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ABSTRACT Harris’ hawk optimization (HHO) is a recent addition to population-based metaheuristic
paradigm, inspired from hunting behavior of Harris’ hawks. It has demonstrated promising search behavior
while employed on various optimization problems, however the diversity of search agents can be further
enhanced. This paper represents a novel modified variant with a long-term memory concept, hence called
long-term memory HHO (LMHHO), which provides information about multiple promising regions in
problem landscape, for improvised search results. With this information, LMHHO maintains exploration
up to a certain level even until search termination, thus produces better results than the original method.
Moreover, the study proves that appropriate tools for in-depth performance analysis can help improve search
efficiency of existing metaheuristic algorithms by making simple yet effective modification in search strat-
egy. The diversity measurement and exploration-exploitation investigations prove that the proposed LMHHO
maintains trade-off balance between exploration and exploitation. The proposed approach is investigated on
high-dimensional numerical optimization problems, including classic benchmark and CEC’17 functions;
also, on optimal power flow problem in power generation system. The experimental study suggests that
LMHHO not only outperforms the original HHO but also various other established and recently introduced
metaheuristic algorithms. Although, the research can be extended by implementing more efficient memory
archive and retrieval approaches for enhanced results.

INDEX TERMS Diversity measurement, exploration-exploitation, long-term memory, Harris’ hawk
optimization, optimal power flow.

I. INTRODUCTION
Optimization is part of our routine problems, be it designing
engineering structures, mining information from data science
models, processing images and videos, finding optimal path
in transportation, or achieving optimal flow of power in dis-
tributed systems – the case of this study. Usually, optimiza-
tion is performed by choosing the best from a great deal of
available solutions. It is achieved by finding best suitable
parameters or decision variables that help reduce costs or
maximize profits. However, optimization becomes signifi-
cantly arduous when the size of decision variables surges
exponentially; forming a high-dimensional optimization
problem by expanding search-space immoderately large.
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In these conditions, commonly used statistic methods often
fail because of limited global searchability. Luckily, today,
the field of optimization is inundatedwith innumerable global
search optimization methods, called metaheuristic algo-
rithms. Borrowing inspirations from almost every natural or
man-made process, there is always a metaheuristic algorithm
imitating one or the other metaphor. These algorithms have
been often categorized into different groups [1]–[3], but the
list seems unceasing. Sensing the deviation from true research
direction, researchers have rightfully criticized the rampant
inflow of new methods; insisted the need of more in-depth
research, instead of building conclusions merely based on
end-results [4]–[6].

Based on the discussion earlier, this research particu-
larly calls for desperate measures in putting metaheuristic
research field in positive direction by utilizing and analyzing
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core search behaviors found in the metaheuristic algorithms
that have already been introduced. It will be easily found
that these methods often overlap one or the other search
strategy [4]. There has been introduced plenty of algo-
rithms devised with a range of search strategies, which if
studied appropriately, can be further improved by effective
modification or hybrid of two or more search strategies
found in these algorithms and other deterministic meth-
ods [7]. Moreover, thorough analysis of the tripartite involv-
ing exploration, exploitation, and learning mechanisms with
theoretical foundations and practical measurements will pro-
duce meaningful outcomes [8]. In this vein, this study per-
forms in-depth performance analysis of one of the recently
introduced promising metaheuristic algorithm Harris’ Hawk
Optimization (HHO). The optimization method has already
established its reputation with the help of applications in dif-
ferent areas [9]–[12]. The study performs population diversity
measurement and exploitation-exploitation quantification for
analyzing search behavior of the HHO algorithm. Based
on extensive performance analysis, the research proposes
long-term memory concept to be integrated in HHO so
that a rigorous search can be performed in the problem
landscape, especially when it is high-dimensional and non-
convex. The proposed approach, namely long-term mem-
ory HHO (LMHHO) is evaluated on numerical optimization
problems with different characteristics, as well as, on prac-
tical application of finding optimal power flow on IEEE bus
system.

With increasing use of electrical gadgets and devices,
the demand for energy production has risen tremendously.
This requires continuous power generation in optimal condi-
tions with the help of efficient operational planning for the
thermal units. Optimal power flow (OPF) can be regarded
as optimization problem where the operations of thermal
power systems are optimized keeping in view certain physical
and engineering constraints [13]. OPF problem is deemed
crucial as it involves real-time adjustment of system param-
eters to meet energy demands, as well as, avoid possi-
ble breakdowns. It is a complex and difficult problem
because it involves highly non-linear and non-convex func-
tions. Moreover, the introduction of renewable energy in
this paradigm is making it more complicated research direc-
tion [14], [15]. There has been put forward effort from
researchers while solving different types of OPF problems
using different approaches including gradient-based, statisti-
cal, heuristic, and metaheuristic methods [16], [17]. The use
of gradient and statistical methods becomes impractical when
employed on OPF problems on today’s power systems [18].
Therefore, because of efficient global searchability, in com-
plex optimization landscapes, a variety of metaheuristic
approaches have been successfully employed to solve OPF
problems [19]. By finding optimal set of control variables,
these techniques achieve objective functions by satisfying
certain constraints associated with the systems. Some of
the successful applications of metaheuristic algorithms in
OPF domain include particle swarm optimiation (PSO) [21],

firefly algorithm (FA) [26], and whale optimization algorithm
(WOA) [27], etc. However, to the best of authors’ knowledge,
implementation of HHO in this research area is yet to be
found in previous literature. Therefore, in this connection,
this study can be considered as the first attempt to apply HHO
on OPF problem. Moreover, to evaluate search efficiency of
the proposed LMHHO in OPF domain, it is employed to
optimize the objective functions related to power generation
cost, emission, and power loss while simulated on IEEE-30
bus system.

To summarize, the contributions of this study are:
• LMHHO is proposed by integrating long-term memory
concept in the original HHO algorithm for performing
rigorous search in problem space. The archive of mul-
tiple promising regions of search space helps LMHHO
maintain population diversity throughout search pro-
cess. Hence, LMHHO is able to maintain balance
between exploration and exploitation.

• LMHHO is tested on extensive test-bed consisting of
ten classic benchmark functions and 29 complex func-
tions of CEC’17 suite. The optimization problems in
these experiments include low and high dimensional
functions.

• LMHHO is implemented on optimal power flow (OPF)
problem for IEEE-30 bus system. The OPF is solved by
minimizing fuel cost, emission, and power loss.

