# A better balance in metaheuristic algorithms: Does it exist? 

Bernardo Morales-Castañeda*, Daniel Zaldívar, Erik Cuevas, Fernando Fausto, Alma Rodríguez<br>Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, 44430, Guadalajara, Mexico

## ARTICLE INFO

## Keywords:

Metaheuristic optimization
Balance
Exploration-exploitation
Population diversity


#### Abstract

The constant development of new metaheuristic algorithms has led to a saturation in the field of stochastic search. There are now hundreds of different algorithms that can be used to solve any problem. To produce a good performance, every metaheuristic method needs to address a satisfactory equilibrium between exploration and exploitation of the search space. Although exploration and exploitation represent two fundamental concepts in metaheuristics, the main questions about their combination and balance have not been yet completely understood. Most of the existent analyzes conducted on metaheuristic techniques consider only the comparison of their final results which cannot evaluate the nature of a good or bad balance. This paper presents an experimental analysis that quantitatively evaluates the balance between exploration and exploitation of several of the most important and better-known metaheuristic algorithms. In the study, a dimension-wise diversity measurement is used to assess the balance of each scheme considering a representative set of 42 benchmark problems that involve multimodal, unimodal, composite and shifted functions. As a result, the analysis provides several observations that allow understanding how this balance affects the results in each type of functions, and which balance is producing better solutions.


## 1. Introduction

In recent years, metaheuristics search algorithms have gained popularity as tools for solving a wide array of optimization problems in many different areas of application, including engineering design, digital image processing, and computer vision, networks and communications, power, and energy management, data analysis and machine learning, robotics, medical diagnosis, and others [1].

Most metaheuristic methods model population-based search schemes, in which a population of search agents (or individuals) applies specific sets of rules to explore different candidate solutions within a feasible solution space. These optimization frameworks present several advantages, including the interaction among individuals (which promotes the exchange of knowledge among different solutions) and the diversification of the population (which is important to ensure the efficient exploration of the search space and the ability to overcome local optima) [2].

Metaheuristic search methods are so numerous and varied in terms of design and potential applications [41]; however, for such an abundant family of optimization techniques, there seems to be a question that needs to be answered: Which part of the design in a metaheuristic algorithm contributes more to its performance? One widely accepted
principle among researchers considers that metaheuristic search methods can reach a better performance when an appropriate balance between exploration and exploitation of solutions is achieved [3]. While there seems to exist a general agreement on this concept, in fact, there is barely a vague conception of what the balance of exploration and exploitation really represent $[4,5]$. Indeed, the classification of search operators and strategies present in a metaheuristic method is often ambiguous, since they can contribute in some way to explore or exploit the search space [6].

In the absence of consistent knowledge about the mechanism that controls the balance between exploration and exploitation, several attempts have been conducted to fill these gaps. Most of these efforts have proposed interesting metrics that allow quantifying the level of exploration and exploitation in search algorithms through the monitoring of the current population diversity [4-11]. Although several indexes exist and more are being proposed, there is no definitive way to objectively measure the rate of exploration/exploitation provided in a metaheuristic scheme.

One of these metrics is the dimension-wise diversity measurement proposed in Ref. [10,12]. This index calculates the averaged sum distance between all the solutions to the median of each dimension and solutions.

[^0]Then, the exploration percent of each iteration is calculated by dividing the diversity value between the maximum diversity value encounter in the whole optimization process. On the other hand, the exploitation rate is considered the inverse of exploration percent. This measurement allows to find out how spread or clustered the search agents are over specific iterations during the search process. These values give information on how much time the algorithm behaves exploring or exploiting solutions. In spite of the information provided by this index, it has not been adopted in the community yet to characterize the balance between exploration and exploitation in metaheuristic methods.

In this paper, an experimental analysis is proposed to quantitatively evaluate the balance between exploration and exploitation on several of the most important and better-known metaheuristic algorithms. As a result, the analysis provides several observations that allow understanding of how this balance affects the results in each type of functions, and which balance is producing for better solutions. The methods studied in this work include Artificial Bee Colony (ABC), Bat Algorithm (BA), Covariance Matrix Adaptation Evolution Strategies (CMA-ES), Crow Search Algorithm (CSA), Differential Evolution (DE), Firefly Algorithm (FA), Grey Wolf Optimizer (GWO), Moth-Flame Optimization (MFO), Particle Swarm Optimization (PSO), Social Spiders Optimization (SSO), Teaching-Learning Based Optimization (TLBO) and Whale Optimization Algorithm (WOA), which are considered some of the most important metaheuristic search algorithms on the current literature in virtue of their performance, novelty and potential.

This paper is organized as follows: In Section 2, we open a discussion related to the concepts of Exploration and Exploitation. In Section 3, we discuss the dimension-wide diversity measurement proposed in Ref. [12] and their applications for the analysis of exploration and exploitation in metaheuristic search methods. In Section 4, we present our experimental analysis. Section 5 presents a discussion of the results. Finally, in Section 6 , conclusions are drawn.

## 2. Exploration and exploitation

For every metaheuristic algorithm, exploration and exploitation represent the most important characteristics for attaining success when solving a particular optimization problem. Exploration refers to the ability of a search algorithm to discover a diverse assortment of solutions, spread within different regions of the search space. On the other hand, exploitation emphasizes the idea of intensifying the search process overpromising regions of the solution space with the aim of finding better solutions or improving the existing ones [4]. Regarding these concepts, empirical experimentation has demonstrated that there is a strong relationship between the exploration-exploitation capacity of a certain search method and its convergence rate. In particular, while exploitation strategies are known to enhance convergence speed toward a global optimum, they are also known to increase the probability of entrapment into local optima. Conversely, search strategies that favor exploration over exploitation tend to increase the probability of finding regions within the search space where the global optimum is more likely to be located, this at the cost of deterioration on the algorithm's convergence speed [13].

In recent years, questions about how exploration and exploitation of solutions is achieved in metaheuristic optimization algorithms has remained as an open subject, and although seemingly trivial, it has remained as a source of disagreement among many researchers [11,14]; Although many ideas and concepts may seem opposite, there seems to be a common agreement within the research community on the idea that a good ratio between exploration and exploitation is essential to ensure good performance in this kind of search methods. Naturally, the question that often arises from such an idea is: Which are the optimal exploration and exploitation rates required to conduct an efficient search process? Given that metaheuristic search methods can be very different in terms of search strategy, it is difficult (if not impossible) to give an appropriate exploration/exploitation rate that works for every single method in
existence; in fact, it becomes evident that understanding the workings of the mechanisms implemented by these methods (and how these contribute to the search process) is necessary to devise an efficient search strategy.

In most population-based search methods, for example, selection mechanisms that allow choosing prominent solutions from among the available population (either to integrate them on the next cycle of the searching process or implement some solution update strategy) are commonly applied in order to balance elitism and diversity [15]. In the case of greedy selection mechanisms, for example, it is ensured that the individuals with the best-found solutions among all candidate solutions remain intact for the next generation and is known to improve convergence speed toward promising solutions. Also, in algorithms like DE [16], where an individual greedy selection mechanism is applied, new solutions are accepted only if it improves the solution(s) that originate them. The appeal of this selection strategy is that it has the potential to improve the exploration-exploitation ratio of solutions, as it forces an initial (diverse) population to improve individually from its starting point [17].

On the other hand, there are search algorithms that do not implement any kind of selection strategy at all, accepting every new solution independently of their quality. While these methods do not enforce the selection of prominent individuals during their search process, the implementation of other search mechanisms is necessary in order to balance the exploration-exploitation rate. In the case of algorithms such as PSO [18] or GWO [19], search mechanisms that apply some kind of "attraction operators" are considered in order to enhance their exploitation capabilities. These mechanisms seek to improve a population of solutions by, either moving them toward the location of seemingly "good" individuals within said population, or toward the location of the current best solutions found so far by the search process. The way in which solutions are chosen as attractors, and how other solutions are attracted to these attractors entirely depends on the design of the search method itself. In the case of the PSO algorithm, for example, individuals are not only set to experience an attraction toward the global best solution at a given iteration (cycle) of the search process, but also toward the best solution(s) recorded by each particle as the search process evolves (personal best solution). While this approach is often considered a well-balanced attraction mechanism regarding convergence and solutions diversity, implementing this kind of search strategy requires the allocation of additional memory, which could be undesired depending on the intended application(s).

Furthermore, some other algorithms implement attraction mechanisms which consider the composite effect of more than one attractor in order to discover new solutions. These set of attractors can be comprised of a subset of all currently available individuals, or even, by the whole population. Also, there are methods that implement more complex attraction schemes, which consider not only very specific members among the available population but also other particular properties. In FA [20], for example, the attractiveness experienced by each individual is not only dependent on the quality of other members, as it is also set to be inversely proportional to the distance that separates them, hence, the longer the distance, the lower the attraction. Similarly, in GSA, attractiveness is dictated by the so-called "gravitation force" exerted among particles within the feasible search space, and the magnitude of such attractions depends not only on the fitness value of each solution but also on the distance separating them [21].

Moreover, there search methods that do not contemplate attraction mechanisms as part of their search strategy; instead, these methods generate new solutions by means of pure random walks or by taking other criterions into account (i.e. the distance between solutions, as in the case of DE ). In methods such as GA, some solutions are generated by "mixing" the information of randomly chosen solution (crossover), whereas others are generated by adding perturbations to currently existing solutions (mutation). In this regard, it's worth mentioning that, while crossover and mutation operators in evolutionary algorithms are often seen as exploration and exploitation strategies, respectively, an in-
deep observation over the crossover behaviors may suggest that at the start of the search process (where the population is still diverse), crossover operators may indeed favor the exploration of solutions, whereas, toward the end of the process (where population has lost diversity), exploration capabilities are dramatically reduced. In a similar manner, mutation operators that modify existing solutions by applying large amounts of perturbations could be perceived as an exploration mechanism, as solutions might be generated over much larger proportions of the feasible solution space. With the previous being said, it is complicated to roughly classify crossover and mutation as either exploration or exploitation operators, as their intended behavior could be easily altered by adjusting their respective crossover and mutation rates.

Finally, it is worth noting that there are metaheuristic algorithms that consider the iterative stop criterion (maximum number of iterations), as well as the iterations progress as part of their search strategy. These mechanisms are mostly used to indirectly adjust the explorationexploitation rate by modifying several parameters employed by the algorithm's search operators as the search process evolves, this with the purpose of avoiding premature convergence. However, as a result of this constant adjustment on the exploration-exploitation rate, the algorithm's convergence speed may suffer a significant impact, which could be undesired depending on certain situations [6].

## 3. Evaluation of the balance

Metaheuristic algorithms use a group of candidate solutions to explore the search space with the objective to find satisfactory solutions for an optimization problem. In general, search agents with the best solutions tend to direct the search process towards them. As a consequence of this attraction, the distance among search agents decreases while the effect of exploitation increases. On the other hand, when the distance among search agents increases, the effect of the exploration process is more evident.

To calculate the increase and decrease in distance among search agents, a diversity measurement known as the dimension-wise diversity measurement [10] is considered. Under this method the population diversity is defined as follows:
$D i v_{j}=\frac{1}{n} \sum_{i=1}^{n}\left|\operatorname{median}\left(x^{j}\right)-x_{i}^{j}\right|$
$\operatorname{Div}=\frac{1}{m} \sum_{j=1}^{m} D i v_{j}$
where median $\left(x^{j}\right)$ represents the median of dimension $j$ in the whole population. $x_{i}^{j}$ is the dimension $j$ of search agent $i$. $n$ corresponds to the number of search agents in the population while $m$ symbolizes the number of design variables of the optimization problem.

The diversity in each dimension $\operatorname{Div}_{j}$ is defined as the distance between the dimension $j$ of every search agent and the median of that dimension, averaged. The diversity of the entire population Div is then calculated by averaging every $D i v_{j}$ in each dimension. Both values are computed in every iteration.

The complete balance response is characterized as the percentage of exploration and exploitation invested by certain metaheuristic scheme. These values are computed in each iteration by means of the following models:
$X P L \%=\left(\frac{\text { Div }}{\text { Div }_{\max }}\right) \times 100$
$X P T \%=\left(\frac{\left|D i v-D_{i v}{ }_{\max }\right|}{\text { Div }_{\max }}\right) \times 100$
where $D i v_{\max }$ represents the maximum diversity value found in the entire
optimization process.
The percentage of exploration $X P L \%$ represents the level of exploration as the relationship between the diversity in each iteration and the maximum reached diversity. The percentage of exploitation XPT\% corresponds to the level of exploitation. It is calculated as the complemental percentage to $X P L \%$ because the difference between the maximum diversity and the current diversity of an iteration is produced as a consequence of the concentration of search agents. As can be seen, both elements XPL\% and XPT\% are mutually conflicting and complementary.

In the evaluation of the balance response, the use of the median value avoids inconsistencies by using a reference element. Another interesting property of the balance response is that the values of $X P L \%$ and $X P T \%$ are also influenced by the maximum diversity Div $v_{\max }$ found during the entire optimization process. In fact, this value is used as a reference to evaluate the rate of exploration and exploitation. However, one disadvantage, of the dimension-wise diversity index is its filtering effect produced by the average combination of all dimensions. Therefore, small abrupt changes in diversity are partially smoothed. Under such conditions, the index used to evaluate the balance presents a very small tendency to exploitation since some very small abrupt changes in diversity are partially overlooked.

In order to illustrate the balance evaluation, a graphical example has been conducted. In the example a hypothetical metaheuristic scheme is used to optimize a simple two-dimensional function which is defined as follows:

$$
\begin{align*}
& f\left(x_{1}, x_{2}\right)=3\left(1-x_{1}\right)^{2} e^{-\left(x_{1}^{2}-x_{2}^{2}\right)}-10\left(\frac{x_{1}}{5}-x_{1}^{3}-x_{2}^{5}\right) e^{\left(-x_{1}^{2}-x_{2}^{2}\right)} \\
& \quad-1 / 3 e^{\left(-\left(x_{1}+1\right)^{2}-x_{2}^{2}\right)} \tag{5}
\end{align*}
$$

Assuming the interval $-3 \leq x_{1}, x_{2} \leq 3$, the function has a global maximum and two local maxima. Fig. 1(b) shows a three-dimensional plot of this function. A good ratio between the diversification of solutions in the search space and intensification of the best-found solutions symbolize a conflicting objective which should be examined when the performance of a metaheuristic scheme is analyzed. In spite of their differences, metaheuristic approaches maintain a standard design scheme. In the initial stage of the search strategy, the algorithm promotes the diversification, which implies the production of candidate solutions in diverse locations of the search space. As the iterations progress, the exploitation must be intensified to refine the quality of their solutions. Fig. 1(b) shows an example of the performance behavior during 450 iterations produced by a hypothetical method in terms of the balance evaluation defined by Eq. (3) and (4). From the Figure, six points (c), (d), (e), (f), (g) and (h) have been selected to exemplify the solution diversity (distribution) and their respective balance evaluations. Point (c) represents an early stage of the algorithm (about the 20 iteration) where the balance evaluation has as values $X P L \%=90$ and $X P T \%=10$. Under such percentages, the hypothetical method behaves with a clear tendency to the exploration of the search space. This effect can be illustrated by Fig. 1(c) in which the solutions maintain a high dispersion of the search space. Point (d) corresponds to the 60 iterations. In this position, the balance evaluation maintains a value of $X P L \%=70$ along with $X P T \%=$ 30. In this behavior, the algorithm presents mainly exploration with a low level of exploitation. The solution configuration of this behavior can be exemplified in Fig. 1(d) where the diversity is high with some groups of similar solutions. Points (e) and (f) correspond to the 150 and 250 iterations, respectively, where the balance evaluations have as values \% $=25, X P T \%=75$ and $X P L \%=08, X P T \%=92$, respectively. Under such percentages, the algorithm behavior has been inverted promoting more the exploitation than the exploration. Fig. 1(e) and (f) show the solution distribution for points (e) and (f) from Fig. 1(b). Under such configurations, the solutions are distributed in several clusters diminishing the total diversity. Finally, points (g) and (h) represent the last stages of the hypothetical method. In such positions, the algorithm maintains a clear tendency to the exploitation of the best-found solutions


Fig. 1. Performance behavior during 450 iterations produced by a hypothetical method in terms of the balance evaluation defined by Eq. (3) and (4).
without considering any exploration mechanism. Fig. $1(\mathrm{~g})$ and (h) correspond to the solution distribution for points $(\mathrm{g})$ and (h).

## 4. Experiments

To analyze the balance between exploration and exploitation in many of the most popular and important metaheuristic algorithms, we examined the performance of 12 state-of-the-art optimization techniques: Artificial Bee Colony (ABC) [22,23], Bat Algorithm (BA) [24], Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [25], Crow Search Algorithm (CSA) [26], Differential Evolution (DE) [16], Firefly Algorithm (FA) [27], Grey Wolf Optimization (GWO) [19], Social Spiders Optimization (SSO) [28], Teaching-Learning Based Optimization (TLBO) [29], Moth Flame Optimization (MFO) [30], Particle Search Optimization (PSO) [31] and Whale Optimization Algorithm (WOA) [32] in 43 well-known benchmark test functions (see Appendix A). The algorithms have been selected with the objective of covering a wide range of search mechanisms and design methodologies. Another criterion has been to include consolidate schemes and recently proposed methods. The availability of source code has been also an important factor as well as the
popularity and performance reported in the literature. For all the algorithms the maximum function evaluations were 50,000 and unless otherwise stated, the population was 50 . In some of the following tables, five different indicators are displayed: The average, median and standard deviation of the best-found solutions from 30 individual runs (AB, MD, SD), the average percentage of time spent exploring (\%XPL), the average percentage of time spent exploiting (\%XPT). To validate the performance differences among the algorithms, the Friedman test $[33,40]$ has been considered. This study is a non-parametric analysis that aims to detect significant differences among the behavior of three or more related methods. During this test, the original results are firstly converted to ranks so that the best performing algorithm is assigned rank 1, the second rank 2 , etc. The average ranks obtained by each algorithm are then one of the parameters used by the Friedman analysis. With this information, the test delivers a final result known as the $\boldsymbol{p}$-value. If this value is small enough (less than 0.01 or 0.05 according to the significance level) we can determine that the null hypothesis is rejected, and in consequence, there is significant difference amon the behavior of the algorithms [33].

