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a b s t r a c t

This paper presents a comprehensive learning particle swarm optimization algorithm with enhanced
exploration and exploitation, named as “heterogeneous comprehensive learning particle swarm
optimization” (HCLPSO). In this algorithm, the swarm population is divided into two subpopulations.
Each subpopulation is assigned to focus solely on either exploration or exploitation. Comprehensive
learning (CL) strategy is used to generate the exemplars for both subpopulations. In the exploration-
subpopulation, the exemplars are generated by using personal best experiences of the particles in the
exploration-subpopulation itself. In the exploitation-subpopulation, the personal best experiences of the
entire swarm population are used to generate the exemplars. As the exploration-subpopulation does not
learn from any particles in the exploitation-subpopulation, the diversity in the exploration-
subpopulation can be retained even if the exploitation-subpopulation converges prematurely. The
heterogeneous comprehensive learning particle swarm optimization algorithm is tested on shifted and
rotated benchmark problems and compared with other recent particle swarm optimization algorithms
to demonstrate superior performance of the proposed algorithm over other particle swarm optimization
variants.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In order to solve multimodal, discontinuous, non-convex and
non-differentiable optimization problems, researchers have devel-
oped population-based algorithms such as particle swarm optimi-
zation (PSO), genetic algorithm (GA), differential evolution (DE),
evolutionary strategy (ES), evolutionary programming (EP) and so
on. In population-based algorithms, finding the optimal solution of
a problem is based on two cornerstones, namely exploration:
global search, exploring all over the search space to find promising
regions and exploitation: local search, exploiting the identified
promising regions to fine tune the search for the optimal solution.
Good convergence behavior of a population-based algorithm can
be obtained when an appropriate balance between exploration
and exploitation processes is found. Emphasizing on exploration
will lead to waste of time searching over inferior regions of the
search space and slow down the convergence rate. On the other
hand, emphasizing on exploitation will cause loss of diversity
early in the search process, thereby possibly getting stuck into a
local optimum. Therefore, in the population-based evolutionary

algorithms, it is important to obtain the balance between explora-
tion and exploitation of the search space [1,2].

Among population-based algorithms, PSO is easy to implement
and has performed well on many optimization problems. PSO is
also known for having the ability to quickly converge to the
optimal [5]. However, in PSO, all particles share its swarm's best
experience (the global best) that can lead the particles to cluster
around the global best. In case, if the global best is located near a
local minimum, escaping from local optimum becomes difficult
and PSO suffers diversity loss near the local minimum [5]. In order
to balance the exploration behavior of global search and exploita-
tion nature of local search in PSO, inertia weight w was firstly
proposed by Shi and Eberhart [4]. Clerc and Kennedy also devel-
oped another control parameter called constriction coefficient χ to
control the convergence tendency of the particle swarm, including
exploration and exploitation abilities [6]. In [7], self-organizing
hierarchical PSO (HPSO-TVAC) was introduced with time varying
acceleration coefficients. With decreasing cognitive component
and increasing social component, global exploration is enhanced
to avoid premature convergence in the early stages and local
exploitation is enhanced to converge to the global optimum
solution during the latter stages of the search.

The neighborhood topologies also control PSO's exploration
and exploitation abilities according to the information sharing
among the particles in the swarm [8–10]. Based on the findings in
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[8,10], a fully-informed PSO (FIPS) was proposed in which infor-
mation from fully connected neighborhood was used [11] and
different neighborhood topologies were studied in [12]. In [13],
best experiences from local neighborhood and global neighbor-
hood were used in unified particle swarm optimization (UPSO)
algorithm by combining their exploration and exploitation abil-
ities. The paper mentioned that the neighborhood size should be
selected properly to get trade-off between exploration and
exploitation.

Instead of using neighborhood topology to learn the information
from other particles, Liang proposed comprehensive learning particle
swarm optimizer (CLPSO) in which each particle learnt from other
particles' best experiences for different dimensions via a comprehen-
sive learning strategy [14]. In CLPSO, learning probability curve is set
so that the particles have different levels of exploration and exploita-
tion abilities. In orthogonal learning particle swarm optimization
(OLPSO), orthogonal learning strategy was developed in which a
particle learnt from the combination of its own best experience
(cognitive learning) and its neighborhood best experience (social
learning) to compromise the balance between the exploration and
exploitation search [15]. Efficient population utilization strategy for
particle swarm optimization (EPUS-PSO) was presented in [16]. In
EPUS-PSO, solution sharing and search range sharing strategies are
proposed to share best information among the particles and to avoid
the particles from getting trapped in a local optimum. Population size
is varied by a population manager according to the status of the
solution search [16].

The new learning strategy called scatter learning strategy was
presented in a scattering learning particle swarm optimization
algorithm (SLPSOA) [17]. In scatter learning strategy, the exemplar
pool (EP) is constructed which is composed of a certain number of
relatively high-quality solutions scattered in the solution search
space and enables the particles to explore different regions. Then,
the particles select their exemplars from EP using roulette wheel
rule and the selected exemplar is used for a certain number of
iterations to exploit the corresponding region thoroughly. A
competitive swarm optimizer (CSO) was developed where neither
personal best position nor global best position was involved in
updating the particles' positions [18]. In CSO, the two particles are
randomly selected to compete and the loser will update its
position by learning from the winner and mean position of current
swarm. The empirical analysis of exploration and exploitation
abilities showed that CSO achieved a good balance between
exploration and exploitation [18].

In [19], as a new approach to balance the exploration and
exploitation in PSO, predator prey optimizer was developed,
combining PSO idea with predator prey strategy. In predator prey
optimizer (PPO), one predator particle is introduced to attract the
best particle in the swarm while prey particles are repelled from
the predator and the best. The balance between the two processes
is influenced and controlled by the interactions of the predator
and prey particles. In [20], attractive and repulsive PSO (ARPSO)
was introduced with negative entropy into original PSO, encoura-
ging high diversity and discouraging premature convergence in
order to obtain trade-off between the two. Blackwell and Bentley
also introduced the repulsive force to PSO and proposed the
atomic swarm that is composed of equal number of charged and
neutral particles so that there is a balance between exploration
and exploitation [21].

In order to address the exploration and exploitation trade-off
problem, heterogeneous particle swarm optimization was pro-
posed in [22,23]. In heterogeneous PSO (HPSO) [23], the particles
in heterogeneous swarms were allowed to follow different velocity
and position updating rules from a behavior pool, thereby having
the ability to explore and exploit throughout the problem search
space. In [24], a multi-swarm PSO using charged particles (PSO-2S)

was developed in which the search space was partitioned and two
kinds of swarms were used, called main and auxiliary. In PSO-2S,
the auxiliary swarms are initialized in different partitioned areas,
using charged particles. After certain number of generations, main
swarm is formed with the best individual of the auxiliary swarms
to search for the optimum. In [25], a cooperative approach was
applied to PSO (CPSO-Sk) in which the dimensionality of the search
space was split and different swarms were used to search over
different dimensions of a solution cooperatively. Multi-swarm idea
have also been used for locating multiple optimal solution in [26]
and for dynamic environments in [21,24,27].

From the PSO variants mentioned above, it is obvious that the
main issue in PSO is to keep the balance between the exploration
and exploitation and researchers addressed this issue by suggest-
ing different methods. Inspired by those methods, a CLPSO with
two subpopulation groups, called Heterogeneous CLPSO (HCLPSO),
is proposed in this paper. Instead of relying on one method to
balance the exploration and exploitation ability of PSO, this paper
addresses the issue by the following methods: by using adaptive
control parameters, by controlling the information sharing (or
topology) among the particles, by using a learning strategy and by
using heterogeneous swarm rather than homogeneous.

In this paper, a heterogeneous swarm is used where the swarm
is divided into two subpopulations. Each subpopulation is assigned
to carry out the exploration and exploitation search separately.
Exploration and exploitation processes are enhanced without one
process crippling the other. Comprehensive learning strategy is
used to generate an exemplar for the particles to learn. In PSO,
learning from the two exemplars, personal best and the whole
swarm’s best, can cause two problems. One is “oscillation phe-
nomenon” [28] which can occur if the two experiences were in
opposite directions. This makes the search ability inefficient and
slows down the convergence speed of the algorithm. Another is
“two steps forward, one step back phenomenon” [25] which
causes the solution vector to be improved on some dimensions
and to be declined on other dimensions as one exemplar may have
good values on some dimensions and others may have good values
on some other dimensions. Thus, in order to extract such useful
information from different dimensions of different particles in the
swarm, comprehensive learning (CL) strategy is used to generate a
promising exemplar in the proposed algorithm.