• Compared with well established metaheuristic algo-
rithms used in experiments of this study and from lit-
erature, it can be suggested that LMHHO performed
efficiently on hard optimization problems. Moreover,
the efficacy of long-termmemory concept encourages to
investigate its integration with various other metaheuris-
tic algorithms in future studies.

This paper is organized as follows. The subsequent section
makes a review of related work performed in the area of
optimal power flow using metaheuristic techniques; followed
by Sec. III which provides comprehensive detail on HHO,
proposed modification in LMHHO, OPF problem formu-
lation, and implementation of LMHHO on OPF problem.
Sec. IV presents the experimental results which are discussed
and analyzed in Sec. V, while the study is concluded in
Sec. VI where potential future research directions are also
highlighted.

II. RELATED WORK
To achieve minimum operational cost and maximum output,
optimization is often requiredwhile operating power systems.
Optimization problems, in this context, include economic
power dispatch, combined heat and power dispatch, optimum
scheduling of power generating units, optimal power flow in
different systems like flexible alternating current transmis-
sion system (FACTS) devices, optimal AC-DC power flow,
optimal reactive power flow, and load frequency control,
etc. [20]. In literature, several optimization methods have
been implemented to solve these problems. These include
metaheuristic algorithms which show promising results as
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compared to traditional non-stochasticmethods like quadratic
or non-linear programming [14], [18].

For solving OPF problems, different metaheuristic algo-
rithms have been successfully employed. These include par-
ticle swarm optimization (PSO) [21]–[23], flower pollination
algorithm (FPA) [24], moth-flame optimization (MFO) [25],
firefly algorithm (FA) [26], whale optimization algorithm
(WOA) [27], symbiotic organisms search (SOS) [28], jaya
algorithm (JA) [29], grey wolf optimization (GWO) [30],
backtracking search algorithm (BSA) [31], and many more.
To the best of authors’ knowledge, HHO has not been
implemented in any optimization problems of this category.
A brief review of some important works, from recent litera-
ture, related to OPF and metaheuristic techniques is done as
following.

In [20], Dumanmodifiedmoth swarm optimization (MSA)
method and applied it on solving optimal power flow prob-
lems in two-terminal HVDC systems with different objective
functions. The Duman work achieved best fuel cost, volt-
age deviation, and voltage stability results as compared to
counterparts used in this study. According to the researcher,
the proposed arithmetic crossover approach in MSA pro-
duced enhanced search results and convergence to global
optimum locations. The research contended to have achieved
the trade-off balance between exploration and exploitation.
In another application of MSA on OPF, Elattar [14] consid-
ered operational cost minimization, transmission power loss
minimization, and improvement of voltage profile. Shilaja
and Arunprasath [32] also considered MSA for solving OPF
problems in IEEE-30, 57, and 118 bus systems with and
without wind power resources. The research integrated MSA
with gravitational search algorithm (GSA) for enhanced pop-
ulation diversity. Another moth inspired metaheuristic algo-
rithm moth-flame optimization (MFO) [33] was improved
and employed on achieving minimized results for objective
functions considering fuel cost, gas emission, power loss, and
voltage stability improvement. For evaluation, the proposed
approach was simulated on three different test environments
including IEEE-30, 57, and 118 bus systems.

In a recent study performed by Khunkitti et al. [18],
a hybrid of dragon fly algorithm (DA) and PSOwas employed
on single and multi-objective OPF problems. The study used
generation cost, emissions, and transmission loss as objective
functions to be minimized while finding optimum decision
variables for the standard IEEE-30 and 57 bus systems. The
integration of exploration ability of DA and exploitation
ability of PSO resulted in faster convergence and efficient
results as compared to the relevant canonical methods and
others from literature. Similarly, another attemptwasmade by
Que and Wu [34] where a hybrid of bacterial foraging algo-
rithm (BFA) and PSOwas proposed for solving OPF problem
using IEEE-30 bus system. The authors merely focused on
fuel cost minimization, but achieved better results than the
original BFA and PSO.

A novel approach to improved bat algorithm (BA) per-
formance was proposed and applied on multi-objective OPF

problem [35]. In this research, the authors improved local
search ability of BA by using monotone random filling model
based on extreme learning (MRFME), and they enhanced
global search by mutation and crossover. The research also
employed fuzzy based Pareto dominance method for achiev-
ing constrained Pareto optimal set. Total generation cost,
emission, and power loss were used as evaluation criteria
while simulating on IEEE-30, 57, and 118 bus systems.
In [36], Duman solved OPF problem with and without valve
point effect and prohibited zones; forming four different sce-
narios. The study used symbiotic organisms search (SOS) on
power systemwith IEEE-30 bus. Results of the proposed SOS
outperformed various other population-based and evolution-
ary algorithm from literature. The OPF problem with twelve
case studies in wind and photovoltaic power generation sys-
tems were examined with single and multi-objective opti-
mization. Based on simulations performed on IEEE-30 and
118 test systems, the research claimed to have achieved
efficient results as compared to counterparts from literature.
A better review of various metaheuristic techniques applied
on OPF problems can be found in [20].

Apart from brief literature review presented earlier,
the overall importance of this particular research area is
briefly studied by applying keywords ‘‘optimal power flow’’
and (‘‘optimal power flow’’ AND metaheuristic) on Scopus1

database which is widely used by research community. Fig. 1
shows that mostly OPF problems have been solved in engi-
neering and energy followed by mathematics and computer
science. Other research areas include business and social
science, physics and material sciences, and environment sci-
ence. While considering OPF research in timeline of last
decade (until July 2019), Fig. 2 suggests that the interest
from researchers from various backgrounds is increasing, as a
constant rise can be observed in the number of publications.
However, there is clearly significant gap for metaheuristic
community to work in this particular research direction.
In this short survey appeared three groups of approaches
to solving OPF problems. These include machine learn-
ing methods, metaheuristic algorithms, and deterministic
techniques (Fig. 3).

III. MATERIALS AND METHODS
This section elaborates on methodology adopted to investi-
gate the proposed technique on high-dimensional optimiza-
tion problems, as well as, OPF problem. The basic HHO
algorithm is explained in the following subsection ahead
of the proposed approach with long-term memory concept.
Comes next the mathematical formulation of OPF problem,
followed by implementation of the proposed method.

A. HARRIS’ HAWK OPTIMIZATION (HHO)
The HHO algorithm is a nature inspired population-based
metaheuristic algorithm, based on the metaphor of prey cap-
turing approach of the bird Harris’ hawk. Using ‘‘surprise

1https://www.scopus.com/search/form.uri?display=basic
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FIGURE 1. OPF problems solved in different areas of research.