Table 1 contains several observable characteristics of each selected algorithm that influence exploration, exploitation or both. In this table

Table 1
Observable characteristics of selected algorithms.

| Algorithms | Exploration/Exploitation |  |  |
| :--- | :--- | :--- | :--- |
|  | Selection mechanism | Attraction operators | Iteration dependent |
| ABC | Ind. Greedy | Multiple | NO |
| BA | Ind. Greedy | Global Best | NO |
| CMA-ES | Non-Greedy | N/A | NO |
| CSA | Non-Greedy | Personal | NO |
| DE | Ind. Greedy | N/A | NO |
| FA | Non-Greedy | Multiple | NO |
| GWO | Non-Greedy | Multiple | NO |
| MFO | Greedy | Multiple | YES |
| PSO | Non-Greedy | Multiple | NO |
| SSO | Non-Greedy | Multiple | NO |
| TLBO | Greedy | Multiple | NO |
| WOA | Non-Greedy | Global Best | NO |

the selection mechanism, the number of attraction operators and if it considers the number of iterations as a part of the search strategy is detailed.

These algorithms were chosen according to their importance to the field, reported performance, novelty or accessibility of the source code. Table 2 shows the algorithm-specific settings taken from the literature.

As the total number of graphics depicting the rate of exploration and exploitation employed by every algorithm in every function is close to 500, the experimental results are divided into five sub-sections according to the type of functions: multimodal, unimodal, composite and shifted. The results from each sub-section are from the best performing algorithms to better illustrate what behaviors are being more effective in each type of function.

The experiments are divided into six sub-sections. In the first section (4.1), the balance of metaheuristic methods is analyzed when they face multimodal functions. In the second section (4.2), the study considers unimodal functions. In the third section (4.3), the balance responses over hybrid functions are discussed. In the fourth section (4.4), results over shifted functions are analyzed. In the fifth section (4.5), the balance response of the Random Search algorithm is examinated. Finally, in the sixth section (4.6), a diversity analysis is conducted.

### 4.1. Results of multimodal test functions

Detailed information of each multimodal function, which is characterized by having multiple local optima, is presented in Appendix [A.I] Table AI. Table 3 presents the comparison results of the selected algorithms in the optimization of multimodal functions. Table 4 presents the statistical analysis outcomes by considering Friedman test. The best results are highlighted in boldface. The results displayed in both tables suggest that the best performing algorithms are CMAES, TLBO and WOA.

Fig. 2 shows the evolution of the exploration and the exploitation effects obtained by the top three algorithms in each of the 24 multimodal functions through all iterations. In order to visualize both effects as a characteristic, a new graph called incremental-decremental has been also added. In this graph, an increment is presented when the value of the exploration effect is higher or equal than the exploitation action (XPL\% $\geq$ $X P T \%)$. On the contrary, a decrement is produced when the exploitation value is superior to the exploration effect ( $X P L \%<X P T \%$ ). In the case of negative values, they are assumed as zero. Under such conditions, both effects are clearly visible through the values and the extension of the graph. High values correspond to an extensive exploration action while low magnitudes refer to a strong exploitation effect. Likewise, the duration of the graph in high or low values reflexes the sustained effect of exploration or exploitation in the search strategy. The maximum value of the incremental-decremental graph takes place when both the effects of exploration and exploitation present the same level ( $X P L \%=X P T \%$ ).

Tables 3 and 4 show that CMA-ES surpasses all other algorithms in four functions. According to Fig. 2, it exploited the search space
$96.0574 \%$ of the time and explored $3.9426 \%$ of the time. TLBO won in 5 functions and tied in 3 with average exploitation of $91.7911 \%$ and $8.2089 \%$ exploration. Finally, WOA found the best solution on 7 functions and tied in 4, this algorithm employed a balance of $93.4241 \%$ exploitation and $6.5759 \%$ exploration. In all cases, the incrementaldecremental graph shows that the effect of the exploration effect is very short while the exploitation action is prolonged during most of the time in the search strategy. These results suggest that the best balance for multimodal functions is closer to $90 \%$ exploitation and $10 \%$ exploration. These balances of exploration-exploitation have been produced as a consequence of the search mechanisms employed by each metaheuristic scheme. CMA-ES and WOA consider a non-greedy selection mechanism that provides a low exploration level. Conversely, TLBO used a greedy selection mechanism which slightly decreases the exploration rate. On the other hand, most of them use attraction operators toward the best global solution as a search strategy. Under such conditions, they promote exploitation at a high level.

There were four cases where CMA-ES, TLBO and WOA didn't find the best solutions, functions $f_{5}, f_{9}, f_{10}$ and $f_{21}$. In these functions, the algorithms that got the best results were $\operatorname{DE}\left(\mathrm{f}_{5}, \mathrm{f}_{21}\right)$ and MFO ( $\mathrm{f}_{9}, \mathrm{f}_{10}$ ). Fig. 3 shows the evolution of the exploration and the exploitation effects obtained in such functions by those algorithms. Beginning with $f_{5}$, we can already see that the DE algorithm focused less on exploitation compared to the top algorithms, and unlike in all the other multimodal functions, the best solution in $f_{21}$ was obtained by DE with a focus on exploration, with a balance of $83.7028 \%$ of the time exploring and $16.2972 \%$ exploiting. In case of function $\mathrm{f}_{5}$, the incremental-decremental graph shows that the exploration action maintains a wider effect during almost 200 iterations. On the contrary in function $f_{21}$, the incrementaldecremental information demonstrates that the exploration effect is prolonged during almost the complete optimization process. To obtain such values, DE uses a search strategy that combines an increase of the exploration rate with the independence of a specific point attractor. Through these search mechanisms, DE can avoid being trapped in local minima and find better solutions compared to the other metaheuristic algorithms. Another remarkable aspect of DE is the high differences produced in its balances when it faces optimization problems. On the other hand, MFO obtains the same balance level as the best three algorithms. This fact is an effect of the multiple attractors considered in its search strategy. Since it uses several attractor points, its level of exploitation decreases, incrementing slightly the exploration of the search

Table 2
Parameter settings for each algorithm.

| Algorithm | Parameters |
| :---: | :---: |
| ABC | Colony population $=124$, Onlooker bees $=62$, Employed bees $=62$, Scout bee $=1$, limit $=100$ [23]. |
| BA | Bat population $=50$, alpha $=0.9$, gamma $=0.9$ [24]. |
| CMA-ES | The algorithm has been configurated according to the guidelines provided by its author [34]. |
| CSA | Crow population $=50$, Flight length $=2$, awareness probability $=0.1$ [26]. |
| DE | The weight parameter is set to $F=0.75$ while the crossover probability is configurated to $C R=0.2$ [35]. |
| FA | The parameters set up for the randomness factor and the light absorption coefficient are set to $\alpha=0.98^{\text {it }}$ and $\gamma=1.0$ respectively, where it is the iteration number [36]. |
| GWO | Wolf population $=30$ [19]. |
| MFO | The number of flames is set as $N_{\text {flames }}=$ round $\left(\left(N_{p o p}-k\right) * \frac{N_{p o p}-1}{k_{\max }}\right)$ where $N_{p o p}$ denotes the population size, $k$ the current iteration and $k_{\max }$ the maximum number of iterations [30]. |
| PSO | The learning factors are set to $c_{1}=2$ and $c_{2}=2$. On the other hand, the inertia weight factor is configurated to decrease linearly from 0.9 to 0.2 as the process evolves [37]. |
| SSO | Number of females NFem $=50 *$ rand, Number of males $\mathrm{NMa}=50-\mathrm{NFem}$ where rand is a number between 0.65 and 0.9 . |
| TLBO | Population $=50$. |
| WOA | Whale population $=30$ [32]. |

Table 3
Best solutions found and balance employed in each multimodal function.

| Function |  | ABC | BA | CMAES | CSA | DE | FA | GWO | MFO | PSO | SSO | TLBO | WOA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{1}$ | AB | $1.72 \mathrm{E}+01$ | $1.25 \mathrm{E}+01$ | $2.06 \mathrm{E}+00$ | $1.71 \mathrm{E}+01$ | 5.12E-03 | $1.77 \mathrm{E}+00$ | $1.01 \mathrm{E}-14$ | $9.22 \mathrm{E}+00$ | $5.44 \mathrm{E}+00$ | 3.54E-01 | 5.33E-15 | $3.08 \mathrm{E}-15$ |
|  | MD | $1.73 \mathrm{E}+01$ | $1.25 \mathrm{E}+01$ | $7.11 \mathrm{E}-15$ | $1.72 \mathrm{E}+01$ | 4.84E-03 | $1.81 \mathrm{E}+00$ | $8.88 \mathrm{E}-15$ | $1.39 \mathrm{E}+01$ | $2.38 \mathrm{E}-02$ | 3.48E-01 | 5.33E-15 | 3.55E-15 |
|  | SD | $4.69 \mathrm{E}-01$ | $1.07 \mathrm{E}+00$ | $6.30 \mathrm{E}+00$ | $4.15 \mathrm{E}-01$ | 9.34E-04 | $1.43 \mathrm{E}-01$ | $3.24 \mathrm{E}-15$ | $8.37 \mathrm{E}+00$ | $7.98 \mathrm{E}+00$ | $5.43 \mathrm{E}-02$ | $1.81 \mathrm{E}-15$ | 2.59E-15 |
|  | \%XPL | 87.4970 | 0.9934 | 2.0427 | 98.0255 | 13.4553 | 14.4189 | 0.4716 | 6.7257 | 44.4648 | 6.9182 | 1.0521 | 1.8393 |
|  | \%XPT | 12.5030 | 99.0066 | 97.9573 | 1.9745 | 86.5447 | 85.5811 | 99.5284 | 93.2743 | 55.5352 | 93.0818 | 98.9479 | 98.1607 |
|  | AB | $2.86 \mathrm{E}+05$ | $2.52 \mathrm{E}+01$ | 6.67E-01 | $1.69 \mathrm{E}+05$ | $1.46 \mathrm{E}+00$ | $4.17 \mathrm{E}+00$ | $6.67 \mathrm{E}-01$ | $4.28 \mathrm{E}+04$ | $1.80 \mathrm{E}+04$ | $3.69 \mathrm{E}+00$ | 6.67E-01 | 6.67E-01 |
| $\mathrm{f}_{2}$ | MD | $2.74 \mathrm{E}+05$ | $3.92 \mathrm{E}+00$ | $6.67 \mathrm{E}-01$ | $1.70 \mathrm{E}+05$ | $1.38 \mathrm{E}+00$ | $3.92 \mathrm{E}+00$ | $6.67 \mathrm{E}-01$ | $8.24 \mathrm{E}+01$ | $3.21 \mathrm{E}+02$ | $3.34 \mathrm{E}+00$ | $6.67 \mathrm{E}-01$ | $6.67 \mathrm{E}-01$ |
|  | SD | $7.76 \mathrm{E}+04$ | $4.93 \mathrm{E}+01$ | $6.03 \mathrm{E}-15$ | $4.70 \mathrm{E}+04$ | 3.65E-01 | $1.20 \mathrm{E}+00$ | 4.94E-06 | $1.16 \mathrm{E}+05$ | $4.27 \mathrm{E}+04$ | $1.46 \mathrm{E}+00$ | $3.41 \mathrm{E}-14$ | 8.19E-05 |
|  | \%XPL | 93.9632 | 3.1009 | 2.4524 | 98.5658 | 15.3386 | 19.1611 | 0.5150 | 5.7613 | 45.8991 | 19.1499 | 1.0151 | 2.5674 |
|  | \%XPT | 6.0368 | 96.8991 | 97.5476 | 1.4342 | 84.6614 | 80.8389 | 99.4850 | 94.2387 | 54.1009 | 80.8501 | 98.9849 | 97.4326 |
|  | AB | $1.37 \mathrm{E}+02$ | $7.76 \mathrm{E}+01$ | $1.31 \mathrm{E}-03$ | $1.70 \mathrm{E}+02$ | $6.01 \mathrm{E}-03$ | $1.10 \mathrm{E}+00$ | $1.05 \mathrm{E}-03$ | 1.19E-02 | $9.03 \mathrm{E}+00$ | $1.66 \mathrm{E}-02$ | 0.00E+00 | $1.34 \mathrm{E}-03$ |
| $\mathrm{f}_{3}$ | MD | $1.39 \mathrm{E}+02$ | $6.65 \mathrm{E}+01$ | $0.00 \mathrm{E}+00$ | $1.73 \mathrm{E}+02$ | $3.98 \mathrm{E}-03$ | $1.10 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $9.87 \mathrm{E}-03$ | $8.86 \mathrm{E}-03$ | $1.40 \mathrm{E}-02$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ |
|  | SD | $1.61 \mathrm{E}+01$ | $2.51 \mathrm{E}+01$ | $3.47 \mathrm{E}-03$ | $2.03 \mathrm{E}+01$ | $5.66 \mathrm{E}-03$ | $1.24 \mathrm{E}-02$ | $4.40 \mathrm{E}-03$ | $1.32 \mathrm{E}-02$ | $2.75 \mathrm{E}+01$ | $1.05 \mathrm{E}-02$ | $0.00 \mathrm{E}+00$ | $7.35 \mathrm{E}-03$ |
|  | \%XPL | 78.6281 | 2.9400 | 2.0703 | 98.3754 | 9.9041 | 16.8046 | 0.4640 | 4.9714 | 38.7490 | $6.6239$ | 0.9905 | 1.7932 |
|  | \%XPT | 21.3719 | 97.0600 | 97.9297 | 1.6246 | 90.0959 | 83.1954 | 99.5360 | 95.0286 | 61.2510 | 93.3761 | 99.0095 | 98.2068 |
|  | AB | 4.98E-01 | $3.21 \mathrm{E}-06$ | $5.29 \mathrm{E}-111$ | 1.18E-01 | $2.42 \mathrm{E}-16$ | 1.05E-09 | $4.92 \mathrm{E}-217$ | $4.53 \mathrm{E}-08$ | 2.17E-10 | 4.68E-05 | $1.98 \mathrm{E}-236$ | 0.00E +00 |
| $\mathrm{f}_{4}$ | MD | $4.96 \mathrm{E}-01$ | $3.07 \mathrm{E}-06$ | $1.04 \mathrm{E}-112$ | $1.07 \mathrm{E}-01$ | 2.12E-16 | $8.43 \mathrm{E}-10$ | $1.26 \mathrm{E}-221$ | $1.19 \mathrm{E}-09$ | 7.22E-12 | $3.98 \mathrm{E}-05$ | $2.49 \mathrm{E}-238$ | $0.00 \mathrm{E}+00$ |
|  | SD | $1.56 \mathrm{E}-01$ | $1.00 \mathrm{E}-06$ | $1.96 \mathrm{E}-110$ | $4.14 \mathrm{E}-02$ | 1.68E-16 | 7.67E-10 | $0.00 \mathrm{E}+00$ | $1.23 \mathrm{E}-07$ | $9.22 \mathrm{E}-10$ | $3.14 \mathrm{E}-05$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ |
|  | \%XPL | 96.9063 | 7.1664 | 2.4101 | 98.1739 | 15.5385 | 18.7493 | 0.5353 | 7.6471 | 49.5202 | 55.0966 | 0.9975 | 2.3214 |
|  | \%XPT | 3.0937 | 92.8336 | 97.5899 | 1.8261 | 84.4615 | 81.2507 | 99.4647 | 92.3529 | 50.4798 | 44.9034 | 99.0025 | 97.6786 |
|  | AB | $8.36 \mathrm{E}+01$ | $7.82 \mathrm{E}+00$ | $2.12 \mathrm{E}-01$ | $5.83 \mathrm{E}+01$ | $2.52 \mathrm{E}-05$ | 3.47E-01 | $1.11 \mathrm{E}+00$ | $2.48 \mathrm{E}+01$ | $4.94 \mathrm{E}+00$ | 3.09E-01 | $4.74 \mathrm{E}-01$ | $9.66 \mathrm{E}-02$ |
| $\mathrm{f}_{5}$ | MD | $8.47 \mathrm{E}+01$ | $6.57 \mathrm{E}+00$ | $1.50 \mathrm{E}-32$ | $5.84 \mathrm{E}+01$ | $2.43 \mathrm{E}-05$ | $9.07 \mathrm{E}-02$ | $1.09 \mathrm{E}+00$ | $2.33 \mathrm{E}+01$ | $3.50 \mathrm{E}+00$ | $1.27 \mathrm{E}-01$ | $4.92 \mathrm{E}-01$ | $9.51 \mathrm{E}-02$ |
|  | SD | $1.21 \mathrm{E}+01$ | $4.65 \mathrm{E}+00$ | 5.06E-01 | $8.60 \mathrm{E}+00$ | 8.90E-06 | $5.24 \mathrm{E}-01$ | $2.14 \mathrm{E}-01$ | $1.01 \mathrm{E}+01$ | $4.94 \mathrm{E}+00$ | 4.17E-01 | $2.22 \mathrm{E}-01$ | $1.02 \mathrm{E}-01$ |
|  | \%XPL | 95.0028 | 2.5900 | 2.6241 | 98.1753 | 17.3320 | 17.5826 | 2.6767 | 5.0162 | 47.1323 | 19.6133 | 1.2255 | 6.3444 |
|  | \%XPT | 4.9972 | 97.4100 | 97.3759 | 1.8247 | 82.6680 | 82.4174 | 97.3233 | 94.9838 | 52.8677 | 80.3867 | 98.7745 | 93.6556 |
|  |  | $1.91 \mathrm{E}-01$ | $1.81 \mathrm{E}-04$ | $5.57 \mathrm{E}-27$ | $9.36 \mathrm{E}-02$ | 0.00E+00 | $9.52 \mathrm{E}-08$ | 7.04E-12 | 7.12E-07 | $0.00 \mathrm{E}+00$ | $9.32 \mathrm{E}-07$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ |
| $\mathrm{f}_{6}$ | MD | 1.88E-01 | $5.85 \mathrm{E}-15$ | $0.00 \mathrm{E}+00$ | $9.09 \mathrm{E}-02$ | 0.00E +00 | $8.42 \mathrm{E}-08$ | 3.69E-12 | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $7.50 \mathrm{E}-07$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ |
|  | SD | 4.67E-02 | 9.76E-04 | 3.05E-26 | $2.18 \mathrm{E}-02$ | 0.00E+00 | $4.01 \mathrm{E}-08$ | $7.35 \mathrm{E}-12$ | 3.90E-06 | $0.00 \mathrm{E}+00$ | $6.86 \mathrm{E}-07$ | 0.00E+00 | 0.00E+00 |
|  | \%XPL | 95.9426 | 3.5010 | 2.9087 | 98.4887 | 70.1519 | 13.0572 | 25.8766 | 4.0018 | 0.5549 | 20.5388 | 14.9194 | 24.2250 |
|  | \%XPT | 4.0574 | 96.4990 | 97.0913 | 1.5113 | 29.8481 | 86.9428 | 74.1234 | 95.9982 | 99.4451 | 79.4612 | 85.0806 | 75.7750 |
|  |  | $3.79 \mathrm{E}+04$ | $6.36 \mathrm{E}+04$ | $1.63 \mathrm{E}-87$ | $5.81 \mathrm{E}+01$ | $1.69 \mathrm{E}-111$ | $1.03 \mathrm{E}-38$ | 0.00E+00 | $4.66 \mathrm{E}-206$ | $7.25 \mathrm{E}-33$ | $4.39 \mathrm{E}-17$ | 0.00E +00 | 0.00E +00 |
| $\mathrm{f}_{7}$ | MD | 5.61E+03 | $1.41 \mathrm{E}-04$ | $1.80 \mathrm{E}-121$ | $1.14 \mathrm{E}+01$ | $1.17 \mathrm{E}-116$ | $1.69 \mathrm{E}-42$ | 0.00E +00 | $8.15 \mathrm{E}-225$ | 1.36E-90 | $3.59 \mathrm{E}-22$ | 0.00E +00 | 0.00E +00 |
|  | SD | $1.10 \mathrm{E}+05$ | $3.21 \mathrm{E}+05$ | 6.12E-87 | $1.24 \mathrm{E}+02$ | $8.88 \mathrm{E}-111$ | $5.60 \mathrm{E}-38$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | 3.97E-32 | $1.46 \mathrm{E}-16$ | 0.00E+00 | 0.00E+00 |
|  | \%XPL | 86.4106 | 1.0759 | 3.5939 | 98.0479 | 12.4436 | 22.9480 | 0.6234 | 6.7044 | 37.5761 | 23.0048 | 1.3033 | 1.6233 |
|  | \%XPT | 13.5894 | 98.9241 | 96.4061 | 1.9521 | 87.5564 | 77.0520 | 99.3766 | 93.2956 | 62.4239 | 76.9952 | 98.6967 | 98.3767 |
|  | AB | $1.15 \mathrm{E}+08$ | $9.53 \mathrm{E}+06$ | $7.69 \mathrm{E}+01$ | $4.59 \mathrm{E}+07$ | $2.00 \mathrm{E}+05$ | $1.45 \mathrm{E}+03$ | $2.27 \mathrm{E}+06$ | $8.66 \mathrm{E}+01$ | $9.20 \mathrm{E}+02$ | $8.27 \mathrm{E}+01$ | $2.64 \mathrm{E}+02$ | $4.52 \mathrm{E}+02$ |
| $\mathrm{f}_{8}$ | MD | $1.16 \mathrm{E}+08$ | $1.03 \mathrm{E}+07$ | $7.65 \mathrm{E}+01$ | $4.51 \mathrm{E}+07$ | $1.97 \mathrm{E}+05$ | $1.22 \mathrm{E}+03$ | $2.00 \mathrm{E}+06$ | $8.73 \mathrm{E}+01$ | $3.23 \mathrm{E}+02$ | $8.20 \mathrm{E}+01$ | $7.82 \mathrm{E}+01$ | $1.45 \mathrm{E}+02$ |
|  | SD | $3.13 \mathrm{E}+07$ | $3.34 \mathrm{E}+06$ | $3.07 \mathrm{E}+00$ | $9.43 \mathrm{E}+06$ | $6.77 \mathrm{E}+04$ | $9.15 \mathrm{E}+02$ | $1.44 \mathrm{E}+06$ | $3.74 \mathrm{E}+00$ | $1.60 \mathrm{E}+03$ | $2.51 \mathrm{E}+00$ | $7.47 \mathrm{E}+02$ | $1.19 \mathrm{E}+03$ |
|  |  | 95.5115 | 3.4265 | 2.4201 | 98.5632 | 39.5521 | 18.0130 | 7.3906 | 6.4148 | 42.9836 | 8.8978 | 2.7120 | 10.5891 |
|  | \%XPT | 4.4885 | 96.5735 | 97.5799 | 1.4368 | 60.4479 | 81.9870 | 92.6094 | 93.5852 | 57.0164 | 91.1022 | 97.2880 | 89.4109 |
|  | AB | $2.09 \mathrm{E}+08$ | $2.82 \mathrm{E}+06$ | $1.04 \mathrm{E}+02$ | $7.46 \mathrm{E}+07$ | $1.92 \mathrm{E}+04$ | $1.22 \mathrm{E}+03$ | $1.40 \mathrm{E}+05$ | $9.14 \mathrm{E}+01$ | $7.75 \mathrm{E}+02$ | $1.21 \mathrm{E}+02$ | $1.36 \mathrm{E}+02$ | $4.60 \mathrm{E}+03$ |
| $\mathrm{f}_{9}$ | MD | $2.08 \mathrm{E}+08$ | $2.25 \mathrm{E}+06$ | $1.04 \mathrm{E}+02$ | $7.82 \mathrm{E}+07$ | $1.75 \mathrm{E}+04$ | $9.04 \mathrm{E}+02$ | $1.25 \mathrm{E}+05$ | $9.18 \mathrm{E}+01$ | $2.38 \mathrm{E}+02$ | $1.20 \mathrm{E}+02$ | $1.22 \mathrm{E}+02$ | $1.64 \mathrm{E}+02$ |
|  | SD | $6.05 \mathrm{E}+07$ | $2.48 \mathrm{E}+06$ | $4.61 \mathrm{E}+00$ | $1.87 \mathrm{E}+07$ | $7.84 \mathrm{E}+03$ | $1.11 \mathrm{E}+03$ | $7.09 \mathrm{E}+04$ | $3.72 \mathrm{E}+00$ | $1.54 \mathrm{E}+03$ | $5.36 \mathrm{E}+00$ | $5.87 \mathrm{E}+01$ | $1.95 \mathrm{E}+04$ |
|  | \%XPL | 95.3091 | 3.5499 | 2.3544 | 99.0277 | 24.8489 | 19.8155 | 3.7775 | 6.7386 | 48.9883 | 9.1842 | 2.0446 | 6.8941 |
|  | \%XPT | 4.6909 | 96.4501 | 97.6456 | 0.9723 | 75.1511 | 80.1845 | 96.2225 | 93.2614 | 51.0117 | 90.8158 | 97.9554 | 93.1059 |
|  | AB | $6.18 \mathrm{E}+84$ | $9.59 \mathrm{E}+83$ | $1.89 \mathrm{E}+83$ | $5.10 \mathrm{E}+83$ | $3.06 \mathrm{E}+81$ | $8.60 \mathrm{E}+81$ | $3.60 \mathrm{E}+81$ | $1.66 \mathrm{E}+81$ | $4.40 \mathrm{E}+81$ | $4.26 \mathrm{E}+81$ | $1.82 \mathrm{E}+82$ | $1.29 \mathrm{E}+82$ |
| $\mathrm{f}_{10}$ | MD | $3.86 \mathrm{E}+84$ | $8.54 \mathrm{E}+83$ | $1.02 \mathrm{E}+83$ | $4.32 \mathrm{E}+83$ | $1.25 \mathrm{E}+81$ | $6.39 \mathrm{E}+81$ | $7.87 \mathrm{E}+80$ | $2.36 \mathrm{E}+80$ | $2.47 \mathrm{E}+81$ | $9.35 \mathrm{E}+80$ | $1.07 \mathrm{E}+82$ | $3.02 \mathrm{E}+81$ |
|  | SD | $6.29 \mathrm{E}+84$ | $7.77 \mathrm{E}+83$ | $2.81 \mathrm{E}+83$ | $3.87 \mathrm{E}+83$ | $6.49 \mathrm{E}+81$ | $7.58 \mathrm{E}+81$ | $6.65 \mathrm{E}+81$ | $3.25 \mathrm{E}+81$ | $5.29 \mathrm{E}+81$ | $8.50 \mathrm{E}+81$ | $1.84 \mathrm{E}+82$ | $2.56 \mathrm{E}+82$ |
|  | \%XPL | 97.9017 | 1.0069 | 29.1786 | 99.1435 | 89.9032 | 51.7721 | 14.7970 | 8.4823 | 60.2020 | 33.6651 | 84.3472 | 12.5809 |
|  | \%XPT | 2.0983 | 98.9931 | 70.8214 | 0.8565 | 10.0968 | 48.2279 | 85.2030 | 91.5177 | 39.7980 | 66.3349 | 15.6528 | 87.4191 |
|  | AB | $1.55 \mathrm{E}+83$ | $2.85 \mathrm{E}+63$ | $2.04 \mathrm{E}+02$ | $2.90 \mathrm{E}+75$ | $1.25 \mathrm{E}+02$ | $8.65 \mathrm{E}+28$ | $2.71 \mathrm{E}+02$ | $7.61 \mathrm{E}+37$ | $2.15 \mathrm{E}+49$ | $8.15 \mathrm{E}+23$ | $1.64 \mathrm{E}+02$ | $1.41 \mathrm{E}+02$ |
| $\mathrm{f}_{11}$ | MD | $8.93 \mathrm{E}+81$ | $1.60 \mathrm{E}+54$ | $3.03 \mathrm{E}+01$ | $7.22 \mathrm{E}+73$ | $9.93 \mathrm{E}+01$ | $1.73 \mathrm{E}+21$ | $1.15 \mathrm{E}+02$ | $2.09 \mathrm{E}+25$ | $4.00 \mathrm{E}+32$ | $5.96 \mathrm{E}+17$ | $5.41 \mathrm{E}+01$ | $5.09 \mathrm{E}+01$ |
|  | SD | $4.24 \mathrm{E}+83$ | $1.56 \mathrm{E}+64$ | $4.10 \mathrm{E}+02$ | $5.96 \mathrm{E}+75$ | $7.70 \mathrm{E}+01$ | $4.28 \mathrm{E}+29$ | $3.81 \mathrm{E}+02$ | $4.17 \mathrm{E}+38$ | $1.18 \mathrm{E}+50$ | $2.99 \mathrm{E}+24$ | $2.53 \mathrm{E}+02$ | $2.52 \mathrm{E}+02$ |
|  | \%XPL | 97.5495 | 2.4453 | 0.5018 | 98.6073 | 20.5013 | 23.3910 | 0.9863 | 10.0874 | 58.0356 | 16.5102 | 1.1156 | 3.2459 |
|  | \%XPT | 2.4505 | 97.5547 | 99.4982 | 1.3927 | 79.4987 | 76.6090 | 99.0137 | 89.9126 | 41.9644 | 83.4898 | 98.8844 | 96.7541 |