Via comprehensive learning (CL) strategy, the exploration-
subpopulation group learns for different dimensions from its
own members' previous best experiences and its particles have
high level of exploration ability. The exploitation-subpopulation
benefits by learning from the best experiences of all particles in
the swarm including the whole swarm’s best experience and
therefore, its particles have strong exploitation ability. Different
learning probability values are specified for each particle in the
swarm such that the particles from the exploration-subpopulation
are not influenced by the exploitation-subpopulation. In this way,
the information sharing among the particle is controlled and at the
same time, the exploitation-subpopulation is able to exploit
instantly new good regions discovered by the exploration-
subpopulation. Besides, adaptive control parameters are used in
the subpopulation groups to enhance exploration and exploitation.
Therefore, this novel heterogeneous subpopulation structure is
able to emphasize exploration and exploitation simultaneously
without one process unfavorably influencing the other.

This paper is organized as follows: original PSO is introduced in
Section 2 and the proposed HCLPSO is presented in Section 3. In
Section 4, the performance of the proposed HCLPSO algorithm is
evaluated using the benchmark problems and compared with
other state-of-art PSO algorithms. The research limitation and
future works are also discussed in Section 4. Finally, the paper is
concluded in Section 5.
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2. Particle swarm optimization

Particle swarm optimization (PSO) is a population-based opti-
mization technique introduced by Eberhart and Kennedy [3]. PSO
was inspired by swarm behavior such as bird flocking and fish
schooling. Without colliding with each other, a flock of birds or a
school of fish is able to search for the food or shelter. Members
share information within the group. Each member updates its
direction by using their own findings and group’s information.
Imitating this social behavior, the PSO algorithm was developed in
[3]. In PSO algorithm, each particle in the swarm represents a
potential solution to a given problem. The particles navigate by
adjusting their flying directions using their own and other swarm
members’ best experiences to find the optimum of the problem.
This phenomenon was formulated in [3] as follows:

Vd
i ¼ Vd

i þc1nrand1
d
i n pbestdi �Xd

i

� �
þ c2nrand2

d
i nðgbestd�Xd

i Þ: ð1Þ

Xd
i ¼ Xd

i þVd
i ð2Þ

where i represents each particle in the population (i¼1, 2, …, N)
and d represents a dimension (d¼1, 2, …, D). Xi

d and Vi
d are the

position and velocity components of ith particle in the population,
respectively. pbestid is the best position of ith particle and gbestd is
the best position found by the whole swarm population. c1 and c2
are acceleration coefficients. rand1id and rand2id are randomly
generated numbers in the range of [0, 1]. In order to perform
search in a controlled manner, the updated velocity Vi

d is limited
with a maximum magnitude Vmax. If |Vi

d| exceeds Vmax, then
Vi
d¼sign(Vi

d)nVmax for such dimensions. To achieve a balance
between global exploration and local exploitation, a new para-
meter ‘w’ called inertia weight was introduced into PSO and used
to control the flying velocity as follows [4]:

Vd
i ¼wnVd

i þc1nrand1
d
i n pbestdi �Xd

i

� �
þc2nrand2

d
i nðgbestd�Xd

i Þ:
ð3Þ

In [4,5], inertia weight w was defined as a linearly decreasing
function of the run time. In addition, as mentioned in Section 1,
Clerc and Kennedy also developed another velocity update using χ
called the constriction coefficient to control dynamic character-
istics of the particle swarm, including its exploration and exploita-
tion tendencies as follows [5]:
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where constriction coefficient χ is calculated as

χ ¼ 2

j2�φ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2�4φj

p with φ44: ð5Þ

φ¼ c1þc2 ð6Þ
The constriction χ is set as χ¼0.729 with c1¼c2¼2.05 and φ¼4.1
[6]. The inertia weight and construction coefficients are mathe-
matically equivalent when (5) and (6) are intercepted [29]. In this
paper, PSO with inertia weight is also used in balancing explora-
tion and exploitation processes of the proposed PSO algorithm.

3. Heterogeneous comprehensive learning particle swarm
optimization with enhanced exploration and exploitation

In this paper, to curtail the adverse influence of exploration and
exploitation on each other, the swarm population is divided into two
subpopulations with one each for exploration and exploitation, respec-
tively. In order to determine the exemplar for the particles in each
subpopulation, comprehensive learning (CL) strategy [14] is chosen

among simple single population PSO algorithms [5,7,11,13]. In CLPSO
algorithm, instead of following the best individual alone, every particle
in the swarm is able to learn from all other particles’ best experiences
for different dimensions. Besides, exploration and exploitation level of
the particles can be specified through learning probability curve.
Therefore, CL strategy is selected in the proposed algorithm to generate
the exemplar for the particles in both exploration and exploitation
subpopulation groups. The comprehensive learning strategy is briefly
introduced in Section 3.1. The proposed algorithm is named as
Heterogeneous CLPSO (HCLPSO) and is presented in Section 3.2.

3.1. Comprehensive learning particle swarm optimizer

The flying direction of a particle is guided by its own pbesti
d and

gbestd in the original PSO. However, gbest may be far from the
global optimum and may represent an inferior local optimum of a
multimodal problem. To resolve this situation, a comprehensive
learning strategy was proposed. In CLPSO, a particle’s velocity is
updated using all the particles' pbests. Each dimension of a particle
learns from different particles’ pbests instead of learning from the
same exemplar for all dimensions. This enhances the diversity of
the population. The velocity of ith particle is updated with the
following equation as in [14]:

Vd
i ¼wVd

i þcnranddi n pbestdf iðdÞ �Xd
i

� �
ð7Þ

where fi(d)¼[fi(1), fi(2), ..., fi(D)] indicates if the ith particle follows
its own or other’s pbesti

d for each dimension d. The exemplar for
each dimension is decided according to learning probability Pc
values (different Pc values for different particles, Pci vs. particle id)
and explorative particles and exploitative particles are specified
according to these learning probability values. The Pc value for
each particle is calculated with the following equation [14]:

Pci ¼ aþbn
exp ð10ði�1ÞÞ=ðps�1Þ� ��1
� �

exp 10ð Þ�1ð Þ ð8Þ

where ‘ps’ represents the population size, a¼0.05, b¼0.45. To choose
either its own or other’s pbesti

d for each corresponding dimension of
the ith particle, a random number is generated for each dimension and
compared with its learning probability Pci value. If random number is
smaller than Pci value, the ith particle is guided by other particle’s
pbesti

d position which is determined by tournament selection of size 2,
i.e. two particles are selected randomly and the particle with better
fitness is chosen for the corresponding dimension. If random number is
larger than Pci, the particle will follow its own pbest position for that
dimension. Therefore, the exemplar pbestfi(d) is a new position where
each dimension learns from several particles’ pbest positions. In order
to ensure particle's movement improves its pbest, a certain number of
evaluations is defined as refreshing gapm in CLPSO and a new pbestfi(d)
will be generated if there is no improvement form (the refreshing gap)
consecutive moves. The search range is also restricted in CLPSO with
the bound [Xmin, Xmax]. If the updated position of the particle is out of
the bound, its fitness value and its pbest are not updated.

3.2. Heterogeneous CLPSO with enhanced exploration and
exploitation

Exploration emphasizes on finding various potential solution
regions of the entire search space and exploitation focuses on
refining the promising solutions in the potential solution regions
to attain the optimal solution. With the exploration and exploita-
tion ability, the particles can fly throughout the search space to
find the global optimum. In CLPSO, each dimension of the particle
learns from either its own best position or other particles' best
position. The exemplar selection was decided by comparing the
random number with the learning probability Pc curve. With
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different Pc values, the particles have different level of exploration
and exploitation ability. However, particles with high exploration
tendency can be adversely influenced by particles with high
exploitation tendency. Therefore, in order to address this issue
and balance the exploration and exploitation search, CLPSO is
enhanced with exploration-subpopulation and exploitation-
subpopulation group and the algorithm named Heterogeneous
CLPSO (HCLPSO) is proposed in this paper.

