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A B S T R A C T

The constant development of new metaheuristic algorithms has led to a saturation in the field of stochastic search.
There are now hundreds of different algorithms that can be used to solve any problem. To produce a good
performance, every metaheuristic method needs to address a satisfactory equilibrium between exploration and
exploitation of the search space. Although exploration and exploitation represent two fundamental concepts in
metaheuristics, the main questions about their combination and balance have not been yet completely under-
stood. Most of the existent analyzes conducted on metaheuristic techniques consider only the comparison of their
final results which cannot evaluate the nature of a good or bad balance. This paper presents an experimental
analysis that quantitatively evaluates the balance between exploration and exploitation of several of the most
important and better-known metaheuristic algorithms. In the study, a dimension-wise diversity measurement is
used to assess the balance of each scheme considering a representative set of 42 benchmark problems that involve
multimodal, unimodal, composite and shifted functions. As a result, the analysis provides several observations
that allow understanding how this balance affects the results in each type of functions, and which balance is
producing better solutions.
1. Introduction

In recent years, metaheuristics search algorithms have gained popu-
larity as tools for solving a wide array of optimization problems in many
different areas of application, including engineering design, digital image
processing, and computer vision, networks and communications, power,
and energy management, data analysis and machine learning, robotics,
medical diagnosis, and others [1].

Most metaheuristic methods model population-based search schemes,
in which a population of search agents (or individuals) applies specific
sets of rules to explore different candidate solutions within a feasible
solution space. These optimization frameworks present several advan-
tages, including the interaction among individuals (which promotes the
exchange of knowledge among different solutions) and the diversifica-
tion of the population (which is important to ensure the efficient explo-
ration of the search space and the ability to overcome local optima) [2].

Metaheuristic search methods are so numerous and varied in terms of
design and potential applications [41]; however, for such an abundant
family of optimization techniques, there seems to be a question that
needs to be answered: Which part of the design in a metaheuristic al-
gorithm contributes more to its performance? One widely accepted
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principle among researchers considers that metaheuristic searchmethods
can reach a better performance when an appropriate balance between
exploration and exploitation of solutions is achieved [3]. While there
seems to exist a general agreement on this concept, in fact, there is barely
a vague conception of what the balance of exploration and exploitation
really represent [4,5]. Indeed, the classification of search operators and
strategies present in a metaheuristic method is often ambiguous, since
they can contribute in some way to explore or exploit the search space
[6].

In the absence of consistent knowledge about the mechanism that
controls the balance between exploration and exploitation, several at-
tempts have been conducted to fill these gaps. Most of these efforts have
proposed interesting metrics that allow quantifying the level of explo-
ration and exploitation in search algorithms through the monitoring of
the current population diversity [4–11]. Although several indexes exist
and more are being proposed, there is no definitive way to objectively
measure the rate of exploration/exploitation provided in a metaheuristic
scheme.

One of these metrics is the dimension-wise diversity measurement
proposed in Ref. [10,12]. This index calculates the averaged sum distance
between all the solutions to the median of each dimension and solutions.
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Then, the exploration percent of each iteration is calculated by dividing
the diversity value between the maximum diversity value encounter in
the whole optimization process. On the other hand, the exploitation rate
is considered the inverse of exploration percent. This measurement al-
lows to find out how spread or clustered the search agents are over
specific iterations during the search process. These values give infor-
mation on how much time the algorithm behaves exploring or exploiting
solutions. In spite of the information provided by this index, it has not
been adopted in the community yet to characterize the balance between
exploration and exploitation in metaheuristic methods.

In this paper, an experimental analysis is proposed to quantitatively
evaluate the balance between exploration and exploitation on several of
the most important and better-known metaheuristic algorithms. As a
result, the analysis provides several observations that allow under-
standing of how this balance affects the results in each type of functions,
and which balance is producing for better solutions. The methods studied
in this work include Artificial Bee Colony (ABC), Bat Algorithm (BA),
Covariance Matrix Adaptation Evolution Strategies (CMA-ES), Crow
Search Algorithm (CSA), Differential Evolution (DE), Firefly Algorithm
(FA), Grey Wolf Optimizer (GWO), Moth-Flame Optimization (MFO),
Particle Swarm Optimization (PSO), Social Spiders Optimization (SSO),
Teaching-Learning Based Optimization (TLBO) and Whale Optimization
Algorithm (WOA), which are considered some of the most important
metaheuristic search algorithms on the current literature in virtue of
their performance, novelty and potential.

This paper is organized as follows: In Section 2, we open a discussion
related to the concepts of Exploration and Exploitation. In Section 3, we
discuss the dimension-wide diversity measurement proposed in Ref. [12]
and their applications for the analysis of exploration and exploitation in
metaheuristic search methods. In Section 4, we present our experimental
analysis. Section 5 presents a discussion of the results. Finally, in Section
6, conclusions are drawn.

2. Exploration and exploitation

For every metaheuristic algorithm, exploration and exploitation
represent the most important characteristics for attaining success when
solving a particular optimization problem. Exploration refers to the
ability of a search algorithm to discover a diverse assortment of solutions,
spread within different regions of the search space. On the other hand,
exploitation emphasizes the idea of intensifying the search process over-
promising regions of the solution space with the aim of finding better
solutions or improving the existing ones [4]. Regarding these concepts,
empirical experimentation has demonstrated that there is a strong rela-
tionship between the exploration-exploitation capacity of a certain
search method and its convergence rate. In particular, while exploitation
strategies are known to enhance convergence speed toward a global
optimum, they are also known to increase the probability of entrapment
into local optima. Conversely, search strategies that favor exploration
over exploitation tend to increase the probability of finding regions
within the search space where the global optimum is more likely to be
located, this at the cost of deterioration on the algorithm’s convergence
speed [13].

In recent years, questions about how exploration and exploitation of
solutions is achieved in metaheuristic optimization algorithms has
remained as an open subject, and although seemingly trivial, it has
remained as a source of disagreement among many researchers [11,14];
Although many ideas and concepts may seem opposite, there seems to be
a common agreement within the research community on the idea that a
good ratio between exploration and exploitation is essential to ensure
good performance in this kind of search methods. Naturally, the question
that often arises from such an idea is: Which are the optimal exploration
and exploitation rates required to conduct an efficient search process?
Given that metaheuristic search methods can be very different in terms of
search strategy, it is difficult (if not impossible) to give an appropriate
exploration/exploitation rate that works for every single method in
2

existence; in fact, it becomes evident that understanding the workings of
the mechanisms implemented by these methods (and how these
contribute to the search process) is necessary to devise an efficient search
strategy.

In most population-based search methods, for example, selection
mechanisms that allow choosing prominent solutions from among the
available population (either to integrate them on the next cycle of the
searching process or implement some solution update strategy) are
commonly applied in order to balance elitism and diversity [15]. In the
case of greedy selection mechanisms, for example, it is ensured that the
individuals with the best-found solutions among all candidate solutions
remain intact for the next generation and is known to improve conver-
gence speed toward promising solutions. Also, in algorithms like DE [16],
where an individual greedy selection mechanism is applied, new solu-
tions are accepted only if it improves the solution(s) that originate them.
The appeal of this selection strategy is that it has the potential to improve
the exploration-exploitation ratio of solutions, as it forces an initial
(diverse) population to improve individually from its starting point [17].

On the other hand, there are search algorithms that do not implement
any kind of selection strategy at all, accepting every new solution inde-
pendently of their quality. While these methods do not enforce the se-
lection of prominent individuals during their search process, the
implementation of other search mechanisms is necessary in order to
balance the exploration-exploitation rate. In the case of algorithms such
as PSO [18] or GWO [19], search mechanisms that apply some kind of
“attraction operators” are considered in order to enhance their exploi-
tation capabilities. These mechanisms seek to improve a population of
solutions by, either moving them toward the location of seemingly
“good” individuals within said population, or toward the location of the
current best solutions found so far by the search process. The way in
which solutions are chosen as attractors, and how other solutions are
attracted to these attractors entirely depends on the design of the search
method itself. In the case of the PSO algorithm, for example, individuals
are not only set to experience an attraction toward the global best solu-
tion at a given iteration (cycle) of the search process, but also toward the
best solution(s) recorded by each particle as the search process evolves
(personal best solution). While this approach is often considered a
well-balanced attraction mechanism regarding convergence and solu-
tions diversity, implementing this kind of search strategy requires the
allocation of additional memory, which could be undesired depending on
the intended application(s).

Furthermore, some other algorithms implement attraction mecha-
nisms which consider the composite effect of more than one attractor in
order to discover new solutions. These set of attractors can be comprised
of a subset of all currently available individuals, or even, by the whole
population. Also, there are methods that implement more complex
attraction schemes, which consider not only very specific members
among the available population but also other particular properties. In
FA [20], for example, the attractiveness experienced by each individual is
not only dependent on the quality of other members, as it is also set to be
inversely proportional to the distance that separates them, hence, the
longer the distance, the lower the attraction. Similarly, in GSA, attrac-
tiveness is dictated by the so-called “gravitation force” exerted among
particles within the feasible search space, and the magnitude of such
attractions depends not only on the fitness value of each solution but also
on the distance separating them [21].

Moreover, there search methods that do not contemplate attraction
mechanisms as part of their search strategy; instead, these methods
generate new solutions by means of pure random walks or by taking
other criterions into account (i.e. the distance between solutions, as in
the case of DE). In methods such as GA, some solutions are generated by
“mixing” the information of randomly chosen solution (crossover),
whereas others are generated by adding perturbations to currently
existing solutions (mutation). In this regard, it’s worth mentioning that,
while crossover and mutation operators in evolutionary algorithms are
often seen as exploration and exploitation strategies, respectively, an in-
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deep observation over the crossover behaviors may suggest that at the
start of the search process (where the population is still diverse), cross-
over operators may indeed favor the exploration of solutions, whereas,
toward the end of the process (where population has lost diversity),
exploration capabilities are dramatically reduced. In a similar manner,
mutation operators that modify existing solutions by applying large
amounts of perturbations could be perceived as an exploration mecha-
nism, as solutions might be generated over much larger proportions of
the feasible solution space.With the previous being said, it is complicated
to roughly classify crossover and mutation as either exploration or
exploitation operators, as their intended behavior could be easily altered
by adjusting their respective crossover and mutation rates.

Finally, it is worth noting that there are metaheuristic algorithms that
consider the iterative stop criterion (maximum number of iterations), as
well as the iterations progress as part of their search strategy. These
mechanisms are mostly used to indirectly adjust the exploration-
exploitation rate by modifying several parameters employed by the al-
gorithm’s search operators as the search process evolves, this with the
purpose of avoiding premature convergence. However, as a result of this
constant adjustment on the exploration-exploitation rate, the algorithm’s
convergence speed may suffer a significant impact, which could be un-
desired depending on certain situations [6].

3. Evaluation of the balance

Metaheuristic algorithms use a group of candidate solutions to
explore the search space with the objective to find satisfactory solutions
for an optimization problem. In general, search agents with the best so-
lutions tend to direct the search process towards them. As a consequence
of this attraction, the distance among search agents decreases while the
effect of exploitation increases. On the other hand, when the distance
among search agents increases, the effect of the exploration process is
more evident.

To calculate the increase and decrease in distance among search
agents, a diversity measurement known as the dimension-wise diversity
measurement [10] is considered. Under this method the population di-
versity is defined as follows:

Divj ¼ 1
n

Xn

i¼1

��medianðxjÞ� xji
�� (1)

Div¼ 1
m

Xm
j¼1

Divj (2)

where medianðxjÞ represents the median of dimension j in the whole

population. xji is the dimension j of search agent i. n corresponds to the
number of search agents in the population while m symbolizes the
number of design variables of the optimization problem.

