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Abstract
In this paper we address the problem of defining a measure of diversity for a popu-
lation of individuals whose genome can be subjected to major reorganizations during
the evolutionary process. To this end, we introduce a measure of diversity for popula-
tions of strings of variable length defined on a finite alphabet, and from this measure
we derive a semi-metric distance between pairs of strings. The definitions are based on
counting the number of substrings of the strings, considered first separately and then
collectively. This approach is related to the concept of linguistic complexity, whose
definition we generalize from single strings to populations. Using the substring count
approach we also define a new kind of Tanimoto distance between strings. We show
how to extend the approach to representations that are not based on strings and, in par-
ticular, to the tree-based representations used in the field of genetic programming. We
describe how suffix trees can allow these measures and distances to be implemented
with a computational cost that is linear in both space and time relative to the length
of the strings and the size of the population. The definitions were devised to assess
the diversity of populations having genomes of variable length and variable structure
during evolutionary computation runs, but applications in quantitative genomics, pro-
teomics, and pattern recognition can be also envisaged.

Keywords
Evolutionary computation, genetic programming, variable length genomes, popula-
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1 Introduction

In evolutionary computation (EC) there is often the need to measure the diversity of
two or more individuals of a population. This necessity can be dictated by many rea-
sons, for example: the desire to prevent premature convergence of the population; the
utility of restarting or stopping an evolutionary algorithm when the population diver-
sity drops below a certain threshold; the requirement of evolving a population of dis-
tinct Pareto-optimal solutions in a multi-objective optimization problem; the effort of
maintaining a population able to adapt rapidly to a changed environment in the case
of dynamic problems; and still many others (de Jong et al., 2001; Leung et al., 1997;
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Tomassini et al., 2004; Wineberg and Oppacher, 2000; Wineberg and Oppacher, 2003a;
Wineberg and Oppacher, 2003b).

The diversity of individuals and populations can be measured either in the geno-
type or in the phenotype space. When the phenotype or the genotype are constituted
by a fixed number p of real parameters, the standard tools of mathematical analysis
and those of cluster analysis in the p-dimensional real space Rp can be directly applied
for the definition of a measure of diversity (Theodoridis and Koutroumbas, 2003). It is
often the case, however, that the structure of the phenotype does not lend itself well to
such a straightforward approach; this happens, for example, when the phenotype is a
structure - say, a network - with variable topology and number of parameters. In those
cases, one is left with the option of either defining a specialized distance between such
phenotypic structures, or focus on the genotype space, where the structure of the ele-
ments is usually much simpler, for example a sequence of characters. We will assume
in the rest of the paper that the elements of the genotype space, i.e., the genomes of
the individuals, are finite character strings over a finite alphabet. Note that there are
contexts, where the genomes have structure more complex than a string, and where the
measures defined below and based on the count of strings and substrings cannot be ap-
plied directly but must be adapted to the particular genome structure. We will describe
below an example of an extension of the string-based diversity measure to the case of
tree-based genomes used in the field of genetic programming (Keijzer, 1996; Langdon
and Poli, 2002).

If the strings that constitute the genomes have fixed length and uniform structure,
the definition of a diversity measure for two individuals is typically based on the use of
the Hamming distance (although other approaches are possible, see for example (Le-
ung et al., 1997)), that is, on the count of the number of mismatches between the pair of
strings that constitute the genomes of the individuals. With the expression “genomes
having uniform structure”, we mean that all the individuals have a genome with the
same number of subblocks, or genes, with the same phenotypic meaning for the sub-
blocks, and arranged in the same order in the genome. A diversity measure for the
whole population can be then obtained from the diversity measure for pairs of indi-
viduals by combining all the pairwise distances between individuals (Morrison and
De Jong, 2002; Wineberg and Oppacher, 2003a; Wineberg and Oppacher, 2003b).

The case of strings with variable length but still with uniform structure can be
treated similarly, provided the Hamming distance is generalized to permit the compar-
ison of strings having different length. A good candidate for this generalization is the
so-called edit distance, which is based on the use of three elementary operations - inser-
tion, deletion, and substitution of characters - to transform a string into another. A cost
is associated with each elementary operation, and the distance is defined as the mini-
mum cost of the sequence of operations that leads from one string to the other. The cor-
respondence established by this minimum cost sequence of operations is called a global
alignment of the two strings, and algorithms with computational cost proportional to
mn exist to perform this task, where m and n are the lengths of the two strings (Gus-
field, 1997; Keller and Banzhaf, 1994; O’Reilly, 1997; Sankoff and Kruskal, 1983).

The problem of defining a measure of diversity for a population becomes more
complicated if we assume that besides having variable length, the genomes of the indi-
viduals may also have different structure. For example, the genome of one individual
might have a certain set of genes arranged in a certain order, and another individual
might have the same set of genes but ordered differently, or it might even have a differ-
ent set of genes. In these cases, the methods described above for genome comparison
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cannot be applied. On the other hand, variable structure genomes are particularly inter-
esting, especially in the light of the high reorganizability of biological genomes, which
has been observed as a response of organisms to a crisis and is coming more and more
into focus as one of the key players in the evolutionary potential of organisms (Shapiro,
2002). If, despite its variability, one is aware of the presence of a set of structural mo-
tifs (such as, for example, promoter sequences and specific protein coding regions in
biological genomes) in the genome of every individual, the global string alignment
approach based on the edit distance can still be applied by localizing and comparing
one by one the corresponding motifs in the two genomes, and by assigning a cost to
unmatched motifs. Alternatively, one can resort to algorithms that implement local
alignment in place of global alignment (Gusfield, 1997; Sankoff and Kruskal, 1983). The
difference is that the costs that were associated with the elementary operations in the
definition of the edit distance, are now interpreted as rewards for matches, and the best
matching subsequences - presumably corresponding to functionally significant motifs
- are located and evaluated by the algorithm itself within the genomes of pairs of in-
dividuals. The computational cost of these approaches, however, becomes rapidly un-
manageable, especially in an EC perspective where the population is a highly dynamic
entity, whose diversity must be repeatedly calculated during an evolutionary run.