In HCLPSO, the swarm is divided into two heterogeneous
subpopulations. The first subpopulation is enhanced for explora-
tion and the second subpopulation is enhanced for exploitation. In
both exploration and exploitation subpopulations, the exemplar is
generated using comprehensive learning (CL) strategy with the
learning probability Pc curve as shown in Fig. 1 below. The
learning probability values for each particle in the swarm are
calculated using Eq. (8) with a¼0, b¼0.25. The velocity of the
exploration-enhanced subpopulation is updated using Eq. (7),
while the velocity of exploitation-enhanced subpopulation is
updated using the following equation:

Vd
i ¼wnVd

i þc1nrand1
d
i n pbestdf i dð Þ �Xd

i

� �
þ c2nrand2

d
i n gbestd�Xd

i

� �

ð9Þ
The inertia weight w [4] is used as a linearly decreasing function of
run time in the range of 0.99–0.2. In subpopulation group 1, time
varying acceleration coefficient c¼3–1.5 is used in Eq. (7) to
enhance the exploration and in subpopulation group 2, the time
varying acceleration coefficients c1¼2.5–0.5 and c2¼0.5–2.5 [7]
are used in Eq. (9) to enhance exploitation.

As shown in Eqs. (7) and (9), all the particles in both subpopula-
tions are guided by the exemplars obtained from comprehensive
learning (CL) strategy. As described in Section 3.1, the random number
is generated for each dimension of a particle and compared with its
respective learning probability Pci value. If random number is smaller
than Pci value, the particle will learn from another particle’s pbest. The
exemplar is determined with the tournament selection procedure in
which the two particles are randomly selected from the subpopulation
group 1 and the corresponding dimension will learn from the particle
with better fitness. In the case of the random number is larger than Pci
value, the corresponding dimension will learn from its own pbest.
According to the learning probability Pc curve illustrated in Fig. 1, the
subpopulation group 1 has low learning probability values close to
zero. If random number generated for each dimension of a particle

were compared with low learning probability values, the particle in
the subpopulation group 1 will learn mostly from its own pbest for
most of the dimensions. If all dimensions of a particle were its own
pbest, we will randomly choose one dimension to learn from another
particle’s pbest’s corresponding dimension from group 1. Besides, time
varying acceleration coefficient c, started at 3 and linearly reduced to
1.5, is also used to enhance the exploration ability of the particles.
Therefore, the particles are explorative and the subpopulation group
1 has strong exploration ability.

Unlike the subpopulation group 1, the particles from the sub-
population group 2 learn not only from the exemplar generated by
using CL strategy, but also from the swarm’s best experience gbest as
described in Eq. (9). Thus, the subpopulation group 2 has high
exploitation ability. If the particles are learning from their own pbests
and gbest, it has higher chance of getting stuck into local optima. To
avoid such condition, a particle will adopt other particles’ pbests (up to
25%) as shown in Fig. 1. However, as 25% probability is still low, one
dimension will be adopted from another particle if a particle happens
to learn from its own particle for all dimensions. For the acceleration
coefficients from Eq. (9), c1 is used in the range of 2.5–0.5 to preserve
the diversity satisfactorily in the early search stages. The acceleration
coefficients c2 is used in the range of 0.5–2.5 to emphasize on
increasing exploitation of the entire swarm’s best experience. Thus,
the particles are exploitative and the subpopulation group 2 has
strong exploitation ability.

Therefore, the swarm is composed of explorative particles and
exploitative particles and the exploration and exploitation pro-
cesses are performed by the first subpopulation and the second
subpopulation, respectively. Since the explorative particles are not
allowed to access the information of the exploitative particles,
there is no information flow from the exploitation subpopulation
group to the exploration subpopulation group. Thus, rapid infor-
mation flow is avoided and even if the exploitation group suffers
premature convergence, the exploration group has the potential to
rescue the exploitation oriented group from the local optimum.
Therefore, a compromise between exploration and exploitation is
achieved in the proposed HCLPSO algorithm. As in CLPSO, if there
is no improvement for refreshing gap m (number of iterations), a
new pbestfi(d) will be generated by learning from its own popula-
tion itself for the subpopulation group 1 and by learning from the
whole population for the subpopulation group 2.

Swarm diversity can be used to identify if populations are conduct-
ing exploration or exploitation [30]. Thus, in this paper, diversity of
each subpopulation group and whole population is studied for one
unimodal function (shifted sphere function) and one multimodal
function (shifted rotated Griewank's function) on 30 dimensions. The
diversity measure of the swarm is taken according to Eqs. (10) and (11)
[30,31]. The number of function evaluation of 300,000 and population
size of 40 are used in the diversity study. The diversity graphs from a
single test run are shown in Fig. 2. It can be clearly seen in diversity
graphs that diversity of the exploration-subpopulation group is rela-
tively higher than that of exploitation-subpopulation group and the
diversity is preserved even if exploitation-subpopulation group con-
verges to the acceptable solution. The performance of proposed PSO
algorithm is evaluated by comparing with other state-of-art PSO
algorithms and the experimental results are discussed in the next
sections.

Diversity S tð Þð Þ ¼ 1
N

XN
i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

d ¼ 1

ðXd
i tð Þ�XdðtÞÞ2

vuut ð10Þ

XdðtÞ ¼
PN

i ¼ 1 X
d
i ðtÞ

N
ð11Þ

where S is the swarm and N¼ |S| is the swarm size. D is the
dimensionality of the problem. Xid is the dth value of ith particle in

Fig. 1. Learning probability Pc curve calculated by using Eq. (8) with ps¼40, a¼0
and b¼0.25.
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the population and XdðtÞ is the average of dth dimension over all the
particles in the swarm.

4. Performance evaluation

4.1. Test functions and compared PSOs

In this paper, shifted and rotated CEC 2005 benchmark functions
are used to evaluate the performance of the proposed HCLPSO
algorithm. The set of CEC 2005 benchmark functions is composed of
all types of unimodal, multimodal, expanded and hybrid composite
functions [32]. All 25 CEC 2005 benchmark functions are listed with
their global optimum, search range, initialization range, bias values

and shown in Table 1. The acceptable tolerance of each function is also
defined in Table 1. If the result is obtained within the acceptable
tolerance of the global optimum, it is defined as the run is successful.
The performance of the proposed algorithm is evaluated with other
state-of-art PSO algorithms such as

� global version of PSO (PSO) [5];
� fully-informed PSO (FIPS) [11];
� unified PSO (UPSO) [13];
� comprehensive learning PSO (CLPSO) [14];
� self-organizing hierarchical PSO with time varying acceleration

coefficients (HPSO-TVAC) [7];
� orthogonal learning PSO (OLPSO) [15]; and
� static heterogeneous swarm optimization (sHPSO) [23].

Fig. 2. Diversity comparisons between exploration-subpopulation, exploitation subpopulation and the whole swarm on unimodal shifted sphere function in (a) and on
multimodal shifted rotated Griewank's function in (b).

Table 1
Cec 2005 test functions.