FIGURE 2. OPF research intensity in the last decade.

FIGURE 3. OPF methods used in literature.

pounce’’ tactic, the hawks attach prey from different direc-
tions in a coordinated way. According to the inventors
Heidari et al. [9], HHO is equipped with exploration and
exploitation strategies gleaned from different prey attacking
approaches of Harris’ hawks including locating the prey and
surprise dive. A comprehensive illustration of HHO search
strategies is given in Fig. 4. It can be observed from Fig. 4
that mainly HHO performs two major operations perching
and besieging, respectively, for exploration and exploitation
purposes.

In metaheuristic algorithmic language, HHO launches
search by initial random positions of the hawks which serve
as candidate solution – representing a vector of decision

FIGURE 4. HHO phases for performing search [9].

variables to be optimized. Later, as the search proceeds, HHO
turns from explorative to exploitative algorithm. Initially,
HHO uses perching strategy to locate the prey on ground.
Here, it is important to mention that the prey is a rabbit
which is termed for the best location in search space found
so far. The perching is modeled via Eq. (1). In Eq. (1),
the first case represents scenario when hawks perch randomly
within the space decided by the group, whereas the second
case describes situation when the hawks perch around family
members close to rabbit.

x t+1i =


xrand − r1|xrand − 2r2x ti |

if q ≥ 0.5(
xrabbit − x tavg

)
− r3 [lbi + r4(ubi − lbi)]

if q < 0.5
t ∈ {1, 2, . . . , tmax}, tmax = maximum iterations

i ∈ {1, 2, . . . ,N }, N = population size (1)

where x ti and x t+1i are respectively current position of the
ith hawk and its new position in iteration t+1, whereas xrand
and xrabbit are respectively randomly selected hawk position
and the best location (prey rabbit), and x tavg is dimension-wise
average of N solution vectors. It is noteworthy that there are
also several other ways to compute average vector in a matrix,
including element-wise average. In Eq. (1), r1 to r4 and q
are five different random numbers generated within the range
[0,1], whereas lbi and ubi are bounds of the search space.

The transition from exploration to exploitation phase is
implemented with the idea of prey trying to escape the
catch. The energy level of prey drops gradually during its
escape attempt, this helps model convergence ability of HHO.
Eq. (2) expresses mathematical modeling of the fact:

E = 2E0

(
1−

t
tmax

)
(2)
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where E0 and E are initial and current energy levels of prey
to escape, accordingly. In every iteration, the initial energy
level E0 alters randomly between [−1,1]. Interestingly in
HHO, when E0 decreases from 0 to −1, it exhibits that the
rabbit’s energy is exhausting; and when E0 increases from
0 to 1, it shows that the rabbit is gaining energy. Nevertheless,
as the iterations progress, the current energy E reduces. The
HHO remains explorative as long as |E ≥ 1| and hawks
keep on exploring global regions, whilst it turns into exploita-
tive mode for exploiting on the already identified promising
regions when |E| < 1.
The HHO algorithm ensures avoiding trapping in local

optima or state of stagnancy by devising four different
exploitation behaviors namely, soft besiege, hard besiege,
soft besiege with progressive rapid dive, and hard besiege
with rapid dive. In all these prey chasing styles, the hawks
in HHO perform search around potential region in search
space identified in exploration phase, using random number
r in range [0,1] and current energy level E . Soft besiege is
when the prey rabbit still has energy to escape and hawks
encircle around the rabbit to get it exhausted so that hawks
can perform surprise pounce. In HHO, when r ≥ 0.5 and
|E| ≥ 0.5, soft besiege is performed using Eq. (3):

X t+1i = 1x ti − E|Jxrabbit − x
t
i |

1x ti = xrabbit − x ti , J = 2(1− r5) (3)

FIGURE 5. Soft besiege phase [9].

where 1x ti is distance between the best location found so far
and current position of ith hawk, and r5 is a random number
between [0,1] represents random jump of the rabbit trying
to dodge the predator. When |E| ≥ 0.5 and r < 0.5 then
soft besiege is performed with progressive rapid dive (Fig. 5).
It implies that the rabbit has enough energy to escape by
making random zigzag moves and, in catch attempt, hawks
make irregular rapid dives. In this situation, the hawks try
progressive dives for best possible position to catch the prey.
To model this, HHO utilizes Lévy flight approach. The next
move of ith hawk, where it is making soft besiege with

progressive dive, is formulated via Eq. (4):

x t+1i =

{
Y if f (Y ) < f (x ti )
Z if f (Z ) < f (x ti )

,

Y = xrabbit − E|Jxrabbit − x ti |,

Z = Y + S × Lévy(D) (4)

where D and S are accordingly problem dimensions and
random number vector of size D, whereas f (Y ) and f (Z )
are objective function values for the given vectors. The Lévy
flight is formulated as Eq. (5):

Lévy(D) = 0.01×
u× σ

|v|
1
β

,

σ =

0(1+ β)× sin
(
πβ
2

)
0
(
1+β
2

)
× β2

β−1
2

 (5)

where u and β are random numbers between [0,1] and
a constant value (default β = 1.5), respectively. Notice
another constant value of 0.01 in Eq. (5) used to control step
length, which can be changed to adjust according to problem
landscape.

Hard besiege is when r ≥ 0.5 and |E| < 0.5, implies that
the rabbit is exhausted and has low energy to escape. Eq. (6)
models the situation:

X t+1i = xrabbit − E|1x ti | (6)

FIGURE 6. Hard besiege phase [9].

when |E| < 0.5 and r < 0.5 then the concept of hard besiege
with progressive dive is implemented (Fig. 6). It means that
the rabbit has significantly low energy that it cannot escape
and hawks are close to make dive for successive catch. This
concept is implemented using Eq. (7):

x t+1i =

{
Y if f (Y ) < f (x ti )
Z if f (Z ) < f (x ti )

Y = xrabbit − E|Jxrabbit − xavg|

Z = Y + S × Lévy(D) (7)

Here, it should be noticed in Eqs. (4) and (7) that, f (Y ) and
f (Z ) may not be improved fitness values than f (x ti ). In this
case, it can be meant that the hawk still needs to wait for
proper time to make surprise dive on the prey to catch it.
The step by step schema of HHO is depicted via Fig. 7. The
detail of HHO is intentionally kept brief to avoid repetition
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FIGURE 7. LMHHO step by step schema.

of literature in this paper, however the reader is encouraged
to refer the original work [9] for greater detail of inspirations
and conceptual explanation.