The approach adopted in the present paper tries to bring together the best of both
worlds, by defining a measure of diversity for individuals and populations that applies
to genomes with variable length and structure, but neither assumes the knowledge
of the genome structure, nor incurs the computational cost entailed by the automatic
identification of the actual genome motifs. To achieve this result, it looks for potential
motifs contained in the genomes, and bases its measure of diversity on a combination
of their number. This leads to a definition that applies to generic genomes, and which
is capable of taking into account at least partially the structure of the genomes, while
remaining computationally inexpensive. Moreover – as can be expected from a diver-
sity measure – the definition gives a minimal value of diversity for the case of uniform
populations and a maximal value for pairwise maximally distinct individuals, and it
becomes a (semi-metric) distance when the population reduces to two individuals.

Despite being targeted to highly reorganizable genomes, the measures of diver-
sity that will be defined apply also to simpler kinds of genomes, such as those having
fixed length and uniform structure. Moreover, the definitions can find applications be-
yond EC, in any domain that requires the comparison of sequences of symbols - such
as genomics, proteomics, chemical structure similarity assessment, and pattern recog-
nition in general - and, even more generally, to domains that require the comparison
of generic collections of ”individuals” that can each be associated in a meaningful way
with a set of features.

2 Population diversity

The genomes that we consider in this paper are strings of characters. Let us denote
with si

j
the string that constitutes the genome of the individual ij of the population

P = {i1, i2, . . . , in}. In the following, we will identify an individual with its genome,
and define diversities and distances for individuals in terms of their genome only. We
are interested in counting the number of potential motifs contained in each individual
genome and in the population genome. Since we do not assume any knowledge of
the genome structure, the potential motifs of a string si constituting the genome of
individual i, are all its substrings, that is, all the strings of characters that appear
contiguously in si. Let us denote with Si the set of substrings of si, and with |Si| its
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cardinality. Correspondingly, the potential motifs of a set of individuals, for example
the population P = {i1, i2, . . . , in}, are all the substrings that appear in the strings
{si1

, si2
, . . . , sin

}. We will denote this set of substrings with S{i1 ,i2 ,...,in} and its
cardinality with |S{i1 ,i2 ,...,in}|. Note that S{i1 ,i2 ,...,in} =

⋃n
j=1 Si

j
.

Example 1: Consider three individuals i1, i2, i3, whose genomes are the strings si1
=

aba, si2
= abbc, si3

= babc. We have:

• Si1
= {a, ab, aba, b, ba}, |Si1

| = 5

• Si2
= {a, ab, abb, abbc, b, bb, bbc, bc, c}, |Si2

| = 9

• Si3
= {b, ba, bab, babc, a, ab, abc, bc, c}, |Si3

| = 9

• S{i1 ,i2 ,i3} = {a, ab, aba, b, ba, abb, abbc, bb, bbc, bc, c, bab, babc, abc}, |S{i1 ,i2 ,i3}| = 14

We define the measure D(P ) of diversity of a population P = {i1, i2, . . . , in} as
follows:

D(P ) = D({i1, i2, . . . , in}) = n
|S{i1 ,i2 ,...,in}|∑n

j=1 |Si
j
| (1)

In words, the diversity of the population is defined as n times the ratio of the total
number of substrings in the population genome (that is, considering only once those
appearing in the genome of multiple individuals) to the cumulative number of sub-
strings in the genome of the individuals considered separately.

Example 1 (continued): For the population constituted by the three individuals i1, i2, i3
defined above, we have:

D({i1, i2, i3}) = 3
|S{i1 ,i2 ,i3}|

|Si1
|+ |Si2

|+ |Si3
| = 3

14
5 + 9 + 9

≈ 1.83

Let us analyze the properties of this definition by examining some particular cases:

• Homogeneous population. The population is constituted by n individuals having
the same genome s and, consequently, the same set of substrings S . Therefore,
the set of substrings of the population coincides with the set of substrings of each
individual: S{i1 ,i2 ,...,in} = Si

j
=S . >From the definition of D follows that

D({i1, i2, . . . , in}) = n
|S|∑n

j=1 |S|
= 1 (2)

an intuitively appealing result, since the population corresponds actually to a col-
lection of clones of a single individual.

Note that the converse of this property is also true, that is, if the measure of diversity
of a population is unitary, all the individuals have necessarily the same genome. This
can be proved by the following argument. If D = 1 then from the definition of D fol-
lows that n |S{i1 ,i2 ,...,in}| = n|⋃n

j=1 Si
j
| =

∑n
j=1 |Si

j
|. Let us assume that there exists
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a pair of individuals such that Si
j
6= Si

k
. This means that there exist at least one sub-

string that belongs to one of these two sets but not to the other. This substring will be
counted n times in n|⋃n

j=1 Si
j
|, but less than n times in

∑n
j=1 |Si

j
|. Thus the condition

n|⋃n
j=1 Si

j
| = ∑n

j=1 |Si
j
| could not be realized, which contradicts our assumption. This

proves that all the individuals in the population must have the same set of substrings
in their genome, and, consequently, that they must have the same genome.

• Population of pairwise maximally distinct genomes. The population is constituted by
individuals whose genomes, considered by pairs, do not have any substring in
common, that is, Sj ∩ Sk = Ø for j 6= k. This means that each substring belonging
to S{i1 ,i2 ,...,in} belongs only to one of the sets Sj and therefore |S{i1 ,i2 ,...,in}| =∑n

j=1 |Si
j
|, from which follows that D({i1, i2, . . . , in}) = n.