Function type Function name Initialization
range

Search range Global optimum
(xn)

F (xn)
f_bias

Unimodal functions F1: Shifted sphere function [�100,100]D [�100,100]D o �450
F2: Shifted Schwefel's problem 1.2 [�100,100]D [�100,100]D o �450
F3: Shifted rotated high conditioned elliptic function [�100,100]D [�100,100]D o �450
F4: Shifted Schwefel's problem 1.2 with noise in fitness [�100,100]D [�100,100]D o �450
F5: Schwefel's problem 2.6 with global optimum on bounds [�100,100]D [�100,100]D o �310

Multimodal functions F6: Shifted Rosenbrock's function [�100,100]D [�100,100]D o 390
F7: Shifted rotated Griewank's function without bounds [0,600]D [�600,600]D o �180
F8: Shifted rotated Ackley's function with global optimum on bounds [�32,32]D [�32,32]D o �140
F9: Shifted Rastrigin's function [�5,5]D [�5,5]D o �330
F10: Shifted rotated Rastrigin's function [�5,5]D [�5,5]D o �330
F11: Shifted rotated Weierstrass function [�0.5, 0.5]D [�0.5, 0.5]D o 90
F12: Schwefel's problem 2.13 [�100,100]D [�100,100]D o �460

Expanded functions F13: Expanded extended Griewank's plus Rosenbrock's function(F8F2) [�3,1]D [�3,1]D o �130
F14: Shifted rotated expanded Scaffer's F6 [�100,100]D [�100,100]D o �300

Hybrid composition
functions

F15: Hybrid composition function [�5,5]D [�5,5]D o 120
F16: Rotated hybrid composition function [�5,5]D [�5,5]D o 120
F17: Rotated hybrid composition function with noise in fitness [�5,5]D [�5,5]D o 120
F18: Rotated hybrid composition function [�5,5]D [�5,5]D o 10
F19: Rotated hybrid composition function with a narrow basin for the global
optimum

[�5,5]D [�5,5]D o 10

F20: Rotated hybrid composition function with the global optimum on the
bounds

[�5,5]D [�5,5]D o 10

F21: Rotated hybrid composition function [�5,5]D [�5,5]D o 360
F22: Rotated hybrid composition function with high condition number
matrix

[�5,5]D [�5,5]D o 360

F23: Non-continuous rotated hybrid composition function [�5,5]D [�5,5]D o 360
F24: Rotated hybrid composition function [�5,5]D [�5,5]D o 260
F25: Rotated hybrid composition function without bounds [�2,5]D [�5,5]D o 260

n o¼[o1, o2, o3, . , oD]: shifted global optimum.

N. Lynn, P.N. Suganthan / Swarm and Evolutionary Computation 24 (2015) 11–24 15



The first algorithm, global version of PSO, used inertia weight to
balance the exploration and exploitation ability in finding the
global optimum. In FIPS algorithm, information of all neighbors

was used to guide a particle and various topological structures of
the population are tested to control the exploration and explora-
tion process. UPSO used both the swarm’s best experience and the

Table 2
Parameter settings.

Algorithm Inertia weight w Constriction coefficients χ Acceleration coefficients c1, c2, c Population size Function evaluations (FES) Reference

PSO 0.9–0.4 – c1¼2, c2¼2 40 300,000 [4]
FIPS – 0.729 c¼2 40 300,000 [11]
UPSO – 0.729 c¼1.49445 40 300,000 [13]
CLPSO 0.9–0.4 – c¼1.49445 40 300,000 [14]
OLPSO 0.9–0.4 – c¼2 40 300,000 [15]
HPSO-TVAC – – c1¼2.5–0.5, c2¼0.5–2.5 40 300,000 [7]
sHPSO 0.72 – c1¼2.5–0.5, c2¼0.5–2.5 40 300,000 [23]
HCLPSO 0.99–0.2 – c1¼2.5–0.5, c2¼0.5–2.5, c¼3–1.5 40 300,000

Table 3
Calibration of two subpopulation group sizes (g1 and g2) for the proposed HCLPSO algorithm.

Functions Criteria 5þ35 10þ30 15þ25 20þ20 25þ15 30þ10 35þ5

F1 Mean 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1

F2 Mean 8.69E–10 2.09E–08 1.70E–06 2.34E–04 1.82E–02 0.35 3.61
Std 1.35E–09 3.97E–08 1.71E–06 3.67E–04 1.48E–02 0.41 4.77
Rank 1 2 3 4 5 6 7

F3 Mean 5.37Eþ05 5.89Eþ05 6.42Eþ05 8.78Eþ05 1.41Eþ06 2.39Eþ06 3.09Eþ06
Std 1.73Eþ05 1.86Eþ05 2.61Eþ05 3.56Eþ05 6.14Eþ05 9.61Eþ05 1.39Eþ06
Rank 1 2 3 4 5 6 7

F4 Mean 2.20Eþ02 4.52Eþ02 5.22Eþ02 6.35Eþ02 8.24Eþ02 1.57Eþ03 2.43Eþ03
Std 1.21Eþ02 2.60Eþ02 3.09Eþ02 4.82Eþ02 3.86Eþ02 7.59Eþ02 9.70Eþ02
Rank 1 2 3 4 5 6 7

F5 Mean 2.96Eþ03 3.04Eþ03 2.97Eþ03 3.14Eþ03 3.38Eþ03 3.39Eþ03 3.49Eþ03
Std 5.81Eþ02 6.08Eþ02 4.55Eþ02 4.20Eþ02 6.49Eþ02 4.87Eþ02 4.80Eþ02
Rank 1 3 2 4 5 6 7

F6 Mean 10.28 3.22 2.39 2.33 0.72 0.31 0.43
Std 15.29 3.53 4.27 3.76 0.97 0.58 0.64
Rank 7 6 5 4 3 1 2

F7 Mean 0.01 0.02 0.02 0.02 0.02 0.02 0.02
Std 0.01 0.02 0.02 0.02 0.02 0.02 0.02
Rank 1 2 2 2 2 2 2

F8 Mean 20.82 20.86 20.87 20.91 20.91 20.91 20.93
Std 0.09 0.07 0.09 0.06 0.06 0.09 0.05
Rank 1 2 2 4 5 6 7

F9 Mean 1.19 0.10 0 0 0 0 0
Std 1.12 4.01E–01 0 0 0 0 0
Rank 3 2 1 1 1 1 1

F10 Mean 59.33 60.84 56.08 55.34 58.35 68.88 74.53
Std 16.96 14.08 12.90 12.13 12.73 17.13 15.88
Rank 4 5 2 1 3 6 7

F11 Mean 19.47 20.15 20.32 20.04 20.90 21.29 22.77
Std 4.16 3.86 2.94 2.86 2.54 2.15 2.00
Rank 1 3 5 2 7 4 6

F12 Mean 3.87Eþ03 3.20Eþ03 3.91Eþ03 3.58Eþ03 4.92Eþ03 6.74Eþ03 9.75Eþ03
Std 3.24Eþ03 3.43Eþ03 3.69Eþ03 3.50Eþ03 3.75Eþ03 3.42Eþ03 4.75Eþ03
Rank 3 1 3 2 4 5 6

F13 Mean 1.74 1.54 1.45 1.65 1.72 2.00 2.14
Std 0.28 0.28 0.28 0.32 0.35 0.37 0.26
Rank 5 2 1 3 4 6 7

F14 Mean 11.58 11.86 11.93 11.95 12.01 12.16 12.29
Std 0.57 0.46 0.58 0.45 0.54 0.44 0.44
Rank 1 2 3 4 5 6 7

Average rank 2.21 2.50 2.57 2.86 3.93 4.43 5.29
Final rank 1 2 3 4 5 6 7
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particle’s neighborhood best experience to adjust the exploration
and exploitation tendencies. CLPSO used learning probability
curve and CL strategy that encouraged a particle to learn from
different particles with different levels of exploration and exploi-
tation ability. HPSO-TVAC introduced time varying acceleration
coefficients to encourage the particles for stronger exploration in
the early search and for stronger exploitation at the end of the
search. In OLPSO, a particle is guided by an exemplar constructed
from its personal best and the global best using an orthogonal
learning strategy. In static heterogeneous particle swarm optimi-
zer (sHPSO), different velocity updating rules of PSO [3], cognitive-
only velocity update [33], social-only velocity update [33], bare-
bones PSO [34], modified barebones PSO [34] were used. The
behaviors are randomly assigned to the particles and kept
unchanged throughout the search process in sHPSO algorithm.

All the algorithms are tested on all 25 benchmark functions and
run 30 times using the same number of function evaluations and
population size. The detail parameter settings of the proposed
HCLPSO and other algorithms are presented in Table 2 and
refreshing gap m is set at five for all the experiments in this paper.

4.2. Parameter tuning

In the proposed HCLPSO algorithm, there are four main para-
meters to be adjusted for balancing exploration and exploitation
between two subpopulation groups. The first parameter to tune is
subpopulation group size and the next parameters to adjust are
the acceleration coefficients, c, from exploration-subpopulation
velocity update Eq. (7) and c1 and c2 from exploitation-
subpopulation velocity update Eq. (9). The parameters are tuned
using the first 14 CEC 2005 test functions with the same parameter
settings of run times 30, population size 40, FES 300,000 and
dimension 30. The results are ranked based on error mean and
standard deviation values and summarized with final rank
resulted from averaging over the ranks.