B. LONG-TERM MEMORY HHO (LMHHO)
Even though HHO is a promising optimization method, yet
it can be further improved for achieving even better results.
Similar to many other metaheuristic techniques, HHO also
performs search around single global best position (xrabbit )
found so far, which according to Jamil and Yang [38] makes a
search strategy highly selective. This single centrally guiding
position for other population individuals may not guarantee
convergence to global optimum location. The concept of sin-
gle global best position often leads metaheuristic techniques
suffer from premature convergence. That said, this research
introduces long-term memory concept in HHO, where the
population individuals can decide about the next move based
on multiple past experiences. The idea provides broader view
of multiple promising locations hence the chances of prema-
ture convergence or stagnancy are mitigated.

The proposed long-termmemoryHHO (LMHHO) annexes
an extra parameter Memory Length (ML). ML is a con-
trol parameter defined by user that how many past expe-
riences the swarm or population can remember at a time.

FIGURE 8. Long-term memory update process.

However, it is important to mention that extra-large value
for ML may result in storing unnecessarily large suboptimal
information; therefore, the choice of this parameter should be
made carefully according to problem landscape, or based on
several trials. In this connection, sensitivity analysis related
to ML parameter is performed in upcoming Sec. IV-A.1.
The process of updating long-term memory works as FIFO
queue (first-in-first-out). In this memory, ML best locations
found so far are stored. In FIFO, the queue is updated by
appending the new item and removing the last item. In case
of HHO, at every iteration t , the memory is updated by
appending the latest best location found so far and removing
the oldest. When the memory is updated, the swarm makes
next move based on any one item selected from long-term
memory. The selection is made with the help of probability,
and probability of selection pi for the ith item in memory is
calculated as in Eq. (8):

pi =
f (x irabbit )∑ML
j=1 f (x

j
rabbit )

(8)

where f (x irabbit ) or f (x jrabbit ) is the fitness value of ith or
jth item in long-term memory. Once probability of selection
is calculated for each item in long-termmemory, the selection
is performed using Roulette Wheel Selection method. Now
that an item from long-term memory is selected, it can be
used in all position update equations. Meaning that, instead of
single global best position xrabbit used in HHO, LMHHO uses
xkrabbit which is kth global best position in long-termmemory.
The index k is selected via Roulette Wheel Selection method.
This way, all the position update equations in LMHHO are
same as HHO except for replacing xrabbit with xkrabbit . The
process of updating long-term memory is depicted via Fig. 8.
As per discussion earlier in this section, LMHHO

brings simple yet effective modification in the origi-
nal algorithm. This ascertains that appropriate in-depth
analysis of metaheuristic algorithms may help produce
efficient results; instead of introducing new algorithms
every while, where dozens of others already exist. The
MATLAB code of LMHHO has beenmade publicly available
at https://www.mathworks.com/matlabcentral/fileexchange/
72847-long-term-memory-harris-hawk-optimization.

1) ALGORITHM COMPLEXITY
There are three fundamental components used to define com-
putational complexity of any metaheuristic algorithm: pop-
ulation size N , problem dimensions D, and the number of
iterations T . Moreover, the computational complexity of the
algorithm is expressed with help of three basic processes:
population initialization O(N ), objective function evaluation
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O(N ×T ), and population updateO(N ×T )+O(T ×N ×D).
Hence, HHO computational complexity can be defined as
Eq. (9):

O(HHO) = O(N )+ O(N×T )+O(N×T )+ O(T×N×D)

(9)

Note that LMHHO is modified with additional process of
updating long-term memory O(T × ML × D) and selection
of items from the memory O(T × ML) for position update
process, the algorithm complexity of LMHHO can be defined
as Eq. (10):

O(LMHHO) = O(N )+ O(N × T )+ O(N × T )

+O(T × N × D)+ O(T ×ML × D)

+O(T ×ML) (10)

2) EXPLORATION-EXPLOITATION MEASUREMENT
To better analyze search behavior of any optimization tech-
nique, it is essential to gauge exploration and exploitation,
as the two contradicting characteristics influence perfor-
mance. According to Hussain et al. [39], it is possible to
measure explorative and exploitative capabilities once diver-
sity in population is calculated. The research proposed
dimension-wise diversity measurement as an effective tech-
nique which is employed in this current study. The population
of N candidate solutions with D dimensional vectors can be
depicted as Eq. (11):

X = (x1, x2, . . . , xN ) =


x11 x12 . . . x1D
x21 x22 . . . x2D

...
...

. . .
...

xN1 xN2 . . . xND

 (11)

where X is population of candidate solutions with every
ith solution vector xi → R is a set of real numbers of
D dimensional vector representing control variables of opti-
mization problem in hand. When difference between dimen-
sions of candidate solutions in the population increases,
it means the algorithm is in exploration phase; otherwise, it is
in exploitation phase if the difference narrows. Fig. 9 better
illustrates the exploration and exploitation concept.

FIGURE 9. Candidate population representation for
exploration-exploitation.

Mathematically, to measure diversity in population,
Eq. (12) is used :

x̄ tj =

∑N
i=1 x

t
ij

N

Divtj =

∑N
i=1 ‖x̄

t
j − x

t
ij‖

N

Divt =

∑D
j=1Div

t
j

D
where t ∈ {1, 2, . . . , tmax} (12)

where x tij is jth dimension of ith candidate solution in pop-
ulation of N in iteration t , x̄ tj is average of dimension j,
Divtj represents diversity in jth dimension, andDivt is popula-
tion diversity during iteration t for total iterations tmax . Once
population diversity measured in Divt for all the iterations,
it is now feasible to measure exploration and exploitation
percentage ratios during search process, using Eq. (13):

Xpl t =
Divt

max(Div)
× 100

Xpt t =
‖Divt −maxDiv‖

max(Div)
× 100 (13)

where Xpl t and Xpt t are exploration and exploitation per-
centages, respectively, for iteration t , whereas max(Div)
is the maximum population diversity in whole search
process (tmax).
The MATLAB code for measuring population diver-

sity and exploration-exploitation for population-based
metaheuristic algorithms has been made publicly avail-
able at https://github.com/usitsoft/Exploration-Exploitation-
Measurement.