As before, the converse is also true, that is, if D({i1, i2, . . . , in}) = n the individuals
have, pairwise, no substrings in common. This can be proved by the following argu-
ment. If D = n then from the definition of D follows that |S{i1 ,i2 ,...,in}| = |⋃n

j=1 Si
j
| =∑n

j=1 |Si
j
|. Let us assume that there exists a pair of individuals such that Si

j
∩Si

k
6= Ø.

This means that there exists at least one substring that belongs to both sets. This sub-
string will be counted only once in |⋃n

j=1 Si
j
|, but at least twice in

∑n
j=1 |Si

j
|. Thus

the condition |⋃n
j=1 Si

j
| =

∑n
j=1 |Si

j
| could not be realized, which contradicts our as-

sumption.
With analogous deductions, it can be proved that the values of diversity obtained

in these two cases constitute actually a bound for D(P ), that is, that we always have
1 ≤ D(P ) ≤ n, where n is the size of the population. This fact, along with the inter-
pretation of Equation 1 in terms of average number of substrings that will be presented
shortly, suggests the interpretation of the value of D(P ) as the number of equivalent
individuals of the population. For example, the three individuals of Example 1 above,
correspond to about 1.83 equivalent individuals, a population of clones of a single indi-
vidual corresponds to 1 equivalent individual., and a population of n individuals that
have, pairwise, no genetic motifs in common, corresponds to n equivalent individuals.

• Population with two kinds of genomes. As a final example, consider a population
constituted by a fraction α of its n individuals having the genome s′, and the re-
maining fraction (1− α) of individuals having a genome s′′ that has no substrings
in common with s′. We obtain

D(P ) =
|S ′|+ |S ′′|

α|S ′|+ (1− α)|S ′′| (3)

If α = 0.5, that is, if the population is equally divided into individuals of type s′

and individuals of type s′′,we have D(P ) = 2 independently from the values of
|S ′| and |S ′′|. The same is approximately true when |S ′| ≈ |S ′′| and α varies. If, on
the other hand, we have |S ′| À |S ′′| or |S ′| ¿ |S ′′|, we can obtain almost any value
of D(P ) in the range (1, n).

This last example reveals the limitations of the measure of diversity defined above, and
provides further insight into its operation. We can rewrite Equation 1 as follows

D(P ) =
|S{i1 ,i2 ,...,in}|
1
n

∑n
j=1 |Si

j
| =

|S{i1 ,i2 ,...,in}|
|Si|

(4)
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This shows that the measure of diversity compares the total number of different sub-
strings in the population genome to the average number of substrings |Si|. Therefore,
if one or a few individuals possess a number of substrings that greatly exceeds the av-
erage number of them in the population, the formula overestimates the diversity of the
population since it implicitly distributes evenly the substrings among the individuals.

2.1 Linguistic complexity

The diversity measure defined above is loosely related to the concept of linguistic com-
plexity for a string defined on a given alphabet A. The linguistic complexity of a string
s is defined as the ratio of the number of substrings of s, to the maximum number
of substrings that can be obtained from a string of the same length on the same alpha-
bet (Trifonov, 1990; Troyanskaya et al., 2002). In the spirit of our definition of population
diversity given by Equation 1, we can generalize the concept of linguistic complexity
from single strings to populations, as follows

LC(P ) = LC({i1 , i2 , . . . , in}) =
|S{i1 ,i2 ,...,in}|

max
P ′

A
∼P

|S{i′
1
,i′

2
,...,i′

n
}|

(5)

where maxP ′A∼P |S{i′
1
,i′

2
,...,i′

n
}| is the maximum number of substrings that can be ob-

tained with a population P ′A built on the same alphabet A of P, and having the same
number of individuals and with the same length.

The value of the linguistic complexity LC(P ) complements the information con-
stituted by the value of the diversity D(P ). LC(P ) gives a measure of how well the
population realizes the potential of motif existence constituted by the kind and num-
ber of its individuals. In other words, it gives an idea of how effectively the population
is exploring the genome space, relative to what can be done with the same number of
individuals, with the same genome lengths, and on the same alphabet. Thus, it is a
relative measure of diversity, whereas D(P ) – which estimates the number of different
individuals that the population contains – looks more like an absolute one. For ex-
ample, a population P of a thousand random binary strings of length two will contain
almost certainly all the six possible substrings of length one and two, and will therefore
result in a value of LC(P ) = 1 that testifies the fulfillment of the population potential.
On the other hand, the six possible substrings, given the expected value of two and a
half substrings for binary string of length two, will result in D(P ) ≈ 2.4, which suggests
that only a handful of different individuals exist in the population but does not inform
us about how many could be housed by a population having the same structure.

3 Distance between individuals

The diversity of a population is closely connected to the concept of distance between
individuals. For example, a measure of diversity for a population can be obtained sum-
ming all pairwise distances between its individuals. Moreover, the distance between
individuals can be used to define the distance between populations (Wineberg and
Oppacher, 2003a). Hence, it is worth considering the possibility of using the substring
count approach to define a distance between individuals belonging to populations with
genomes of variable length. We will start by trying to derive a distance d between in-
dividuals applying our formula for population diversity (Equation 1) to pairs of indi-
viduals {i1, i2}. From the inequalities given above, we know that D({i1, i2}) satisfies
the inequality 1 ≤ D({i1, i2}) ≤ 2, with the lower bound achieved only for identical
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individuals. Hence, for the expression

d(i1, i2) = D({i1, i2})− 1 = 2
|S{i1 ,i2}|
|Si1

|+ |Si2
| − 1 (6)

we have d(i1, i2) ≥ 0, with d(i1, i2) = 0 if and only if i1 = i2. Moreover, d is obviously
symmetric in its arguments, that is d(i1, i2) = d(i2, i1) for any pair of individuals. The
triangle inequality d(i1, i2) + d(i2, i3) ≥ d(i1, i3), however, which would qualify d as
a metric and its value as a distance between individuals and between strings, is not
satisfied. For example, for the individuals i1, i2, i3, with genomes si1

= baaaa, si2
=

baaaab, and si3
= aaaab, we have d(i1, i2) = d(i2, i3) ≈ 0.217, and d(i1, i3) ≈ 0.444, so

that d(i1, i2) + d(i2, i3) < d(i1, i3). This makes of d a semi-metric distance in the space of
strings. Note that in the following we will not mention explicitly the qualifier “semi-
metric” for d. The distance thus defined satisfies the inequality 0 ≤ d(i1, i2) ≤ 1.