The experiment results of tuning subpopulation group sizes are
shown in Table 3. According to the final rank, the subpopulation
size of (g1¼5, g2¼35) obtained the best performance for all 14
benchmark functions compared to other subpopulation settings.
However, as underlined in Table 3, this parameter setting provides
unsatisfactory performance on test functions F6 and F9 as the
second best parameter setting (g1¼10, g2¼30) does on function
F9. On the other hand, the parameter setting (g1¼15, g2¼25)
provides the satisfactory and consistent performance throughout
14 problems.

For acceleration coefficient c from exploration-subpopulation
velocity update Eq. (7), c is used as a constant value of 1.49445 in
[14]. In this paper, c is calibrated using constant and time varying
values and its calibration results are presented in Table 4. For c1
and c2 from exploitation-subpopulation velocity update Eq. (9),
time varying values of c1 started at 2.5, linearly reduced to 0.5 and
c2 started at 0.5, linearly increased to 2.5 from literature [7] are
used. In order to balance the search between exploration-
subpopulation and exploitation-subpopulation groups, different c
values are calibrated by pairing with c1¼2.5–0.5, c2¼0.5–2.5 from
[7]. In calibration Table 4, c¼3 provides the best performance
according to final rank value. However, it performs poorly on
functions F6 and F9 as underlined. Among three different settings,
the second best parameter setting c¼3–1.5 provides superior
performance consistently for all 14 test functions.

Therefore, the subpopulation sizes (g1¼15, g2¼25) and time
varying acceleration coefficients (c1¼0.5–2.5, c2¼2.5–0.5 and
c¼3–1.5) are selected for further performance evaluation of the
proposed HCLPSO algorithm.

4.3. Comparative study with PSO variants

In this section, the proposed HCLPSO algorithm is compared with
other state-of-the-art PSO algorithms and its performance is evaluated
using several criteria. Firstly, the performance of each algorithm is
measured and ranked in terms of error mean and standard deviation
values of their solutions. The final rank for each algorithm is defined
according to their average rank values over 25 benchmark problems.
Secondly, in order to examine the statistical difference between
HCLPSO and other PSO algorithms, non-parametric Wilcoxon signed-
rank test [35–38] is conducted between the results of proposed
HCLPSO and the results of the other PSO variants with the significance
level of 5%. In this single-problem analysis, pairwise comparison is
performed over the results obtained over 30 simulation runs on 10 and
30 dimensional problems. The symbol (þ) represents that HCLPSO
performs significantly better than the compared algorithm, the symbol

Table 4
Calibration of acceleration coefficient c of exploration-subpopualtion group with
g1¼15, g2¼25.

Functions Criteria c1¼2.5–0.5,
c2¼0.5–2.5, c¼1.5

c1¼2.5–0.5,
c2¼0.5–2.5, c¼3–
1.5

c1¼2.5–0.5,
c2¼0.5–2.5, c¼3

F1 Mean 0 0 0
Std 0 0 0
Rank 1 1 1

F2 Mean 8.60E–06 1.70E–06 2.27E–08
Std 1.36E–05 1.71E–06 3.89E–08
Rank 3 2 1

F3 Mean 8.77Eþ05 6.42Eþ05 5.42Eþ05
Std 4.85Eþ05 2.61Eþ05 2.41Eþ05
Rank 3 2 1

F4 Mean 4.57Eþ02 5.22Eþ02 2.46Eþ02
Std 2.68Eþ02 3.09Eþ02 1.30Eþ02
Rank 2 3 1

F5 Mean 3.11Eþ03 2.97Eþ03 2.96Eþ03
Std 4.97Eþ02 4.55Eþ02 5.49Eþ02
Rank 3 2 1

F6 Mean 2.86 2.39 10.72
Std 6.54 4.27 14.62
Rank 2 1 3

F7 Mean 0.02 0.02 0.02
Std 0.01 0.02 0.02
Rank 1 2 2

F8 Mean 20.87 20.87 20.87
Std 0.08 0.09 0.09
Rank 1 2 2

F9 Mean 0.10 0 0.07
Std 0.40 0 2.52E–01
Rank 3 1 2

F10 Mean 66.37 56.08 58.10
Std 24.35 12.90 17.18
Rank 3 1 2

F11 Mean 22.15 20.32 19.96
Std 2.34 2.94 3.19
Rank 3 2 1

F12 Mean 5.65Eþ03 3.91Eþ03 4.43Eþ03
Std 6.31Eþ03 3.69Eþ03 3.94Eþ03
Rank 2 1 1

F13 Mean 1.59 1.45 1.60
Std 0.24 0.28 0.31
Rank 2 1 3

F14 Mean 11.97 11.93 11.78
Std 0.60 0.58 0.55
Rank 3 2 1

Average rank 2.29 1.64 1.57
Final rank 3 2 1
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(0) represents that there is no significant difference between HCLPSO
and the compared algorithm and the symbol (–) represents that the
compared algorithm performs significantly better than HCLPSO algo-
rithm. In addition, the convergence progress of all the algorithms is also

analyzed for unimodal, multimodal and hybrid composite functions. As
specified in [32], the median performance of 30 runs is used to analyze
the convergence performance. Among 25 test cases, some convergence
characteristics graphs are presented in Fig. 3.

Fig. 3. Median convergence characteristics graphs of 30 dimensional CEC 2005 benchmark functions: (a) F5: shwefel's problem 2.6, (b) F10: shifted rotated Rastrigin's
function, (c) F11: shifted rotated Weierstrass function, (d) F17: rotated hybrid composition function with noise in fitness, (e) F19: rotated hybrid composition function with a
narrow basin for the global optimum, (f) F22: rotated hybrid composition function with high condition number matrix.
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Table 5
Comparison of experimental results of PSO algorithms for 10 dimensional CEC 2005 test functions with g1¼8 and g2¼12.

Functions Criteria HCLPSO PSO FIPS UPSO CLPSO HPSO-TVAC sHPSO

F1 Mean 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1

F2 Mean 0 0 0 0 1.86E–02 0 0
Std 0 0 0 0 2.24E–02 0 0
Rank 1 1 1 1 2 1 1

F3 Mean 6.83Eþ04 1.60Eþ05 2.24Eþ05 1.05Eþ05 3.49Eþ05 6.36Eþ04 8.82Eþ04
Std 4.63Eþ04 1.10Eþ05 1.22Eþ05 1.16Eþ05 2.21Eþ05 3.81Eþ04 6.48Eþ04
Rank 2 5 6 4 7 1 3

F4 Mean 8.59E–03 0 0 1.47Eþ02 5.20 2.15Eþ02 2.31Eþ03
Std 1.29E–02 0 0 3.38Eþ02 11.02 2.96Eþ02 2.23Eþ03
Rank 2 1 1 4 3 5 6

F5 Mean 7.51 1.04Eþ03 1.32Eþ02 6.03Eþ02 6.95 4.96Eþ02 1.27Eþ03
Std 8.53 2.07Eþ02 1.11Eþ02 5.34Eþ02 16.01 3.61Eþ02 2.10Eþ03
Rank 2 6 3 5 1 4 7

F6 Mean 0.81 3.47 4.70 18.50 0.86 11.83 786.51
Std 1.17 7.76 11.11 87.60 1.94 22.29 4017.41
Rank 1 3 4 6 2 5 7

F7 Mean 0.11 0.22 0.22 0.19 0.21 2.56 11.58
Std 0.06 0.14 0.13 0.15 0.11 1.84 15.61
Rank 1 5 4 2 3 6 7

F8 Mean 20.21 20.29 20.36 20.36 20.27 20.17 20.14
Std 0.07 0.09 0.08 0.06 0.05 0.11 0.12
Rank 3 4 7 6 5 2 1

F9 Mean 0.10 3.55 0.23 7.89 0 1.76 18.67
Std 0.30 1.40 0.57 4.26 0 1.47 15.16
Rank 2 5 3 6 1 4 7