|  | AB | $4.22 \mathrm{E}+01$ | $4.88 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $5.84 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $3.37 \mathrm{E}+01$ | $3.47 \mathrm{E}+01$ | $3.06 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{12}$ | MD | $4.20 \mathrm{E}+01$ | $4.80 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $5.90 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $3.50 \mathrm{E}+01$ | $3.50 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $3.00 \mathrm{E}+01$ | $\stackrel{5}{6}$ |
|  | SD | $1.63 \mathrm{E}+00$ | $3.54 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $2.91 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | 0．00E＋00 | $0.00 \mathrm{E}+00$ | $3.70 \mathrm{E}+00$ | $4.15 \mathrm{E}+00$ | 7．74E－01 | 1．83E－01 | $1.83 \mathrm{E}-01$ |  |
|  | \％XPL | 56.3797 | 2.2746 | 4.6431 | 98.0768 | 16.0563 | 17.8066 | 3.5525 | 9.1007 | 39.3777 | 27.7303 | 4.3927 | 4.7957 |  |
|  | \％XPT | 43.6203 | 97.7254 | 95.3569 | 1.9232 | 83.9437 | 82.1934 | 96.4475 | 90.8993 | 60.6223 | 72.2697 | 95.6073 | 95.2043 |  |
|  | AB | $2.75 \mathrm{E}+03$ | $1.06 \mathrm{E}-01$ | $8.01 \mathrm{E}-05$ | $1.93 \mathrm{E}+03$ | $8.35 \mathrm{E}+01$ | $1.31 \mathrm{E}+00$ | $1.46 \mathrm{E}-06$ | $4.56 \mathrm{E}+02$ | $1.36 \mathrm{E}+03$ | $2.96 \mathrm{E}+00$ | 8．93E－06 | 7．44E－07 | 碞 |
| $\mathrm{f}_{13}$ | MD | $2.88 \mathrm{E}+03$ | $1.36 \mathrm{E}-02$ | $7.46 \mathrm{E}-05$ | $1.92 \mathrm{E}+03$ | $8.25 \mathrm{E}+01$ | $1.03 \mathrm{E}+00$ | $3.72 \mathrm{E}-07$ | $1.88 \mathrm{E}+02$ | $5.62 \mathrm{E}+02$ | $2.66 \mathrm{E}+00$ | $1.05 \mathrm{E}-06$ | $1.88 \mathrm{E}-08$ | $\stackrel{\square}{\circ}$ |
|  | SD | $7.50 \mathrm{E}+02$ | $3.94 \mathrm{E}-01$ | $3.69 \mathrm{E}-05$ | $3.15 \mathrm{E}+02$ | $2.08 \mathrm{E}+01$ | $9.05 \mathrm{E}-01$ | $2.44 \mathrm{E}-06$ | $6.44 \mathrm{E}+02$ | $1.48 \mathrm{E}+03$ | $1.29 \mathrm{E}+00$ | 1．75E－05 | $1.85 \mathrm{E}-06$ | $\stackrel{8}{8}$ |
|  | \％XPL | 90.3160 | 2.4176 | 1.0526 | 98.9323 | 70.1808 | 27.7344 | 1.1843 | 6.6424 | 22.9571 | 31.7263 | 1.1151 | 2.8662 |  |
|  | \％XPT | 9.6840 | 97.5824 | 98.9474 | 1.0677 | 29.8192 | 72.2656 | 98.8157 | 93.3576 | 77.0429 | 68.2737 | 98.8849 | 97.1338 |  |
|  | AB | $4.28 \mathrm{E}+10$ | $4.38 \mathrm{E}+09$ | $2.29 \mathrm{E}-28$ | $2.08 \mathrm{E}+10$ | $6.42 \mathrm{E}+02$ | $1.34 \mathrm{E}+04$ | $1.22 \mathrm{E}+03$ | $2.08 \mathrm{E}+09$ | $1.16 \mathrm{E}+02$ | $7.98 \mathrm{E}+00$ | 1．08E－05 | $2.24 \mathrm{E}+02$ |  |
| $\mathrm{f}_{14}$ | MD | $4.40 \mathrm{E}+10$ | $4.08 \mathrm{E}+09$ | $2.14 \mathrm{E}-28$ | $2.03 \mathrm{E}+10$ | $6.66 \mathrm{E}+02$ | $1.16 \mathrm{E}+04$ | $1.17 \mathrm{E}+03$ | $2.90 \mathrm{E}-01$ | $5.59 \mathrm{E}+01$ | $7.04 \mathrm{E}+00$ | $7.41 \mathrm{E}-07$ | $1.61 \mathrm{E}+02$ |  |
|  | SD | $9.36 \mathrm{E}+09$ | $2.48 \mathrm{E}+09$ | $6.23 \mathrm{E}-29$ | $4.80 \mathrm{E}+09$ | $7.47 \mathrm{E}+01$ | 5．72E +03 | $5.86 \mathrm{E}+02$ | $1.14 \mathrm{E}+10$ | $1.66 \mathrm{E}+02$ | $2.86 \mathrm{E}+00$ | $3.56 \mathrm{E}-05$ | $2.32 \mathrm{E}+02$ |  |
|  | \％XPL | 93.7338 | 4.5958 | 2.0125 | 98.6879 | 12.5087 | 15.4941 | 0.7743 | 8.0601 | 42.6197 | 9.9536 | 1.0140 | 2.1986 |  |
|  | \％XPT | 6.2662 | 95.4042 | 97.9875 | 1.3121 | 87.4913 | 84.5059 | 99.2257 | 91.9399 | 57.3803 | 90.0464 | 98.9860 | 97.8014 |  |
|  | AB | $3.57 \mathrm{E}+01$ | $1.31 \mathrm{E}+01$ | $9.61 \mathrm{E}+00$ | $2.43 \mathrm{E}+01$ | $1.10 \mathrm{E}+01$ | $9.92 \mathrm{E}+00$ | $8.74 \mathrm{E}+00$ | $1.19 \mathrm{E}+01$ | $1.49 \mathrm{E}+01$ | $1.16 \mathrm{E}+01$ | $8.78 \mathrm{E}+00$ | $9.10 \mathrm{E}+00$ |  |
| $\mathrm{f}_{15}$ | MD | $4.69 \mathrm{E}+04$ | $5.34 \mathrm{E}+01$ | $2.25 \mathrm{E}-09$ | $1.40 \mathrm{E}+04$ | $1.35 \mathrm{E}+01$ | $2.16 \mathrm{E}+01$ | $1.46 \mathrm{E}+01$ | $7.41 \mathrm{E}+03$ | $2.23 \mathrm{E}-01$ | $1.98 \mathrm{E}+01$ | $1.52 \mathrm{E}-02$ | $1.16 \mathrm{E}+01$ |  |
|  | SD | $4.70 \mathrm{E}+04$ | $5.32 \mathrm{E}+01$ | $6.88 \mathrm{E}-15$ | $1.32 \mathrm{E}+04$ | $1.32 \mathrm{E}+01$ | $2.16 \mathrm{E}+01$ | $1.42 \mathrm{E}+01$ | $4.72 \mathrm{E}-03$ | $1.57 \mathrm{E}-01$ | $1.97 \mathrm{E}+01$ | $3.32 \mathrm{E}-04$ | $1.14 \mathrm{E}+01$ |  |
|  | \％XPL | 94.4582 | 2.9616 | 11.8761 | 98.0231 | 37.4339 | 28.9769 | 3.3576 | 10.4171 | 49.7007 | 51.1412 | 17.1500 | 7.1632 |  |
|  | \％XPT | 5.5418 | 97.0384 | 88.1239 | 1.9769 | 62.5661 | 71.0231 | 96.6424 | 89.5829 | 50.2993 | 48.8588 | 82.8500 | 92.8368 |  |
|  | AB | $1.24 \mathrm{E}+04$ | $1.60 \mathrm{E}+01$ | $1.23 \mathrm{E}-08$ | $3.76 \mathrm{E}+03$ | $1.28 \mathrm{E}+00$ | $2.31 \mathrm{E}+00$ | $4.90 \mathrm{E}+00$ | $2.26 \mathrm{E}+04$ | $2.16 \mathrm{E}-01$ | $2.69 \mathrm{E}+00$ | 5．52E－02 | $5.55 \mathrm{E}+00$ |  |
| $\mathrm{f}_{16}$ | MD | $2.97 \mathrm{E}+02$ | $6.57 \mathrm{E}+01$ | $7.02 \mathrm{E}+01$ | $2.58 \mathrm{E}+02$ | $8.34 \mathrm{E}+01$ | $5.90 \mathrm{E}+01$ | $1.52 \mathrm{E}-01$ | $1.36 \mathrm{E}+02$ | $1.38 \mathrm{E}+02$ | $5.71 \mathrm{E}+01$ | $1.27 \mathrm{E}+01$ | $3.79 \mathrm{E}-15$ |  |
|  | SD | $2.97 \mathrm{E}+02$ | $6.17 \mathrm{E}+01$ | $5.27 \mathrm{E}+01$ | $2.65 \mathrm{E}+02$ | $8.40 \mathrm{E}+01$ | $5.45 \mathrm{E}+01$ | $0.00 \mathrm{E}+00$ | $1.25 \mathrm{E}+02$ | $1.26 \mathrm{E}+02$ | $5.72 \mathrm{E}+01$ | $1.29 \mathrm{E}+01$ | $0.00 \mathrm{E}+00$ |  |
|  | \％XPL | 95.3699 | 4.8089 | 2.1825 | 98.2647 | 18.5119 | 17.4896 | 2.4108 | 5.9925 | 46.6230 | 19.3011 | 1.1184 | 5.3582 |  |
|  | \％XPT | 4.6301 | 95.1911 | 97.8175 | 1.7353 | 81.4881 | 82.5104 | 97.5892 | 94.0075 | 53.3770 | 80.6989 | 98.8816 | 94.6418 |  |
|  | AB | $1.61 \mathrm{E}+01$ | $3.21 \mathrm{E}+01$ | $4.92 \mathrm{E}+01$ | $1.60 \mathrm{E}+01$ | $6.98 \mathrm{E}+00$ | $1.91 \mathrm{E}+01$ | $8.35 \mathrm{E}-01$ | $3.52 \mathrm{E}+01$ | $4.59 \mathrm{E}+01$ | $1.21 \mathrm{E}+01$ | $4.78 \mathrm{E}+00$ | $1.44 \mathrm{E}-14$ |  |
| $\mathrm{f}_{17}$ | MD | $2.38 \mathrm{E}+05$ | $4.60 \mathrm{E}+02$ | $1.13 \mathrm{E}+01$ | $2.41 \mathrm{E}+05$ | $7.54 \mathrm{E}+01$ | $8.43 \mathrm{E}+01$ | $2.70 \mathrm{E}+01$ | $5.71 \mathrm{E}+04$ | $8.45 \mathrm{E}+04$ | $9.00 \mathrm{E}+01$ | $2.31 \mathrm{E}+01$ | $2.64 \mathrm{E}+01$ |  |
|  | SD | $2.46 \mathrm{E}+05$ | $1.74 \mathrm{E}+02$ | $1.59 \mathrm{E}-01$ | $2.49 \mathrm{E}+05$ | $7.51 \mathrm{E}+01$ | $8.61 \mathrm{E}+01$ | $2.71 \mathrm{E}+01$ | $5.62 \mathrm{E}+04$ | $5.81 \mathrm{E}+04$ | $9.59 \mathrm{E}+01$ | $2.31 \mathrm{E}+01$ | $2.63 \mathrm{E}+01$ |  |
|  | \％XPL | 89.3263 | 4.9894 | 4.2105 | 98.3033 | 46.8273 | 26.7953 | 1.3108 | 3.1251 | 50.2820 | 24.4155 | 5.9168 | 2.3435 |  |
|  | \％XPT | 10.6737 | 95.0106 | 95.7895 | 1.6967 | 53.1727 | 73.2047 | 98.6892 | 96.8749 | 49.7180 | 75.5845 | 94.0832 | 97.6565 |  |
|  | AB | $6.46 \mathrm{E}+04$ | $7.57 \mathrm{E}+02$ | $3.19 \mathrm{E}+01$ | $7.70 \mathrm{E}+04$ | $2.21 \mathrm{E}+01$ | $4.21 \mathrm{E}+01$ | $7.33 \mathrm{E}-01$ | $4.50 \mathrm{E}+04$ | $5.50 \mathrm{E}+04$ | $4.90 \mathrm{E}+01$ | $7.63 \mathrm{E}-01$ | $3.01 \mathrm{E}-01$ |  |
| $\mathrm{f}_{18}$ | MD | $6.67 \mathrm{E}+01$ | $3.29 \mathrm{E}+01$ | $1.64 \mathrm{E}-13$ | $4.97 \mathrm{E}+01$ | $1.45 \mathrm{E}+01$ | $9.38 \mathrm{E}+00$ | $3.88 \mathrm{E}-25$ | $5.29 \mathrm{E}+01$ | $2.21 \mathrm{E}+01$ | $1.70 \mathrm{E}-01$ | 4．54E－35 | $3.35 \mathrm{E}+01$ |  |
|  | SD | $6.77 \mathrm{E}+01$ | $3.31 \mathrm{E}+01$ | $1.38 \mathrm{E}-13$ | $5.08 \mathrm{E}+01$ | $1.48 \mathrm{E}+01$ | $9.60 \mathrm{E}+00$ | $1.85 \mathrm{E}-25$ | $5.07 \mathrm{E}+01$ | $2.12 \mathrm{E}+01$ | $1.65 \mathrm{E}-01$ | $4.03 \mathrm{E}-35$ | $2.80 \mathrm{E}+01$ |  |
|  | \％XPL | 95.3792 | 3.5059 | 2.4252 | 98.6945 | 20.3476 | 18.4110 | 0.7932 | 6.3083 | 39.2793 | 23.6444 | 1.0447 | 1.8732 |  |
|  | \％XPT | 4.6208 | 96.4941 | 97.5748 | 1.3055 | 79.6524 | 81.5890 | 99.2068 | 93.6917 | 60.7207 | 76.3556 | 98.9553 | 98.1268 |  |
|  | AB | $4.91 \mathrm{E}+00$ | $4.22 \mathrm{E}+00$ | $1.09 \mathrm{E}-13$ | $3.43 \mathrm{E}+00$ | $1.49 \mathrm{E}+00$ | $2.33 \mathrm{E}+00$ | $4.73 \mathrm{E}-25$ | $1.14 \mathrm{E}+01$ | $5.09 \mathrm{E}+00$ | 2．72E－02 | 2．75E－35 | $3.05 \mathrm{E}+01$ |  |
| $\mathrm{f}_{19}$ | MD | $2.59 \mathrm{E}+32$ | $7.27 \mathrm{E}+27$ | $1.03 \mathrm{E}+01$ | $7.60 \mathrm{E}+29$ | $3.11 \mathrm{E}-02$ | $1.81 \mathrm{E}+01$ | $2.41 \mathrm{E}-57$ | $4.73 \mathrm{E}+02$ | $7.42 \mathrm{E}+02$ | $7.35 \mathrm{E}+04$ | 4．36E－42 | $2.80 \mathrm{E}-168$ |  |
|  | SD | $2.49 \mathrm{E}+31$ | $3.39 \mathrm{E}+22$ | $1.23 \mathrm{E}-14$ | $1.30 \mathrm{E}+29$ | $3.02 \mathrm{E}-02$ | $1.72 \mathrm{E}+01$ | $5.61 \mathrm{E}-58$ | $5.00 \mathrm{E}+02$ | $8.00 \mathrm{E}+02$ | $2.57 \mathrm{E}+02$ | $3.38 \mathrm{E}-42$ | 5．92E－178 |  |
|  | \％XPL | 96.9787 | 1.7034 | 2.3870 | 98.6170 | 48.5372 | 22.2809 | 0.7828 | 13.8845 | 64.5812 | 5.2652 | 1.1583 | 17.2994 |  |
|  | \％XPT | 3.0213 | 98.2966 | 97.6130 | 1.3830 | 51.4628 | 77.7191 | 99.2172 | 86.1155 | 35.4188 | 94.7348 | 98.8417 | 82.7006 |  |
|  | AB | $6.87 \mathrm{E}+32$ | $3.95 \mathrm{E}+28$ | $5.66 \mathrm{E}+01$ | $1.61 \mathrm{E}+30$ | 6．65E－03 | $3.87 \mathrm{E}+00$ | 4．40E－57 | $1.66 \mathrm{E}+02$ | $2.06 \mathrm{E}+02$ | $3.44 \mathrm{E}+05$ | 2．93E－42 | $0.00 \mathrm{E}+00$ |  |
| $\mathrm{f}_{20}$ | MD | $-4.98 \mathrm{E}+49$ | $-1.43 \mathrm{E}+268$ | $-5.82 \mathrm{E}+27$ | $-8.05 \mathrm{E}+03$ | $-1.21 \mathrm{E}+04$ | $-9.12 \mathrm{E}+03$ | $-5.91 \mathrm{E}+03$ | $-8.56 \mathrm{E}+03$ | $-8.21 \mathrm{E}+03$ | $-7.28 \mathrm{E}+03$ | $-7.40 \mathrm{E}+03$ | $-1.18 \mathrm{E}+04$ |  |
|  | SD | $-1.02 \mathrm{E}+48$ | $-3.81 \mathrm{E}+260$ | $-3.35 \mathrm{E}+23$ | $-7.81 \mathrm{E}+03$ | $-1.22 \mathrm{E}+04$ | $-8.99 \mathrm{E}+03$ | $-5.96 \mathrm{E}+03$ | $-8.35 \mathrm{E}+03$ | $-8.04 \mathrm{E}+03$ | $-7.21 \mathrm{E}+03$ | $-7.76 \mathrm{E}+03$ | $-1.23 \mathrm{E}+04$ |  |
|  | \％XPL | 89.1435 | 1.5237 | 3.6850 | 98.1749 | 12.5994 | 20.5564 | 0.5686 | 5.5311 | 38.7221 | 19.2984 | 1.3860 | 2.6828 |  |
|  | \％XPT | 10.8565 | 98.4763 | 96.3150 | 1.8251 | 87.4006 | 79.4436 | 99.4314 | 94.4689 | 61.2779 | 80.7016 | 98.6140 | 97.3172 |  |
|  | AB | $1.94 \mathrm{E}+50$ | $6.55 \mathrm{E}+04$ | $2.90 \mathrm{E}+28$ | $8.68 \mathrm{E}+02$ | $4.21 \mathrm{E}+02$ | $6.92 \mathrm{E}+02$ | $7.23 \mathrm{E}+02$ | $9.93 \mathrm{E}+02$ | $1.01 \mathrm{E}+03$ | $5.62 \mathrm{E}+02$ | $1.13 \mathrm{E}+03$ | $1.18 \mathrm{E}+03$ | 2 |
| $\mathrm{f}_{21}$ | MD | $1.49 \mathrm{E}+04$ | $8.74 \mathrm{E}+03$ | $0.00 \mathrm{E}+00$ | $1.91 \mathrm{E}+04$ | $0.00 \mathrm{E}+00$ | $1.39 \mathrm{E}+01$ | $0.00 \mathrm{E}+00$ | $1.67 \mathrm{E}+03$ | $1.33 \mathrm{E}+03$ | $2.00 \mathrm{E}-01$ | $0.00 \mathrm{E}+00$ | $1.00 \mathrm{E}-01$ | 困 |
|  | SD | $1.47 \mathrm{E}+04$ | $8.37 \mathrm{E}+03$ | $0.00 \mathrm{E}+00$ | $1.90 \mathrm{E}+04$ | $0.00 \mathrm{E}+00$ | $1.40 \mathrm{E}+01$ | $0.00 \mathrm{E}+00$ |  |
|  | \％XPL | 1.1200 | 0.1531 | 0.8569 | 99.1186 | 83.7028 | 25.9312 | 19.3947 | 4.2543 | 8.3847 | 9.2638 | 43.7278 | 12.8460 |  |
|  | \％XPT | 98.8800 | 99.8469 | 99.1431 | 0.8814 | 16.2972 | 74.0688 | 80.6053 | 95.7457 | 91.6153 | 90.7362 | 56.2722 | 87.1540 | § |
|  | AB | $2.27 \mathrm{E}+03$ | $2.54 \mathrm{E}+03$ | $0.00 \mathrm{E}+00$ | $3.32 \mathrm{E}+03$ | $0.00 \mathrm{E}+00$ | $2.35 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $4.61 \mathrm{E}+03$ | $3.46 \mathrm{E}+03$ | 4．07E－01 | $0.00 \mathrm{E}+00$ | 3．05E－01 |  |
| $\mathrm{f}_{22}$ | MD | $-6.58 \mathrm{E}+02$ | $-9.93 \mathrm{E}+02$ | $-1.04 \mathrm{E}+03$ | $-7.24 \mathrm{E}+02$ | $-1.17 \mathrm{E}+03$ | $-1.07 \mathrm{E}+03$ | $-9.31 \mathrm{E}+02$ | $-1.02 \mathrm{E}+03$ | $-1.08 \mathrm{E}+03$ | $-1.07 \mathrm{E}+03$ | $-1.03 \mathrm{E}+03$ | $-1.17 \mathrm{E}+03$ | 珯 |
|  | SD | $-6.59 \mathrm{E}+02$ | $-9.91 \mathrm{E}+02$ | $-1.04 \mathrm{E}+03$ | $-7.18 \mathrm{E}+02$ | $-1.17 \mathrm{E}+03$ | $-1.08 \mathrm{E}+03$ | $-9.47 \mathrm{E}+02$ | $-1.02 \mathrm{E}+03$ | $-1.08 \mathrm{E}+03$ | $-1.07 \mathrm{E}+03$ | $-1.02 \mathrm{E}+03$ | $-1.17 \mathrm{E}+03$ | E |
|  | \％XPL | 77.4735 | 1.9342 | 2.1311 | 98.3742 | 9.9359 | 15.8333 | 0.6335 | 6.0800 | 42.6055 | 6.2696 | 1.2032 | 2.3062 | $\stackrel{\text { \％}}{ }$ |
|  | \％XPT | 22.5265 | 98.0658 | 97.8689 | 1.6258 | 90.0641 | 84.1667 | 99.3665 | 93.9200 | 57.3945 | 93.7304 | 98.7968 | 97.6938 |  |
|  | AB | $3.50 \mathrm{E}+01$ | $3.56 \mathrm{E}+01$ | $3.29 \mathrm{E}+01$ | $2.40 \mathrm{E}+01$ | $2.56 \mathrm{E}-03$ | $4.08 \mathrm{E}+01$ | $6.07 \mathrm{E}+01$ | $4.52 \mathrm{E}+01$ | $2.81 \mathrm{E}+01$ | $2.81 \mathrm{E}+01$ | $2.59 \mathrm{E}+01$ | $2.03 \mathrm{E}+01$ |  |
| $\mathrm{f}_{23}$ | MD | $1.36 \mathrm{E}+06$ | $5.66 \mathrm{E}+05$ | $-4.93 \mathrm{E}+03$ | $1.19 \mathrm{E}+06$ | $4.34 \mathrm{E}+05$ | $9.24 \mathrm{E}+03$ | $-2.50 \mathrm{E}+02$ | $2.60 \mathrm{E}+05$ | $7.59 \mathrm{E}+05$ | $-3.10 \mathrm{E}+03$ | $-1.02 \mathrm{E}+03$ | $-3.77 \mathrm{E}+03$ | N |
|  | SD | $1.41 \mathrm{E}+06$ | $5.20 \mathrm{E}+05$ | $-4.93 \mathrm{E}+03$ | $1.17 \mathrm{E}+06$ | $4.22 \mathrm{E}+05$ | $7.22 \mathrm{E}+03$ | $-2.10 \mathrm{E}+02$ | $1.22 \mathrm{E}+05$ | $6.82 \mathrm{E}+05$ | $-3.21 \mathrm{E}+03$ | $-1.02 \mathrm{E}+03$ | $-3.79 \mathrm{E}+03$ | O |
|  | \％XPL | 96.0793 | 7.0659 | 2.1461 | 99.2405 | 30.4547 | 20.9524 | 20.5710 | 4.8452 | 42.1270 | 26.2275 | 4.9875 | 16.4037 | $\stackrel{\square}{\square}$ |
|  | \％XPT | 3.9207 | 92.9341 | 97.8539 | 0.7595 | 69.5453 | 79.0476 | 79.4290 | 95.1548 | 57.8730 | 73.7725 | 95.0125 | 83.5963 | ¢⿴囗 |