C. OPTIMAL POWER FLOW PROBLEM (OPF)
Similar to other optimization problems, OPF also represents
a problem where the best operating levels for power gener-
ation systems are achieved with the help of optimal set of
control parameters. It is a problem with complex non-linear
and non-convex search space [15], [20]. Mathematically,
an OPF is a minimization problem which can be formulated
as Eq. (14):

min f (x, u),

subject to gj(x, u) = 0, j ∈ [1, 2, . . . ,m]

hj(x, u) ≤ 0, j ∈ [1, 2, . . . , n] (14)

where f (x, u) is objective function with x and u as state and
control variables, respectively. The given objective function
should be achieved by satisfying certain equality and inequal-
ity constraints. In Eq. (14), gj(x, u) and hj(x, u) are equality
and inequality constrains representing, respectively, m power
flow equations and n transmission and security limits. The
state variable x is a vector defined as Eq. (15):

x = [PGslack ,VL1..VLN PQ,QG1..QGNG, Sl1..SN L] (15)

where PGslack is generator active power at slack bus,
VL denotes voltage magnitude of load buses, QG represents
generators reactive power, and S is the power of transmission
lines. The vector u is defined as Eq. (16):

u = [PG2..PGNG,VG1..VGNG,T1..TN T ,QC1..QCNC ] (16)
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where PG denotes active power output, VG generator node
voltage, T transformer tap ratio, and QC as active power
injection.

1) OBJECTIVE FUNCTIONS
To evaluate the proposed optimization method while solving
OPF problem, three major objective functions are minimized
in this study: basic fuel cost, emission, and power loss. The
objective functions are defined as following:

a: MINIMIZATION OF BASIC FUEL COST
In this objective function, total fuel cost of the generators is
calculated using Eq. (17):

fc =

( NG∑
i=1

aiP2Gi + biPGi + ci

)
+ Penalty

(
$
h

)
(17)

where ai, bi, and ci are defined as cost coefficients of the
ith generator in totalNG generators. The fuel cost is calculated
in the unit of dollar per hour.

b: MINIMIZATION OF EMISSION
In this objective functions, gases emission is minimized while
generating power, using Eq. (18):

fc =
(∑NG

i=1
αiP2Gi + βiPGi + γi + ηi exp(δPGi)

)
+Penalty

(
ton
h

)
(18)

where ai, βi, γi, and δi are defined as emission coefficients of
the ith generation unit in total NG thermal units.

c: MINIMIZATION OF POWER LOSS
This objective function refers to minimization of power loss
during power transmission in the network. Eq. (19) expresses
the function mathematically:

fp =
(∑NL

l=1
Gl,ij

[
V 2
i + V

2
j − 2ViVj cos(δi − δj)

])
+Penalty(MW ) (19)

where Gl,ij is conductance of l transmission line connecting
bus iwith j. Vi and Vj are voltage levels at bus i and j, whereas
δi and δj refer to voltage angles at bus i and j.

2) CONSTRAINTS
The objection functions mentioned earlier are subject to sat-
isfy certain constraints which are explained as following. The
Eq. (20) expresses equality constrains which are basically
power flow equations:

Pi − Vi
NB∑
j=1

Vj(Gij cos(δij)+ Bij sin(δij)) = 0

Qi − Vi
NB∑
j=1

Vj(Gij sin(δij)− Bij cos(δij)) = 0

i ∈ {1, 2, . . . ,NB} (20)

where NB is the number of buses in power generation system.
Pi and Qi are respectively active power and reactive power at
ith bus. δij is voltage angle between bus i and j. Gij and Bij
are respectively real and imaginary parts of bus admittance
matrix of i by j. The inequality constraints refer to limits
of voltage level at different buses, power output, and branch
flow. Eq. (21) shows these constraints:

Vmin
Li ≤ VLi ≤ Vmax

Li , i ∈ [1, 2, . . . ,NL]

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i ∈ [1, 2, . . . ,NG]

Sli ≤ Smax
li , i ∈ [1, 2, . . . ,NTL] (21)

The Eq. (22) defines space for the possible solutions for OPF
problem:

Pmin
Gi ≤ PGi ≤ Pmax

Gi , i ∈ [1, 2, . . . ,N ]

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i ∈ [1, 2, . . . ,NG]

Tmin
i ≤ Ti ≤ Tmax

i , i ∈ [1, 2, . . . ,NT ]

Qmin
Gi ≤ QCi ≤ Qmax

Ci , i ∈ [1, 2, . . . ,NC ] (22)

3) CONSTRAINTS HANDLING
In this study, the penalized objective function is used to
integrate the inequality of variables so that the variables can
be limited to avoid infeasible solutions. The penalty function
is expressed as in Eq. (23):

g(x, u) = f (x, u)+ Kp(PGslack − P
lim
Gslack )

2

+KV
NL∑
i=1

(VLi − V lim
Li )2 + KQ

NG∑
i=1

(QGi − Qlim
Gi )

2

+KS
NTL∑
i=1

(Sli − S limli )2 (23)

where KP, KV , KQ, and KS are penalty factors.

D. OPF IMPLEMENTATION USING LMHHO
The steps of application of LMHHO on OPF problem are
listed in Algorithm 1:

IV. EXPERIMENTAL STUDY
To investigate performance of the proposed LMHHO with
long-termmemory concept, this study employed two types of
problems: benchmark numerical optimization problems and
real-world application of solving OPF problem. The detail
of each experiment is given in the following subsections.
All the experiments were performed in the programming
tool MATLAB 2017b on computing environment with Intelr

CoreTM i5 (3.40 GHz) CPU with RAM 8GB, and operating
system Microsoft Windows 10. Because metaheuristic algo-
rithms are stochastic in nature and running them multiple
times may generate varying results, therefore an average
of multiple runs is considered for performance evaluation.
In this study, the metaheuristic algorithms used in this study
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Algorithm 1 OPF Implementation Using LMHHO
Initialization:
• Load system data; such as, coefficients for fuel cost
and emission, initial values of active power of genera-
tors, node voltages, transformer tap ratio, upper and
lower limits of constraints (Sli, PGi, VGi, VLi, QGi,
and Ti)

• LMHHO control parameters (population size N ,
long-term memory limit ML, initial rabbit energy E0,
maximum iterations tmax)

• Initialize hawks population with random positions in
search space

Convert multiobjective OPF into unconstrained problem
via Eq. (23)
Evaluate fitness of initial population via selected objective
function
Find ML best positions and assign long-term memory
[x1rabbit , x

1
rabbit , . . . , x

ML
rabbit ]

while t ≤ tmax do
Update escaping energy of each rabbit via Eq. (2)
Select item from long-term memory:

• Calculate probability of selection using Eq. (8)
• Use Roulette Wheel Selection method to select an

item from long-term memory
for each hawk xi do
if |E| ≥ 1 then

Update position x t+1i using Eq. (1)
else
if i ≤ 3 then
Update position x t+1i using Eq. (3)

end if
if r ≥ 0.5 and |E| < 0.5 then
Update position x t+1i using Eq. (6)

end if
if r < 0.5 and |E| ≥ 0.5 then
Update position x t+1i using Eq. (4)

end if
if r < 0.5 and |E| < 0.5 then
Update position x t+1i using Eq. (7)

end if
end if
Evaluate population fitness via selected objective
function {fc Eq. (17), fe Eq. (18), or fp Eq. (19)}

end for
Update iteration counter t = t + 1

end while
return best solution from long-term memory
min[x1rabbit , x

1
rabbit , . . . , x

ML
rabbit ]

were run 30 times on benchmark problems and 10 times
on OPF problems. For each of the two experimental cases,
Table 1 presents parameter settings for the used metaheuristic
algorithms.