F10 Mean 9.43 14.36 14.27 15.95 9.24 34.76 34.22
Std 3.04 5.21 6.40 5.75 2.97 11.37 12.14
Rank 2 4 3 5 1 7 6

F11 Mean 3.29 3.36 4.55 5.98 4.53 5.91 6.92
Std 1.27 1.42 1.61 0.94 0.78 1.19 1.69
Rank 1 2 4 7 3 5 6

F12 Mean 1.38Eþ01 1.83Eþ03 2.61Eþ02 7.78Eþ01 7.22Eþ01 5.70Eþ02 1.43Eþ03
Std 2.62Eþ01 4.31Eþ03 3.62Eþ02 2.71Eþ02 5.20Eþ01 7.52Eþ02 3.21Eþ03
Rank 1 7 4 3 2 5 6

F13 Mean 0.29 0.63 1.17 0.81 0.28 0.66 1.61
Std 0.06 0.21 0.25 0.23 0.06 0.22 1.00
Rank 2 3 6 5 1 4 7

F14 Mean 2.70 2.86 2.93 3.30 3.00 3.20 3.60
Std 0.45 0.41 0.34 0.33 0.27 0.35 0.41
Rank 1 2 3 6 4 5 7

F15 Mean 2.51Eþ00 2.34Eþ02 2.08Eþ02 2.63Eþ02 4.81Eþ00 2.15Eþ02 3.82Eþ02
Std 1.38Eþ01 1.76Eþ02 1.76Eþ02 1.07Eþ02 1.46Eþ01 2.04Eþ02 1.93Eþ02
Rank 1 5 3 6 2 4 7

F16 Mean 1.08Eþ02 1.29Eþ02 1.12Eþ02 1.35Eþ02 1.20Eþ02 1.91Eþ02 1.87Eþ02
Std 1.63Eþ01 1.64Eþ01 9.91Eþ00 2.45Eþ01 9.92Eþ00 3.91Eþ01 4.58Eþ01
Rank 1 4 2 5 3 7 6

F17 Mean 1.13Eþ02 1.42Eþ02 1.24Eþ02 1.49Eþ02 1.25Eþ02 1.95Eþ02 2.05Eþ02
Std 1.36Eþ01 6.81Eþ01 1.46Eþ01 1.86Eþ01 1.29Eþ01 4.47Eþ01 7.31Eþ01
Rank 1 4 2 5 3 6 7

F18 Mean 6.80Eþ02 7.10Eþ02 8.06Eþ02 8.97Eþ02 6.85Eþ02 1.01Eþ03 9.79Eþ02
Std 2.16Eþ02 2.53Eþ02 1.34Eþ02 1.20Eþ02 1.87Eþ02 8.67Eþ01 7.28Eþ01
Rank 1 3 4 5 2 7 6

F19 Mean 6.76Eþ02 6.99Eþ02 7.59Eþ02 8.62Eþ02 6.54Eþ02 9.95Eþ02 9.89Eþ02
Std 2.03Eþ02 2.45Eþ02 1.69Eþ02 1.31Eþ02 1.88Eþ02 9.26Eþ01 1.42Eþ02
Rank 2 3 4 5 1 7 6

F20 Mean 6.24Eþ02 6.16Eþ02 7.81Eþ02 8.89Eþ02 7.46Eþ02 9.86Eþ02 1.01Eþ03
Std 2.38Eþ02 2.66Eþ02 1.35Eþ02 9.67Eþ01 1.62Eþ02 1.12Eþ02 8.42Eþ01
Rank 2 1 3 5 4 6 7

F21 Mean 3.93Eþ02 4.51Eþ02 7.65Eþ02 8.23Eþ02 4.52Eþ02 1.04Eþ03 1.09Eþ03
Std 1.41Eþ02 1.93Eþ02 2.84Eþ02 3.22Eþ02 1.40Eþ02 2.83Eþ02 2.23Eþ02
Rank 1 2 4 5 3 6 7

F22 Mean 7.24Eþ02 7.64Eþ02 7.98Eþ02 8.12Eþ02 7.27Eþ02 8.86Eþ02 8.86Eþ02
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4.3.1. Results for 10 dimensional problems
The experiment of 10 dimensional CEC 2005 test function is

performed using population size 20 and the results are illustrated
in Table 5. The exploration-subpopulation group size g1¼8 and
exploitation-subpopulation group size g2¼12 are employed in the
experiment of 10 dimension problems. As shown in comparison
Table 5, on 10 dimensional unimodal problems, all PSO algorithms
perform equally on functions F1 and F2. HPSO-TVAC provides the
best solution on function F3 as PSO and FIPS does the best on
function F4. CLPSO yields the best solution on function F5. The
proposed HCLPSO algorithm performs the second best and ranked
2 on those three unimodal functions F3, F4 and F5.

On multimodal, expanded and hybrid composite functions,
HCLPSO algorithm outperforms other algorithms on function F6,
F7, F11, F12, F14–F18, F21–F23, F25 i.e. 13 out of 20 test functions.
CLPSO also obtains the best performance on function F9, F10, F13,
F19 and F24, i.e. 5 out of 20 functions. sHPSO does the best on
function F8 as PSO offers the best solution on function F20. The
number of (Best/2nd Best/Worst) is counted for each algorithm
and worst ranks are underlined in Table 5. It can be observed that
HCLPSO algorithm has no worst performance on any benchmark
functions. Overall, the proposed HCLPSO algorithm provides the
best performance on 15 out of 25 benchmark problems and rank
first over other PSO algorithms except for OLPSO algorithm. The 10
dimensional Wilcoxon signed rank test results of HCLPSO algo-
rithm against other algorithms are shown in Table 6. The number
of (þ/0/–) are presented in last row of Wilcoxon table and it can
be observed that HCLPSO performs significantly better than other
PSO algorithms.

4.3.2. Results for 30 dimensional problems
As described in comparison Table 7, all algorithms performwell

on the shifted sphere function F1. UPSO obtains the best perfor-
mance on function F2. HCLPSO achieves the best solution on
function F3. PSO performs the best on function F4 and FIPS
provides the best performance on function F5. The proposed
HCLPSO algorithm is consistently performed well and obtained
the best and the second best performance on all unimodal
functions F1–F5.Overall, it provides outstanding and robust perfor-
mance over other PSO algorithms.

In multimodal functions, HCLPSO performs well on all the
shifted and rotated multimodal functions. The proposed HCLPSO
provides the best performance on multimodal F6, F9, F10, F11, F12
and second best on multimodal F7 and F8. On the other hand,
CLPSO yields the best solution on F6 as OLPSO and HPSO-TVAC

does the best on function F7 and sHPSO does on function F8. HPSO-
TVAC offers the best solution on F12. Hence, HCLPSO is consistently
performing well throughout multimodal problems and obtains the
best overall performance. In expanded hybrid composite test
functions, HCLPSO performs the best on both expanded extended
function F13 and shifted rotated expanded function F14.

In hybrid composite test functions, HCLPSO yields the best
performance on hybrid composition function of F16, F17, F21, F23, F24
and F25. On the other hand, FIPS gives the best results on function
F18, F19, F20 and F22. Similarly, OLPSO performs the best on F21, F23
and F24 and CLPSO does the best on F15, F21, F23, F24 and F25.
However, HCLPSO performs consistently within top three ranges
throughout 11 problems except for functions F19 and F20. Accord-
ing to final rank and the number of Best/2nd Best/Worst, proposed
HCLPSO ranked first by performing the best 15 out of 25 functions

Table 5 (continued )

Functions Criteria HCLPSO PSO FIPS UPSO CLPSO HPSO-TVAC sHPSO

Std 1.15Eþ02 9.30Eþ01 6.13Eþ01 7.19Eþ01 1.42Eþ02 1.30Eþ02 1.06Eþ02
Rank 1 3 4 5 2 7 6

F23 Mean 5.58Eþ02 6.77Eþ02 8.57Eþ02 1.01Eþ03 5.58Eþ02 1.12Eþ03 1.17Eþ03
Std 5.55Eþ01 1.43Eþ02 2.66Eþ02 2.38Eþ02 7.16Eþ01 2.63Eþ02 1.69Eþ02
Rank 1 3 4 5 2 6 7

F24 Mean 2.10Eþ02 2.80Eþ02 3.77Eþ02 4.20Eþ02 2.00Eþ02 8.23Eþ02 6.62Eþ02
Std 5.48Eþ01 1.56Eþ02 3.90Eþ00 1.11Eþ02 1.63E–08 4.59Eþ02 4.56Eþ02
Rank 2 3 4 5 1 7 6

F25 Mean 2.00Eþ02 3.10Eþ02 3.77Eþ02 4.46Eþ02 2.00Eþ02 7.87Eþ02 7.38Eþ02
Std 1.21E–12 1.75Eþ02 2.33Eþ00 1.95Eþ02 2.59E–09 4.37Eþ02 4.85Eþ02
Rank 1 3 4 5 2 7 6

Average rank 1.44 3.32 3.52 4.68 2.44 5.00 5.72
Final rank 1 3 4 5 2 6 7
Best/2nd Best/Worst 15/9/0 4/3/1 3/2/1 2/1/1 7/7/2 3/1/7 3/0/12
Algorithms HCLPSO PSO FIPS UPSO CLPSO HPSO-TVAC sHPSO

Table 6
Wilcoxon signed rank test results of single-problem analysis with a significance
level of α¼0.05 for 10 dimensional problems.