Table 3 (continued)

| Function |  | ABC | BA | CMAES | CSA | DE | FA | GWO | MFO | PSO | SSO | TLBO | WOA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AB | $1.89 \mathrm{E}+05$ | $2.13 \mathrm{E}+05$ | $5.24 \mathrm{E}-11$ | $1.72 \mathrm{E}+05$ | $6.51 \mathrm{E}+04$ | $7.72 \mathrm{E}+03$ | $1.28 \mathrm{E}+02$ | $2.79 \mathrm{E}+05$ | $3.28 \mathrm{E}+05$ | $3.52 \mathrm{E}+02$ | $1.46 \mathrm{E}+02$ | $2.91 \mathrm{E}+02$ |  |
| $\mathrm{f}_{24}$ | MD | $4.69 \mathrm{E}+04$ | $5.34 \mathrm{E}+01$ | $2.25 \mathrm{E}-09$ | $1.40 \mathrm{E}+04$ | $1.35 \mathrm{E}+01$ | $2.16 \mathrm{E}+01$ | $1.46 \mathrm{E}+01$ | $7.41 \mathrm{E}+03$ | $2.23 \mathrm{E}-01$ | $1.98 \mathrm{E}+01$ | $1.52 \mathrm{E}-02$ | $1.16 \mathrm{E}+01$ |
|  | SD | $4.70 \mathrm{E}+04$ | $5.32 \mathrm{E}+01$ | $6.88 \mathrm{E}-15$ | $1.32 \mathrm{E}+04$ | $1.32 \mathrm{E}+01$ | $2.16 \mathrm{E}+01$ | $1.42 \mathrm{E}+01$ | $4.72 \mathrm{E}-03$ | $1.57 \mathrm{E}-01$ | $1.97 \mathrm{E}+01$ | $3.32 \mathrm{E}-04$ | $1.14 \mathrm{E}+01$ |
|  | \%XPL | 88.4427 | 5.6739 | 2.4577 | 97.6455 | 73.6445 | 17.4556 | 0.7390 | 4.6445 | 33.1138 | 4.5270 | 1.0758 | 5.6605 |
|  | \%XPT | 11.5573 | 94.3261 | 97.5423 | 2.3545 | 26.3555 | 82.5444 | 99.2610 | 95.3555 | 66.8862 | 95.4730 | 98.9242 | 94.3395 |

space. This behavior is shown in Fig. 3 where multiple exploration peaks appear along the optimization process. The multiple attraction points allow jumping in different zones even though it is continuously focusing on exploitation. This operation eventually permits to find better solutions than other methods.

Fig. 4 shows the balance levels of the worst-performing algorithms ABC and CSA. According to Fig. 4, it is clear that both schemes use excessive exploration in their search processes. Such an effect is visible from the incremental-decremental graph where its value increases during the whole optimization process. This lack of balance results in worse performance. It is not evident a direct relationship of this bad performance with their search mechanisms. However, it is clear that their wellknown slow convergence as a consequence of their types of selection mechanisms and attraction operators could be responsible.