The diversity in each dimension Divj is defined as the distance be-
tween the dimension j of every search agent and the median of that
dimension, averaged. The diversity of the entire population Div is then
calculated by averaging every Divj in each dimension. Both values are
computed in every iteration.

The complete balance response is characterized as the percentage of
exploration and exploitation invested by certain metaheuristic scheme.
These values are computed in each iteration by means of the following
models:

XPL%¼
�

Div
Divmax

�
� 100 (3)

XPT%¼
�jDiv� Divmaxj

Divmax

�
� 100 (4)

where Divmax represents the maximum diversity value found in the entire
3

optimization process.
The percentage of exploration XPL% represents the level of explora-

tion as the relationship between the diversity in each iteration and the
maximum reached diversity. The percentage of exploitation XPT% cor-
responds to the level of exploitation. It is calculated as the complemental
percentage to XPL% because the difference between the maximum di-
versity and the current diversity of an iteration is produced as a conse-
quence of the concentration of search agents. As can be seen, both
elements XPL% and XPT% are mutually conflicting and complementary.

In the evaluation of the balance response, the use of the median value
avoids inconsistencies by using a reference element. Another interesting
property of the balance response is that the values of XPL% and XPT% are
also influenced by the maximum diversity Divmax found during the entire
optimization process. In fact, this value is used as a reference to evaluate
the rate of exploration and exploitation. However, one disadvantage, of
the dimension-wise diversity index is its filtering effect produced by the
average combination of all dimensions. Therefore, small abrupt changes
in diversity are partially smoothed. Under such conditions, the index
used to evaluate the balance presents a very small tendency to exploi-
tation since some very small abrupt changes in diversity are partially
overlooked.

In order to illustrate the balance evaluation, a graphical example has
been conducted. In the example a hypothetical metaheuristic scheme is
used to optimize a simple two-dimensional function which is defined as
follows:

f ðx1; x2Þ¼ 3ð1� x1Þ2e�ðx21�x22Þ � 10
�x1
5
� x31 � x52

�
eð�x21�x22Þ

� 1
.
3eð�ðx1þ1Þ2�x22Þ (5)

Assuming the interval � 3 � x1; x2 � 3, the function has a global
maximum and two local maxima. Fig. 1(b) shows a three-dimensional
plot of this function. A good ratio between the diversification of solu-
tions in the search space and intensification of the best-found solutions
symbolize a conflicting objective which should be examined when the
performance of a metaheuristic scheme is analyzed. In spite of their
differences, metaheuristic approaches maintain a standard design
scheme. In the initial stage of the search strategy, the algorithm promotes
the diversification, which implies the production of candidate solutions
in diverse locations of the search space. As the iterations progress, the
exploitation must be intensified to refine the quality of their solutions.
Fig. 1(b) shows an example of the performance behavior during 450 it-
erations produced by a hypothetical method in terms of the balance
evaluation defined by Eq. (3) and (4). From the Figure, six points (c), (d),
(e), (f), (g) and (h) have been selected to exemplify the solution diversity
(distribution) and their respective balance evaluations. Point (c) repre-
sents an early stage of the algorithm (about the 20 iteration) where the
balance evaluation has as values XPL% ¼ 90 and XPT% ¼ 10. Under
such percentages, the hypothetical method behaves with a clear tendency
to the exploration of the search space. This effect can be illustrated by
Fig. 1(c) in which the solutions maintain a high dispersion of the search
space. Point (d) corresponds to the 60 iterations. In this position, the
balance evaluation maintains a value of XPL% ¼ 70 along with XPT% ¼
30. In this behavior, the algorithm presents mainly exploration with a
low level of exploitation. The solution configuration of this behavior can
be exemplified in Fig. 1(d) where the diversity is high with some groups
of similar solutions. Points (e) and (f) correspond to the 150 and 250
iterations, respectively, where the balance evaluations have as values %
¼ 25 , XPT% ¼ 75 and XPL% ¼ 08 , XPT% ¼ 92, respectively. Under
such percentages, the algorithm behavior has been inverted promoting
more the exploitation than the exploration. Fig. 1(e) and (f) show the
solution distribution for points (e) and (f) from Fig. 1(b). Under such
configurations, the solutions are distributed in several clusters dimin-
ishing the total diversity. Finally, points (g) and (h) represent the last
stages of the hypothetical method. In such positions, the algorithm
maintains a clear tendency to the exploitation of the best-found solutions



Fig. 1. Performance behavior during 450 iterations produced by a hypothetical method in terms of the balance evaluation defined by Eq. (3) and (4).
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without considering any exploration mechanism. Fig. 1(g) and (h)
correspond to the solution distribution for points (g) and (h).

4. Experiments

To analyze the balance between exploration and exploitation in many
of the most popular and important metaheuristic algorithms, we exam-
ined the performance of 12 state-of-the-art optimization techniques:
Artificial Bee Colony (ABC) [22,23], Bat Algorithm (BA) [24], Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [25], Crow Search
Algorithm (CSA) [26], Differential Evolution (DE) [16], Firefly Algo-
rithm (FA) [27], Grey Wolf Optimization (GWO) [19], Social Spiders
Optimization (SSO) [28], Teaching-Learning Based Optimization (TLBO)
[29], Moth Flame Optimization (MFO) [30], Particle Search Optimiza-
tion (PSO) [31] and Whale Optimization Algorithm (WOA) [32] in 43
well-known benchmark test functions (see Appendix A). The algorithms
have been selected with the objective of covering a wide range of search
mechanisms and design methodologies. Another criterion has been to
include consolidate schemes and recently proposed methods. The avail-
ability of source code has been also an important factor as well as the
4

popularity and performance reported in the literature. For all the algo-
rithms the maximum function evaluations were 50,000 and unless
otherwise stated, the population was 50. In some of the following tables,
five different indicators are displayed: The average, median and standard
deviation of the best-found solutions from 30 individual runs (AB, MD,
SD), the average percentage of time spent exploring (%XPL), the average
percentage of time spent exploiting (%XPT). To validate the performance
differences among the algorithms, the Friedman test [33,40] has been
considered. This study is a non-parametric analysis that aims to detect
significant differences among the behavior of three or more related
methods. During this test, the original results are firstly converted to
ranks so that the best performing algorithm is assigned rank 1, the second
rank 2, etc. The average ranks obtained by each algorithm are then one
of the parameters used by the Friedman analysis. With this information,
the test delivers a final result known as the p-value. If this value is small
enough (less than 0.01 or 0.05 according to the significance level) we can
determine that the null hypothesis is rejected, and in consequence, there
is significant difference amon the behavior of the algorithms [33].

Table 1 contains several observable characteristics of each selected
algorithm that influence exploration, exploitation or both. In this table



Table 1
Observable characteristics of selected algorithms.

Algorithms Exploration/Exploitation

Selection mechanism Attraction operators Iteration dependent

ABC Ind. Greedy Multiple NO
BA Ind. Greedy Global Best NO
CMA-ES Non-Greedy N/A NO
CSA Non-Greedy Personal NO
DE Ind. Greedy N/A NO
FA Non-Greedy Multiple NO
GWO Non-Greedy Multiple NO
MFO Greedy Multiple YES
PSO Non-Greedy Multiple NO
SSO Non-Greedy Multiple NO
TLBO Greedy Multiple NO
WOA Non-Greedy Global Best NO
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the selection mechanism, the number of attraction operators and if it
considers the number of iterations as a part of the search strategy is
detailed.

These algorithms were chosen according to their importance to the
field, reported performance, novelty or accessibility of the source code.
Table 2 shows the algorithm-specific settings taken from the literature.

As the total number of graphics depicting the rate of exploration and
exploitation employed by every algorithm in every function is close to
500, the experimental results are divided into five sub-sections according
to the type of functions: multimodal, unimodal, composite and shifted.
The results from each sub-section are from the best performing algo-
rithms to better illustrate what behaviors are beingmore effective in each
type of function.

The experiments are divided into six sub-sections. In the first section
(4.1), the balance of metaheuristic methods is analyzed when they face
multimodal functions. In the second section (4.2), the study considers
unimodal functions. In the third section (4.3), the balance responses over
hybrid functions are discussed. In the fourth section (4.4), results over
shifted functions are analyzed. In the fifth section (4.5), the balance
response of the Random Search algorithm is examinated. Finally, in the
sixth section (4.6), a diversity analysis is conducted.
Table 2
Parameter settings for each algorithm.

Algorithm Parameters

ABC Colony population ¼ 124, Onlooker bees ¼ 62, Employed bees ¼ 62,
Scout bee ¼ 1, limit ¼ 100 [23].

BA Bat population ¼ 50, alpha ¼ 0.9, gamma ¼ 0.9 [24].
CMA-ES The algorithm has been configurated according to the guidelines

provided by its author [34].
CSA Crow population ¼ 50, Flight length ¼ 2, awareness probability ¼ 0.1

[26].
DE The weight parameter is set to F ¼ 0.75 while the crossover probability

is configurated to CR ¼ 0.2 [35].
FA The parameters set up for the randomness factor and the light absorption

coefficient are set to α ¼ 0:98it and γ ¼ 1.0 respectively, where it is the
iteration number [36].

GWO Wolf population ¼ 30 [19].
MFO

The number of flames is set as Nflames ¼ round
�
ðNpop �kÞ *Npop � 1

kmax

�
where Npop denotes the population size, k the current iteration and kmax

the maximum number of iterations [30].
PSO The learning factors are set to c1 ¼ 2 and c2 ¼ 2. On the other hand, the

inertia weight factor is configurated to decrease linearly from 0.9 to 0.2
as the process evolves [37].

SSO Number of females NFem¼ 50*rand, Number of males NMa¼ 50-NFem
where rand is a number between 0.65 and 0.9.

TLBO Population ¼ 50.
WOA Whale population ¼ 30 [32].
4.1. Results of multimodal test functions

Detailed information of each multimodal function, which is charac-
terized by having multiple local optima, is presented in Appendix [A.I]
Table AI. Table 3 presents the comparison results of the selected algo-
rithms in the optimization of multimodal functions. Table 4 presents the
statistical analysis outcomes by considering Friedman test. The best re-
sults are highlighted in boldface. The results displayed in both tables
suggest that the best performing algorithms are CMAES, TLBO and WOA.

Fig. 2 shows the evolution of the exploration and the exploitation
effects obtained by the top three algorithms in each of the 24 multimodal
functions through all iterations. In order to visualize both effects as a
characteristic, a new graph called incremental-decremental has been also
added. In this graph, an increment is presented when the value of the
exploration effect is higher or equal than the exploitation action (XPL% �
XPT%). On the contrary, a decrement is produced when the exploitation
value is superior to the exploration effect (XPL%< XPT%Þ. In the case of
negative values, they are assumed as zero. Under such conditions, both
effects are clearly visible through the values and the extension of the
graph. High values correspond to an extensive exploration action while
low magnitudes refer to a strong exploitation effect. Likewise, the
duration of the graph in high or low values reflexes the sustained effect of
exploration or exploitation in the search strategy. The maximum value of
the incremental-decremental graph takes place when both the effects of
exploration and exploitation present the same level (XPL% ¼ XPT%).

Tables 3 and 4 show that CMA-ES surpasses all other algorithms in
four functions. According to Fig. 2, it exploited the search space
5

96.0574% of the time and explored 3.9426% of the time. TLBO won in 5
functions and tied in 3 with average exploitation of 91.7911% and
8.2089% exploration. Finally, WOA found the best solution on 7 func-
tions and tied in 4, this algorithm employed a balance of 93.4241%
exploitation and 6.5759% exploration. In all cases, the incremental-
decremental graph shows that the effect of the exploration effect is
very short while the exploitation action is prolonged during most of the
time in the search strategy. These results suggest that the best balance for
multimodal functions is closer to 90% exploitation and 10% exploration.
These balances of exploration-exploitation have been produced as a
consequence of the search mechanisms employed by each metaheuristic
scheme. CMA-ES and WOA consider a non-greedy selection mechanism
that provides a low exploration level. Conversely, TLBO used a greedy
selection mechanism which slightly decreases the exploration rate. On
the other hand, most of them use attraction operators toward the best
global solution as a search strategy. Under such conditions, they promote
exploitation at a high level.