TABLE 1. Parameter settings for selected algorithms.

A. EXPERIMENTAL STUDY 1: NUMERICAL
OPTIMIZATION PROBLEMS
1) CLASSIC BENCHMARK FUNCTIONS
The efficiency of the proposed LMHHO was evaluated on
ten commonly used benchmark functions that represent uni-
modal and multimodal optimization problems. The unimodal
functions are used to evaluated convergence ability as these
problems maintain several single global best location and no
local optimal regions. On the other hand, multimodal test
functions maintain several widespread local minima in the
landscape, with single global best location, these methods
are used to examine global searchability of the optimiza-
tion method. It is therefore, these two types of optimization
problems benchmark exploration and exploitation abilities of
the search strategies in a metaheuristic algorithm. Moreover,
most of these problems often represent real-life optimization
problems [38]. Considering the low as well as high dimen-
sional problems, this study employed the selected numerical
problems withD = 30 andD = 500 dimensions, to prove the
robustness of the proposed approach on highly non-convex
optimization hypercubes. Table 2 lists the employed numeri-
cal optimization problems.

Since LMHHO uses ML to determine the length of
long-term memory in the algorithm, hence selection of this
parameter is crucial to its performance. The extra-ordinary
memory length will store higher number of best solutions
found so-far, which may unnecessary divert the search agents
on undesirable regions – resulting ineffective search perfor-
mance. On the other hand, shorter memory length will store
less information about past experience, which may lead to
underperforming scenario. It is, therefore, important to deter-
mine the value of ML parameter sensibly, as it is sensitive to
LMHHO efficiency. The sensitivity analysis ofML parameter
was performed in this study. The results are given in Table 3.
The analysis was performed on 500-dimensional functions
listed in Table 2, for parameter value 5, 10, and 15. According
to statistics in Table 3, it can be suggested that the best
suitable value for ML parameter can be set to 10. The search
efficiency of LMHHOwas ineffective withML = 5, whereas
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TABLE 2. Benchmark test functions (U = Unimodal, M = Multimodal,
S = Separable, N = Non-separable, C = Continuous).

TABLE 3. Sensitivity analysis of memory limit parameter (ML) of LMHHO
on benchmark functions (D = 500).

it was similar withML = 10 andML = 15. Therefore, it can
be inferred that ML = 10 deems to be suitable value for
LMHHO algorithm. Despite sensitivity analysis performed in
this study, the value of ML parameter is still problem depen-
dent, thus should be chosen based on problem complexity.

For effective in-depth performance analysis, this study
measured diversity and exploitation-exploitation ratios while
solving these problems. Moreover, statistical results are also
presented for robust conclusions. For comparisons, apart
from LMHHO and HHO, other established and recently
introduced metaheuristic algorithms were also used in exper-
iments. The competitive algorithms include PSO [40],
bernstain-search differential evolution (BSDE) [54], artificial
bee colony (ABC) [41], firefly algorithm (FA) [42], ele-
phant herding optimization (EHO) [46], thermal exchange
optimization (TEO) [47], grasshopper optimization algorithm
(GOA) [48], and grey wolf optimization (GWO) [49].

Table 4 provides diversity and exploration-exploitation
measurement in HHO and LMHHO while solving numerical

TABLE 4. Diversity and exploration-exploitation measurement on
benchmark functions.

optimization problems with D = 30 and D = 500.
A graphical presentation of the population diversity and
exploration-exploitation phases is given in Figs. 10, 11, 12, 13,
14 and 15. Moreover, statistical results achieved by the
selected algorithms are presented in Tables 5 and 6 for
D = 30 and D = 500 problems, respectively. On the other
hand, convergence abilities of the investigated methods are
depicted in Fig. 16 for D = 30 and in Fig. 17 for D = 500
problems.

According to Table 4, the proposed modification in
LMHHO mostly reduced population diversity in the algo-
rithm. For example, on f1 LMHHO maintained population
diversity value 45.26 (D = 30) and 755.23 (D = 500)
which is relatively lesser than diversity values 45.88 (D =
30) and 790.90 (D = 500) in HHO. Similarly, diversity
measurement in LMHHO for functions f2, f3, f4, f5, f9, and f10
with D = 30 remained lower than original HHO. However,
LMHHO maintained diversity slightly higher than HHO on
f6, f7, and f8 with D = 30. In these functions, diversity
measurement for LMHHO was recorded as 45.72, 46.89,
and 46.05 compared to 42.91, 43.89, and 44.29 diversity
recorded for HHO. However, for functions f4, f6, f7, and
f9 with D = 500, increase in population diversity was
recorded for LMHHO. Moreover, Table 4 also reveals that
mostly LMHHO maintained exploration percentage lower
than exploitation on most of the functions with D = 30 and
D = 500. For instance, LMHHO maintained exploration
percentage as 27%, 29%, 28%, 22%, 21%, and 32% for
functions f1, f2, f4, f5, f6, and f10 with D = 30; and these
values are less than exploration measurements recorded for
HHO. Similarly, on D = 500, LMHHO maintained explo-
ration less than HHO. From Table 4, it can be observed that
mostly LMHHO maintained exploration around 20%− 30%
and exploitation around 70% − 80%. Likewise, in most of
the functions with D = 30 and D = 500, HHO also
maintained exploration lower than exploitation percentage,
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TABLE 5. Numerical optimization results on benchmark functions (D = 30).