### 4.2. Results of unimodal test functions

This subsection details the analysis considering functions with only one optimum. Detailed information on each unimodal function can be found in Appendix [A.II] Table AII. Table 5 presents a comparison of the selected algorithms in unimodal functions. Table 6 presents the statistical analysis outcomes by applying Friedman test. The best results are highlighted in boldface. The results displayed in these tables suggest that the most prominent algorithm is WOA with an average rank of 1.

The second and third best algorithms in the unimodal test, TLBO and GWO, were compared directly to WOA in Fig. 5 to see the contrast between them. According to the incremental-decremental graph, all three methods on average exploited the search space above $98 \%$ of the time. The algorithm with the best results for all unimodal functions, WOA, spent $98.1318 \%$ of the time exploiting. The other algorithms, TLBO and GWO, differed very little, spending $98.9133 \%$ and $99.4177 \%$ of the time exploiting respectively. In terms of the characteristics of the algorithms, WOA utilizes a non-greedy selection mechanism and has a single attraction operator guided by the best solution. GWO employs a nongreedy selection mechanism. On the other hand, TLBO considers a greedy selection mechanism. Both methods GWO and TBL use as an attraction point the mean value of some individuals of the population to update its solutions. These three schemes maintain similar search mechanisms, as a consequence, they present similar performance in terms of solution quality. They also present very similar balances in exploration-exploitation such as it is shown in Fig. 5. It is important to point out that the WOA algorithm produces a rough balance response.

The worst four performing algorithms in unimodal functions are displayed in Fig. 6. ABC and CSA are once again in the bottom and both spent a high amount of time exploring without exploiting the search space. Although BA and MFO maintain a behavior very close to the one used by the top three algorithms, they present a bad performance in terms of the solution quality. In spite of their good balance level, it seems that is also important the search mechanisms obtain a better performance.

### 4.3. Results of hybrid test functions

Hybrid functions are formulations with complex behaviors that are produced from the combination of several multimodal functions. A specific implementation of composite functions can be consulted in Ref. [38]. Detailed information on each hybrid function can be found in Appendix [A.III] Table AIII. Table 7 presents a comparison of the selected algorithms in hybrid functions. This table is consistent with the results from previous tests. Table 8 presents the statistical analysis outcomes by applying Friedman test. The best results are highlighted in boldface. Considering both tables, WOA and TLBO were the algorithms that had the best performance, with CMA-ES being the distant third.

The results from the aforementioned trio of algorithms are averaged and displayed in Fig. 7. The algorithms show consistency in balance employed when compared with previous tests. According to the

Table 4
Ranks obtained and $p$-value of the Friedman test in multimodal functions.

| Function | ABC | BA | CMAES | CSA | DE | FA | GWO | MFO | PSO | SSO | TLBO | WOA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average rank | 11.3333 | 8.9167 | 3.5833 | 10.9583 | 4.6875 | 6.1458 | 4.4583 | 7.4583 | 7.3125 | 6.0417 | 3.4792 | 3.625 |
| $p$-value | $6.94 \mathrm{e}-28$ |  |  |  |  |  |  |  |  |  |  |  |



Fig. 2. Average balance employed by the top three algorithms in multimodal functions.
incremental-decremental graph, all schemes spent above $90 \%$ of the runtime exploiting the search space. In almost all hybrid functions the WOA and TLBO algorithms managed to find the global optimum. The only significant difference can be seen in function $f_{30}$ where WOA surpass the other algorithms by a large margin, and $\mathrm{f}_{32}$ where CMA-ES found the best solutions with the least standard deviation. As previously mentioned, the reason for this difference is the search mechanisms used for exploration and exploitation. It is important to point out that the WOA algorithm once again produces a rough balance response.

Fig. 8 contains the evolution of the balance employed by the bottom three algorithms in hybrid functions. Once again, according to the incremental-decremental graph, ABC and CSA utilized high amounts of exploration to detrimental results. The BA balance between exploration and exploitation was close to the one employed by WOA, the best performing algorithm in hybrid functions. This is a good example of how the difference in the quality of the specific search mechanism of each algorithm affects greatly the performance, even though the compared algorithms invest the same amount of time exploring and exploiting the
search space.

### 4.4. Results of shifted test functions

To see how the algorithms are affected when the problems to solve don't have their global optimum in positions close to zero, shifted functions are utilized. These are known functions but shifted to the left or right to have their global optimum in a different position. A specific implementation of shifted functions can be consulted in Ref. [38]. Detailed information of each shifted function can be found in Appendix [A.IV] Table AIV. Table 9 presents a comparison of the selected algorithms in shifted functions. Table 10 presents the statistical analysis outcomes by applying Friedman test. The best results are highlighted in boldface. Of the top algorithms from the previous tests, only CMA-ES was impervious to shifted functions and won in 7 of the 9 functions with an average rank of 1.8889 . WOA and GWO suffered greatly on this set of functions while TLBO still suffered but less so. This allowed DE to be the one with the best performance in $f_{34}$, while TLBO still managed to be the


Fig. 3. Balance employed by $D E$ in $f_{5}$ and $f_{21}$, and MFO in $f_{9}$ and $f_{10}$.



Fig. 4. Average balance employed by the bottom two algorithms in multimodal functions.
Table 5
The best solutions found and balance employed in each unimodal function.

| Function |  | ABC | BA | CMAES | CSA | DE | FA | GWO | MFO | PSO | SSO | TLBO | WOA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{25}$ | AB | $7.84 \mathrm{E}+04$ | $3.67 \mathrm{E}+04$ | 9.47E-37 | $1.18 \mathrm{E}+05$ | $1.21 \mathrm{E}-03$ | $7.10 \mathrm{E}+01$ | $4.02 \mathrm{E}-100$ | $1.23 \mathrm{E}+04$ | $3.38 \mathrm{E}+04$ | $1.88 \mathrm{E}+00$ | 7.60E-86 | $2.36 \mathrm{E}-250$ |
|  | MD | $7.85 \mathrm{E}+04$ | $3.33 \mathrm{E}+04$ | 5.29E-37 | $1.16 \mathrm{E}+05$ | $1.20 \mathrm{E}-03$ | $6.88 \mathrm{E}+01$ | 4.98E-101 | $4.29 \mathrm{E}+03$ | $3.01 \mathrm{E}+04$ | $1.70 \mathrm{E}+00$ | $4.10 \mathrm{E}-86$ | 7.96E-265 |
|  | SD | $9.04 \mathrm{E}+03$ | $1.42 \mathrm{E}+04$ | 9.32E-37 | $1.46 \mathrm{E}+04$ | $2.75 \mathrm{E}-04$ | $1.17 \mathrm{E}+01$ | $1.54 \mathrm{E}-99$ | $1.87 \mathrm{E}+04$ | $2.39 \mathrm{E}+04$ | 7.23E-01 | $9.83 \mathrm{E}-86$ | $0.00 \mathrm{E}+00$ |
|  | \%XPL | 79.9258 | 2.0399 | 2.2269 | 98.8173 | 10.1382 | 16.6425 | 0.4699 | 6.7960 | 39.3438 | 7.1850 | 1.0403 | 1.7461 |
|  | \%XPT | 20.0742 | 97.9601 | 97.7731 | 1.1827 | 89.8618 | 83.3575 | 99.5301 | 93.2040 | 60.6562 | 92.8150 | 98.9597 | 98.2539 |
|  | AB | $2.85 \mathrm{E}+06$ | $1.59 \mathrm{E}+06$ | 5.43E-34 | $3.99 \mathrm{E}+06$ | $2.75 \mathrm{E}-02$ | $2.96 \mathrm{E}+03$ | 4.42E-98 | $1.09 \mathrm{E}+06$ | $1.69 \mathrm{E}+06$ | $2.21 \mathrm{E}+02$ | $4.32 \mathrm{E}-84$ | 7.05E-251 |
| $\mathrm{f}_{26}$ | MD | $2.85 \mathrm{E}+06$ | $1.36 \mathrm{E}+06$ | $2.32 \mathrm{E}-34$ | $4.00 \mathrm{E}+06$ | $2.77 \mathrm{E}-02$ | $2.97 \mathrm{E}+03$ | 1.24E-99 | $1.09 \mathrm{E}+06$ | $1.57 \mathrm{E}+06$ | $1.58 \mathrm{E}+02$ | 2.15E-84 | $1.51 \mathrm{E}-264$ |
|  | SD | $4.42 \mathrm{E}+05$ | $7.66 \mathrm{E}+05$ | 8.08E-34 | 5.07E +05 | 7.20E-03 | $4.48 \mathrm{E}+02$ | $1.00 \mathrm{E}-97$ | $9.16 \mathrm{E}+05$ | $8.83 \mathrm{E}+05$ | $1.93 \mathrm{E}+02$ | $9.66 \mathrm{E}-84$ | $0.00 \mathrm{E}+00$ |
|  | \%XPL | 89.6177 | 3.6873 | 2.3025 | 98.3686 | 11.9995 | 19.2656 | 0.5263 | 5.9581 | 37.2827 | 6.0095 | 1.0183 | 1.6362 |
|  | \%XPT | 10.3823 | 96.3127 | 97.6975 | 1.6314 | 88.0005 | 80.7344 | 99.4737 | 94.0419 | 62.7173 | 93.9905 | 98.9817 | 98.3638 |
|  | AB | $3.86 \mathrm{E}+01$ | $1.54 \mathrm{E}-05$ | 2.45E-43 | $5.12 \mathrm{E}+01$ | $6.33 \mathrm{E}-07$ | $3.14 \mathrm{E}-02$ | $2.25 \mathrm{E}-103$ | $6.99 \mathrm{E}+00$ | $1.75 \mathrm{E}+00$ | $9.50 \mathrm{E}-02$ | 5.25E-89 | $4.47 \mathrm{E}-250$ |
| $\mathrm{f}_{27}$ | MD | $4.03 \mathrm{E}+01$ | $1.54 \mathrm{E}-05$ | $1.96 \mathrm{E}-43$ | $5.13 \mathrm{E}+01$ | $5.77 \mathrm{E}-07$ | $3.14 \mathrm{E}-02$ | $1.74 \mathrm{E}-104$ | $1.52 \mathrm{E}-07$ | $2.13 \mathrm{E}-06$ | 9.43E-02 | 2.49E-89 | $1.08 \mathrm{E}-267$ |
|  | SD | $6.69 \mathrm{E}+00$ | $2.27 \mathrm{E}-06$ | $1.81 \mathrm{E}-43$ | $7.05 \mathrm{E}+00$ | $2.10 \mathrm{E}-07$ | $3.60 \mathrm{E}-03$ | $4.39 \mathrm{E}-103$ | $1.53 \mathrm{E}+01$ | $6.65 \mathrm{E}+00$ | 1.43E-02 | 7.54E-89 | $0.00 \mathrm{E}+00$ |
|  | \%XPL | 77.6193 | 1.8221 | 1.9656 | 98.5818 | 9.6177 | 14.8480 | 0.4756 | 5.5791 | 43.1609 | 26.0592 | 0.9471 | 1.7297 |
|  | \%XPT | 22.3807 | 98.1779 | 98.0344 | 1.4182 | 90.3823 | 85.1520 | 99.5244 | 94.4209 | 56.8391 | 73.9408 | 99.0529 | 98.2703 |
|  | AB | $1.85 \mathrm{E}+03$ | $1.16 \mathrm{E}+01$ | 9.94E-41 | $2.47 \mathrm{E}+03$ | $2.85 \mathrm{E}-05$ | $1.58 \mathrm{E}+00$ | $9.20 \mathrm{E}-102$ | $4.43 \mathrm{E}+02$ | $8.23 \mathrm{E}+02$ | $1.94 \mathrm{E}+00$ | $3.41 \mathrm{E}-87$ | $1.25 \mathrm{E}-253$ |
| $\mathrm{f}_{28}$ | MD | $1.80 \mathrm{E}+03$ | $4.09 \mathrm{E}+00$ | 6.99E-41 | $2.54 \mathrm{E}+03$ | $2.73 \mathrm{E}-05$ | $1.59 \mathrm{E}+00$ | $8.48 \mathrm{E}-103$ | $2.50 \mathrm{E}+02$ | $8.00 \mathrm{E}+02$ | $1.97 \mathrm{E}+00$ | $1.40 \mathrm{E}-87$ | 2.19E-267 |
|  | SD | $2.54 \mathrm{E}+02$ | $1.70 \mathrm{E}+01$ | 9.10E-41 | $3.71 \mathrm{E}+02$ | $1.06 \mathrm{E}-05$ | $1.95 \mathrm{E}-01$ | 3.68E-101 | $5.50 \mathrm{E}+02$ | $5.24 \mathrm{E}+02$ | 4.85E-01 | 4.08E-87 | 0.00E+00 |
|  | \%XPL | 81.7367 | 3.4067 | 2.1688 | 98.4859 | 10.7318 | 16.4721 | 0.4746 | 5.8278 | 40.2838 | 16.9878 | 0.9162 | 1.9663 |
|  | \%XPT | 18.2633 | 96.5933 | 97.8312 | 1.5141 | 89.2682 | 83.5279 | 99.5254 | 94.1722 | 59.7162 | 83.0122 | 99.0838 | 98.0337 |
|  | AB | 7.55E-02 | $1.30 \mathrm{E}-08$ | 5.08E-09 | 7.70E-03 | $1.31 \mathrm{E}-22$ | $6.31 \mathrm{E}-08$ | 0.00E+00 | $8.48 \mathrm{E}-19$ | $3.51 \mathrm{E}-13$ | $3.26 \mathrm{E}-05$ | $2.44 \mathrm{E}-197$ | $0.00 \mathrm{E}+00$ |
| $\mathrm{f}_{29}$ | MD | 7.33E-02 | $1.12 \mathrm{E}-08$ | $4.28 \mathrm{E}-09$ | 7.86E-03 | $3.35 \mathrm{E}-23$ | $5.47 \mathrm{E}-08$ | 0.00E+00 | $2.90 \mathrm{E}-23$ | $6.81 \mathrm{E}-16$ | $3.22 \mathrm{E}-05$ | 5.98E-199 | $0.00 \mathrm{E}+00$ |
|  | SD | $3.51 \mathrm{E}-02$ | $8.50 \mathrm{E}-09$ | $2.89 \mathrm{E}-09$ | $4.56 \mathrm{E}-03$ | 3.62E-22 | $4.56 \mathrm{E}-08$ | $0.00 \mathrm{E}+00$ | $4.19 \mathrm{E}-18$ | $1.88 \mathrm{E}-12$ | $1.79 \mathrm{E}-05$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ |
|  | \%XPL | 95.8100 | 5.5193 | 0.2584 | 98.8009 | 27.2130 | 27.8819 | 0.9651 | 11.4744 | 52.5785 | 54.9875 | 1.5114 | 2.2625 |
|  | \%XPT | 4.1900 | 94.4807 | 99.7416 | 1.1991 | 72.7870 | 72.1181 | 99.0349 | 88.5256 | 47.4215 | 45.0125 | 98.4886 | 97.7375 |

one with the best performance in $f_{36}$.
To see the impact that this set of functions has in the best algorithms from previous tests, Fig. 9 shows the evolution of the average balance in shifted functions for CMA-ES, GWO, TLBO and WOA. CMA-ES demonstrated consistency with the other test in the balance utilized, and it also demonstrated consistency with the results obtained. The case of GWO and WOA is interesting, these algorithms cannot reach the performance displayed in previous tests. They cannot also obtain the exploration/ exploitation balances demonstrated with previous functions. Both methods, according to the incremental-decremental graph present a prolonged exploration effect in contrast with CMA-ES and TLBO. This suggests that the balance achieved by these two algorithms is not predetermined, but it depends on the nature of their search mechanisms. Due to its search strategy, it is well-known that GWO and WOA maintain a good performance in problems where the optimal point is in the origin. However, they present critical flaws when they face test functions with a shifted optimal point. Therefore, if GWO and WOA optimize problems with an optimal value centered in the origin, they are able to rapidly find the zone with the global solution and then focus on exploiting it, resulting in exploiting rates of over $90 \%$. However, when the functions are shifted, they cannot find quickly enough the zone with the global solution. Under such conditions, their exploiting rate is degraded finding solutions of low quality in comparison with non-shifted functions. On the contrary, TLBO maintains the same balance between exploration and exploitation from previous test functions. Nevertheless, its performance in terms of quality is slightly lower than the non-shifted functions. This seems to indicate that the TLBO algorithm maintains a fixed balance without considering the function type. It is important to point out that the WOA algorithm produces also a rough balance response.

Fig. 10 shows the evolution of the balance obtained by DE in $f_{34}$ and the balance performed by TLBO in $f_{36}$. These problems represent the only functions where CMA-ES does not obtain the best performance. For this reason, they are analyzed individually. In case of function $f_{34}$, most of the algorithms reach a very close performance in comparison with the already obtained in case of the non-shifted versions. Nevertheless, TLBO, GWO and WOA are unable to get their previous performance. Under such circumstances, DE becomes the best one. As it can be seen from the incremental-decremental graph, the exploration effect lasts around 170 iterations from a total of 1000 . In case of functionf ${ }_{36}$, even though the TLBO algorithm does not reach the same performance obtained by the non-shifted version of the function, it maintains a good enough performance for function $f_{36}$. In this function, according to the incrementaldecremental graph, the TLBO scheme maintains a strong exploitation effect.

Lastly, Fig. 11 illustrates the evolution of the balance utilized by the bottom three algorithms in shifted functions. The pattern and algorithms in the bottom three are consistent with previous results.

### 4.5. The balance response of the Random Search algorithm

To test for a possible bias towards exploration or exploitation, an experiment has been conducted. In the test, the Random Search algorithm [39] which generates a population with a fixed standard deviation in each iteration has been analyzed. Under this scheme, it is possible to see if there is any sign of bias when a fixed diversity is employed. In Table 11, it is shown the maximum diversity, mean diversity and exploration and exploitation rate considering function $\mathrm{f}_{27}$. In the test, the Random Search algorithm has been set with a standard deviation of 2.88 for each random movement considering also 1000 iterations.