Functions Pairwise comparison HCLPSO versus

PSO FIPS UPSO CLPSO HPSO-TVAC sHPSO

F1 þ þ þ 0 þ þ
F2 þ þ þ 0 þ þ
F3 þ þ þ 0 þ þ
F4 0 þ þ 0 þ þ
F5 þ þ þ þ þ þ
F6 þ þ þ 0 þ þ
F7 þ þ þ þ þ þ
F8 0 þ þ þ þ þ
F9 þ þ þ þ þ þ
F10 þ þ þ þ þ þ
F11 þ þ þ 0 þ þ
F12 þ þ þ 0 þ þ
F13 þ þ þ 0 þ þ
F14 0 þ þ 0 þ þ
F15 0 þ þ 0 þ þ
F16 þ þ þ þ þ þ
F17 þ þ þ 0 þ þ
F18 þ þ þ 0 þ þ
F19 þ þ þ þ þ þ
F20 þ þ þ þ þ þ
F21 þ þ þ þ þ þ
F22 þ þ þ þ þ þ
F23 0 0 þ 0 þ þ
F24 þ þ þ þ þ þ
F25 þ þ þ þ þ þ
þ/0/� 20/5/0 24/1/0 25/0/0 12/13/0 25/0/0 25/0/0
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Table 7
Comparison of experimental results of PSO algorithms for 30 dimensional CEC 2005 test functions with g1¼15 and g2¼25.

F Criteria HCLPSO PSO FIPS UPSO CLPSO OLPSO HPSO-TVAC sHPSO

F1 Mean 0 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1 1

F2 Mean 1.70E–06 0.37 77.94 2.65E–07 1.14Eþ03 13.79 3.79E–06 1.44E–02
Std 1.71E–06 0.32 27.05 2.42E–07 2.53Eþ02 8.33 2.82E–06 7.10E–02
Rank 2 5 7 1 8 6 3 4

F3 Mean 6.42Eþ05 6.53Eþ06 2.45Eþ07 1.54Eþ06 1.22Eþ07 1.60Eþ07 7.72Eþ05 8.75Eþ05
Std 2.61Eþ05 4.17Eþ06 6.29Eþ06 4.75Eþ05 3.34Eþ06 7.04Eþ06 2.96Eþ05 5.34Eþ05
Rank 1 5 8 4 6 7 2 3

F4 Mean 5.22Eþ02 3.81Eþ02 1.15Eþ03 7.28Eþ03 8.77Eþ03 2.18Eþ03 2.48Eþ04 2.02Eþ04
Std 3.09Eþ02 3.31Eþ02 3.73Eþ02 2.79Eþ03 1.85Eþ03 1.09Eþ03 5.71Eþ03 9.94Eþ03
Rank 2 1 3 5 6 4 8 7

F5 Mean 2.97Eþ03 3.85Eþ03 2.22Eþ03 6.32Eþ03 4.47Eþ03 3.30Eþ03 9.20Eþ03 6.94Eþ03
Std 4.55Eþ02 8.00Eþ02 5.14Eþ02 1.63Eþ03 4.26Eþ02 3.75Eþ02 1.81Eþ03 1.43Eþ03
Rank 2 4 1 6 5 3 8 7

F6 Mean 2.39 70.16 37.70 68.20 2.39 20.68 50.41 115.27
Std 4.27 95.09 35.03 96.41 3.84 24.97 50.54 228.56
Rank 1 6 3 5 1 2 4 7

F7 Mean 0.02 0.76 0.03 0.02 0.70 0.01 0.01 0.04
Std 0.02 1.41 0.02 0.01 0.15 0.01 0.01 0.04
Rank 2 6 3 2 5 1 1 4

F8 Mean 20.87 20.90 20.94 20.95 20.92 20.96 20.71 20.18
Std 0.09 0.07 0.06 0.05 0.06 0.08 0.15 0.19
Rank 3 4 6 7 5 8 2 1

F9 Mean 0 19.00 57.11 85.16 0 0 10.71 82.54
Std 0 5.37 14.55 16.90 0 0 4.96 24.35
Rank 1 3 4 6 1 1 2 5

F10 Mean 56.08 100.32 177.86 93.63 99.78 109.23 275.73 242.83
Std 12.90 58.63 9.25 18.82 12.48 18.94 45.49 89.17
Rank 1 4 6 2 3 5 8 7

F11 Mean 20.32 23.18 38.36 30.94 24.42 25.05 30.62 32.29
Std 2.94 2.81 1.52 1.96 1.78 3.14 2.58 3.84
Rank 1 2 8 6 3 4 5 7

F12 Mean 3.91Eþ03 5.07Eþ04 5.62Eþ04 4.31Eþ03 1.47Eþ04 1.22Eþ04 4.47Eþ03 2.43Eþ04
Std 3.69Eþ03 3.50Eþ04 2.00Eþ04 3.44Eþ03 3.45Eþ03 5.42Eþ03 4.66Eþ03 2.66Eþ04
Rank 1 7 8 2 5 4 3 6

F13 Mean 1.45 3.02 12.51 5.78 1.86 1.86 3.85 6.14
Std 0.28 0.69 0.96 1.59 0.18 0.28 1.11 2.31
Rank 1 4 8 6 2 3 5 7

F14 Mean 11.93 12.65 13.12 12.79 12.64 13.13 12.31 13.07
Std 0.58 0.43 0.21 0.33 0.22 0.20 0.37 0.39
Rank 1 4 7 5 3 8 2 6

F15 Mean 88.04 299.71 283.02 465.59 40.10 244.88 321.29 457.16
Std 113.02 107.62 39.65 70.22 37.90 84.09 107.12 138.94
Rank 2 5 4 8 1 3 6 7

F16 Mean 104.07 235.84 201.66 199.42 163.61 135.54 336.21 376.70
Std 36.41 152.98 14.63 61.91 27.87 55.48 97.20 99.46
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Table 7 (continued )

F Criteria HCLPSO PSO FIPS UPSO CLPSO OLPSO HPSO-TVAC sHPSO

Rank 1 6 5 4 3 2 7 8

F17 Mean 109.59 262.63 224.39 278.90 219.31 204.56 391.68 367.25
Std 34.01 153.27 10.71 79.14 40.09 46.67 97.34 133.86
Rank 1 5 4 6 3 2 8 7

F18 Mean 894.42 927.77 832.24 840.92 907.76 906.63 908.24 997.99
Std 43.04 2.86 1.78 6.18 26.75 20.23 79.00 60.04
Rank 3 7 1 2 5 4 6 8

F19 Mean 913.49 926.69 831.09 841.77 915.09 906.73 912.45 982.94
Std 2.39 2.49 1.50 7.42 1.36 20.25 79.78 78.69
Rank 5 7 1 2 6 3 4 8

F20 Mean 914.03 927.06 831.86 841.62 911.24 906.40 905.92 974.13
Std 2.36 2.35 1.66 6.22 20.60 20.19 74.72 67.96
Rank 6 7 1 2 5 4 3 8