TABLE 6. Numerical optimization results on benchmark functions (D = 500).

but it kept exploration percentage around 35% − 45% and
exploitation percentage around 55%− 65%. This discussion
can be further comprehended via Figs. 10 and 11 for diversity

measurement and Figs. 12, 13, 14 and 15 for exploration and
exploitation behaviors in original and the proposed modified
variant.
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FIGURE 10. Diversity measurement of HHO and LMHHO on benchmark
problems (D = 30).

According to statistical results of the selected algorithms
on numerical problems with D = 30 and D = 500 pro-
vided in Tables 5 and 6, the proposed LMHHO performed
efficiently on benchmark suit of f1 to f10. The results reveal
that LMHHO mostly achieved global optimum values on
8 functions (f1, f2, f4, f5, f6, f7, f8 and f10) with D = 30
and D = 500, considering 8.88E − 16 as zero in case
of Ackley function (f6). Comparing results of LMHHO and
HHO, it can be inferred that the proposed approach achieved
far better results than the original method. For instance,
LMHHO achieved 0.00E + 00 as compared to 3.61E − 100
generated by HHO for Sphere function f1 with D = 30.
On Schwefel’s 2.22 (f3) with D = 30, LMHHO produced
significantly better optimum value 9.43E − 242 compared to
1.08E − 52 by HHO. In case of D = 500 functions also,
LMHHO produced markedly promising results than original
HHO algorithm. As in case of Sphere (f1) and Zakharov (f10)
with D = 500, LMHHO achieved global optimum values
of 0.00E + 00 compared to HHO values 8.67E − 94 and

FIGURE 11. Diversity measurement of HHO and LMHHO on benchmark
problems (D = 500).

1.08E + 03 respectively for f1 and f10 functions. Besides
LMHHO, other algorithms which achieved relatively better
results were TEO and HHO. However, the least performers
in these experiments were PSO, ABC, and EHO.

For statistical validation of the results discussed earlier,
Wilcoxon rank sum test was carried out on these results. The
related p-values are reported in Tables 5 and 6 along with
symbols ‘‘+,=,−’’ which indicate significance of difference
between the results of LMHHO and the competitors’, with
5% significance level. The p-value less than 0.05 suggests
that the performance of LMHHO is significantly different
from the method being compared, whereas the superiority of
LMHHOover others is indicated by ‘‘+’’, inferiority by ‘‘−’’,
while performance with insignificant difference is denoted
by ‘‘=’’ symbol. The last row of the Tables 5 and 6 counts the
number of cases LMHHO beats, losses or equals the competi-
tor in terms of objective function values achieved. According
to these counts in Table 5 for 30 dimensional functions,
LMHHO results were significantly better than PSO and ABC
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FIGURE 12. Exploration-exploitation measurement of HHO on
benchmark problems (D = 30).

on 9 out of 10 functions, whereas it equalized these methods
on f5 function. LMHHO stood winner on all 10 functions
against BSDE, FA, GOA, and HHO. When compared with
TEO and HHO, LMHHO won on 7 and 6 functions, respec-
tively, though it equalized on 3 and 4 functions accordingly.

The statistical test results related to 500 dimensional func-
tions also suggest the superiority of LMHHO performance
over others. LMHHO remained significantly better algorithm
than PSO and ABC on 9 out of 10 functions, except for f5
where all three performed equally well. On the other hand,
when compared with BSDE, FA, EHO, GOA, and EHO,
the related p-values are less than 0.05 suggesting LMHHO as
winner on all 10 functions. There was only one method TEO
which outperformed LMHHO on only one function f3, and
remained equally better on f6 to f8, and performed inferior
to LMHHO on remaining 6 functions. HHO also underper-
formed than LMHHO on 7 functions and produced equally
well results than LMHHO on 3 functions. From the overall
impression drawn from Wilcoxon rank sum test on results

FIGURE 13. Exploration-exploitation measurement of HHO on
benchmark problems (D = 500).

related 30 and 500-dimensional functions, it can be suggested
that LMHHO mostly remained significantly better than the
counterparts on this test suit.

The computational cost is measured for LMHHO and
the competitors on the functions listed in Table 2 with
500 dimensions. The measurement in seconds is given
in Table 8. According to Table 8, the cost of LMHHO
remained relatively higher than original algorithm because
of additional processing of memory related tasks, as dis-
cussed in Sec. III-B.1. However, when compared with other
algorithms, there cannot be seen significant difference in
computational cost of LMHHO and others. In fact, LMHHO
remained relatively cheaper than FA, EHO, and GOA onmost
of the functions, yet it produced remarkably better results than
these algorithms.

When analyzing convergence ability of the proposed
LMHHO, Figs. 16 and 17 show that it found far bet-
ter optimum locations as compared to standard HHO
and other metaheuristic algorithms selected in this study.
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FIGURE 14. Exploration-exploitation measurement of LMHHO on
benchmark problems (D = 30).

Moreover, LMHHO converged significantly faster compared
to competitive approaches.

2) CEC’17 FUNCTIONS
For further validating efficiency of the proposed LMHHO on
complex funtions, CEC 2017 [53] problems with 100 dimen-
sions were used. The CEC’17 test suite comprises of com-
plex benchmark functions which can be categorized into
four types: f1 to f3 are unimodal, f4 to f10 are multimodal,
f11 to f20 are hybrid functions, whereas f21 to f30 are com-
position functions. The related experimental result are pre-
sented in Table 7, in terms of mean and standard deviation
of objective function values achieved over 30 independent
runs. Moreover, the two-sided Wilcoxon rank sum test with
95% significance level also verifies the significance of out-
come generated by LMHHOwhen comparedwith every other
method used in experiments. A p-value less than 0.05 accepts
alternative hypothesis and suggests that there is significant
difference between the two methods. To indicate LMHHO

FIGURE 15. Exploration-exploitation measurement of LMHHO on
benchmark problems (D = 500).

as superior than the other competitive algorithm, +’’ symbol
is used, whereas ‘‘-’’ is used to refer the competitive algo-
rithm as superior than LMHHO. The symbol ‘‘=’’ shows that
LMHHO generated approximately similar outcome or both
the approaches generated exactly same output.