From Fig. 12, it can be seen how the fixed standard deviation of the algorithm affects significantly the measured balance. The distance between search agents is always inside the standard deviation of the random movement. This causes the population diversity to maintain almost the same value in all iterations. As the diversity in each iteration is close to the standard deviation, which is also close to the maximum diversity, an average exploration rate of 95.5237 is produced. Under

Table 6
Ranks achieved and $p$-value of the Friedman test in unimodal functions.

| Function | ABC | BA | CMAES | CSA | DE | FA | GWO | MFO | PSO | SSO | TLBO | WOA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average rank | 11.2000 | 8.2000 | 4.60000 | 11.8000 | 4.8000 | 7.2000 | 2 | 8 | 8.8000 | 7.4000 | 3 | 1 |
| $p$-value | $5.20 \mathrm{e}-07$ |  |  |  |  |  |  |  |  |  |  |  |



Fig. 5. Average balance employed by the top three algorithms in unimodal functions.
such conditions, as it is shown by the incremental-decremental graph, the exploration effect is maintained during the complete process.

The Random Search algorithm does not implement any other search mechanism. It produces new solutions through a random reinitialization. According to this experiment, it is apparent that no bias is influencing the results of the metric utilized.

### 4.6. Diversity analysis

In order to complement the analysis, an experimental test of the diversity over the best-performing algorithms CMA-ES, GWO, TLBO and

WOA is conducted. In the experiment, the diversity defined in Eq. (2) is calculated and reported during the optimization of a determined benchmark function. In comparison, the functions $f_{6}$ and $f_{37}$ are considered. These functions have been selected for being representative of the different behaviors presented in multimodal optimization. Fig. 13 shows the evolution of diversity during the optimization procedure for functions $\mathrm{f}_{6}$ and $\mathrm{f}_{37}$ illustrated in Fig. 13(a) and (b), respectively. The axis $x$ corresponds to the number of iterations, and the axis $y$ the diversity measure.

After an analysis of Fig. 13, it is clear that all algorithms begin with a big diversity as a consequence of their random initialization. As the


Fig. 6. Average balance employed by the bottom four algorithms in unimodal functions.

Table 7
Best solutions found and balance employed in each hybrid function.

|  | Function |  | ABC | BA | CMAES | CSA | DE | FA | GWO | MFO | PSO | Sso | TLBO | WOA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{f}_{30}$ | AB | $8.57 \mathrm{E}+04$ | $1.12 \mathrm{E}+04$ | 3.68E-19 | $1.99 \mathrm{E}+04$ | $4.42 \mathrm{E}-03$ | $1.95 \mathrm{E}+01$ | $2.39 \mathrm{E}-58$ | $2.01 \mathrm{E}+04$ | $2.48 \mathrm{E}+04$ | 2.92E-01 | 1.35E-43 | 2.33E-175 |
|  |  | MD | 7.82E+04 | $8.84 \mathrm{E}+03$ | $2.45 \mathrm{E}-19$ | $2.05 \mathrm{E}+04$ | $4.38 \mathrm{E}-03$ | $1.98 \mathrm{E}+01$ | 1.85E-58 | $2.01 \mathrm{E}+04$ | $2.01 \mathrm{E}+04$ | 2.88E-01 | $1.16 \mathrm{E}-43$ | 7.02E-181 |
|  |  | SD | $2.77 \mathrm{E}+04$ | $7.55 \mathrm{E}+03$ | $4.81 \mathrm{E}-19$ | $2.33 \mathrm{E}+03$ | 7.50E-04 | $1.94 \mathrm{E}+00$ | 2.24E-58 | $1.86 \mathrm{E}+04$ | $1.53 \mathrm{E}+04$ | 4.99E-02 | 9.99E-44 | 0.00E+00 |
|  |  | \%XPL | 84.7161 | 4.8273 | 3.4316 | 98.5073 | 10.4171 | 16.2454 | 0.4767 | 9.1888 | 44.0224 | 8.2539 | 1.0883 | 1.8183 |
|  |  | \%XPT | 15.2839 | 95.1727 | 96.5684 | 1.4927 | 89.5829 | 83.7546 | 99.5233 | 90.8112 | 55.9776 | 91.7461 | 98.9117 | 98.1817 |
|  |  | AB | $7.98 \mathrm{E}+02$ | $4.00 \mathrm{E}+02$ | $8.22 \mathrm{E}+01$ | $7.21 \mathrm{E}+02$ | $2.90 \mathrm{E}+01$ | $7.98 \mathrm{E}+01$ | $2.90 \mathrm{E}+01$ | $1.80 \mathrm{E}+02$ | $1.55 \mathrm{E}+02$ | $7.31 \mathrm{E}+01$ | $2.90 \mathrm{E}+01$ | $2.90 \mathrm{E}+01$ |
|  | $\mathrm{f}_{31}$ | MD | $7.98 \mathrm{E}+02$ | $4.03 \mathrm{E}+02$ | $7.78 \mathrm{E}+01$ | $7.18 \mathrm{E}+02$ | $2.90 \mathrm{E}+01$ | $7.61 \mathrm{E}+01$ | $2.90 \mathrm{E}+01$ | $1.18 \mathrm{E}+02$ | $8.95 \mathrm{E}+01$ | $7.64 \mathrm{E}+01$ | $2.90 \mathrm{E}+01$ | $2.90 \mathrm{E}+01$ |
| $\stackrel{\rightharpoonup}{\perp}$ |  | SD | $8.92 \mathrm{E}+01$ | $6.50 \mathrm{E}+01$ | $1.84 \mathrm{E}+01$ | $6.35 \mathrm{E}+01$ | $2.28 \mathrm{E}-02$ | $2.05 \mathrm{E}+01$ | $5.66 \mathrm{E}-05$ | $1.27 \mathrm{E}+02$ | $1.26 \mathrm{E}+02$ | $1.63 \mathrm{E}+01$ | $3.30 \mathrm{E}-12$ | $7.57 \mathrm{E}-05$ |
|  |  | \%XPL | 88.0123 | 2.9059 | 2.2306 | 98.6365 | 15.2593 | 18.9380 | 0.5138 | 5.8204 | 42.3145 | 7.3259 | 1.1961 | 2.5734 |
|  |  | \%XPT | 11.9877 | 97.0941 | 97.7694 | 1.3635 | 84.7407 | 81.0620 | 99.4862 | 94.1796 | 57.6855 | 92.6741 | 98.8039 | 97.4266 |
|  |  | AB | $2.23 \mathrm{E}+08$ | $2.62 \mathrm{E}+06$ | $3.20 \mathrm{E}+01$ | $7.13 \mathrm{E}+07$ | $4.76 \mathrm{E}+02$ | $2.45 \mathrm{E}+02$ | $3.20 \mathrm{E}+01$ | $7.57 \mathrm{E}+01$ | $2.40 \mathrm{E}+02$ | $3.46 \mathrm{E}+01$ | $3.20 \mathrm{E}+01$ | $7.18 \mathrm{E}+01$ |
|  | $\mathrm{f}_{32}$ | MD | $2.19 \mathrm{E}+08$ | $1.50 \mathrm{E}+06$ | $3.20 \mathrm{E}+01$ | $7.08 \mathrm{E}+07$ | $4.50 \mathrm{E}+02$ | $2.45 \mathrm{E}+02$ | $3.20 \mathrm{E}+01$ | $7.18 \mathrm{E}+01$ | $2.31 \mathrm{E}+02$ | $3.45 \mathrm{E}+01$ | $3.20 \mathrm{E}+01$ | $6.77 \mathrm{E}+01$ |
|  |  | SD | $5.51 \mathrm{E}+07$ | $2.66 \mathrm{E}+06$ | 1.73E-14 | $1.92 \mathrm{E}+07$ | $7.16 \mathrm{E}+01$ | $4.54 \mathrm{E}+01$ | 7.26E-06 | $1.59 \mathrm{E}+01$ | $7.26 \mathrm{E}+01$ | 8.49E-01 | $2.09 \mathrm{E}-10$ | $3.31 \mathrm{E}+01$ |
|  |  | \%XPL | 94.5070 | 3.4629 | 2.4833 | 98.4313 | 20.8563 | 18.7752 | 0.5362 | 7.1578 | 46.5950 | 11.0359 | 1.2826 | 4.9243 |
|  |  | \%XPT | 5.4930 | 96.5371 | 97.5167 | 1.5687 | 79.1437 | 81.2248 | 99.4638 | 92.8422 | 53.4050 | 88.9641 | 98.7174 | 95.0757 |
|  |  | AB | $5.54 \mathrm{E}+03$ | $5.84 \mathrm{E}+02$ | $7.82 \mathrm{E}+01$ | $9.21 \mathrm{E}+02$ | $2.90 \mathrm{E}+01$ | $5.95 \mathrm{E}+01$ | $2.90 \mathrm{E}+01$ | $8.95 \mathrm{E}+02$ | $9.92 \mathrm{E}+02$ | $1.63 \mathrm{E}+02$ | $2.90 \mathrm{E}+01$ | $2.90 \mathrm{E}+01$ |
|  | $\mathrm{f}_{33}$ | MD | $5.51 \mathrm{E}+03$ | $4.89 \mathrm{E}+02$ | $7.73 \mathrm{E}+01$ | $9.25 \mathrm{E}+02$ | $2.90 \mathrm{E}+01$ | $5.16 \mathrm{E}+01$ | $2.90 \mathrm{E}+01$ | $8.96 \mathrm{E}+02$ | $9.24 \mathrm{E}+02$ | $1.58 \mathrm{E}+02$ | $2.90 \mathrm{E}+01$ | $2.90 \mathrm{E}+01$ |
|  |  | SD | $3.22 \mathrm{E}+03$ | $3.15 \mathrm{E}+02$ | $2.35 \mathrm{E}+01$ | $1.13 \mathrm{E}+02$ | $9.70 \mathrm{E}-03$ | $2.50 \mathrm{E}+01$ | $7.14 \mathrm{E}-15$ | $5.67 \mathrm{E}+02$ | $5.46 \mathrm{E}+02$ | $4.43 \mathrm{E}+01$ | $4.12 \mathrm{E}-15$ | $2.64 \mathrm{E}-15$ |
|  |  | \%XPL | 90.3856 | 5.0770 | 3.6581 | 98.5816 | 12.9629 | 17.6859 | 0.5115 | 5.5055 | 46.0492 | 10.8563 | 1.2409 | 1.5329 |
|  |  | \%XPT | 9.6144 | 94.9230 | 96.3419 | 1.4184 | 87.0371 | 82.3141 | 99.4885 | 94.4945 | 53.9508 | 89.1437 | 98.7591 | 98.4671 |

Table 8
Ranks achieved and $p$-value of the Friedman test in hybrid functions.

| Function | ABC | BA | CMAES | CSA | DE | FA | GWO | MFO | PSO | SSO | TLBO | WOA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average rank p-value | $\begin{aligned} & 12 \\ & 1.12 \mathrm{e}-04 \end{aligned}$ | 9 | 4.5000 | 10.2500 | 5.5000 | 6.5000 | 2.6250 | 8.5000 | 9.2500 | 5.5000 | 2.1250 | 2.2500 |



Fig. 7. Average balance employed by the top three algorithms in hybrid functions.


Fig. 8. Average balance employed by the bottom three algorithms in hybrid functions.

Table 9
Best solutions found and balance employed in each shifted function.