There were four cases where CMA-ES, TLBO and WOA didn’t find the
best solutions, functions f5, f9, f10 and f21. In these functions, the algo-
rithms that got the best results were DE (f5, f21) and MFO (f9, f10). Fig. 3
shows the evolution of the exploration and the exploitation effects ob-
tained in such functions by those algorithms. Beginning with f5, we can
already see that the DE algorithm focused less on exploitation compared
to the top algorithms, and unlike in all the other multimodal functions,
the best solution in f21 was obtained by DE with a focus on exploration,
with a balance of 83.7028% of the time exploring and 16.2972%
exploiting. In case of function f5, the incremental-decremental graph
shows that the exploration action maintains a wider effect during almost
200 iterations. On the contrary in function f21, the incremental-
decremental information demonstrates that the exploration effect is
prolonged during almost the complete optimization process. To obtain
such values, DE uses a search strategy that combines an increase of the
exploration rate with the independence of a specific point attractor.
Through these search mechanisms, DE can avoid being trapped in local
minima and find better solutions compared to the other metaheuristic
algorithms. Another remarkable aspect of DE is the high differences
produced in its balances when it faces optimization problems. On the
other hand, MFO obtains the same balance level as the best three algo-
rithms. This fact is an effect of the multiple attractors considered in its
search strategy. Since it uses several attractor points, its level of exploi-
tation decreases, incrementing slightly the exploration of the search



Table 3
Best solutions found and balance employed in each multimodal function.

Function ABC BA CMAES CSA DE FA GWO MFO PSO SSO TLBO WOA

f1 AB 1.72Eþ01 1.25Eþ01 2.06Eþ00 1.71Eþ01 5.12E-03 1.77Eþ00 1.01E-14 9.22Eþ00 5.44Eþ00 3.54E-01 5.33E-15 3.08E-15
MD 1.73Eþ01 1.25Eþ01 7.11E-15 1.72Eþ01 4.84E-03 1.81Eþ00 8.88E-15 1.39Eþ01 2.38E-02 3.48E-01 5.33E-15 3.55E-15
SD 4.69E-01 1.07Eþ00 6.30Eþ00 4.15E-01 9.34E-04 1.43E-01 3.24E-15 8.37Eþ00 7.98Eþ00 5.43E-02 1.81E-15 2.59E-15
%XPL 87.4970 0.9934 2.0427 98.0255 13.4553 14.4189 0.4716 6.7257 44.4648 6.9182 1.0521 1.8393
%XPT 12.5030 99.0066 97.9573 1.9745 86.5447 85.5811 99.5284 93.2743 55.5352 93.0818 98.9479 98.1607
AB 2.86Eþ05 2.52Eþ01 6.67E-01 1.69Eþ05 1.46Eþ00 4.17Eþ00 6.67E-01 4.28Eþ04 1.80Eþ04 3.69Eþ00 6.67E-01 6.67E-01

f2 MD 2.74Eþ05 3.92Eþ00 6.67E-01 1.70Eþ05 1.38Eþ00 3.92Eþ00 6.67E-01 8.24Eþ01 3.21Eþ02 3.34Eþ00 6.67E-01 6.67E-01
SD 7.76Eþ04 4.93Eþ01 6.03E-15 4.70Eþ04 3.65E-01 1.20Eþ00 4.94E-06 1.16Eþ05 4.27Eþ04 1.46Eþ00 3.41E-14 8.19E-05
%XPL 93.9632 3.1009 2.4524 98.5658 15.3386 19.1611 0.5150 5.7613 45.8991 19.1499 1.0151 2.5674
%XPT 6.0368 96.8991 97.5476 1.4342 84.6614 80.8389 99.4850 94.2387 54.1009 80.8501 98.9849 97.4326
AB 1.37Eþ02 7.76Eþ01 1.31E-03 1.70Eþ02 6.01E-03 1.10Eþ00 1.05E-03 1.19E-02 9.03Eþ00 1.66E-02 0.00Eþ00 1.34E-03

f3 MD 1.39Eþ02 6.65Eþ01 0.00Eþ00 1.73Eþ02 3.98E-03 1.10Eþ00 0.00Eþ00 9.87E-03 8.86E-03 1.40E-02 0.00Eþ00 0.00Eþ00
SD 1.61Eþ01 2.51Eþ01 3.47E-03 2.03Eþ01 5.66E-03 1.24E-02 4.40E-03 1.32E-02 2.75Eþ01 1.05E-02 0.00Eþ00 7.35E-03
%XPL 78.6281 2.9400 2.0703 98.3754 9.9041 16.8046 0.4640 4.9714 38.7490 6.6239 0.9905 1.7932
%XPT 21.3719 97.0600 97.9297 1.6246 90.0959 83.1954 99.5360 95.0286 61.2510 93.3761 99.0095 98.2068
AB 4.98E-01 3.21E-06 5.29E-111 1.18E-01 2.42E-16 1.05E-09 4.92E-217 4.53E-08 2.17E-10 4.68E-05 1.98E-236 0.00Eþ00

f4 MD 4.96E-01 3.07E-06 1.04E-112 1.07E-01 2.12E-16 8.43E-10 1.26E-221 1.19E-09 7.22E-12 3.98E-05 2.49E-238 0.00Eþ00
SD 1.56E-01 1.00E-06 1.96E-110 4.14E-02 1.68E-16 7.67E-10 0.00Eþ00 1.23E-07 9.22E-10 3.14E-05 0.00Eþ00 0.00Eþ00
%XPL 96.9063 7.1664 2.4101 98.1739 15.5385 18.7493 0.5353 7.6471 49.5202 55.0966 0.9975 2.3214
%XPT 3.0937 92.8336 97.5899 1.8261 84.4615 81.2507 99.4647 92.3529 50.4798 44.9034 99.0025 97.6786
AB 8.36Eþ01 7.82Eþ00 2.12E-01 5.83Eþ01 2.52E-05 3.47E-01 1.11Eþ00 2.48Eþ01 4.94Eþ00 3.09E-01 4.74E-01 9.66E-02

f5 MD 8.47Eþ01 6.57Eþ00 1.50E-32 5.84Eþ01 2.43E-05 9.07E-02 1.09Eþ00 2.33Eþ01 3.50Eþ00 1.27E-01 4.92E-01 9.51E-02
SD 1.21Eþ01 4.65Eþ00 5.06E-01 8.60Eþ00 8.90E-06 5.24E-01 2.14E-01 1.01Eþ01 4.94Eþ00 4.17E-01 2.22E-01 1.02E-01
%XPL 95.0028 2.5900 2.6241 98.1753 17.3320 17.5826 2.6767 5.0162 47.1323 19.6133 1.2255 6.3444
%XPT 4.9972 97.4100 97.3759 1.8247 82.6680 82.4174 97.3233 94.9838 52.8677 80.3867 98.7745 93.6556
AB 1.91E-01 1.81E-04 5.57E-27 9.36E-02 0.00Eþ00 9.52E-08 7.04E-12 7.12E-07 0.00Eþ00 9.32E-07 0.00Eþ00 0.00Eþ00

f6 MD 1.88E-01 5.85E-15 0.00Eþ00 9.09E-02 0.00Eþ00 8.42E-08 3.69E-12 0.00Eþ00 0.00Eþ00 7.50E-07 0.00Eþ00 0.00Eþ00
SD 4.67E-02 9.76E-04 3.05E-26 2.18E-02 0.00Eþ00 4.01E-08 7.35E-12 3.90E-06 0.00Eþ00 6.86E-07 0.00Eþ00 0.00Eþ00
%XPL 95.9426 3.5010 2.9087 98.4887 70.1519 13.0572 25.8766 4.0018 0.5549 20.5388 14.9194 24.2250
%XPT 4.0574 96.4990 97.0913 1.5113 29.8481 86.9428 74.1234 95.9982 99.4451 79.4612 85.0806 75.7750
AB 3.79Eþ04 6.36Eþ04 1.63E-87 5.81Eþ01 1.69E-111 1.03E-38 0.00Eþ00 4.66E-206 7.25E-33 4.39E-17 0.00Eþ00 0.00Eþ00

f7 MD 5.61Eþ03 1.41E-04 1.80E-121 1.14Eþ01 1.17E-116 1.69E-42 0.00Eþ00 8.15E-225 1.36E-90 3.59E-22 0.00Eþ00 0.00Eþ00
SD 1.10Eþ05 3.21Eþ05 6.12E-87 1.24Eþ02 8.88E-111 5.60E-38 0.00Eþ00 0.00Eþ00 3.97E-32 1.46E-16 0.00Eþ00 0.00Eþ00
%XPL 86.4106 1.0759 3.5939 98.0479 12.4436 22.9480 0.6234 6.7044 37.5761 23.0048 1.3033 1.6233
%XPT 13.5894 98.9241 96.4061 1.9521 87.5564 77.0520 99.3766 93.2956 62.4239 76.9952 98.6967 98.3767
AB 1.15Eþ08 9.53Eþ06 7.69Eþ01 4.59Eþ07 2.00Eþ05 1.45Eþ03 2.27Eþ06 8.66Eþ01 9.20Eþ02 8.27Eþ01 2.64Eþ02 4.52Eþ02

f8 MD 1.16Eþ08 1.03Eþ07 7.65Eþ01 4.51Eþ07 1.97Eþ05 1.22Eþ03 2.00Eþ06 8.73Eþ01 3.23Eþ02 8.20Eþ01 7.82Eþ01 1.45Eþ02
SD 3.13Eþ07 3.34Eþ06 3.07Eþ00 9.43Eþ06 6.77Eþ04 9.15Eþ02 1.44Eþ06 3.74Eþ00 1.60Eþ03 2.51Eþ00 7.47Eþ02 1.19Eþ03
%XPL 95.5115 3.4265 2.4201 98.5632 39.5521 18.0130 7.3906 6.4148 42.9836 8.8978 2.7120 10.5891
%XPT 4.4885 96.5735 97.5799 1.4368 60.4479 81.9870 92.6094 93.5852 57.0164 91.1022 97.2880 89.4109
AB 2.09Eþ08 2.82Eþ06 1.04Eþ02 7.46Eþ07 1.92Eþ04 1.22Eþ03 1.40Eþ05 9.14Eþ01 7.75Eþ02 1.21Eþ02 1.36Eþ02 4.60Eþ03

f9 MD 2.08Eþ08 2.25Eþ06 1.04Eþ02 7.82Eþ07 1.75Eþ04 9.04Eþ02 1.25Eþ05 9.18Eþ01 2.38Eþ02 1.20Eþ02 1.22Eþ02 1.64Eþ02
SD 6.05Eþ07 2.48Eþ06 4.61Eþ00 1.87Eþ07 7.84Eþ03 1.11Eþ03 7.09Eþ04 3.72Eþ00 1.54Eþ03 5.36Eþ00 5.87Eþ01 1.95Eþ04
%XPL 95.3091 3.5499 2.3544 99.0277 24.8489 19.8155 3.7775 6.7386 48.9883 9.1842 2.0446 6.8941
%XPT 4.6909 96.4501 97.6456 0.9723 75.1511 80.1845 96.2225 93.2614 51.0117 90.8158 97.9554 93.1059
AB 6.18Eþ84 9.59Eþ83 1.89Eþ83 5.10Eþ83 3.06Eþ81 8.60Eþ81 3.60Eþ81 1.66Eþ81 4.40Eþ81 4.26Eþ81 1.82Eþ82 1.29Eþ82