F21 Mean 500.00 510.00 862.53 761.78 500.00 500.00 1173.50 996.01
Std 0 54.77 1.03 174.96 0 0 229.74 328.97
Rank 1 2 4 3 1 1 6 5

F22 Mean 910.68 938.66 521.17 615.37 974.32 941.70 1216.89 1123.41
Std 15.75 12.96 1.27 113.50 17.22 16.30 73.68 103.68
Rank 3 4 1 2 6 5 8 7

F23 Mean 534.16 574.17 865.57 816.07 534.16 534.16 1258.30 996.79
Std 4.07E–04 122.10 1.03 147.72 1.53E–04 5.04E–04 34.57 323.48
Rank 1 2 4 3 1 1 6 5

F24 Mean 200.00 200.00 214.39 225.24 200.00 200.00 1276.11 995.63
Std 0 0 0.58 4.87 0 0 205.10 409.92
Rank 1 1 2 3 1 1 5 4

F25 Mean 200.00 1113.45 214.21 225.56 200.00 207.46 1331.03 1037.43
Std 0 14.41 0.50 7.19 0 7.09 26.00 423.59
Rank 1 6 3 4 1 2 7 5

Average rank 1.8 4.32 4.12 3.88 3.48 3.4 4.8 5.76
Final rank 1 6 5 4 3 2 7 8
Best/2nd Best/Worst 15/5/0 3/3/1 5/1/4 1/7/2 8/1/1 6/4/2 2/4/9 2/0/5
Algorithms HCLPSO PSO FIPS UPSO CLPSO OLPSO HPSO-TVAC sHPSO

N
.Lynn,P.N

.Suganthan
/
Sw

arm
and

Evolutionary
Com

putation
24

(2015)
11

–24
22



and achieved comparable performance on other unimodal, multi-
modal, expanded and hybrid composite functions. The last row in
Wilcoxon sign rank test Table 8 also shows that HCLPSO performs
better than other PSO algorithms on most of the 30 dimensional
problems.

Among unimodal functions, the convergence graph of Schwe-
fel's Problem 2.6 with Global Optimum on Bounds (F5) is presented
in Fig. 3(a). It can be clearly observed that the proposed HCLPSO
obtains better result than other algorithms. Among multimodal
functions, the convergence graphs of the rotated and shifted
Rastrigin's function and Weierstrass functions (F10 and F11) are
presented in Fig. 3(b) and (c) respectively. In both cases, the
proposed HCLPSO algorithm is able to jump out of local minimum
and achieves the best performance.

Among hybrid composite functions, the convergence graphs of
F17, F19 and F20 are presented in Fig. 3(d), (e) and (f) respectively.
Fig. 3(d) shows that the proposed HCLPSO achieves the outstand-
ing performance. However, the HCLPSO obtains the comparable
performance to other algorithms in F19 and F22. It can be observed
in Fig. 3(e) and (f). In summary, the convergence analysis shows
that the proposed algorithm, HCLPSO, outperforms in most
test cases.

4.4. Discussions

Experimental results and comparisons verify that HCLPSO
overall performs better than traditional PSO and other improved
PSO variants on shifted rotated unimodal, multimodal, expanded
and hybrid composite problems, in terms of solution accuracy
(mean and standard deviation), convergence test and statistical
analysis results. HCLPSO performs well consistently and achieves
high performance on all shifted rotated unimodal and multimodal
problems. The algorithm also offers the best performance on
expanded and shifted rotated expanded problems as well as on
hybrid and rotated hybrid composition problems. However, the
algorithm does not perform well on two rotated hybrid

composition functions. This can be explained by No Free Lunch
Theorem (NFLT) [39]. According to no free lunch theorem, a
general-purpose universal optimization algorithm is theoretically
impossible. Therefore, no strategy can be expected to outperform
another on all types of optimization problems.

When comparing with CLPSO, the results show that HCLPSO
can find more accurate solutions with faster convergence speed in
all unimodal, multimodal, expanded and hybrid composite func-
tions. Thus, HCLPSO offers higher solution accuracy and faster
convergence speed than CLPSO. Compared to other PSO algo-
rithms, HCLPSO performs the best in 15 out of 25 problems and
comparable performance on the rest.

This implies that HCLPSO has gained benefits from four
methods described in Section 1. By using heterogeneous subpo-
pulations which are assigned for exploration and exploitation
processes separately, it enhances the exploration and exploitation
processes without crippling one another. By using CL learning
strategy and its velocity update equation [14], the particles can
learn from different dimensions of different particles and avoid
two problems, “oscillation phenomenon“ [28] and “two steps
forward, one step back phenomenon“ [25]. With generating the
exemplar for the exploration subpopulation by using its own
members' best experiences, information sharing among the parti-
cles is controlled and able to prevent premature convergence.
Lastly, by using time varying acceleration coefficients [7] for each
subpopulation group, their respective exploration/exploitation
ability is enhanced. Therefore, the trade-off between exploration
and exploitation is achieved and the HCLPSO performs better or
comparable to other PSO variants on shifted rotated unimodal,
multimodal, expanded and hybrid composition functions.

One of the limitations on HCLPSO algorithm is using CL strategy for
solving unimodal problems. Although learning of different dimensions
from different exemplars is efficient for searching the global optimum
of multimodal problems, tuning the algorithm to find the optimal
solution on unimodal problems is ineffective and costs low conver-
gence speed. This is expected as especially, in the light of no free lunch
theorem, there is no general-purpose optimization algorithm which
can solve all classes of problems and all the algorithms have pros and
cons on solving optimization problems. Secondly, the HCLPSO is more
complex compare to other algorithms and requires additional compu-
tations. However, the computational resources are mostly spent on the
evaluating of objective function in EA algorithms. Hence, the additional
computational requirement of the optimization strategy for HCLPSO is
negligible. In addition, the HCLPSO offers faster convergence rate and
this can be translated into additional saving on computation time.

Though HCLPSO is a promising optimization algorithm, as
mentioned above comprehensive learning strategy has to be tuned
to get better performance. To address this issue, adaptive or self-
learning strategy will be investigated in the future.

5. Conclusion

In this paper, heterogeneous CLPSO with enhanced exploration and
exploitation is presented in which the entire population is divided into
two heterogeneous subpopulation groups and each subpopulation
group is especially designed to enhance exploration and exploitation
performances, respectively. In addition, the explorative particles do not
interact with the exploitative particles to prevent loss of diversity.
Furthermore, inertia weight and time varying acceleration coefficients
are used in both groups to bias the exploration and exploitation
balance from exploration in early stages to exploitation in the later
stages. Intensive performance evaluation of the proposed HCLPSO
algorithm is conducted using benchmark optimization problems. The
experiment results showed that the proposed algorithm overall out-
performs the current state-of-art PSO variants.

Table 8
Wilcoxon signed rank test results of single-problem analysis with a significance
level of α¼0.05 for 30 dimensional problems.

Functions Pairwise comparison HCLPSO versus

PSO FIPS UPSO CLPSO OLPSO HPSO-TVAC sHPSO

F1 0 0 0 0 0 0 0
F2 þ þ � þ þ þ 0
F3 þ þ þ þ þ 0 0
F4 0 þ þ þ þ þ þ
F5 þ � þ þ þ þ þ
F6 þ þ þ 0 þ þ þ
F7 þ þ 0 þ 0 0 0
F8 0 þ þ þ þ � þ
F9 þ þ þ 0 0 þ þ
F10 þ þ þ þ þ þ þ
F11 þ þ þ þ þ þ þ
F12 þ þ þ þ þ þ þ
F13 þ þ þ þ þ þ þ
F14 þ þ þ þ þ þ þ
F15 þ þ þ 0 þ þ þ
F16 þ þ þ þ 0 þ þ
F17 þ þ þ þ þ þ þ
F18 þ � � þ 0 0 þ
F19 þ � � þ � 0 þ
F20 þ � � 0 � � þ
F21 þ þ þ 0 0 þ þ
F22 þ � � þ þ þ þ
F23 þ þ þ � 0 þ þ
F24 0 þ þ 0 0 þ þ
F25 þ þ þ þ þ þ þ
þ/0/� 21/4/0 19/1/5 18/2/5 17/7/1 15/8/2 18/5/2 21/4/0
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