| Function |  | ABC | BA | CMAES | CSA | DE | FA | GWO | MFO | PSO | SSO | TLBO | WOA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{34}$ | AB | $1.73 \mathrm{E}+01$ | $1.31 \mathrm{E}+01$ | $2.10 \mathrm{E}+00$ | $1.73 \mathrm{E}+01$ | $5.06 \mathrm{E}-03$ | $1.82 \mathrm{E}+00$ | $7.18 \mathrm{E}+00$ | $7.00 \mathrm{E}+00$ | $7.51 \mathrm{E}+00$ | $4.06 \mathrm{E}-01$ | $4.74 \mathrm{E}+00$ | $5.43 \mathrm{E}+00$ |
|  | MD | $1.74 \mathrm{E}+01$ | $1.31 \mathrm{E}+01$ | $7.11 \mathrm{E}-15$ | $1.74 \mathrm{E}+01$ | 4.65E-03 | $1.83 \mathrm{E}+00$ | $8.29 \mathrm{E}+00$ | $8.29 \mathrm{E}-01$ | $7.25 \mathrm{E}-01$ | $3.60 \mathrm{E}-01$ | $4.55 \mathrm{E}+00$ | $5.10 \mathrm{E}+00$ |
|  | SD | 4.73E-01 | $8.91 \mathrm{E}-01$ | $6.40 \mathrm{E}+00$ | 5.12E-01 | 1.64E-03 | $1.24 \mathrm{E}-01$ | $3.64 \mathrm{E}+00$ | $8.42 \mathrm{E}+00$ | $8.29 \mathrm{E}+00$ | $1.87 \mathrm{E}-01$ | $9.31 \mathrm{E}-01$ | $2.07 \mathrm{E}+00$ |
|  | \%XPL | 87.1690 | 2.6385 | 2.0468 | 98.0358 | 12.9051 | 15.4772 | 13.5003 | 5.4988 | 43.1621 | 8.1621 | 1.2565 | 16.0797 |
|  | \%XPT | 12.8310 | 97.3615 | 97.9532 | 1.9642 | 87.0949 | 84.5228 | 86.4997 | 94.5012 | 56.8379 | 91.8379 | 98.7435 | 83.9203 |
|  | AB | $2.87 \mathrm{E}+03$ | 1.58E-02 | 7.69E-05 | $1.86 \mathrm{E}+03$ | $9.25 \mathrm{E}+01$ | $1.21 \mathrm{E}+00$ | $2.20 \mathrm{E}+01$ | $6.80 \mathrm{E}+02$ | $1.52 \mathrm{E}+03$ | $3.05 \mathrm{E}+00$ | 1.09E-02 | $1.64 \mathrm{E}+00$ |
| $\mathrm{f}_{35}$ | MD | $2.81 \mathrm{E}+03$ | $1.11 \mathrm{E}-02$ | 7.60E-05 | $1.81 \mathrm{E}+03$ | $9.12 \mathrm{E}+01$ | $1.05 \mathrm{E}+00$ | $1.72 \mathrm{E}+01$ | $2.22 \mathrm{E}+02$ | $4.84 \mathrm{E}+02$ | $2.75 \mathrm{E}+00$ | 8.48E-03 | $1.24 \mathrm{E}+00$ |
|  | SD | $6.08 \mathrm{E}+02$ | 1.64E-02 | 2.92E-05 | $4.86 \mathrm{E}+02$ | $2.55 \mathrm{E}+01$ | 7.00E-01 | $1.43 \mathrm{E}+01$ | $1.03 \mathrm{E}+03$ | $1.60 \mathrm{E}+03$ | $1.40 \mathrm{E}+00$ | 7.73E-03 | $1.23 \mathrm{E}+00$ |
|  | \%XPL | 92.0951 | 6.0810 | 0.7667 | 98.9009 | 64.1413 | 23.1880 | 29.9811 | 5.0130 | 26.4855 | 30.5526 | 1.6696 | 26.0660 |
|  | \%XPT | 7.9049 | 93.9190 | 99.2333 | 1.0991 | 35.8587 | 76.8120 | 70.0189 | 94.9870 | 73.5145 | 69.4474 | 98.3304 | 73.9340 |
|  | AB | $3.01 \mathrm{E}+02$ | $6.01 \mathrm{E}+01$ | $7.19 \mathrm{E}+01$ | $2.61 \mathrm{E}+02$ | $8.34 \mathrm{E}+01$ | $5.82 \mathrm{E}+01$ | $1.30 \mathrm{E}+02$ | $1.40 \mathrm{E}+02$ | $1.35 \mathrm{E}+02$ | $5.89 \mathrm{E}+01$ | $1.76 \mathrm{E}+01$ | $4.10 \mathrm{E}+01$ |
| $\mathrm{f}_{36}$ | MD | $3.01 \mathrm{E}+02$ | $5.47 \mathrm{E}+01$ | $5.22 \mathrm{E}+01$ | $2.62 \mathrm{E}+02$ | $8.24 \mathrm{E}+01$ | $5.21 \mathrm{E}+01$ | $8.18 \mathrm{E}+01$ | $1.35 \mathrm{E}+02$ | $1.38 \mathrm{E}+02$ | $5.87 \mathrm{E}+01$ | $1.71 \mathrm{E}+01$ | $1.75 \mathrm{E}+01$ |
|  | SD | $1.26 \mathrm{E}+01$ | $2.63 \mathrm{E}+01$ | $5.23 \mathrm{E}+01$ | $1.41 \mathrm{E}+01$ | $8.56 \mathrm{E}+00$ | $1.93 \mathrm{E}+01$ | $8.68 \mathrm{E}+01$ | $2.96 \mathrm{E}+01$ | $3.58 \mathrm{E}+01$ | $1.24 \mathrm{E}+01$ | $4.51 \mathrm{E}+00$ | $5.01 \mathrm{E}+01$ |
|  | \%XPL | 89.7716 | 1.3032 | 3.9072 | 97.9230 | 45.4431 | 24.7250 | 47.5097 | 3.2421 | 40.8761 | 23.8254 | 5.7889 | 27.1777 |
|  | \%XPT | 10.2284 | 98.6968 | 96.0928 | 2.0770 | 54.5569 | 75.2750 | 52.4903 | 96.7579 | 59.1239 | 76.1746 | 94.2111 | 72.8223 |
|  | AB | $3.32 \mathrm{E}+05$ | $3.07 \mathrm{E}+03$ | 7.77E-01 | $5.08 \mathrm{E}+05$ | $7.05 \mathrm{E}+01$ | $7.15 \mathrm{E}+01$ | $1.96 \mathrm{E}+02$ | $6.00 \mathrm{E}+04$ | $1.53 \mathrm{E}+05$ | $1.11 \mathrm{E}+02$ | $2.80 \mathrm{E}+01$ | $1.35 \mathrm{E}+00$ |
| $\mathrm{f}_{37}$ | MD | $3.43 \mathrm{E}+05$ | $1.39 \mathrm{E}+03$ | $1.11 \mathrm{E}-01$ | $5.24 \mathrm{E}+05$ | $7.02 \mathrm{E}+01$ | $5.27 \mathrm{E}+01$ | $1.48 \mathrm{E}+02$ | $5.48 \mathrm{E}+04$ | $1.63 \mathrm{E}+05$ | $1.09 \mathrm{E}+02$ | $2.62 \mathrm{E}+01$ | 7.87E-01 |
|  | SD | $8.43 \mathrm{E}+04$ | $3.75 \mathrm{E}+03$ | $2.85 \mathrm{E}+00$ | $1.13 \mathrm{E}+05$ | $1.82 \mathrm{E}+01$ | $4.03 \mathrm{E}+01$ | $1.65 \mathrm{E}+02$ | $4.06 \mathrm{E}+04$ | $6.35 \mathrm{E}+04$ | $6.34 \mathrm{E}+01$ | $8.04 \mathrm{E}+00$ | $1.59 \mathrm{E}+00$ |
|  | \%XPL | 93.8950 | 7.8154 | 2.7508 | 98.7681 | 19.1539 | 19.5105 | 48.0801 | 6.0512 | 19.8387 | 24.8886 | 1.6766 | 24.1191 |
|  | \%XPT | 6.1050 | 92.1846 | 97.2492 | 1.2319 | 80.8461 | 80.4895 | 51.9199 | 93.9488 | 80.1613 | 75.1114 | 98.3234 | 75.8809 |
|  | AB | 7.82E+04 | $3.48 \mathrm{E}+04$ | $1.13 \mathrm{E}-27$ | $1.14 \mathrm{E}+05$ | $1.12 \mathrm{E}-03$ | $7.44 \mathrm{E}+01$ | $7.44 \mathrm{E}+03$ | $1.85 \mathrm{E}+04$ | $3.41 \mathrm{E}+04$ | $1.90 \mathrm{E}+00$ | 6.36E-06 | $1.10 \mathrm{E}+02$ |
| $\mathrm{f}_{38}$ | MD | $7.78 \mathrm{E}+04$ | $3.24 \mathrm{E}+04$ | $1.21 \mathrm{E}-27$ | $1.15 \mathrm{E}+05$ | $1.02 \mathrm{E}-03$ | $7.59 \mathrm{E}+01$ | $5.41 \mathrm{E}+03$ | $8.59 \mathrm{E}+03$ | $3.01 \mathrm{E}+04$ | $1.94 \mathrm{E}+00$ | $6.51 \mathrm{E}-07$ | $9.19 \mathrm{E}+01$ |
|  | SD | $1.20 \mathrm{E}+04$ | $1.14 \mathrm{E}+04$ | $2.77 \mathrm{E}-28$ | $1.79 \mathrm{E}+04$ | 4.19E-04 | $1.11 \mathrm{E}+01$ | $5.54 \mathrm{E}+03$ | $2.34 \mathrm{E}+04$ | $2.24 \mathrm{E}+04$ | $6.15 \mathrm{E}-01$ | $2.73 \mathrm{E}-05$ | $6.93 \mathrm{E}+01$ |
|  | \%XPL | 80.7225 | 5.2696 | 2.3067 | 98.7206 | 10.4484 | 16.7563 | 11.9413 | 6.4235 | 39.5787 | 7.3420 | 1.3278 | 15.7178 |
|  | \%XPT | 19.2775 | 94.7304 | 97.6933 | 1.2794 | 89.5516 | 83.2437 | 88.0587 | 93.5765 | 60.4213 | 92.6580 | 98.6722 | 84.2822 |
|  | AB | $2.73 \mathrm{E}+06$ | $1.59 \mathrm{E}+06$ | 4.33E-26 | $4.18 \mathrm{E}+06$ | $3.15 \mathrm{E}-02$ | $2.90 \mathrm{E}+03$ | $7.74 \mathrm{E}+05$ | $1.60 \mathrm{E}+06$ | $1.41 \mathrm{E}+06$ | $2.60 \mathrm{E}+02$ | 1.47E-04 | $2.76 \mathrm{E}+05$ |
| $\mathrm{f}_{39}$ | MD | $2.72 \mathrm{E}+06$ | $1.47 \mathrm{E}+06$ | $1.01 \mathrm{E}-26$ | $4.21 \mathrm{E}+06$ | $3.16 \mathrm{E}-02$ | $3.00 \mathrm{E}+03$ | $4.45 \mathrm{E}+05$ | $1.26 \mathrm{E}+06$ | $1.25 \mathrm{E}+06$ | $1.50 \mathrm{E}+02$ | $5.01 \mathrm{E}-05$ | $1.85 \mathrm{E}+04$ |
|  | SD | $3.81 \mathrm{E}+05$ | $5.22 \mathrm{E}+05$ | 7.64E-26 | $5.55 \mathrm{E}+05$ | $1.04 \mathrm{E}-02$ | $4.50 \mathrm{E}+02$ | $8.60 \mathrm{E}+05$ | $1.58 \mathrm{E}+06$ | $1.11 \mathrm{E}+06$ | $2.78 \mathrm{E}+02$ | 2.73E-04 | $1.09 \mathrm{E}+06$ |
|  | \%XPL | 89.2405 | 2.9254 | 2.6224 | 98.4350 | 12.6352 | 17.9422 | 31.7209 | 7.0813 | 33.1841 | 7.7982 | 1.2846 | 26.3112 |
|  | \%XPT | 10.7595 | 97.0746 | 97.3776 | 1.5650 | 87.3648 | 82.0578 | 68.2791 | 92.9187 | 66.8159 | 92.2018 | 98.7154 | 73.6888 |
|  | AB | $2.22 \mathrm{E}+32$ | $5.11 \mathrm{E}+29$ | 7.24E-03 | $5.98 \mathrm{E}+29$ | $3.16 \mathrm{E}-02$ | $1.84 \mathrm{E}+01$ | $2.89 \mathrm{E}+02$ | $4.90 \mathrm{E}+02$ | $7.83 \mathrm{E}+02$ | $1.08 \mathrm{E}+04$ | 5.15E-01 | $3.45 \mathrm{E}+19$ |
| $\mathrm{f}_{40}$ | MD | $1.72 \mathrm{E}+31$ | $8.92 \mathrm{E}+22$ | 4.62E-14 | $1.76 \mathrm{E}+29$ | 3.02E-02 | $1.75 \mathrm{E}+01$ | $2.81 \mathrm{E}+02$ | $5.00 \mathrm{E}+02$ | $8.00 \mathrm{E}+02$ | $3.31 \mathrm{E}+02$ | 3.88E-03 | 7.32E+12 |
|  | SD | $5.78 \mathrm{E}+32$ | $2.80 \mathrm{E}+30$ | 3.97E-02 | $8.94 \mathrm{E}+29$ | $8.41 \mathrm{E}-03$ | $3.31 \mathrm{E}+00$ | $6.80 \mathrm{E}+01$ | $2.07 \mathrm{E}+02$ | $2.25 \mathrm{E}+02$ | $4.03 \mathrm{E}+04$ | $2.69 \mathrm{E}+00$ | $1.61 \mathrm{E}+20$ |
|  | \%XPL | 87.7802 | 1.9500 | 3.5449 | 98.2999 | 14.0029 | 23.9210 | 10.3306 | 6.6679 | 38.9743 | 15.4068 | 1.5227 | 12.8716 |
|  | \%XPT | 12.2198 | 98.0500 | 96.4551 | 1.7001 | 85.9971 | 76.0790 | 89.6694 | 93.3321 | 61.0257 | 84.5932 | 98.4773 | 87.1284 |
|  | AB | $3.89 \mathrm{E}+01$ | $1.52 \mathrm{E}-05$ | 7.87E-29 | $4.89 \mathrm{E}+01$ | 5.73E-07 | 3.17E-02 | $1.16 \mathrm{E}-02$ | $2.62 \mathrm{E}+00$ | $2.62 \mathrm{E}+00$ | 1.09E-01 | 2.10E-09 | 1.07E-02 |
| $\mathrm{f}_{41}$ | MD | $3.84 \mathrm{E}+01$ | $1.55 \mathrm{E}-05$ | 7.57E-29 | $4.94 \mathrm{E}+01$ | 5.70E-07 | $3.31 \mathrm{E}-02$ | $1.11 \mathrm{E}-02$ | $7.83 \mathrm{E}-08$ | 1.97E-06 | $1.05 \mathrm{E}-01$ | 2.22E-10 | $8.50 \mathrm{E}-03$ |
|  | SD | $6.80 \mathrm{E}+00$ | 1.68E-06 | 1.47E-29 | $5.76 \mathrm{E}+00$ | 1.44E-07 | $3.41 \mathrm{E}-03$ | 3.88E-03 | $8.00 \mathrm{E}+00$ | $8.00 \mathrm{E}+00$ | 2.57E-02 | 6.54E-09 | 8.84E-03 |
|  | \%XPL | 79.9896 | 4.5125 | 2.1102 | 98.1520 | 9.6874 | 16.0075 | 47.7530 | 6.3734 | 39.7010 | 28.9529 | 1.1754 | 26.0626 |
|  | \%XPT | 20.0104 | 95.4875 | 97.8898 | 1.8480 | 90.3126 | 83.9925 | 52.2470 | 93.6266 | 60.2990 | 71.0471 | 98.8246 | 73.9374 |
|  | AB | $1.74 \mathrm{E}+03$ | $1.96 \mathrm{E}+01$ | 7.64E-28 | $2.57 \mathrm{E}+03$ | 2.79E-05 | $1.67 \mathrm{E}+00$ | $1.70 \mathrm{E}+00$ | $4.13 \mathrm{E}+02$ | $5.90 \mathrm{E}+02$ | $1.75 \mathrm{E}+00$ | 6.04E-07 | 8.74E-01 |
| $\mathrm{f}_{42}$ | MD | $1.76 \mathrm{E}+03$ | $9.75 \mathrm{E}+00$ | $7.45 \mathrm{E}-28$ | $2.54 \mathrm{E}+03$ | $2.56 \mathrm{E}-05$ | $1.67 \mathrm{E}+00$ | $1.36 \mathrm{E}+00$ | $2.50 \mathrm{E}+02$ | $5.50 \mathrm{E}+02$ | $1.80 \mathrm{E}+00$ | $1.58 \mathrm{E}-08$ | $6.74 \mathrm{E}-01$ |
|  | SD | 2.02E+02 | $2.59 \mathrm{E}+01$ | $2.89 \mathrm{E}-28$ | $3.58 \mathrm{E}+02$ | 9.89E-06 | $2.47 \mathrm{E}-01$ | $1.16 \mathrm{E}+00$ | $4.74 \mathrm{E}+02$ | $3.86 \mathrm{E}+02$ | $3.80 \mathrm{E}-01$ | 2.65E-06 | 8.38E-01 |
|  | \%XPL | 78.9622 | 2.7921 | 2.2211 | 97.9084 | 10.5863 | 17.3523 | 47.1852 | 5.9450 | 37.1032 | 18.8607 | 1.2538 | 26.1591 |
|  | \%XPT | 21.0378 | 97.2079 | 97.7789 | 2.0916 | 89.4137 | 82.6477 | 52.8148 | 94.0550 | 62.8968 | 81.1393 | 98.7462 | 73.8409 |

Table 10
Ranks achieved and $p$-value of the Friedman test in shifted functions.

| Function | ABC | BA | CMAES | CSA | DE | FA | GWO | MFO | PSO | SSO | TLBO | WOA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Average rank | 11.4444 | 7.4444 | 1.8889 | 11.5555 | 3.7778 | 4.5556 | 6.7778 | 8.6667 | 9 | 5.4444 | 2.4444 | 5 |
| $\boldsymbol{p}$-value | $2.25 \mathrm{e}-12$ |  |  |  |  |  |  |  |  |  |  |  |



Fig. 9. Average balance employed by CMA-ES, GWO, TLBO and WOA algorithms in shifted functions.


Fig. 10. Balance employed by DE in $f_{34}$ and TLBO in $f_{36}$.


Fig. 11. Average balance employed by the bottom three algorithms in shifted functions.

Table 11
Results from the Random Search algorithm in the control test.

| Div $_{\text {max }}$ | Div $_{\text {mean }}$ | \%XPL | \%XPT |
| :--- | :--- | :--- | :--- |
| $2.57 \mathrm{E}+00$ | $2.45 \mathrm{E}+00$ | 95.52 | 4.48 |



Fig. 12. The average balance of Random Search algorithm.
iterations increase, the population diversity diminishes. According to the Figure, the WOA algorithm presents in its behavior high oscillations which reflex its better conduction of exploration-exploitation. On the other hand, the other schemes present different diversity levels. CMA-ES and TLBO show the smoothest diversity responses.

## 5. Results analysis

According to this analysis, several interesting patterns have been identified. In the study, the best results have been obtained by WOA, CMA-ES, GWO and TLBO through an exploitation rate of over $90 \%$ $(X P L \%=10, X P T \%=90)$. In general terms, from all schemes, the WOA maintains the best performance indexes.

From the experiments, it is clear that the best performances are ob-
tained when the balances maintain a response of $X P L \%=10$ and $X P T \%$ $=90$. In order to produce this behavior, the exploration process should last only the first iterations, specifically from 100 to 300 iterations. Then, the rest of the search strategy is mainly guided by the exploitation process.

An important characteristic of observable in balance graphs is the roughness. This feature implies an erratic variation of the balance during the evolution process. Such variations are produced by small and abrupt changes of diversity as a consequence of the used search mechanisms. These changes slightly increase the exploration rate allowing it to escape from local minima even though the optimization process is in the exploiting stage. In general terms, rough balance responses exhibit a better algorithm performance. The WOA algorithm maintains always a rough balance response (Figs. 2, 5 and 7) which seems to be one of the causes of its good performance.

Another interesting observation of this study is that good performance behavior is produced through the combination of competitive search mechanisms and an adequate balance response. During the experiments, in some cases, two metaheuristic algorithms presented very different performances in terms of solution quality in spite of their similar balance responses. Only an appropriate balance response ( $X P L \%=10$, $X P T \%=90$ ) is not enough to obtain good results. It is also necessary to have operators for the generation of promising solutions so that they take advantage of the adequate diversity conditions observed in the balance response.

The results in shifted functions represent a valuable case to analyze since many algorithms could not maintain the good performance obtained in non-shifted functions. From the best performing algorithms, only CMA-ES has obtained its competitive performance in the shifted and non-shifted versions. GWO and WOA not only have presented a bad performance in terms of quality solution but also, an inappropriate balance response. Due to its search strategy, it is well-known that GWO and WOA maintain a good performance in problems where the optimal point is in the origin. However, they present critical flaws when they face test functions with a shifted optimal point. Under such conditions, when an algorithm cannot find a promising zone to exploit, it needs to invest more time exploring the search space producing an unbalance in the rate exploration-exploitation. This fact affects the quality or precision of the final solutions.

## 6. Conclusions and future work

In this paper, an empirical evaluation of the balance between


Fig. 13. Diversity behavior of the best performing algorithms CMA-ES, GWO, TLBO and WOA for functions (a) $f_{6}$ and (b) $f_{37}$.
exploration and exploitation on metaheuristic algorithms has been conducted. In the study, a dimension-wise diversity measurement is used to assess the balance of each scheme considering a representative set of 42 benchmark problems that involve multimodal, unimodal, composite and shifted functions. In the majority of the 42 functions (multimodal, unimodal, hybrid and shifted) the balance that produced the best results was above $90 \%$ exploitation and less than $10 \%$ exploration.

In shifted functions specifically, many algorithms maintain difficulties in maintaining the same performance that they had on to the nonshifted versions. Some of them had also problems to obtain the same balance between exploration and exploitation.

It has been observed in this study that good performance behavior is produced through the combination of competitive search mechanisms and an adequate balance response. Only an appropriate balance response is not enough to obtain good results. It is also necessary to have operators for the generation of promising solutions so that they take advantage of the adequate diversity conditions observed in the balance response.

According to this analysis, it can be formulated as a future work that
the metaheuristic schemes could improve their results by gradually reducing the number of their search agents.

In general, a metaheuristic algorithm with $N$ search agents invests $N$ function evaluations in each iteration. In a competitive metaheuristic method, its exploitation phase lasts $90 \%$ of its execution. In this phase, the diversity of the population is small since most of the solutions are grouped or clustered in the best positions of the search space. Under such conditions, it is better to consider in the search strategy only the best $B$ solutions from the existent $N(B \ll N)$. Therefore in some cases, the computational complexity can be reduced.

## CRediT authorship contribution statement

Bernardo Morales-Castañeda: Conceptualization, Investigation, Writing - original draft. Daniel Zaldívar: Resources, Data curation. Erik Cuevas: Resources, Writing - review \& editing. Fernando Fausto: Visualization, Methodology. Alma Rodríguez: Software, Validation.

## Appendix A

The set of benchmark test functions implemented in the experiments is described in Tables A.I, A.II, A.III and A.IV where $f\left(\mathbf{x}^{*}\right)$ is the optimum value of the function, $\mathbf{x}^{*}$ the optimum position and $S \in \mathbb{R}^{n}$ the search space. The benchmark test functions are classified in unimodal A.I, multimodal A.II, composite A.III and shifted A.IV.