f10 MD 3.86Eþ84 8.54Eþ83 1.02Eþ83 4.32Eþ83 1.25Eþ81 6.39Eþ81 7.87Eþ80 2.36Eþ80 2.47Eþ81 9.35Eþ80 1.07Eþ82 3.02Eþ81
SD 6.29Eþ84 7.77Eþ83 2.81Eþ83 3.87Eþ83 6.49Eþ81 7.58Eþ81 6.65Eþ81 3.25Eþ81 5.29Eþ81 8.50Eþ81 1.84Eþ82 2.56Eþ82
%XPL 97.9017 1.0069 29.1786 99.1435 89.9032 51.7721 14.7970 8.4823 60.2020 33.6651 84.3472 12.5809
%XPT 2.0983 98.9931 70.8214 0.8565 10.0968 48.2279 85.2030 91.5177 39.7980 66.3349 15.6528 87.4191
AB 1.55Eþ83 2.85Eþ63 2.04Eþ02 2.90Eþ75 1.25Eþ02 8.65Eþ28 2.71Eþ02 7.61Eþ37 2.15Eþ49 8.15Eþ23 1.64Eþ02 1.41Eþ02

f11 MD 8.93Eþ81 1.60Eþ54 3.03Eþ01 7.22Eþ73 9.93Eþ01 1.73Eþ21 1.15Eþ02 2.09Eþ25 4.00Eþ32 5.96Eþ17 5.41Eþ01 5.09Eþ01
SD 4.24Eþ83 1.56Eþ64 4.10Eþ02 5.96Eþ75 7.70Eþ01 4.28Eþ29 3.81Eþ02 4.17Eþ38 1.18Eþ50 2.99Eþ24 2.53Eþ02 2.52Eþ02
%XPL 97.5495 2.4453 0.5018 98.6073 20.5013 23.3910 0.9863 10.0874 58.0356 16.5102 1.1156 3.2459
%XPT 2.4505 97.5547 99.4982 1.3927 79.4987 76.6090 99.0137 89.9126 41.9644 83.4898 98.8844 96.7541
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AB 4.22Eþ01 4.88Eþ01 3.00Eþ01 5.84Eþ01 3.00Eþ01 3.00Eþ01 3.00Eþ01 3.37Eþ01 3.47Eþ01 3.06Eþ01 3.00Eþ01 3.00Eþ01
f12 MD 4.20Eþ01 4.80Eþ01 3.00Eþ01 5.90Eþ01 3.00Eþ01 3.00Eþ01 3.00Eþ01 3.50Eþ01 3.50Eþ01 3.00Eþ01 3.00Eþ01 3.00Eþ01

SD 1.63Eþ00 3.54Eþ00 0.00Eþ00 2.91Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 3.70Eþ00 4.15Eþ00 7.74E-01 1.83E-01 1.83E-01
%XPL 56.3797 2.2746 4.6431 98.0768 16.0563 17.8066 3.5525 9.1007 39.3777 27.7303 4.3927 4.7957
%XPT 43.6203 97.7254 95.3569 1.9232 83.9437 82.1934 96.4475 90.8993 60.6223 72.2697 95.6073 95.2043
AB 2.75Eþ03 1.06E-01 8.01E-05 1.93Eþ03 8.35Eþ01 1.31Eþ00 1.46E-06 4.56Eþ02 1.36Eþ03 2.96Eþ00 8.93E-06 7.44E-07

f13 MD 2.88Eþ03 1.36E-02 7.46E-05 1.92Eþ03 8.25Eþ01 1.03Eþ00 3.72E-07 1.88Eþ02 5.62Eþ02 2.66Eþ00 1.05E-06 1.88E-08
SD 7.50Eþ02 3.94E-01 3.69E-05 3.15Eþ02 2.08Eþ01 9.05E-01 2.44E-06 6.44Eþ02 1.48Eþ03 1.29Eþ00 1.75E-05 1.85E-06
%XPL 90.3160 2.4176 1.0526 98.9323 70.1808 27.7344 1.1843 6.6424 22.9571 31.7263 1.1151 2.8662
%XPT 9.6840 97.5824 98.9474 1.0677 29.8192 72.2656 98.8157 93.3576 77.0429 68.2737 98.8849 97.1338
AB 4.28Eþ10 4.38Eþ09 2.29E-28 2.08Eþ10 6.42Eþ02 1.34Eþ04 1.22Eþ03 2.08Eþ09 1.16Eþ02 7.98Eþ00 1.08E-05 2.24Eþ02

f14 MD 4.40Eþ10 4.08Eþ09 2.14E-28 2.03Eþ10 6.66Eþ02 1.16Eþ04 1.17Eþ03 2.90E-01 5.59Eþ01 7.04Eþ00 7.41E-07 1.61Eþ02
SD 9.36Eþ09 2.48Eþ09 6.23E-29 4.80Eþ09 7.47Eþ01 5.72Eþ03 5.86Eþ02 1.14Eþ10 1.66Eþ02 2.86Eþ00 3.56E-05 2.32Eþ02
%XPL 93.7338 4.5958 2.0125 98.6879 12.5087 15.4941 0.7743 8.0601 42.6197 9.9536 1.0140 2.1986
%XPT 6.2662 95.4042 97.9875 1.3121 87.4913 84.5059 99.2257 91.9399 57.3803 90.0464 98.9860 97.8014
AB 3.57Eþ01 1.31Eþ01 9.61Eþ00 2.43Eþ01 1.10Eþ01 9.92Eþ00 8.74Eþ00 1.19Eþ01 1.49Eþ01 1.16Eþ01 8.78Eþ00 9.10Eþ00

f15 MD 4.69Eþ04 5.34Eþ01 2.25E-09 1.40Eþ04 1.35Eþ01 2.16Eþ01 1.46Eþ01 7.41Eþ03 2.23E-01 1.98Eþ01 1.52E-02 1.16Eþ01
SD 4.70Eþ04 5.32Eþ01 6.88E-15 1.32Eþ04 1.32Eþ01 2.16Eþ01 1.42Eþ01 4.72E-03 1.57E-01 1.97Eþ01 3.32E-04 1.14Eþ01
%XPL 94.4582 2.9616 11.8761 98.0231 37.4339 28.9769 3.3576 10.4171 49.7007 51.1412 17.1500 7.1632
%XPT 5.5418 97.0384 88.1239 1.9769 62.5661 71.0231 96.6424 89.5829 50.2993 48.8588 82.8500 92.8368
AB 1.24Eþ04 1.60Eþ01 1.23E-08 3.76Eþ03 1.28Eþ00 2.31Eþ00 4.90Eþ00 2.26Eþ04 2.16E-01 2.69Eþ00 5.52E-02 5.55Eþ00

f16 MD 2.97Eþ02 6.57Eþ01 7.02Eþ01 2.58Eþ02 8.34Eþ01 5.90Eþ01 1.52E-01 1.36Eþ02 1.38Eþ02 5.71Eþ01 1.27Eþ01 3.79E-15
SD 2.97Eþ02 6.17Eþ01 5.27Eþ01 2.65Eþ02 8.40Eþ01 5.45Eþ01 0.00Eþ00 1.25Eþ02 1.26Eþ02 5.72Eþ01 1.29Eþ01 0.00Eþ00
%XPL 95.3699 4.8089 2.1825 98.2647 18.5119 17.4896 2.4108 5.9925 46.6230 19.3011 1.1184 5.3582
%XPT 4.6301 95.1911 97.8175 1.7353 81.4881 82.5104 97.5892 94.0075 53.3770 80.6989 98.8816 94.6418
AB 1.61Eþ01 3.21Eþ01 4.92Eþ01 1.60Eþ01 6.98Eþ00 1.91Eþ01 8.35E-01 3.52Eþ01 4.59Eþ01 1.21Eþ01 4.78Eþ00 1.44E-14

f17 MD 2.38Eþ05 4.60Eþ02 1.13Eþ01 2.41Eþ05 7.54Eþ01 8.43Eþ01 2.70Eþ01 5.71Eþ04 8.45Eþ04 9.00Eþ01 2.31Eþ01 2.64Eþ01
SD 2.46Eþ05 1.74Eþ02 1.59E-01 2.49Eþ05 7.51Eþ01 8.61Eþ01 2.71Eþ01 5.62Eþ04 5.81Eþ04 9.59Eþ01 2.31Eþ01 2.63Eþ01
%XPL 89.3263 4.9894 4.2105 98.3033 46.8273 26.7953 1.3108 3.1251 50.2820 24.4155 5.9168 2.3435
%XPT 10.6737 95.0106 95.7895 1.6967 53.1727 73.2047 98.6892 96.8749 49.7180 75.5845 94.0832 97.6565
AB 6.46Eþ04 7.57Eþ02 3.19Eþ01 7.70Eþ04 2.21Eþ01 4.21Eþ01 7.33E-01 4.50Eþ04 5.50Eþ04 4.90Eþ01 7.63E-01 3.01E-01

f18 MD 6.67Eþ01 3.29Eþ01 1.64E-13 4.97Eþ01 1.45Eþ01 9.38Eþ00 3.88E-25 5.29Eþ01 2.21Eþ01 1.70E-01 4.54E-35 3.35Eþ01
SD 6.77Eþ01 3.31Eþ01 1.38E-13 5.08Eþ01 1.48Eþ01 9.60Eþ00 1.85E-25 5.07Eþ01 2.12Eþ01 1.65E-01 4.03E-35 2.80Eþ01
%XPL 95.3792 3.5059 2.4252 98.6945 20.3476 18.4110 0.7932 6.3083 39.2793 23.6444 1.0447 1.8732
%XPT 4.6208 96.4941 97.5748 1.3055 79.6524 81.5890 99.2068 93.6917 60.7207 76.3556 98.9553 98.1268
AB 4.91Eþ00 4.22Eþ00 1.09E-13 3.43Eþ00 1.49Eþ00 2.33Eþ00 4.73E-25 1.14Eþ01 5.09Eþ00 2.72E-02 2.75E-35 3.05Eþ01

f19 MD 2.59Eþ32 7.27Eþ27 1.03Eþ01 7.60Eþ29 3.11E-02 1.81Eþ01 2.41E-57 4.73Eþ02 7.42Eþ02 7.35Eþ04 4.36E-42 2.80E-168
SD 2.49Eþ31 3.39Eþ22 1.23E-14 1.30Eþ29 3.02E-02 1.72Eþ01 5.61E-58 5.00Eþ02 8.00Eþ02 2.57Eþ02 3.38E-42 5.92E-178
%XPL 96.9787 1.7034 2.3870 98.6170 48.5372 22.2809 0.7828 13.8845 64.5812 5.2652 1.1583 17.2994
%XPT 3.0213 98.2966 97.6130 1.3830 51.4628 77.7191 99.2172 86.1155 35.4188 94.7348 98.8417 82.7006
AB 6.87Eþ32 3.95Eþ28 5.66Eþ01 1.61Eþ30 6.65E-03 3.87Eþ00 4.40E-57 1.66Eþ02 2.06Eþ02 3.44Eþ05 2.93E-42 0.00Eþ00