Example 2: Consider the three individuals i1, i2, i3, with genomes si1
= abab, si2

=
abcb, and si3

= cbab. We have

• Si1
= {a, ab, aba, abab, b, ba, bab}, |Si1

| = 7

• Si2
= {a, ab, abc, abcb, b, bc, bcb, c, cb}, |Si2

| = 9

• Si3
= {c, cb, cba, cbab, b, ba, bab, a, ab}, |Si3

| = 9

• S{i1 ,i2} = {a, ab, aba, abab, b, ba, bab, abc, abcb, bc, bcb, c, cb}, |S{i1 ,i2}| = 13

• S{i1 ,i3} = {a, ab, aba, abab, b, ba, bab, c, cb, cba, cbab}, |S{i1 ,i3}| = 11
from which we obtain

d(i1, i2) = 2
|S{i1 ,i2}|
|Si1

|+ |Si2
| − 1 = 2

13
7 + 9

− 1 = 0.625

d(i1, i3) = 2
|S{i1 ,i3}|
|Si1

|+ |Si3 |
− 1 = 2

11
7 + 9

− 1 = 0.375

This example shows a characteristic of d that appears at first disturbing. We can con-
sider both the genome of i2 and that of i3 as obtained from that of i1 with a single
character substitution, and yet the distance of i1 from i2 is greater than that of i1 from
i3. The reason is that the substitution that leads from the genome of i1 to that of i2 is
located towards the center of the genome, whereas that leading from i1 to i3 is located
at one extreme of it. This permits the first substitution to create a bigger set of motifs
S{i1 ,i2} relatively to S{i1 ,i3}, and this is reflected in the difference of distances. As we
observed in the introduction, to define our diversity measure we do not assume any
knowledge of the structure of the genomes. Hence, the number of potential motifs pro-
duced by a substitution can depend on its position in the genome. If we knew where
the genes or the motifs boundaries are located, we could exclude from the count of sub-
strings those crossing those boundaries, and obtain a new definition of diversity and
distance still based on the count of substrings but now taking into account our knowl-
edge of the genome structure. In that case, the phenomenon illustrated by Example 2
would not appear. The definition of d, on the other hand, does not suffer the problem
of “extraordinary genomes” mentioned in the previous section. If two individuals i1
and i2 are such that |Si1

| À |Si2
|, we obtain simply d(i1, i2) ≈ 1, as expected.
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3.1 Population diversity as sum of pairwise substring distances

We can use d to define a new measure of population diversity D′ based on the tradi-
tional pairwise comparison of individuals (Wineberg and Oppacher, 2003a), as follows:

D′(P ) = D′({i1, i2, . . . , in}) =
2

(n− 1)

n−1∑

j=1

n∑

k=j+1

d(ij , ik) , n > 1 (7)

Note that this definition takes advantage of the fact that d(i, i) = 0 and of the symmetry
of d, while the multiplying factor keeps the values of D′ in the range [0, n].

3.2 Tanimoto distance

We can define another distance between individuals based on the counting of sub-
strings, using the Tanimoto measure of similarity between two generic sets X and Y
(known also as Jaccard similarity (Levandowsky and Winter, 1971)), which is defined
as (Theodoridis and Koutroumbas, 2003)

σt(X,Y ) =
|X ∩ Y |
|X ∪ Y | (8)

The similarity of two individuals can therefore be defined as

σt(i1, i2) =
|Si1

∩ Si2
|

|Si1
∪ Si2

| =
|Si1

∩ Si2
|

|S{i1 ,i2}|
(9)

from which we can derive the Tanimoto substring distance between two strings

dt(i1, i2) = 1− σt(i1, i2) = 1− |Si1
∩ Si2

|
|S{i1 ,i2}|

(10)

This distance can be substituted to d in Equation 7 to obtain a Tanimoto diversity mea-
sure D′

t for a population of strings

D′
t(P ) = D′

t({i1, i2, . . . , in}) =
2

(n− 1)

n−1∑

j=1

n∑

k=j+1

dt(ij , ik) , n > 1 (11)

Example 2 (continued): For the population constituted by the three individuals i1, i2, i3,
with genomes si1

= abab, si2
= abcb, and si3

= cbab, introduced above, we have

• Si1
∩ Si2

= {a, ab, b}, |Si1
∩ Si2

| = 3

• Si1
∩ Si3

= {a, ab, b, ba, bab}, |Si1
∩ Si3

| = 5

from which we obtain

dt(i1, i2) = 1− |Si1
∩ Si2

|
|S{i1 ,i2}|

= 1− 3
13
≈ 0.77

dt(i1, i3) = 1− |Si1
∩ Si3

|
|S{i1 ,i3}|

= 1− 5
11
≈ 0.55
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3.3 Generalized distance and diversity

To define the Tanimoto substring distance, we specialized the general definition given
by Equation 8 to the case of strings. We can go in the opposite direction with our
distance d between strings defined by Equation 6, and see it as particular case of the
distance between two generic sets X and Y , defined by

d(X, Y ) = 2
|X ∪ Y |
|X|+ |Y | − 1 =

|X ∪ Y | − |X ∩ Y |
|X ∪ Y |+ |X ∩ Y | (12)

This reveals the similarity of d with the Tanimoto distance dt, which corresponds to

dt(X, Y ) =
|X ∪ Y | − |X ∩ Y |

|X ∪ Y | (13)

Contrary to the case of d, however, dt satisfies the triangle inequality and is therefore a
metric distance (Levandowsky and Winter, 1971; Lipkus, 1999).

