-
vival (D3) problem. The results are statistically validated by Fried-
Table 7
Statistical results of Friedman test (ABC vs. ScoutlessABC).

Numerical optimization problems Classification problems

p-value 0.0164 0.2453
man test (Table 7). Statistically, there is no significant difference
between the performances of ABC and ScoutlessABC on classifica-
tion problems; however, smaller difference in MSE is considered
as improvement in classification accuracy. Therefore, it can be
inferred that ScoutlessABC achieved better accuracy on classifica-
tion problems as compared to ABC, while training ANFIS
parameters.

The results of diversity measurement of ABC and ScoutlessABC
on classification problems are illustrated via Figs. 28–32. It is
clearly visible that the diversity of OB component in ScoutlessABC
remained higher than in ABC during most part of iterations. Fur-
thermore, it can also be observed the SB component appeared in
later part of iterations in ABC, with significantly high diversity. This
may inversely affect convergence of ABC algorithm when the
swarm is about to gather around already identified potential
neighborhood. From the exploration and exploitation graphs pro-
vided in Figs. 33–37, it can be observed that in comparison with
ABC, ScoutlessABC remained relatively more explorative than
exploitative on all five classification problems, mainly due to mod-
ification in OB component of ScoutlessABC. Fig. 38 shows conver-
gence ability of ABC and ScoutlessABC on classification problems.
According to graphs, ScoutlessABC showed better convergence
ability as compared to ABC on most of the classification problems.

From the detailed results of comprehensive experiments per-
formed in this study, following observations can be made:

� Component-wise analysis using diversity measurement pro-
vided practical evidence of the role of employed bees, onlooker
bees, and scout bees in the search efficiency of the ABC algo-
rithm. Moreover, this approach also helped understand swarm
behavior on optimization problems with wider range of
complexities.

� The theoretical analysis suggested that employed bees and
onlooker bees components are responsible for focusing on
already identified regions in search space, whereas scout bees
component is to perform global search in order to farsee the
promising regions in search space. However, empirical analysis
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suggested that onlooker bees component can also perform glo-
bal search if modified suitably. Moreover, practical analysis also
revealed that scout bees component is inversely effective to
search efficiency of the ABC algorithm. Due to appearance in
the later part of search, with significantly high diversity, scout
bees component causes disruption in convergence of swarm
to already identified promising neighborhood. Because it injects
completely random solutions in the search process, it may mis-
guide other two components of ABC by unnecessary divergence
from already identified neighborhood.

� Component-wise analysis revealed that scout bees are highly
divergent, which inject significantly high diversity in swarm
that it disrupts swarm convergence to already identified poten-
tial neighborhood. The scout bees component can either be
eliminated from ABC algorithm or modified to generate diver-
sity in accordance with search progress, instead of blindly
replacing a solution with completely random solutions.

� The measurement of exploration and exploitation during itera-
tions also suggested that the ratio of exploration and exploita-
tion is suddenly fluctuated due to introduction of scout bees
during several times in search process of the ABC algorithm.
There needs to be smooth transition from exploration to
exploitation mode in order to let the swarm collectively decide
about promising regions. The sudden introduction of scout bees
during search process is like induction of stranger in a team
which is already about to reach solution.

� For controlling diversity in swarm, acceleration coefficient
attached with randomization is a useful parameter. It can be
adaptively adjusted to inject adequate diversity in accordance
with search status. Moreover, this parameter can also be incor-
porated with OB component to adjust diversity according to
search progress.

6. Conclusions

This paper deconstructed ABC algorithm into its components to
investigate the role of each component in performance efficiency,
using diversity measurement. With diversity measurement in
hand, we gauged exploration and exploitation in the algorithm.
According to empirical evidence in the form of results of experi-
ments on benchmark test functions, it can be concluded that the
performance of ABC algorithm is inversely affected by scout bees
component which produces totally random solutions regardless
of the progress of search process. During experiments, it was
noticed that employed bees and onlooker bees components already
perform search effectively via well coordinated effort. The appear-
ance of scout bees in the later part of iterations not only disrupts
swarm momentum but also damages convergence ability of the
algorithm, and the algorithm loses control of trail towards the pos-
sible globally optimum location. The elimination of scout bees
component from standard ABC algorithm not only solved the issue
of disruption in search process but also simplified algorithm struc-
ture. For further improvement, this study proposed modification in
onlooker bees component which enhanced convergence ability of
ABC algorithm. The component-wise analytical study based on
diversity measurement can readily be applied on other population
based algorithms. Other than the limited test functions employed
in this study, a wider range of test functions and real-world appli-
cations may be used in future studies to analyze true performance
efficiency of metaheuristic algorithms, using the proposed analyt-
ical approach.

Considering three important questions asked earlier in this
research, following answers could be established from the compre-
hensive analysis:
� ABC suffers from poor exploitation because of scout bees com-
ponent which appears in middle of the search process and
causes disruption in convergence.

� ABC occasionally stops proceeding to global optimum locations
because completely random solutions are injected into the
search process by scout bees, which may unnecessarily diverge
swarm from already identified promising neighborhood.

� ABC performance on complex optimization problems can be
upgraded with the help of improvement in onlooker bee com-
ponent by enhancing its global searchability.
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