f20 MD �4.98Eþ49 �1.43Eþ268 �5.82Eþ27 �8.05Eþ03 �1.21Eþ04 �9.12Eþ03 ¡5.91Eþ03 �8.56Eþ03 �8.21Eþ03 �7.28Eþ03 �7.40Eþ03 �1.18Eþ04
SD �1.02Eþ48 �3.81Eþ260 �3.35Eþ23 �7.81Eþ03 �1.22Eþ04 �8.99Eþ03 ¡5.96Eþ03 �8.35Eþ03 �8.04Eþ03 �7.21Eþ03 �7.76Eþ03 �1.23Eþ04
%XPL 89.1435 1.5237 3.6850 98.1749 12.5994 20.5564 0.5686 5.5311 38.7221 19.2984 1.3860 2.6828
%XPT 10.8565 98.4763 96.3150 1.8251 87.4006 79.4436 99.4314 94.4689 61.2779 80.7016 98.6140 97.3172
AB 1.94Eþ50 6.55Eþ04 2.90Eþ28 8.68Eþ02 4.21Eþ02 6.92Eþ02 7.23Eþ02 9.93Eþ02 1.01Eþ03 5.62Eþ02 1.13Eþ03 1.18Eþ03

f21 MD 1.49Eþ04 8.74Eþ03 0.00Eþ00 1.91Eþ04 0.00Eþ00 1.39Eþ01 0.00Eþ00 1.67Eþ03 1.33Eþ03 2.00E-01 0.00Eþ00 1.00E-01
SD 1.47Eþ04 8.37Eþ03 0.00Eþ00 1.90Eþ04 0.00Eþ00 1.40Eþ01 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00
%XPL 1.1200 0.1531 0.8569 99.1186 83.7028 25.9312 19.3947 4.2543 8.3847 9.2638 43.7278 12.8460
%XPT 98.8800 99.8469 99.1431 0.8814 16.2972 74.0688 80.6053 95.7457 91.6153 90.7362 56.2722 87.1540
AB 2.27Eþ03 2.54Eþ03 0.00Eþ00 3.32Eþ03 0.00Eþ00 2.35Eþ00 0.00Eþ00 4.61Eþ03 3.46Eþ03 4.07E-01 0.00Eþ00 3.05E-01

f22 MD �6.58Eþ02 �9.93Eþ02 �1.04Eþ03 �7.24Eþ02 �1.17Eþ03 �1.07Eþ03 �9.31Eþ02 �1.02Eþ03 �1.08Eþ03 �1.07Eþ03 ¡1.03Eþ03 �1.17Eþ03
SD �6.59Eþ02 �9.91Eþ02 �1.04Eþ03 �7.18Eþ02 �1.17Eþ03 �1.08Eþ03 �9.47Eþ02 �1.02Eþ03 �1.08Eþ03 �1.07Eþ03 ¡1.02Eþ03 �1.17Eþ03
%XPL 77.4735 1.9342 2.1311 98.3742 9.9359 15.8333 0.6335 6.0800 42.6055 6.2696 1.2032 2.3062
%XPT 22.5265 98.0658 97.8689 1.6258 90.0641 84.1667 99.3665 93.9200 57.3945 93.7304 98.7968 97.6938
AB 3.50Eþ01 3.56Eþ01 3.29Eþ01 2.40Eþ01 2.56E-03 4.08Eþ01 6.07Eþ01 4.52Eþ01 2.81Eþ01 2.81Eþ01 2.59Eþ01 2.03Eþ01

f23 MD 1.36Eþ06 5.66Eþ05 �4.93Eþ03 1.19Eþ06 4.34Eþ05 9.24Eþ03 ¡2.50Eþ02 2.60Eþ05 7.59Eþ05 �3.10Eþ03 �1.02Eþ03 �3.77Eþ03
SD 1.41Eþ06 5.20Eþ05 �4.93Eþ03 1.17Eþ06 4.22Eþ05 7.22Eþ03 ¡2.10Eþ02 1.22Eþ05 6.82Eþ05 �3.21Eþ03 �1.02Eþ03 �3.79Eþ03
%XPL 96.0793 7.0659 2.1461 99.2405 30.4547 20.9524 20.5710 4.8452 42.1270 26.2275 4.9875 16.4037
%XPT 3.9207 92.9341 97.8539 0.7595 69.5453 79.0476 79.4290 95.1548 57.8730 73.7725 95.0125 83.5963
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space. This behavior is shown in Fig. 3 where multiple exploration peaks
appear along the optimization process. The multiple attraction points
allow jumping in different zones even though it is continuously focusing
on exploitation. This operation eventually permits to find better solutions
than other methods.

Fig. 4 shows the balance levels of the worst-performing algorithms
ABC and CSA. According to Fig. 4, it is clear that both schemes use
excessive exploration in their search processes. Such an effect is visible
from the incremental-decremental graph where its value increases during
the whole optimization process. This lack of balance results in worse
performance. It is not evident a direct relationship of this bad perfor-
mance with their search mechanisms. However, it is clear that their well-
known slow convergence as a consequence of their types of selection
mechanisms and attraction operators could be responsible.

4.2. Results of unimodal test functions

This subsection details the analysis considering functions with only
one optimum. Detailed information on each unimodal function can be
found in Appendix [A.II] Table AII. Table 5 presents a comparison of the
selected algorithms in unimodal functions. Table 6 presents the statistical
analysis outcomes by applying Friedman test. The best results are high-
lighted in boldface. The results displayed in these tables suggest that the
most prominent algorithm is WOA with an average rank of 1.

The second and third best algorithms in the unimodal test, TLBO and
GWO, were compared directly to WOA in Fig. 5 to see the contrast be-
tween them. According to the incremental-decremental graph, all three
methods on average exploited the search space above 98% of the time.
The algorithm with the best results for all unimodal functions, WOA,
spent 98.1318% of the time exploiting. The other algorithms, TLBO and
GWO, differed very little, spending 98.9133% and 99.4177% of the time
exploiting respectively. In terms of the characteristics of the algorithms,
WOA utilizes a non-greedy selection mechanism and has a single
attraction operator guided by the best solution. GWO employs a non-
greedy selection mechanism. On the other hand, TLBO considers a
greedy selection mechanism. Both methods GWO and TBL use as an
attraction point the mean value of some individuals of the population to
update its solutions. These three schemes maintain similar search
mechanisms, as a consequence, they present similar performance in
terms of solution quality. They also present very similar balances in
exploration-exploitation such as it is shown in Fig. 5. It is important to
point out that the WOA algorithm produces a rough balance response.

The worst four performing algorithms in unimodal functions are
displayed in Fig. 6. ABC and CSA are once again in the bottom and both
spent a high amount of time exploring without exploiting the search
space. Although BA and MFO maintain a behavior very close to the one
used by the top three algorithms, they present a bad performance in
terms of the solution quality. In spite of their good balance level, it seems
that is also important the search mechanisms obtain a better
performance.

4.3. Results of hybrid test functions

Hybrid functions are formulations with complex behaviors that are
produced from the combination of several multimodal functions. A spe-
cific implementation of composite functions can be consulted in
Ref. [38]. Detailed information on each hybrid function can be found in
Appendix [A.III] Table AIII. Table 7 presents a comparison of the selected
algorithms in hybrid functions. This table is consistent with the results
from previous tests. Table 8 presents the statistical analysis outcomes by
applying Friedman test. The best results are highlighted in boldface.
Considering both tables, WOA and TLBO were the algorithms that had
the best performance, with CMA-ES being the distant third.

The results from the aforementioned trio of algorithms are averaged
and displayed in Fig. 7. The algorithms show consistency in balance
employed when compared with previous tests. According to the



Table 4
Ranks obtained and p-value of the Friedman test in multimodal functions.

Function ABC BA CMAES CSA DE FA GWO MFO PSO SSO TLBO WOA

Average rank 11.3333 8.9167 3.5833 10.9583 4.6875 6.1458 4.4583 7.4583 7.3125 6.0417 3.4792 3.625
p-value 6.94e-28

Fig. 2. Average balance employed by the top three algorithms in multimodal functions.
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incremental-decremental graph, all schemes spent above 90% of the
runtime exploiting the search space. In almost all hybrid functions the
WOA and TLBO algorithms managed to find the global optimum. The
only significant difference can be seen in function f30 whereWOA surpass
the other algorithms by a large margin, and f32 where CMA-ES found the
best solutions with the least standard deviation. As previously
mentioned, the reason for this difference is the search mechanisms used
for exploration and exploitation. It is important to point out that theWOA
algorithm once again produces a rough balance response.

Fig. 8 contains the evolution of the balance employed by the bottom
three algorithms in hybrid functions. Once again, according to the
incremental-decremental graph, ABC and CSA utilized high amounts of
exploration to detrimental results. The BA balance between exploration
and exploitation was close to the one employed by WOA, the best per-
forming algorithm in hybrid functions. This is a good example of how the
difference in the quality of the specific search mechanism of each algo-
rithm affects greatly the performance, even though the compared algo-
rithms invest the same amount of time exploring and exploiting the
9

search space.
4.4. Results of shifted test functions

To see how the algorithms are affected when the problems to solve
don’t have their global optimum in positions close to zero, shifted
functions are utilized. These are known functions but shifted to the left or
right to have their global optimum in a different position. A specific
implementation of shifted functions can be consulted in Ref. [38].
Detailed information of each shifted function can be found in Appendix
[A.IV] Table AIV. Table 9 presents a comparison of the selected algo-
rithms in shifted functions. Table 10 presents the statistical analysis
outcomes by applying Friedman test. The best results are highlighted in
boldface. Of the top algorithms from the previous tests, only CMA-ES was
impervious to shifted functions and won in 7 of the 9 functions with an
average rank of 1.8889. WOA and GWO suffered greatly on this set of
functions while TLBO still suffered but less so. This allowed DE to be the
one with the best performance in f34, while TLBO still managed to be the



Fig. 3. Balance employed by DE in f5 and f21, and MFO in f9 and f10.

Fig. 4. Average balance employed by the bottom two algorithms in multimodal functions.
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one with the best performance in f36.
To see the impact that this set of functions has in the best algorithms

from previous tests, Fig. 9 shows the evolution of the average balance in
shifted functions for CMA-ES, GWO, TLBO and WOA. CMA-ES demon-
strated consistency with the other test in the balance utilized, and it also
demonstrated consistency with the results obtained. The case of GWO
and WOA is interesting, these algorithms cannot reach the performance
displayed in previous tests. They cannot also obtain the exploration/
exploitation balances demonstrated with previous functions. Both
methods, according to the incremental-decremental graph present a
prolonged exploration effect in contrast with CMA-ES and TLBO. This
suggests that the balance achieved by these two algorithms is not pre-
determined, but it depends on the nature of their search mechanisms.
Due to its search strategy, it is well-known that GWO andWOAmaintain
a good performance in problems where the optimal point is in the origin.
However, they present critical flaws when they face test functions with a
shifted optimal point. Therefore, if GWO and WOA optimize problems
with an optimal value centered in the origin, they are able to rapidly find
the zone with the global solution and then focus on exploiting it,
resulting in exploiting rates of over 90%. However, when the functions
are shifted, they cannot find quickly enough the zone with the global
solution. Under such conditions, their exploiting rate is degraded finding
solutions of low quality in comparison with non-shifted functions. On the
contrary, TLBO maintains the same balance between exploration and
exploitation from previous test functions. Nevertheless, its performance
in terms of quality is slightly lower than the non-shifted functions. This
seems to indicate that the TLBO algorithm maintains a fixed balance
without considering the function type. It is important to point out that
the WOA algorithm produces also a rough balance response.

Fig. 10 shows the evolution of the balance obtained by DE in f34 and
the balance performed by TLBO in f36. These problems represent the
only functions where CMA-ES does not obtain the best performance. For
this reason, they are analyzed individually. In case of function f34, most
of the algorithms reach a very close performance in comparison with the
already obtained in case of the non-shifted versions. Nevertheless, TLBO,
GWO andWOA are unable to get their previous performance. Under such
circumstances, DE becomes the best one. As it can be seen from the
incremental-decremental graph, the exploration effect lasts around 170
iterations from a total of 1000. In case of functionf36, even though the
TLBO algorithm does not reach the same performance obtained by the
non-shifted version of the function, it maintains a good enough perfor-
mance for function f36. In this function, according to the incremental-
decremental graph, the TLBO scheme maintains a strong exploitation
effect.