In an analogous way, we can interpret Equation 1 as a particular case of the follow-
ing measure of diversity for a collection (or multiset (Monro, 1987)) {X1, X2, . . . , Xn}
of finite and not all empty sets Xj

D({X1, X2, . . . , Xn}) = n
|⋃n

j=1 Xj |∑n
j=1 |Xj | (14)

This means that D can be used to measure the diversity of a generic population of “in-
dividuals” ij , provided there is a way to associate with each of them a set Xj which
is representative of its relevant substructures and features for the application at hand.
For example, remaining in the realm of strings, we could deem more meaningful for
the assessment of the diversity of a population of them, the use of the set of subse-
quences (i.e., of characters that do not necessarily appear contiguously) instead of the
set of substrings of the individual strings; in the field of image classification, one could
associate with each image a set of its subimages, and so on.

3.4 Tree-based representations and genetic programming

As an example of an application of the generalized distances and diversity measures
defined in the previous subsection to genetic representations not based on strings we
can consider the field of genetic programming (GP). In GP the genome of individuals
usually has the structure of a tree (Langdon and Poli, 2002). Following an approach
proposed in (Keijzer, 1996) we can associate with each individual ij the set Xj of all the
subtrees of the tree that constitutes its genome. With this choice, Equation 14 gives a
subtree-based measure of diversity for GP populations. Similarly, interpreting X and
Y as the set of subtrees of the trees that constitute the genomes of two individuals,
Equation 13 becomes a Tanimoto distance and Equation 12 becomes a subtree distance
between individuals.

4 Implementation issues

The definitions of diversity and distance given above are practically useful for EC run-
time calculations only if there exist efficient ways to compute the number of substrings
of a string and of a collection of strings.

The number of substrings of a string can be calculated efficiently building the so-
called suffix tree of the string. This is a data structure that compactly represents the
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substring structure of a string and which is based on a less compact structure called trie.
The trie associated with a string is a rooted directed tree where the edges are labeled by
letters, any path down the tree spells a substring of the string, such that all paths from
root to leafs are suffixes of the string and all suffixes of the string are labels of paths
from the root (Crochemore and Rytter, 2002) (Figure 1). Note that paths corresponding
to suffixes do not end necessarily in a leaf. Nodes of the trie where paths corresponding
to suffixes end are called essential nodes. The property of a trie that interests us here is
the fact that the number of its edges corresponds to the number of substrings of the
string (Troyanskaya et al., 2002).

The trie associated with a string can be compacted by suppressing non-branching
non-essential nodes and associating with the edges of the tree thus obtained the sub-
strings obtained from the chain of original edges (Figure 1). The resulting structure is
called the suffix tree of the string (Crochemore et al., 2001; Crochemore and Rytter, 2002;
Gusfield, 1997). Since the labels associated with the edges of the suffix tree correspond
to substrings of the original string, they can be substituted with pointers to the sub-
string within the string. This allows a further compaction of the suffix tree relative to
the corresponding trie (Figure 1).

Several algorithms exist that build the suffix tree of a string with a computational
cost that grows linearly with the length of the string, both in terms of computation
time and memory occupation. Two popular algorithms are Ukkonen’s (Ukkonen, 1995)
and McCreight’s (McCreight, 1976): a detailed description of these algorithms includ-
ing the pseudocode can be found in (Crochemore et al., 2001; Crochemore and Rytter,
2002; Gusfield, 1997). These algorithms build the suffix tree by adding successively the
characters that correspond to the edges of the trie to which the suffix tree corresponds.
Hence, to obtain the number of substrings of a string we must simply count the number
of characters added during the construction of its suffix tree. This permits an efficient
computation of the number |Si

j
|of substrings of the genome of an individual of a pop-

ulation.
The algorithms that build the suffix tree of a single string can be modified to al-

low the construction of a structure representing the suffixes of a collection of strings
which is called the generalized suffix tree (Gusfield, 1997, p. 116). The basic idea is to ap-
pend to each string in the collection an end string marker not belonging to the alphabet
from which the strings are formed. To build the generalized suffix tree, one starts by
constructing the suffix tree of the first end-marked string using one of the algorithms
listed above. Then, the second end-marked string in the collection is matched against
the existing suffix tree starting from the root, until a mismatch occurs. At this point
the construction of the suffix tree resumes with the first non-matched character of the
string. Proceeding in this way for all the strings in the collection results in the construc-
tion of the generalized suffix tree. Counting the number of characters added during the
construction one obtains the number of substrings of the strings in the collection and,
in particular, the number of substrings |S{i1 ,i2 ,...,in}| of the genomes of a population.

5 Experimental results and comparisons

We now compare the measures of diversity introduced above with those currently used
in EC and in other fields that make use of string comparison. In what follows we
will denote with n the size of the population, with l the length of the genomes of the
individuals, and with A the alphabet over which the genomes are defined.
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Figure 1: The trie and suffix tree of the string abbaaab, whose characters are indexed
from 0 to 6 (bottom). The trie (top) has a single letter associated with each edge and the
number of its edges corresponds to the number of substring of the string. Nodes repre-
sented in black are essential nodes and correspond to suffixes of the string, which can be
obtained by traversing the tree from the root (which corresponds to the empty suffix)
to the node. The trie can be compacted by suppressing non-branching non-essential
nodes and associating with the new edges the substrings obtained from the chain of
original edges. This gives the suffix tree of the string (center, left). An alternative, more
compact representation of the suffix tree can be obtained by substituting the substrings
associated with each edge with a pair of integers (p, l) that gives the position of the start
of the substring in the original string, and the length of the substring (center, right).