Table A I
Multimodal test benchmark functions considered in the experiments.

| $f_{i}$ | Name | Function | S | Dim | Minimum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{1}$ | Ackley | $f(x)=-20 e^{-0.2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}}-e^{\frac{1}{n} \sum_{i=1}^{n} \cos \left(2 \pi x_{i}\right)}+20+e$ | $[-30,30]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{2}$ | Dixon Price | $f(x)=\left(x_{i}-1\right)^{2}+\sum_{i=2}^{n} i\left(2 x_{i}^{2}-x_{i-1}\right)^{2}$ | $[-10,10]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 ; \\ & \mathbf{x}^{*}=2^{-\frac{2^{i}-2}{2^{i}}} \\ & \text { for } i=1, \ldots, n \end{aligned}$ |
| $f_{3}$ | Griewank | $f(x)=\frac{1}{4000} \sum_{i=1}^{n} x_{i}{ }^{2}-\prod_{i=1}^{n} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1$ | $[-600,600]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{4}$ | Infinity | $f(x)=\sum_{i=1}^{n} x_{i}^{6}\left[\sin \left(\frac{1}{x_{\mathrm{i}}}\right)+2\right]$ | $[-1,1]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{5}$ | Levy | $\begin{aligned} & f(x)=\cos 2\left(\pi w_{1}\right)+\sum_{i=1}^{n-1}\left(w_{i}-1\right)^{2}\left(1+10 \sin \pi w_{i}+1\right)+\left(w_{n}-1\right)^{2}(1+ \\ & \left.\sin ^{2} 2 \pi w_{n}\right) \end{aligned}$ | $[-10,10]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $f\left(\mathbf{x}^{*}\right)=0 ; \mathbf{x}^{*}=(1, \ldots, 1)$ |
| $f_{6}$ | Mishra11 | $\begin{aligned} & w_{i}=1+\left(\frac{x_{i}+1}{4}\right) \\ & f(\mathbf{x})=\left[\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}\right\|-\left(\prod_{i=1}^{n}\left\|x_{i}\right\|\right)^{\frac{1}{n}}\right]^{2} \end{aligned}$ | $[-10,10]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{7}$ | Multimodal | $f(x)=\sum_{i}^{n}\left\|x_{i}\right\| \times \prod_{i}^{n}\left\|x_{i}\right\|$ | $[-10,10]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{8}$ | Penalty1 | $\begin{aligned} & f(x)=\frac{\pi}{30}\left\{10 \sin ^{2}\left(\pi y_{1}\right)+\sum_{i=1}^{n-1}\left(y_{i}-1\right)^{2}\left[1+10 \sin ^{2}\left(\pi y_{i}+1\right)\right]+\left(y_{n}-1\right)^{2}\right\}+\sum_{i=1}^{n} u\left(x_{i}, 10,100,4\right) ; \\ & y_{i}=1+\frac{x_{i}+1}{4} ; \\ & u\left(x_{i}, a, k, m\right)=\left\{\begin{array}{c} k\left(x_{i}-a\right)^{m}, x_{i}>a \\ 0,-a \leq x_{i} \leq a \\ k\left(-x_{i}-a\right)^{m}, x_{i}<-a \end{array}\right. \end{aligned}$ | $[-50,50]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(-1, \ldots,-1) \end{aligned}$ |
| $f_{9}$ | Penalty 2 | $f(x)=0.1\left\{\sin ^{2}\left(3 \pi x_{1}\right)+\sum_{i=1}^{n-1}\left(x_{i}-1\right)^{2}\left[1+\sin ^{2}\left(3 \pi x_{i+1}\right)\right]+\left(x_{n}-1\right)^{2}\left[1+\sin ^{2}\left(2 \pi x_{n}\right)\right]\right\}+\sum_{i=1}^{n} u\left(x_{i},\right.$ <br> 5, 100, 4); $u\left(x_{i}, a, k, m\right)=\left\{\begin{array}{c} k\left(x_{i}-a\right)^{m}, x_{i}>a \\ 0,-a \leq x_{i} \leq a \\ k\left(-x_{i}-a\right)^{m}, x_{i}<-a \end{array}\right.$ | $[-50,50]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(1, \ldots, 1) \end{aligned}$ |
| $f_{10}$ | Perm1 | $f(x)=\sum_{k=1}^{n}\left\{\sum_{j}^{n}\left(j^{k}+\beta\right)\left[\left(\frac{x_{j}}{\beta}\right)^{2}-1\right]\right\}^{2}$ | $[-n, n]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(1,2, \ldots, n) \end{aligned}$ |
| $f_{11}$ | Perm2 | $f(x)=\sum_{k=1}^{n}\left\{\sum_{j}^{n}\left(j^{k}+\beta\right)\left[x_{j}^{k}-\frac{1}{j}\right]\right\}^{2}$ | $[-n, n]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(1,1 / 2, \ldots, 1 / n) \end{aligned}$ |
| $f_{12}$ | Plateau |  | $[-5.12,5.12]^{n}$ |  |  |

Table A I (continued)

| $f_{i}$ | Name | Function | S | Dim | Minimum |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $f(x)=30+\sum_{i=1}^{n}\left\|x_{i}\right\|$ |  | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=30 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{13}$ | Powell | $f(x)=\sum_{i=1}^{n / 4}\left[\left(x_{4 i-3}+10 x_{4 i-2}\right)^{2}+5\left(x_{4 i-1}-x_{4 i}\right)^{2}+\left(x_{4 i-2}-2 x_{4 i-1}\right)^{4}+10\left(x_{4 i-3}-x_{4 i}\right)^{4}\right]$ | $[-4,5]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{14}$ | Qing | $f(x)=\sum_{i=1}^{n}\left(x_{i}{ }^{2}-1\right)^{2}$ | $[-500,500]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & x_{i}^{*}=( \pm \sqrt{i}) \mathrm{i}=1,2, \ldots, \mathrm{n} \end{aligned}$ |
| $f_{15}$ | Quartic | $f(x)=\sum_{i=1}^{n}\left\{\left(i x_{i}\right)^{4}+\operatorname{rand}[0,1)\right\}$ | $[-1.28,1.28]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{16}$ | Quintic | $f(x)=\sum_{i=1}^{n}\left\|x_{i}^{5}-3 x_{i}^{4}+4 x_{i}{ }^{3}+2 x_{i}{ }^{2}-x_{i}-4\right\|$ | $[-10,10]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=\left(\begin{array}{l} -1, \ldots, \end{array}\right) \end{aligned}$ |
| $f_{17}$ | Rastringin | $f(x)=10 n+\sum_{i=1}^{n}\left[x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)\right]$ | $[-5.12,5.12]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{18}$ | Rosenbrock | $f(x)=\sum_{i=1}^{n-1}\left[100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(x_{i}-1\right)^{2}\right]$ | $[-5,10]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(1, \ldots, 1) \end{aligned}$ |
| $f_{19}$ | Schwefel21 | $f(x)=\max \left\|x_{i}\right\|$ | $[-100,100]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{20}$ | Schwefel22 | $f(x)=\sum_{i=1}^{n}\left\|x_{i}\right\|+\prod_{i=1}^{n}\left\|x_{i}\right\|$ | $[-100,100]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{21}$ | Schwefel26 | $f(x)=-\sum_{i=1}^{n}\left[x_{i} \sin \left(\sqrt{\left\|x_{i}\right\|}\right)\right]$ | $[-500,500]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=-418.98 n ; \\ & \mathbf{x}^{*}= \\ & (420.97, \ldots, 420.97) \end{aligned}$ |
| $f_{22}$ | Step | $f(x)=\sum_{i=1}^{n} x_{i}{ }^{2}$ | $[-100,100]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{23}$ | Styblinski <br> Tang | $f(x)=\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}^{4}-16 x_{i}^{2}+5 x_{i}\right)$ | $[-5,5]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=-39.1659 n ; \\ & \mathbf{x}^{*}=(-2.90, \ldots, 2.90) \end{aligned}$ |
| $f_{24}$ | Trid | $f(x)=\sum_{i=1}^{n}\left(x_{i}-1\right)^{2}-\sum_{i=2}^{n} x_{i} x_{i-1}$ | $\left[-n^{2}, n^{2}\right]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=-n(n+4)(n-1) / \\ & 6 ; \\ & x_{i}{ }^{*}=i(n+1-i) \mathrm{i}=1, \\ & 2, \ldots, \mathrm{n} \end{aligned}$ |

Table A II
Unimodal test benchmark functions considered in the experiments.

| $f_{i}$ | Name | Function | S | Dim | Minimum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{25}$ | Rothyp | $f(x)=\sum_{i=1}^{n} \sum_{j=1}^{i} x_{j}^{2}$ | $[-65.536,65.536]^{n}$ | $n=30$ | $f\left(x^{*}\right)=0 ; \mathrm{x}^{*}=(0, \ldots, 0)$ |
| $f_{26}$ | $f(x)=\sum_{i=1}^{n}\left(\sum_{j=1}^{i} x_{i}\right)^{2}$ | $[-100,100]^{n}$ | $n=30$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |  |
| $f_{27}$ | Sphere | $f(x)=\sum_{i=1}^{n} x_{i}^{2}$ | $[-5,5]^{n}$ | $n=30$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 ; \\ & \mathbf{x}^{*}=0, \ldots, 0 \end{aligned}$ |
| $f_{28}$ | Sum Squares | $f(x)=\sum_{i=1}^{n} i x_{i}^{2}$ | $[-10,10]^{n}$ | $n=30$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{29}$ | Sum of Different Powers | $f(x)=\sum_{i=1}^{n}\left\|x_{i}\right\|^{i+1}$ | $[-1,1]^{n}$ | $n=30$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |

Table A III
Composite test benchmark functions considered in the experiments.

| $f_{i}$ | Name | Function | S | Dim | Minimum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{30}$ | Hybrid1 | $f(x)=f_{1}(\mathbf{x})+f_{20}(\mathbf{x})+f_{27}(\mathbf{x})$ | $[-100,100]^{n}$ | $n=30$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{31}$ | Hybrid2 | $f(x)=f_{3}(\mathbf{x})+f_{17}(\mathbf{x})+f_{18}(\mathbf{x})$ | $[-100,100]^{n}$ | $n=30$ | $\begin{gathered} f\left(\mathbf{x}^{*}\right)=n-1 ; \\ \mathbf{x}^{*}=(0, \ldots, 0) \end{gathered}$ |
| $f_{32}$ | Hybrid3 | $f(x)=f_{1}(\mathbf{x})+f_{9}(\mathbf{x})+f_{18}(\mathbf{x})+f_{26}(\mathbf{x})$ | $[-100,100]^{n}$ | $n=30$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=(1.1 n)-1 \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |
| $f_{33}$ | Hybrid4 | $f(x)=f_{1}(\mathbf{x})+f_{3}(\mathbf{x})+f_{17}(\mathbf{x})+f_{18}(\mathbf{x})+f_{20}(\mathbf{x})$ | $[-100,100]^{n}$ | $n=30$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=n-1 ; \\ & \mathbf{x}^{*}=(0, \ldots, 0) \end{aligned}$ |

Table A IV
Shifted test benchmark functions considered in the experiments.

| $f_{i}$ | Name | Function | S | Dim | Minimum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{34}$ | Shifted Ackley | $f(x)=-20 e^{-0.2 \sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-10\right)^{2}}}-e^{\frac{1}{n} \sum_{i=1}^{n} \cos \left(2 \pi\left(X_{i}-10\right)\right)}+20+e$ | $[-20,40]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(10, \ldots, \\ & 10) \end{aligned}$ |
| $f_{35}$ | Shifted Powell |  | $[1,10]^{n}$ |  |  |

Table A IV (continued)

| $f_{i}$ | Name | Function | S | Dim | Minimum |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \left.\left.\left.\left.\left.\left.f(x)=\sum_{i=1}^{n / 4}\left[\left(\left(x_{4 i-3}-5\right)+10 x_{4 i-2}-5\right)\right)\left(x_{4 i-2}-5\right)\right)^{2}+5 x_{4 i-1}-5\right)-x_{4 i}-5\right)\right)\left(x_{4 i}-5\right)\right)^{2}+x_{4 i-2}-5\right)- \\ & \left.\left.2\left(x_{4 i-1}-5\right)\right)^{4}+10\left(\left(x_{4 i-3}-5\right)-\left(x_{4 i}-5\right)\right)^{4}\right] \end{aligned}$ |  | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(5, \ldots, 5) \end{aligned}$ |
| $f_{36}$ | Shifted <br> Rastringin | $f(x)=10 n+\sum_{i=1}^{n}\left[\left(x_{i}-15\right)^{2}-10 \cos \left(2 \pi\left(x_{i}-15\right)\right)\right]$ | $[9.88,20.12]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(15, \ldots, \\ & 15) \end{aligned}$ |
| $f_{37}$ | Shifted <br> Rosenbrock | $\left.\left.\left.\left.f(x)=\sum_{i=1}^{n-1}\left[100 x_{i+1}-100\right)-\left(x_{i}-100\right)^{2}\right)\left(x_{i}-100\right)\left(x_{i}-100\right)^{2}\right)^{2}+\left(x_{i}-100\right)-1\right)^{2}\right]$ | $[96,111]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(101, \ldots, \\ & 101) \end{aligned}$ |
| $f_{38}$ | Shifted Rothyp | $f(x)=\sum_{i=1}^{n} \sum_{j=1}^{i}\left(x_{j}-20\right)^{2}$ | $\begin{gathered} {\left[-45.536,{ }^{n}\right.} \\ 85.536] \end{gathered}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(20, \ldots, \\ & 20) \end{aligned}$ |
| $f_{39}$ | Shifted <br> Schwefel2 | $f(x)=\sum_{i=1}^{n}\left(\sum_{j=1}^{i}\left(x_{i}-100\right)\right)^{2}$ | $[0,200]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(100, \ldots, \\ & 100) \end{aligned}$ |
| $f_{40}$ | Shifted <br> Schwefel22 | $f(x)=\sum_{i=1}^{n}\left\|\left(x_{i}-25\right)\right\|+\prod_{i=1}^{n}\left\|\left(x_{i}-25\right)\right\|$ | $[-75,125]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(25, \ldots, \\ & 25) \end{aligned}$ |
| $f_{41}$ | Shifted Sphere | $f(x)=\sum_{i=1}^{n}\left(x_{i}-20\right)^{2}$ | $[14.88,25.12]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(20, \ldots, \\ & 20) \end{aligned}$ |
| $f_{42}$ | Shifted Sum2 | $f(x)=\sum_{i=1}^{n} i\left(x_{i}-30\right)^{2}$ | $[20,40]^{n}$ | $\begin{aligned} & n= \\ & 30 \end{aligned}$ | $\begin{aligned} & f\left(\mathbf{x}^{*}\right)=0 \\ & \mathbf{x}^{*}=(30, \ldots, \\ & 30) \end{aligned}$ |

## References

[1] K. Hussain, M.N. Mohd Salleh, S. Cheng, Y. Shi, Metaheuristic research: a comprehensive survey, Artif. Intell. Rev. (2018) 1-43.
[2] K. Sörensen, Metaheuristics-the metaphor exposed, Int. Trans. Oper. Res. 22 (1) (2015) 3-18.
[3] J. Xu, J. Zhang, "Exploration-exploitation tradeoffs in metaheuristics: survey and analysis, in: Proc. 33rd Chinese Control Conf, CCC 2014, 2014, pp. 8633-8638.
[4] M. Crepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms, ACM Comput. Surv. 45 (3) (Jun. 2013) 1-33.
[5] S. Chen, A. Boluf, J. Montgomery, T. Hendtlass, An Analysis on the Effect of Selection on Exploration in Particle Swarm Optimization and Differential Evolution, 2019, pp. 3037-3044.
[6] F. Fausto, A. Reyna-Orta, E. Cuevas, Á.G. Andrade, M. Perez-Cisneros, From Ants to Whales: Metaheuristics for All Tastes, Springer Netherlands, 2019.
[7] X.-S. Yang, Swarm-based metaheuristic algorithms and No-Free-Lunch theorems, Theory New Appl. (2012). Swarm Intell.
[8] X.-S. Yang, Nature-Inspired mateheuristic algorithms: success and new challenges, J. Comput. Eng. Inf. Technol. 1 (1) (2012).
[9] H.P. Kriegel, E. Schubert, A. Zimek, The (black) art of runtime evaluation: are we comparing algorithms or implementations? Knowl. Inf. Syst. 52 (2) (2017) 341-378.
[10] S. Cheng, Y. Shi, Q. Qin, Q. Zhang, R. Bai, Population Diversity Maintenance in Brain 4 (2) (2015) 83-97.
[11] T. Al-Quraishi, J.H. Abawajy, M.U. Chowdhury, S. Rajasegarar, A.S. Abdalrada, Recent Advances on Soft Computing and Data Mining, vol. 700, Springer International Publishing, Cham, 2018. Scdm.
[12] M.N.M. Salleh, et al., Exploration and exploitation measurement in swarm-based metaheuristic algorithms: an empirical analysis, in: Advances in Intelligent Systems and Computing, vol. 700, 2018, pp. 24-32. Scdm.
[13] X.S. Yang, S. Deb, S. Fong, Metaheuristic algorithms: optimal balance of intensification and diversification, Appl. Math. Inf. Sci. 8 (3) (2014) 977-983.
[14] X.S. Yang, S. Deb, T. Hanne, X. He, Attraction and diffusion in nature-inspired optimization algorithms, Neural Comput. Appl. 19 (2015).
[15] H. Du, Z. Wang, W.E.I. Zhan, Elitism and distance strategy for selection of evolutionary algorithms, IEEE Access 6 (2018) 44531-44541.
[16] R. Storn, K. Price, "Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim. 11 (4) (1997) 341-359.
[17] T. Huang, Z.-H. Zhan, X. Jia, H. Yuan, J. Jiang, J. Zhang, Niching community based differential evolution for multimodal optimization problems, in: 2017 IEEE Symposium Series on Computational Intelligence, SSCI, 2017, pp. 1-8.
[18] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intell. 1 (1) (Oct. 2007) 33-57.
[19] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey Wolf optimizer," Adv. Eng. Software., vol. 69, pp. 46-61, Mar. 2014.
[20] X.S. Yang, X. He, Firefly algorithm: recent advances and applications, Int. J. Swarm Intell. 1 (1) (2013) 1-14.
[21] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm, Inf. Sci. (Ny) 179 (13) (2009) 2232-2248.
[22] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Tech. Rep. TR06 (2005) 10. Erciyes Univ., no. TR06.
[23] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, J. Global Optim. 39 (3) (2007) 459-471.
[24] X.-S. Yang, A New Metaheuristic Bat-Inspired Algorithm, 2010, pp. 65-74.
[25] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evol. Comput. 9 (2) (Jun. 2001) 159-195.
[26] A. Askarzadeh, A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm, Comput. Struct. 169 (2016) 1-12.
[27] X.-S. Yang, Firefly algorithms for multimodal optimization, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5792, LNCS, 2009, pp. 169-178.
[28] E. Cuevas, M. Cienfuegos, D. Zaldívar, M. Pérez-cisneros, A swarm optimization algorithm inspired in the behavior of the social-spider, Expert Syst. Appl. 40 (16) (2013) 6374-6384.
[29] R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching-Learning-Based Optimization: an optimization method for continuous non-linear large scale problems, Inf. Sci. (Ny) 183 (1) (2012) 1-15.
[30] S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl. Base Syst. 89 (2015) 228-249.
[31] B. Chopard, M. Tomassini, Particle swarm optimization, Nat. Comput. Ser. (2018) 97-102.
[32] S. Mirjalili, A. Lewis, The Whale optimization algorithm, Adv. Eng. Software 95 (2016) 51-67.
[33] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput. 1 (1) (2011) 3-18.
[34] N. Hansen, The CMA Evolution Strategy: A Tutorial 102 (2016) 75-102, 2006.
[35] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art, IEEE Trans. Evol. Comput. 15 (1) (2011) 4-31.
[36] I. Fister, X.S. Yang, J. Brest, A comprehensive review of firefly algorithms, Swarm Evol. Comput. 13 (2013) 34-46.
[37] F. Marini, B. Walczak, Particle swarm optimization (PSO). A tutorial, Chemometr. Intell. Lab. Syst. 149 (Dec. 2015) 153-165.
[38] N.H. Awad, M.Z. Ali, J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization, 2016.
[39] H. Mania, A. Guy, B. Recht, Simple Random Search Provides a Competitive Approach to Reinforcement Learning, 2018, pp. 1-22.
[40] J. Carrasco, et al., Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review, Swarm Evol. Comput. 54 (2020), https://doi.org/10.1016/j.swevo.2020.100665.
[41] J. Del Ser, et al., Bio-inspired computation: Where we stand and what's next, Swarm Evol. Comput. 48 (2019), https://doi.org/10.1016/j.swevo.2019.04.008.


[^0]:    * Corresponding author.

    E-mail addresses: jb.moralescastaneda@gmail.com (B. Morales-Castañeda), daniel.zaldivar@cucei.udg.mx (D. Zaldívar), erik.cuevas@cucei.udg.mx (E. Cuevas), abraham.fausto@academicos.udg.mx (F. Fausto), alma.rvazquez@academicos.udg.mx (A. Rodríguez).