Lastly, Fig. 11 illustrates the evolution of the balance utilized by the
bottom three algorithms in shifted functions. The pattern and algorithms
in the bottom three are consistent with previous results.

4.5. The balance response of the Random Search algorithm

To test for a possible bias towards exploration or exploitation, an
experiment has been conducted. In the test, the Random Search algo-
rithm [39] which generates a population with a fixed standard deviation
in each iteration has been analyzed. Under this scheme, it is possible to
see if there is any sign of bias when a fixed diversity is employed. In
Table 11, it is shown the maximum diversity, mean diversity and
exploration and exploitation rate considering function f27. In the test, the
Random Search algorithm has been set with a standard deviation of 2.88
for each random movement considering also 1000 iterations.

From Fig. 12, it can be seen how the fixed standard deviation of the
algorithm affects significantly the measured balance. The distance be-
tween search agents is always inside the standard deviation of the
random movement. This causes the population diversity to maintain
almost the same value in all iterations. As the diversity in each iteration
is close to the standard deviation, which is also close to the maximum
diversity, an average exploration rate of 95.5237 is produced. Under



Table 6
Ranks achieved and p-value of the Friedman test in unimodal functions.

Function ABC BA CMAES CSA DE FA GWO MFO PSO SSO TLBO WOA

Average rank 11.2000 8.2000 4.60000 11.8000 4.8000 7.2000 2 8 8.8000 7.4000 3 1
p-value 5.20e-07

Fig. 5. Average balance employed by the top three algorithms in unimodal functions.
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such conditions, as it is shown by the incremental-decremental graph, the
exploration effect is maintained during the complete process.

The Random Search algorithm does not implement any other search
mechanism. It produces new solutions through a random re-
initialization. According to this experiment, it is apparent that no bias
is influencing the results of the metric utilized.
4.6. Diversity analysis

In order to complement the analysis, an experimental test of the di-
versity over the best-performing algorithms CMA-ES, GWO, TLBO and
12
WOA is conducted. In the experiment, the diversity defined in Eq. (2) is
calculated and reported during the optimization of a determined
benchmark function. In comparison, the functions f6 and f37 are
considered. These functions have been selected for being representative
of the different behaviors presented in multimodal optimization. Fig. 13
shows the evolution of diversity during the optimization procedure for
functions f6 and f37 illustrated in Fig. 13(a) and (b), respectively. The axis
x corresponds to the number of iterations, and the axis y the diversity
measure.

After an analysis of Fig. 13, it is clear that all algorithms begin with a
big diversity as a consequence of their random initialization. As the



Fig. 6. Average balance employed by the bottom four algorithms in unimodal functions.

B. Morales-Casta~neda et al. Swarm and Evolutionary Computation 54 (2020) 100671

13



Table 7
Best solutions found and balance employed in each hybrid function.

Function ABC BA CMAES CSA DE FA GWO MFO PSO SSO TLBO WOA

f30 AB 8.57Eþ04 1.12Eþ04 3.68E-19 1.99Eþ04 4.42E-03 1.95Eþ01 2.39E-58 2.01Eþ04 2.48Eþ04 2.92E-01 1.35E-43 2.33E-175
MD 7.82Eþ04 8.84Eþ03 2.45E-19 2.05Eþ04 4.38E-03 1.98Eþ01 1.85E-58 2.01Eþ04 2.01Eþ04 2.88E-01 1.16E-43 7.02E-181
SD 2.77Eþ04 7.55Eþ03 4.81E-19 2.33Eþ03 7.50E-04 1.94Eþ00 2.24E-58 1.86Eþ04 1.53Eþ04 4.99E-02 9.99E-44 0.00Eþ00
%XPL 84.7161 4.8273 3.4316 98.5073 10.4171 16.2454 0.4767 9.1888 44.0224 8.2539 1.0883 1.8183
%XPT 15.2839 95.1727 96.5684 1.4927 89.5829 83.7546 99.5233 90.8112 55.9776 91.7461 98.9117 98.1817
AB 7.98Eþ02 4.00Eþ02 8.22Eþ01 7.21Eþ02 2.90Eþ01 7.98Eþ01 2.90Eþ01 1.80Eþ02 1.55Eþ02 7.31Eþ01 2.90Eþ01 2.90Eþ01

f31 MD 7.98Eþ02 4.03Eþ02 7.78Eþ01 7.18Eþ02 2.90Eþ01 7.61Eþ01 2.90Eþ01 1.18Eþ02 8.95Eþ01 7.64Eþ01 2.90Eþ01 2.90Eþ01
SD 8.92Eþ01 6.50Eþ01 1.84Eþ01 6.35Eþ01 2.28E-02 2.05Eþ01 5.66E-05 1.27Eþ02 1.26Eþ02 1.63Eþ01 3.30E-12 7.57E-05
%XPL 88.0123 2.9059 2.2306 98.6365 15.2593 18.9380 0.5138 5.8204 42.3145 7.3259 1.1961 2.5734
%XPT 11.9877 97.0941 97.7694 1.3635 84.7407 81.0620 99.4862 94.1796 57.6855 92.6741 98.8039 97.4266
AB 2.23Eþ08 2.62Eþ06 3.20Eþ01 7.13Eþ07 4.76Eþ02 2.45Eþ02 3.20Eþ01 7.57Eþ01 2.40Eþ02 3.46Eþ01 3.20Eþ01 7.18Eþ01

f32 MD 2.19Eþ08 1.50Eþ06 3.20Eþ01 7.08Eþ07 4.50Eþ02 2.45Eþ02 3.20Eþ01 7.18Eþ01 2.31Eþ02 3.45Eþ01 3.20Eþ01 6.77Eþ01
SD 5.51Eþ07 2.66Eþ06 1.73E-14 1.92Eþ07 7.16Eþ01 4.54Eþ01 7.26E-06 1.59Eþ01 7.26Eþ01 8.49E-01 2.09E-10 3.31Eþ01
%XPL 94.5070 3.4629 2.4833 98.4313 20.8563 18.7752 0.5362 7.1578 46.5950 11.0359 1.2826 4.9243
%XPT 5.4930 96.5371 97.5167 1.5687 79.1437 81.2248 99.4638 92.8422 53.4050 88.9641 98.7174 95.0757
AB 5.54Eþ03 5.84Eþ02 7.82Eþ01 9.21Eþ02 2.90Eþ01 5.95Eþ01 2.90Eþ01 8.95Eþ02 9.92Eþ02 1.63Eþ02 2.90Eþ01 2.90Eþ01

f33 MD 5.51Eþ03 4.89Eþ02 7.73Eþ01 9.25Eþ02 2.90Eþ01 5.16Eþ01 2.90Eþ01 8.96Eþ02 9.24Eþ02 1.58Eþ02 2.90Eþ01 2.90Eþ01
SD 3.22Eþ03 3.15Eþ02 2.35Eþ01 1.13Eþ02 9.70E-03 2.50Eþ01 7.14E-15 5.67Eþ02 5.46Eþ02 4.43Eþ01 4.12E-15 2.64E-15
%XPL 90.3856 5.0770 3.6581 98.5816 12.9629 17.6859 0.5115 5.5055 46.0492 10.8563 1.2409 1.5329
%XPT 9.6144 94.9230 96.3419 1.4184 87.0371 82.3141 99.4885 94.4945 53.9508 89.1437 98.7591 98.4671
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Table 8
Ranks achieved and p-value of the Friedman test in hybrid functions.

Function ABC BA CMAES CSA DE FA GWO MFO PSO SSO TLBO WOA

Average rank 12 9 4.5000 10.2500 5.5000 6.5000 2.6250 8.5000 9.2500 5.5000 2.1250 2.2500
p-value 1.12e-04

Fig. 7. Average balance employed by the top three algorithms in hybrid functions.
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Fig. 8. Average balance employed by the bottom three algorithms in hybrid functions.
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Table 9
Best solutions found and balance employed in each shifted function.

Function ABC BA CMAES CSA DE FA GWO MFO PSO SSO TLBO WOA

f34 AB 1.73Eþ01 1.31Eþ01 2.10Eþ00 1.73Eþ01 5.06E-03 1.82Eþ00 7.18Eþ00 7.00Eþ00 7.51Eþ00 4.06E-01 4.74Eþ00 5.43Eþ00
MD 1.74Eþ01 1.31Eþ01 7.11E-15 1.74Eþ01 4.65E-03 1.83Eþ00 8.29Eþ00 8.29E-01 7.25E-01 3.60E-01 4.55Eþ00 5.10Eþ00
SD 4.73E-01 8.91E-01 6.40Eþ00 5.12E-01 1.64E-03 1.24E-01 3.64Eþ00 8.42Eþ00 8.29Eþ00 1.87E-01 9.31E-01 2.07Eþ00
%XPL 87.1690 2.6385 2.0468 98.0358 12.9051 15.4772 13.5003 5.4988 43.1621 8.1621 1.2565 16.0797
%XPT 12.8310 97.3615 97.9532 1.9642 87.0949 84.5228 86.4997 94.5012 56.8379 91.8379 98.7435 83.9203
AB 2.87Eþ03 1.58E-02 7.69E-05 1.86Eþ03 9.25Eþ01 1.21Eþ00 2.20Eþ01 6.80Eþ02 1.52Eþ03 3.05Eþ00 1.09E-02 1.64Eþ00

f35 MD 2.81Eþ03 1.11E-02 7.60E-05 1.81Eþ03 9.12Eþ01 1.05Eþ00 1.72Eþ01 2.22Eþ02 4.84Eþ02 2.75Eþ00 8.48E-03 1.24Eþ00
SD 6.08Eþ02 1.64E-02 2.92E-05 4.86Eþ02 2.55Eþ01 7.00E-01 1.43Eþ01 1.03Eþ03 1.60Eþ03 1.40Eþ00 7.73E-03 1.23Eþ00
%XPL 92.0951 6.0810 0.7667 98.9009 64.1413 23.1880 29.9811 5.0130 26.4855 30.5526 1.6696 26.0660
%XPT 7.9049 93.9190 99.2333 1.0991 35.8587 76.8120 70.0189 94.9870 73.5145 69.4474 98.3304 73.9340
AB 3.01Eþ02 6.01Eþ01 7.19Eþ01 2.61Eþ02 8.34Eþ01 5.82Eþ01 1.30Eþ02 1.40Eþ02 1.35Eþ02 5.89Eþ01 1.76Eþ01 4.10Eþ01

f36 MD 3.01Eþ02 5.47Eþ01 5.22Eþ01 2.62Eþ02 8.24Eþ01 5.21Eþ01 8.18Eþ01 1.35Eþ02 1.38Eþ02 5.87Eþ01 1.71Eþ01 1.75Eþ01
SD 1.26Eþ01 2.63Eþ01 5.23Eþ01 1.41Eþ01 8.56Eþ00 1.93Eþ01 8.68Eþ01 2.96Eþ01 3.58Eþ01 1.24Eþ01 4.51Eþ00 5.01Eþ01
%XPL 89.7716 1.3032 3.9072 97.9230 45.4431 24.7250 47.5097 3.2421 40.8761 23.8254 5.7889 27.1777
%XPT 10.2284 98.6968 96.0928 2.0770 54.5569 75.2750 52.4903 96.7579 59.1239 76.1746 94.2111 72.8223
AB 3.32Eþ05 3.07Eþ03 7.77E-01 5.08Eþ05 7.05Eþ01 7.15Eþ01 1.96Eþ02 6.00Eþ04 1.53Eþ05 1.11Eþ02 2.80Eþ01 1.35Eþ00