5.1 Computational cost

We consider the following kinds of diversity measures for populations of n individuals

• Leung-Gao-Xu diversity. Leung, Gao, and Xu (Leung et al., 1997) introduced a
measure of diversity Dλ(P ) for populations whose individual genomes are binary
strings sj of fixed length l. Dλ(P ) is defined as the number of components of the
string of integers

∑n
j=1 sj (with the sum performed componentwise in N) whose

values are not equal to 0 and n. The time computational complexity of the direct
implementation of this definition is O(l · n).

• Moment of inertia diversity, pairwise Hamming diversity, and entropic diversity: We
group under a unique heading three diversity measures that are slight variations
on the same theme (Morrison and De Jong, 2002; Wineberg and Oppacher, 2003b).
In the experiments that will follow, we will only report the results of the moment
of inertia measure, since the other two require almost the same computation time
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and have a value that differs from the moment of inertia only by a scaling fac-
tor and, possibly, by terms of second order and higher in the character frequen-
cies (Wineberg and Oppacher, 2003b).

– The moment of inertia diversity for populations of binary strings of fixed length
l is defined by

Dm(P ) =
l∑

i=1

n∑

j=1

(sij − ci)2 (15)

where sij is the character in position i of the j-th string, ci is the i-th coordinate
of the centroid

ci =
1
n

n∑

j=1

sij (16)

and the operations are performed in R. The time complexity of the direct
implementation of Equation 15 is O(l · n) (Morrison and De Jong, 2002).

• The pairwise Hamming diversity is defined as

Dh(P ) =
n−1∑

j=1

n∑

k=j+1

dh(ij , ik) (17)

where dh(ij , ik) is the Hamming distance between the individual genomes. Dh(P )
is defined for populations with genomes of fixed length l over an arbitrary finite al-
phabet. The time complexity of the naive implementation of Equation 17 is O(l·n2)
but there exist implementations of this measure that reduce the time complexity
to O(l · n) (Morrison and De Jong, 2002; Wineberg and Oppacher, 2003b). For
the case of binary genomes it can be shown (Morrison and De Jong, 2002) that
Dh(P ) = nDm(P ). Hence, Dh(P ) differs from Dm(P ) only by a scaling factor and
can be implemented with the same complexity. For arbitrary genomes, Dh(P ) can
be calculated with O(l · n) complexity using the following expression (Wineberg
and Oppacher, 2003b)

Dh(P ) =
n2

2l

l∑

k=1

∑

α∈A

fk(α)(1− fk(α)) (18)

where fk(α) is the frequency of the character α at the position k in the population
genomes.

• The entropic diversity is defined as

De(P ) = −1
l

l∑

k=1

∑

α∈A

fk(α) log fk(α) (19)

where fk(α) is the frequency of the character α at the position k in the popula-
tion genomes. The first term of the Taylor expansion of De(P ) is proportional to
the pairwise hamming distance Dh(P ), which is therefore a good approximation.
De(P ) can be implemented with time complexity O(l ·n) (Wineberg and Oppacher,
2003b).
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• Substring diversity. It is defined by Equation 1. Using suffix trees it can be imple-
mented with time complexity O(l · n).

• Pairwise substring diversity and pairwise Tanimoto diversity. They are defined by
Equation 7 and Equation 11, respectively. Using suffix trees to compute the num-
ber of substrings, and then applying the definitions directly, the time complexity
of the implementation is O(l · n2).

To give an idea of the actual computation time of a typical implementation on a present
day personal computer, we have plotted in Figure 2 the computation time for these
measures of diversity as a function of genome length and population size for a ran-
domly generated population of fixed genome length over a binary alphabet. The sub-
string diversity measure is implemented with the McCreight suffix tree algorithm (Mc-
Creight, 1976). As anticipated, the results for the pairwise Hamming diversity and for
the entropic diversity are not shown, since they are almost indistinguishable from the
values obtained for the moment of inertia diversity.

The curves of Figure 2 confirm the predicted time complexities and show that the
substring diversity measure D(P ), although more computationally expensive than ex-
isting diversity measures for fixed length genomes, is sufficiently inexpensive to be
usable for runtime diversity measurements on present day computers. Note that the
pairwise substring and pairwise Tanimoto curves are almost coincident, and that their
O(l · n2) complexity makes the direct implementation of these measures rapidly im-
practical for runtime diversity assessment when the population size grows.
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Figure 2: Computation time vs. genome length and population size of different mea-
sures of diversity for the implementations described in the text and run on a PC with
Pentium III microprocessor clocked at 850MHz.

5.2 Fixed genome length

To give an example of computation of the various kinds of diversities in an actual EC
setting, we performed a series of runs of a genetic algorithm on a function optimization
problem. The genomes considered in this section have fixed length. Hence, both the
conventional non-string-based and the string-based diversity measures can be used.
The goal is to show that in this simple setting – the only one where the comparison
can be performed – the string-based measures give results comparable to those of the
conventional measures.
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The function to be optimized was the two-dimensional sine envelope sine wave
function (Leung et al., 1997) defined by

f(x1, x2) = 0.5− sin
√

x2
1 + x2

2 − 0.5
(1− 0.001(x2

1 + x2
2))2

(20)

The optimization was performed in the domain [−100, 100] × [−100, 100], where the
unique global maximum is f(0, 0) = 1. Each parameter xi was binary encoded by a
string of length 22, so that l = 44. The population size was n = 50. The algorithm used
tournament selection with tournament size t = 2, with mutation probability pm = 0.01
and crossover probability pc = 0.85. Figure 3 reports the results average over ten runs,
starting with randomly generated populations.
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Figure 3: The various population diversity measures computed on the population
evolved with a genetic algorithm applied to a function optimization experiment.