f37 MD 3.43Eþ05 1.39Eþ03 1.11E-01 5.24Eþ05 7.02Eþ01 5.27Eþ01 1.48Eþ02 5.48Eþ04 1.63Eþ05 1.09Eþ02 2.62Eþ01 7.87E-01
SD 8.43Eþ04 3.75Eþ03 2.85Eþ00 1.13Eþ05 1.82Eþ01 4.03Eþ01 1.65Eþ02 4.06Eþ04 6.35Eþ04 6.34Eþ01 8.04Eþ00 1.59Eþ00
%XPL 93.8950 7.8154 2.7508 98.7681 19.1539 19.5105 48.0801 6.0512 19.8387 24.8886 1.6766 24.1191
%XPT 6.1050 92.1846 97.2492 1.2319 80.8461 80.4895 51.9199 93.9488 80.1613 75.1114 98.3234 75.8809
AB 7.82Eþ04 3.48Eþ04 1.13E-27 1.14Eþ05 1.12E-03 7.44Eþ01 7.44Eþ03 1.85Eþ04 3.41Eþ04 1.90Eþ00 6.36E-06 1.10Eþ02

f38 MD 7.78Eþ04 3.24Eþ04 1.21E-27 1.15Eþ05 1.02E-03 7.59Eþ01 5.41Eþ03 8.59Eþ03 3.01Eþ04 1.94Eþ00 6.51E-07 9.19Eþ01
SD 1.20Eþ04 1.14Eþ04 2.77E-28 1.79Eþ04 4.19E-04 1.11Eþ01 5.54Eþ03 2.34Eþ04 2.24Eþ04 6.15E-01 2.73E-05 6.93Eþ01
%XPL 80.7225 5.2696 2.3067 98.7206 10.4484 16.7563 11.9413 6.4235 39.5787 7.3420 1.3278 15.7178
%XPT 19.2775 94.7304 97.6933 1.2794 89.5516 83.2437 88.0587 93.5765 60.4213 92.6580 98.6722 84.2822
AB 2.73Eþ06 1.59Eþ06 4.33E-26 4.18Eþ06 3.15E-02 2.90Eþ03 7.74Eþ05 1.60Eþ06 1.41Eþ06 2.60Eþ02 1.47E-04 2.76Eþ05

f39 MD 2.72Eþ06 1.47Eþ06 1.01E-26 4.21Eþ06 3.16E-02 3.00Eþ03 4.45Eþ05 1.26Eþ06 1.25Eþ06 1.50Eþ02 5.01E-05 1.85Eþ04
SD 3.81Eþ05 5.22Eþ05 7.64E-26 5.55Eþ05 1.04E-02 4.50Eþ02 8.60Eþ05 1.58Eþ06 1.11Eþ06 2.78Eþ02 2.73E-04 1.09Eþ06
%XPL 89.2405 2.9254 2.6224 98.4350 12.6352 17.9422 31.7209 7.0813 33.1841 7.7982 1.2846 26.3112
%XPT 10.7595 97.0746 97.3776 1.5650 87.3648 82.0578 68.2791 92.9187 66.8159 92.2018 98.7154 73.6888
AB 2.22Eþ32 5.11Eþ29 7.24E-03 5.98Eþ29 3.16E-02 1.84Eþ01 2.89Eþ02 4.90Eþ02 7.83Eþ02 1.08Eþ04 5.15E-01 3.45Eþ19

f40 MD 1.72Eþ31 8.92Eþ22 4.62E-14 1.76Eþ29 3.02E-02 1.75Eþ01 2.81Eþ02 5.00Eþ02 8.00Eþ02 3.31Eþ02 3.88E-03 7.32Eþ12
SD 5.78Eþ32 2.80Eþ30 3.97E-02 8.94Eþ29 8.41E-03 3.31Eþ00 6.80Eþ01 2.07Eþ02 2.25Eþ02 4.03Eþ04 2.69Eþ00 1.61Eþ20
%XPL 87.7802 1.9500 3.5449 98.2999 14.0029 23.9210 10.3306 6.6679 38.9743 15.4068 1.5227 12.8716
%XPT 12.2198 98.0500 96.4551 1.7001 85.9971 76.0790 89.6694 93.3321 61.0257 84.5932 98.4773 87.1284
AB 3.89Eþ01 1.52E-05 7.87E-29 4.89Eþ01 5.73E-07 3.17E-02 1.16E-02 2.62Eþ00 2.62Eþ00 1.09E-01 2.10E-09 1.07E-02

f41 MD 3.84Eþ01 1.55E-05 7.57E-29 4.94Eþ01 5.70E-07 3.31E-02 1.11E-02 7.83E-08 1.97E-06 1.05E-01 2.22E-10 8.50E-03
SD 6.80Eþ00 1.68E-06 1.47E-29 5.76Eþ00 1.44E-07 3.41E-03 3.88E-03 8.00Eþ00 8.00Eþ00 2.57E-02 6.54E-09 8.84E-03
%XPL 79.9896 4.5125 2.1102 98.1520 9.6874 16.0075 47.7530 6.3734 39.7010 28.9529 1.1754 26.0626
%XPT 20.0104 95.4875 97.8898 1.8480 90.3126 83.9925 52.2470 93.6266 60.2990 71.0471 98.8246 73.9374
AB 1.74Eþ03 1.96Eþ01 7.64E-28 2.57Eþ03 2.79E-05 1.67Eþ00 1.70Eþ00 4.13Eþ02 5.90Eþ02 1.75Eþ00 6.04E-07 8.74E-01

f42 MD 1.76Eþ03 9.75Eþ00 7.45E-28 2.54Eþ03 2.56E-05 1.67Eþ00 1.36Eþ00 2.50Eþ02 5.50Eþ02 1.80Eþ00 1.58E-08 6.74E-01
SD 2.02Eþ02 2.59Eþ01 2.89E-28 3.58Eþ02 9.89E-06 2.47E-01 1.16Eþ00 4.74Eþ02 3.86Eþ02 3.80E-01 2.65E-06 8.38E-01
%XPL 78.9622 2.7921 2.2211 97.9084 10.5863 17.3523 47.1852 5.9450 37.1032 18.8607 1.2538 26.1591
%XPT 21.0378 97.2079 97.7789 2.0916 89.4137 82.6477 52.8148 94.0550 62.8968 81.1393 98.7462 73.8409
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Table 10
Ranks achieved and p-value of the Friedman test in shifted functions.

Function ABC BA CMAES CSA DE FA GWO MFO PSO SSO TLBO WOA

Average rank 11.4444 7.4444 1.8889 11.5555 3.7778 4.5556 6.7778 8.6667 9 5.4444 2.4444 5
p-value 2.25e-12

Fig. 9. Average balance employed by CMA-ES, GWO, TLBO and WOA algorithms in shifted functions.
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Fig. 10. Balance employed by DE in f34 and TLBO in f36.

Fig. 11. Average balance employed by the bottom three algorithms in shifted functions.
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Table 11
Results from the Random Search algorithm in the control test.

Divmax Divmean %XPL %XPT

2.57Eþ00 2.45Eþ00 95.52 4.48

Fig. 12. The average balance of Random Search algorithm.
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iterations increase, the population diversity diminishes. According to the
Figure, the WOA algorithm presents in its behavior high oscillations
which reflex its better conduction of exploration-exploitation. On the
other hand, the other schemes present different diversity levels. CMA-ES
and TLBO show the smoothest diversity responses.

5. Results analysis

According to this analysis, several interesting patterns have been
identified. In the study, the best results have been obtained by WOA,
CMA-ES, GWO and TLBO through an exploitation rate of over 90%
(XPL% ¼ 10, XPT% ¼ 90). In general terms, from all schemes, the WOA
maintains the best performance indexes.

From the experiments, it is clear that the best performances are ob-
Fig. 13. Diversity behavior of the best performing algorithms CM

20
tained when the balances maintain a response of XPL% ¼ 10 and XPT%
¼ 90. In order to produce this behavior, the exploration process should
last only the first iterations, specifically from 100 to 300 iterations. Then,
the rest of the search strategy is mainly guided by the exploitation
process.

An important characteristic of observable in balance graphs is the
roughness. This feature implies an erratic variation of the balance during
the evolution process. Such variations are produced by small and abrupt
changes of diversity as a consequence of the used search mechanisms.
These changes slightly increase the exploration rate allowing it to escape
from local minima even though the optimization process is in the
exploiting stage. In general terms, rough balance responses exhibit a
better algorithm performance. The WOA algorithm maintains always a
rough balance response (Figs. 2, 5 and 7) which seems to be one of the
causes of its good performance.

Another interesting observation of this study is that good perfor-
mance behavior is produced through the combination of competitive
search mechanisms and an adequate balance response. During the ex-
periments, in some cases, two metaheuristic algorithms presented very
different performances in terms of solution quality in spite of their similar
balance responses. Only an appropriate balance response (XPL% ¼ 10,
XPT% ¼ 90) is not enough to obtain good results. It is also necessary to
have operators for the generation of promising solutions so that they take
advantage of the adequate diversity conditions observed in the balance
response.

The results in shifted functions represent a valuable case to analyze
since many algorithms could not maintain the good performance ob-
tained in non-shifted functions. From the best performing algorithms,
only CMA-ES has obtained its competitive performance in the shifted and
non-shifted versions. GWO and WOA not only have presented a bad
performance in terms of quality solution but also, an inappropriate bal-
ance response. Due to its search strategy, it is well-known that GWO and
WOA maintain a good performance in problems where the optimal point
is in the origin. However, they present critical flaws when they face test
functions with a shifted optimal point. Under such conditions, when an
algorithm cannot find a promising zone to exploit, it needs to invest more
time exploring the search space producing an unbalance in the rate
exploration-exploitation. This fact affects the quality or precision of the
final solutions.

6. Conclusions and future work

In this paper, an empirical evaluation of the balance between
A-ES, GWO, TLBO and WOA for functions (a) f6 and (b) f37 .
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exploration and exploitation on metaheuristic algorithms has been con-
ducted. In the study, a dimension-wise diversity measurement is used to
assess the balance of each scheme considering a representative set of 42
benchmark problems that involve multimodal, unimodal, composite and
shifted functions. In the majority of the 42 functions (multimodal,
unimodal, hybrid and shifted) the balance that produced the best results
was above 90% exploitation and less than 10% exploration.

In shifted functions specifically, many algorithms maintain diffi-
culties in maintaining the same performance that they had on to the non-
shifted versions. Some of them had also problems to obtain the same
balance between exploration and exploitation.

It has been observed in this study that good performance behavior is
produced through the combination of competitive search mechanisms
and an adequate balance response. Only an appropriate balance response
is not enough to obtain good results. It is also necessary to have operators
for the generation of promising solutions so that they take advantage of
the adequate diversity conditions observed in the balance response.

According to this analysis, it can be formulated as a future work that
21
the metaheuristic schemes could improve their results by gradually
reducing the number of their search agents.