Figure 3 does not show the pairwise Hamming diversity, since it differs from the
moment of inertia diversity only by a scale factor, nor the entropic diversity, since,
after suitable scaling, it is almost indistinguishable from the moment of inertia diver-
sity. The values of the pairwise substring and pairwise Tanimoto diversities are close
to those of the Leung-Gao-Xu diversity. To avoid an excessive overlapping of curves,
all the substring-based diversities are represented in Figure 4 for the same set of runs
of Figure 3. In this case, the substring diversities for the genes that represent each
parameter were also separately computed as substring columnwise diversity. This was
done to show that the substring approach can be applied to evaluate the diversity of
each genome substructure when these are known. Note that the substring diversity
calculated on the whole genome is not the sum of the two substring columnwise di-
versities, which is instead the case for most kinds of diversity measures currently used,
since they obtain the global diversity summing the contribution of each locus in the
genome string.

Figures 3 and 4 show that in this conventional setting constituted by populations
with fixed genome length, the measures of diversity based on the substring approach
behave very much like the familiar diversity measures based on the Hamming dis-
tance, or based on the count of the converged bits like the Leung-Gao-Xu measure. In
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other words, when applied to fixed genome length populations the substring-based
measures conform to the behavior expected from a conventional measure of diversity.
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Figure 4: The substring-based population diversity measures computed for the evolu-
tionary runs of Figure 3. The substring columnwise curves refer to the genomic diver-
sity computed for each parameter separately.

5.3 Variable genome length

So far we have considered only examples of population diversity calculations made on
fixed genome length populations. This was necessary to allow the comparison with
conventional diversity measures, which apply only to the fixed genome length case.
However, the measures of diversity introduced here find their justification mainly in
the case of populations with variable genome structure, where the approaches based
on the Hamming distance cannot be used. To illustrate the applicability of the sub-
string approach to the variable genome length - which is just the first step towards a
truly variable structure, to which the substring approach still applies - we modified the
encoding of the function optimization experiment described above to allow variable
length encoding of each parameter. More precisely, the parameters xi were encoded
by a binary string whose length was allowed to be different for the two parameters
of an individual, and to vary from individual to individual. We started the evolu-
tions with randomly generated populations where each parameter was represented by
a gene with length randomly chosen between 2 and 20 bits. To allow the variation of
the genome length of individuals during the evolution, the mutation operator was ex-
tended to include character insertion and deletion with probabilities pi = pd = 0.001, in
addition to substitution with probability pm = 0.01. Individuals that, following a mu-
tation, were found to have an empty gene were simply removed from the population.

Figure 5 shows the result of a single evolutionary run of function optimization with
variable length genome. Note that the substring-based measures of population diver-
sity introduced above apply unaltered to the case of variable genome length, whereas
the traditional population diversity measures cannot be applied to this case.

5.4 Highly reorganizable genome

In the previous examples all individuals had a genome with the same structure, that is,
the number, meaning, and order of the genes was predefined and at most the length of
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Figure 5: The substring diversity measure computed on the population evolved with a
genetic algorithm applied to a function optimization experiment with variable length
genome. From generations 30 to 60 there is probably an episode of migration of the
population from two distinct regions of the genetic space; this is accompanied by a
decrease in average fitness and is reflected in an increase of diversity of the popula-
tion. Note that in this experiment the length of the genome of distinct individuals of
the population can be different and, therefore, the Leung-Gao-Xu, pairwise Hamming,
moment of inertia, and entropic diversity measures cannot be used.

each gene could vary. We consider now an evolutionary system where the genome of
individuals can be restructured much more freely and the complexity of the structure
decoded from the genome can change accordingly. The interest of exploring this kind
of genomes stems from their potentially greater evolutionary openness compared to
genomes with fixed structure.

The system we consider was developed to evolve networks of devices connected
by links endowed with a scalar connection strength. Examples of this kind of net-
work are neural networks (NN), analog electronic circuits, genetic regulatory networks,
and many other technological and biological networks. The interested reader can find
in (Mattiussi and Floreano, 2004) a more extensive discussion and description of the
system with examples of evolution of electronic circuits. In the case of neural networks
that we will consider here, the devices are artificial neurons and the strength of the con-
nections corresponds to the weights of the links connecting the output of a neuron to
the input of another neuron (Haykin, 1999). The basic idea of the evolutionary system
is to work with a string genome and associate a substring extracted from it with each
input and output terminal of the neuron. This is done by defining a set of predefined
tokens that identify in the genome the devices and delimit the strings that will be ex-
tracted from the genome and associated with the terminals by the genome decoding
process. The weight of the connections is determined by a preassigned function f that
associates numerical values to pairs of strings (Figure 6).

With this encoding strategy the genome can be subjected to many genetic opera-
tors such as insertion, deletion, and substitution of characters; duplication, deletion and
transposition of fragments; insertion of device descriptors; recombination of genomes.
The genetic operators can thus create new devices and, implicitly, new connections in
the network. The genome thus modified remains decodable because it is the presence
of a group of tokens that determines the existence of a decodable device, irrespective of
the position of the group in the genome. On the other hand the genetic operators can
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Figure 6: A fragment of genome (left), the devices decoded from it (right top), and an
example of weighted connection established between the devices (right, bottom). A set
of predefined tokens (“NEUR”, “OUTP”, “INPT”, . . . ) identifies the regions coding for
devices and delimits the strings that will be associated with the terminals by the de-
coding process. The weight of the connections between the output and the inputs of all
neurons is obtained by applying a function f that maps pairs of strings associated with
the terminals, to numeric values.

invalidate the tokens corresponding to existing devices, preventing their decoding. The
corresponding fragment of genome then becomes simply a fragment of “junk” genome
which is available as raw material for the evolutionary process, or can be eliminated
by a mutation that deletes a genome fragment. We have thus a genome where a given
structure can appear in any position in the genome and can be present in several in-
stances as more or less diverging copies. We are therefore in the presence of the kind
of highly reorganizable genome whose relevance for artificial evolution was discussed
in the Introduction and for which the substring-based diversity and distance measures
come to full fruition.

Figure 7 reports the result of a single evolutionary run aimed at the synthesis of
a neural network solving the XOR problem (Haykin, 1999, p. 175). The setup of the
system provides two predefined input neurons and an output neuron. The neurons
decoded from the genome are thus inserted as hidden neurons (Haykin, 1999). An
exact solution is characterized by a fitness value of zero, and is first found at about
generation 120. It is known (Haykin, 1999) that the simplest network that can solve
the problem has a single (hidden) neuron decoded from the genome. The curve of the
average number of decoded neurons testifies that the evolutionary process produces
networks that are more complex than this while proceeding towards the exact solu-
tion. The same curve shows that these networks are subsequently simplified by the
evolutionary process until, at about generation 300, the population is composed almost
exclusively of individuals whose genome encodes a single neuron. This is due to the
presence of a “dead zone” around the required output values, which eliminates any se-
lective pressure among networks that can produce outputs within the dead zone and,
in particular, does not reward networks that “associate” many neurons just to better
approximate the exact output values. The curves reporting the average and maximum
genome length during the evolution testify to the presence of several episodes of du-
plication and deletion of genome fragments. The duplication episodes in particular
appear instrumental to the first attainment of an exact solution. The curve of the popu-
lation substring diversity shows that the diversity remains low before an exact solution
is found, that is, while the selective pressure is high. Successively, the population di-
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Figure 7: An evolutionary run aimed at the synthesis of a neural network for the XOR
problem. The meaning of the curves is detailed in the text.

versity assumes consistently higher values relative to the pre-solution phase, irrespec-
tive of the value of genome length. This observation supports the hypothesis of the
existence of several alternative solutions. Moreover, it indicates that the substring di-
versity measure is able to capture the essential dynamics of the population diversity.
Note that all the non-substring-based diversity measures considered above are defined
only for fixed genome lengths and cannot be applied to this kind of variable-length and
variable-structure genome.

5.5 Nucleotide diversity and substring diversity

In molecular and population genetics the measurement of the polymorphism of a pop-
ulation is based on the nucleotide diversity measure Π, defined on a DNA sequence by

Π =
∑

j

∑

k

xjxkπjk (21)

where the sum is performed on all types of different sequences, xj and xk are the fre-
quencies of the j-th and k-th type of sequences, and πjk is the proportion of different
nucleotides between the two types of sequences (Graur and Li, 2000). It follows from
this definition that Π corresponds to

Π =
1

l n2

n−1∑

j=1

n∑

k=j+1

dh(ij , ik) (22)
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that is, it is a normalized pairwise Hamming diversity measure (Wineberg and Op-
pacher, 2003b) which gives the average number of nucleotide differences per site (Graur
and Li, 2000).

Figure 8 shows two examples of the calculation of Π for a population of four DNA
sequences. Note that the value of Π in the two cases is the same, since the number
of nucleotide differences is the same, even if the differences are spread among more
individuals in the second case. Conversely, the value of D is different in the two cases,
since D is sensitive to the number of DNA sequences affected by the differences. Hence,
the information provided by the substring diversity measure D can complement that
conveyed by Π in assessing population polymorphism.

Figure 8: The nucleotide diversity measure Π is used in molecular genetics to assess
the polymorphism of a population. It measures the average number of nucleotide dif-
ferences per site in DNA sequences of the population. As such, Π is not affected by the
distribution of the differences among the individuals. On the contrary, the substring
diversity measure D is sensitive to this difference, and can therefore complement Π in
assessing the polymorphism of the population.

6 Conclusion

There is a growing interest in the field of evolutionary computation in the definition
of genomes that can be subject to major reorganizations – such as insertions, deletions
duplications and transpositions – and still remain decodable. The reason for this inter-
est is the hope of thereby fostering the exploration of the search space, the emergence
of modularity, the reuse of evolved substructures, and, eventually, the open-endedness
of the evolutionary process. At the same time, the effort to improve the performance of
evolutionary algorithms results in a tendency towards the integration in the algorithms
of a certain degree of control of the population diversity. It follows from this that there
is a need for measures of diversity that apply to populations with genomes of variable
length, and, more generally, to populations with highly reorganizable genomes.

To fulfill this need, we have defined measures of diversity and distances between
individuals, that apply to populations and individuals whose genome is constituted
by finite strings of variable length on finite alphabets. The definitions are based on the
counting of substrings of the population genomes, considered first separately and then
collectively. The motivation behind the substring counting approach is the possibil-
ity of estimating, in this way, the potential genomic motifs contained in the genomes.
For example, there is the possibility of recognizing the similarity of individuals whose
genomes are constituted by the same motifs but differently arranged. The measures
thus obtained do not require any detailed knowledge of the structure of the genome
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and, therefore, apply to generic genomes. However, information about the genome
structure can be taken into account when available by applying the counting proce-
dures to the substructures present in the genomes. The measures introduced are based
on properties of the genomes that can be computed in linear space and time, thus mak-
ing them suitable for runtime application during an evolutionary process. Moreover,
these measures and their generalizations can be used for the assessment of the diversity
of other kinds of populations, such as tree-based genetic programming populations, bi-
ological sequences, and generic collections of sets.

Supporting information

An example of implementation of the measures of diversity described above, inclusive
of source code, can be downloaded from the Autonomous Systems Laboratory website,
at the address http://asl.epfl.ch/resources.php
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