In general, a metaheuristic algorithm with N search agents invests N
function evaluations in each iteration. In a competitive metaheuristic
method, its exploitation phase lasts 90% of its execution. In this phase,
the diversity of the population is small since most of the solutions are
grouped or clustered in the best positions of the search space. Under such
conditions, it is better to consider in the search strategy only the best B
solutions from the existent N (B ≪ N). Therefore in some cases, the
computational complexity can be reduced.
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Appendix A

The set of benchmark test functions implemented in the experiments is described in Tables A.I, A.II, A.III and A.IV where f ðx*Þ is the optimum value
of the function, x* the optimum position and S 2 Rn the search space. The benchmark test functions are classified in unimodal A.I, multimodal A.II,
composite A.III and shifted A.IV.
Table A I

Multimodal test benchmark functions considered in the experiments.

fi Name Function S Dim Minimum
f1
 Ackley
f ðxÞ ¼ � 20e
�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

x2i

s
� e

1
n

Xn
i¼1

cosð2πxiÞ
þ 20þ e
½�30; 30�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f2
 Dixon Price

f ðxÞ ¼ ðxi � 1Þ2 þ Pn

i¼2
ið2x2i � xi�1Þ2
 ½�10; 10�n
 n ¼

30

f ðx*Þ ¼ 0;

x* ¼ 2
�
2i � 2
2i

for i ¼ 1;…;n

f3
 Griewank
f ðxÞ ¼ 1
4000

Xn
i¼1

xi2 �
Yn
i¼1

cos
�
xiffiffi
i

p
�
þ 1

� � � 	

½�600; 600�n
 n ¼

30

f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f4
 Infinity

f ðxÞ ¼ Pn

i¼1
x6i sin

1
xi

þ 2

½�1; 1�n
 n ¼

30

f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f5
 Levy

f ðxÞ ¼ cos2 ðπw1Þ þ Pn�1

i¼1
ðwi � 1Þ2ð1 þ 10 sinπwi þ 1Þ þ ðwn � 1Þ2 ð1 þ

sin22πwnÞ
wi ¼ 1þ

�
xi þ 1
4

�

½�10; 10�n
 n ¼

30

f ðx*Þ ¼ 0; x* ¼ ð1;…; 1Þ
f6
 Mishra11
f ðxÞ ¼

2
6641n

Xn
i¼1

jxi j � ð
Yn
i¼1

jxijÞ
1
n

3
775
2
 ½�10; 10�n
 n ¼

30

f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f7
 Multimodal

f ðxÞ ¼ Pn

i
jxij �

Yn
i

jxij

½�10; 10�n
 n ¼

30

f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f8
 Penalty1

f ðxÞ ¼ π

30
f10sin2ðπy1Þþ

Pn�1

i¼1
ðyi � 1Þ2½1 þ 10sin2ðπyi þ 1Þ� þ ðyn � 1Þ2gþ Pn

i¼1
uðxi ; 10; 100; 4Þ;

yi ¼ 1þ xi þ 1
4

;

uðxi ; a; k; mÞ ¼
8<
:

kðxi � aÞm ; xi > a
0; �a � xi � a

kð�xi � aÞm ; xi < �a
½�50; 50�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð� 1;…; � 1Þ
f9
 Penalty2

f ðxÞ ¼ 0:1fsin2ð3πx1Þþ

Pn�1

i¼1
ðxi � 1Þ2½1 þ sin2ð3πxiþ1Þ� þ ðxn � 1Þ2½1 þ sin2ð2πxnÞ�gþ

Pn
i¼1

uðxi;
5; 100; 4Þ;

uðxi ; a; k; mÞ ¼
8<
:

kðxi � aÞm ; xi > a
0; �a � xi � a

kð�xi � aÞm ; xi < �a
½�50; 50�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð1;…; 1Þ
f10
 Perm1

f ðxÞ ¼ Pn

k¼1

(Pn
j
ðjk þ βÞ

��xj
β

�2
� 1

	)2

( )

½�n; n�n
 n ¼

30

f ðx*Þ ¼ 0;
x* ¼ ð1; 2;…; nÞ
f11
 Perm2

f ðxÞ ¼ Pn

k¼1

Pn
j
ðjk þ βÞ

�
xjk � 1

j

	 2
 ½�n; n�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð1; 1 =2;…; 1 =nÞ
f12
 Plateau
 ½�5:12; 5:12�n
(continued on next page)
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Table A I (continued )
fi
 Name
 Function
22
S
 Dim
 Minimum
f ðxÞ ¼ 30þ Pn
i¼1

jxi j
 n ¼
30
f ðx*Þ ¼ 30;
x* ¼ ð0;…; 0Þ
f13
 Powell

f ðxÞ ¼ Pn=4

i¼1
½ðx4i�3 þ 10x4i�2Þ2 þ 5ðx4i�1 � x4iÞ2 þ ðx4i�2 � 2x4i�1Þ4 þ 10ðx4i�3 � x4iÞ4�
½�4; 5�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f14
 Qing

f ðxÞ ¼ Pn

i¼1
ðxi2 � 1Þ2
 ½�500; 500�n
 n ¼

30

f ðx*Þ ¼ 0;
x*i ¼ ð� ffiffi

i
p Þ i ¼ 1,2,…,n
f15
 Quartic

f ðxÞ ¼ Pn

i¼1
fðixiÞ4 þ rand½0;1Þg
 ½�1:28; 1:28�n
 n ¼

30

f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f16
 Quintic

f ðxÞ ¼ Pn

i¼1

��xi5 � 3xi4 þ 4xi3 þ 2xi2 � xi � 4
��
 ½�10; 10�n
 n ¼

30

f ðx*Þ ¼ 0;
x* ¼ ð� 1;…; � 1Þ
f17
 Rastringin

f ðxÞ ¼ 10nþ Pn

i¼1
½xi2 � 10 cosð2πxiÞ�
 ½�5:12; 5:12�n
 n ¼

30

f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f18
 Rosenbrock

f ðxÞ ¼ Pn�1

i¼1
½100ðxiþ1 � x2i Þ2 þ ðxi � 1Þ2�
 ½�5; 10�n
 n ¼

30

f ðx*Þ ¼ 0;
x* ¼ ð1;…; 1Þ
f19
 Schwefel21
 f ðxÞ ¼ maxjxi j
 ½�100; 100�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f20
 Schwefel22

f ðxÞ ¼ Pn

i¼1
jxi j þ

Yn
i¼1

jxij

½�100; 100�n
 n ¼

30

f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f21
 Schwefel26

f ðxÞ ¼ � Pn

i¼1
½xisinð

ffiffiffiffiffiffiffijxij
p Þ�
 ½�500; 500�n
 n ¼

30

f ðx*Þ ¼ � 418:98n;
x* ¼
ð420:97; :::;420:97Þ
f22
 Step

f ðxÞ ¼ Pn

i¼1
xi2
½�100; 100�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f23
 Styblinski
Tang
 f ðxÞ ¼ 1

2

Xn
i¼1

ðx4i � 16x2i þ 5xiÞ

½�5; 5�n
 n ¼

30

f ðx*Þ ¼ � 39:1659n;
x* ¼ ð� 2:90;…; 2:90Þ
f24
 Trid

f ðxÞ ¼ Pn

i¼1
ðxi � 1Þ2 � Pn

i¼2
xixi�1
½�n2; n2�n
 n ¼
30
f ðx*Þ ¼ � nðn þ 4Þðn � 1Þ=
6;
xi* ¼ iðn þ 1 � iÞi ¼ 1,
2,…,n
Table A II
Unimodal test benchmark functions considered in the experiments.

f i Name Function S Dim Minimum
f 25
 Rothyp

f ðxÞ ¼ Pn

i¼1

Pi
j¼1

x2j

½�65:536;65:536�n
 n ¼ 30
 f ðx*Þ ¼ 0; x* ¼ ð0; :::;0Þ
f 26
 f ðxÞ ¼ Pn
i¼1

ðPi
j¼1

xiÞ2
 ½�100; 100�n
 n ¼ 30
 f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f 27
 Sphere

f ðxÞ ¼ Pn

i¼1
x2i
½�5; 5�n
 n ¼ 30
 f ðx*Þ ¼ 0;
x* ¼ 0;…; 0
f 28
 Sum Squares

f ðxÞ ¼ Pn

i¼1
ix2i
½�10; 10�n
 n ¼ 30
 f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f 29
 Sum of Different Powers

f ðxÞ ¼ Pn

i¼1
jxijiþ1
 ½�1; 1�n
 n ¼ 30
 f ðx*Þ ¼ 0;

x* ¼ ð0;…; 0Þ
Table A III
Composite test benchmark functions considered in the experiments.

f i Name Function S Dim Minimum
f 30
 Hybrid1
 f ðxÞ ¼ f1ðxÞþ f20ðxÞþ f27ðxÞ
 ½�100; 100�n
 n ¼ 30
 f ðx*Þ ¼ 0;
x* ¼ ð0;…; 0Þ
f 31
 Hybrid2
 f ðxÞ ¼ f3ðxÞþ f17ðxÞþ f18ðxÞ
 ½�100; 100�n
 n ¼ 30
 f ðx*Þ ¼ n� 1;
x* ¼ ð0;…; 0Þ
f 32
 Hybrid3
 f ðxÞ ¼ f1ðxÞþ f9ðxÞþ f18ðxÞþ f26ðxÞ
 ½�100;100�n
 n ¼ 30
 f ðx*Þ ¼ ð1:1nÞ� 1;
x* ¼ ð0;…; 0Þ
f 33
 Hybrid4
 f ðxÞ ¼ f1ðxÞþ f3ðxÞþ f17ðxÞþ f18ðxÞþ f20ðxÞ
 ½�100;100�n
 n ¼ 30
 f ðx*Þ ¼ n� 1;
x* ¼ ð0;…; 0Þ
Table A IV
Shifted test benchmark functions considered in the experiments.

f i Name Function S Dim Minimum
f 34
 Shifted Ackley
f ðxÞ ¼ � 20e
�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðXi � 10Þ2
s

� e

1
n

Xn
i¼1

cosð2πðXi � 10ÞÞ
þ 20þ e
½�20; 40�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð10;…;

10Þ

f 35
 Shifted Powell
 ½1; 10�n
(continued on next page)
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Table A IV (continued )
f i
 Name
 Function
23
S
 Dim
 Minimum
f ðxÞ ¼ Pn=4
i¼1

½ððx4i�3 � 5Þ þ 10x4i�2 � 5ÞÞðx4i�2 � 5ÞÞ2 þ 5x4i�1 � 5Þ � x4i � 5ÞÞðx4i � 5ÞÞ2 þ x4i�2 � 5Þ �

2ðx4i�1 � 5ÞÞ4 þ 10ððx4i�3 � 5Þ � ðx4i � 5ÞÞ4�
n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð5;…; 5Þ
f 36
 Shifted
Rastringin
f ðxÞ ¼ 10nþ Pn
i¼1

½ðxi � 15Þ2 � 10 cosð2πðxi � 15ÞÞ�
 ½9:88; 20:12�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð15;…;

15Þ

f 37
 Shifted

Rosenbrock
 f ðxÞ ¼ Pn�1

i¼1
½100xiþ1 � 100Þ � ðxi � 100Þ2Þðxi � 100Þðxi � 100Þ2Þ2 þ ðxi � 100Þ � 1Þ2�
 ½96;111�n
 n ¼

30

f ðx*Þ ¼ 0;
x* ¼ ð101;…;

101Þ

f 38
 Shifted Rothyp
f ðxÞ ¼ Pn
i¼1

Pi
j¼1

ðxj � 20Þ2
 ½�45:536;
85:536�

n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð20;…;

20Þ

f 39
 Shifted

Schwefel2
 f ðxÞ ¼ Pn
i¼1

ðPi
j¼1

ðxi � 100ÞÞ2
 ½0; 200�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð100;…;

100Þ

f 40
 Shifted

Schwefel22
 f ðxÞ ¼ Pn
i¼1

jðxi � 25Þj þ
Yn
i¼1

jðxi � 25Þj
 ½�75; 125�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð25;…;

25Þ

f 41
 Shifted Sphere
f ðxÞ ¼ Pn
i¼1

ðxi � 20Þ2
 ½14:88;25:12�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð20;…;

20Þ

f 42
 Shifted Sum2
f ðxÞ ¼ Pn
i¼1

iðxi � 30Þ2
 ½20;40�n
 n ¼
30
f ðx*Þ ¼ 0;
x* ¼ ð30;…;

30Þ
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