According to results of CEC’17, LMHHO outperformed
rest of the algorithms on most of the functions. Generally,
the proposed approach achieved better results than others
on 20 out of 29 functions. LMHHO outperformed PSO,
BSDE, and TEO on all CEC’17 functions.While, it generated
inferior results than ABC on one function (f CEC1 ), FA on
three functions (f CEC6 , f CEC16 and f CEC24 ), GOA on two func-
tions (f CEC22 and f CEC25 ), GWO on one function (f CEC19 ), and
HHO on two functions (f CEC18 and f CEC27 ). On the other hand,
the proposed approach did not perform significantly different
than ABC on two functions (f CEC1 and f CEC16 ), FA on two
functions (f CEC6 and f CEC25 ), GOA on one function (f CEC25 ),
andHHOon three functions (f CEC16 , f CEC18 , and f CEC27 ). Overall,
it can be suggested from these experiments that the concept
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TABLE 7. Numerical optimization results on CEC’17 functions (D = 100).

of long-term memory in LMHHO enhanced searchability
of the algorithm, and managed to maintain exploration and
exploitation balance. Though, it needs more research on
further improvement in memory archiving and retrieving
strategies.

B. EXPERIMENTAL STUDY 2: POWER FLOW
OPTIMIZATION PROBLEM
The real-life application for evaluating LMHHO was imple-
mentation on OPF problem. Here, simulations were per-
formed on IEEE-30 bus system for achieving best objective
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TABLE 8. Computational cost of LMHHO and counterparts on benchmark functions (D = 500) in seconds.

FIGURE 16. Convergence of the selected algorithms on benchmark
problems (D = 30).

function values for minimizing fuel cost, emission, and power
loss. The system demands active load of 283.4 MW and
reactive load of 126.2 MVAr in the simulations. Table 9
presents all the parameters values of IEEE-30 test system,
whereas the data is obtained from [50]. The single line dia-
gram of IEEE-30 bus network is shown by Fig. 18. A greater
detail about the test environment can be found in [51], [52],

FIGURE 17. Convergence of the selected algorithms on benchmark
problems (D = 500).

however summary is given in Table 9. The coefficients of
fuel cost and emission for the test system are provided
in Table 10. The best values for control variables achieved by
the proposed LMHHO and other competitive algorithms are
presented in Table 11, comparison of end results are made
in Table 12. The competitive algorithms used in Table 11
are MGOA [19] and IMFO [33], whereas Table 12 contains
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FIGURE 18. IEEE-30 bus system diagram.

TABLE 9. IEEE-30 bus system data.

competitive methods including MGOA [19], GOA [48],
genetic algorithms (GA) [19], PSO [19], teaching-learning-
based optimization (TLBO) [19], improved moth-Řflame
optimization (IMFO) [33]. The convergence abilities of
the LMHHO and HHO on OPF problems are illustrated
via Fig. 19.

1) CASE 1: FUEL COST MINIMIZATION RESULTS
In this case, gas consumption or basic fuel cost of power
generation by the under consideration system was minimized
by the proposed optimization technique using objective func-
tion expressed via Eq. (17). According to the simulation
results in Table 11, the total fuel cost obtained by LMHHO
was 797.457 as compared to 800.474 and 800.385 dollar per
hour achieved byMGOA and IMFO algorithms, respectively.
Compared to other methods as well, Table 12 affirms that
LMHHO achieved best results in this experiment. The search
efficiency of LMHHO on this problem can be evident from
the convergence graph presented in Fig. 19, as it shows that
the proposed approach not only converged faster than the
original counterpart but also found better global optimum
location.

2) CASE 2: EMISSION MINIMIZATION RESULTS
Along with lowering power generation costs, the release
of emissions can be minimized with the help of efficient
plant configurations. This particular experimental case, using
objective function defined in Eq. (18), deals with lower-
ing emission dispatch into the environment. According to
results presented in Table 11, LMHHO optimized param-
eters of IEEE-30 bus system so efficiently that it pro-
duced 0.20278 ton emissions per hour. Compared to original
HHO, GOA, GA, PSO, TLBO, and IMFO, the proposed
approach achieved the lowest objective function value; how-
ever, the MGOA results were relatively better than LMHHO
(Table 12). The convergence of LMHHO was faster than
HHO, as depicted in Fig. 19.

3) CASE 3: POWER LOSS MINIMIZATION RESULTS
In this particular case, the proposed LMHHO minimized
power loss through transmission lines, using objective func-
tion defined in Eq. (19). LMHHO achieved power loss value
3.00853 MW which is better than original HHO and IMFO
according to Table 11, however MGOA achieved slightly
better value than LMHHO. On the other hand, in compar-
ison with GA, PSO, TLBO, and IMFO which generated
values inMW respectively as 3.3141, 3.1342, 3.1079, 3.1202,
and 3.0905, LMHHO achieved the lowest power loss value
(Table 12). Fig. 19 depicts convergence characteristics of
original HHO and LMHHO methods, which shows that the
proposed modification improved convergence ability.

V. DISCUSSION AND ANALYSIS
According to the results provided in previous section, it can be
affirmed that the proposed modification in LMHHO helped
achieve significantly better global optimum output. On both
the benchmark numerical problems as well as OPF problems,
LMHHO showed considerable improvement. LMHHO not
only outperformed existing HHO algorithm but also various
other metaheuristic techniques which are inclusive of pop-
ular and recently introduced approaches. Tables 5, 6, and 7
suggest that LMHHO produced remarkably efficient results.
This is consistent on OPF problems as well, where LMHHO
minimized constrained optimization objectives better than
original method, as well as, other those selected from recent
literature; like MGOA, TLBO, and IMFO (Table 12).
The discussion earlier can be supported from exploration

and exploitation and diversity graphs for in-depth analysis.
Fig. 10 for D = 30 functions shows a general trend in HHO
that it lost its diversity towards the end of iterations. HHO
started search with high diversity and gradually lowering it
then suddenly during 250 to 400 iterations, HHO diversity
spiked. After significant spike in diversity, HHO dropped
its diversity noticeably, which infers that HHO converged
relatively premature. On the other hand, Fig 10 reveals that
population diversity in LMHHO mostly remained same as
in HHO until 250 iterations, later continued with reasonably
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TABLE 10. Coefficients for IEEE-30 bus system.

TABLE 11. OPF solutions obtained for IEEE-30 bus system.

TABLE 12. OPF solutions comparison.

FIGURE 19. Convergence of HHO and LMHHO on OPF problem (Cases 1-3).

higher or at-least maintained it same towards the end of search
process. However, yet it maintained overall diversity lower
thanHHO (Table 4). This is consistent with diversity behavior

of HHO and LMHHO on high dimensional problems
(D = 500) as well, as depicted via Fig. 11. Overall, the diver-
sity graphs suggest that LMHHO never lost variance in
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FIGURE 20. Exploration-exploitation behavior of HHO and LMHHO on
classic benchmark functions.

population individuals and kept searching for better optimal
locations even in the later part of iterations. Hence, the pro-
posed long-term memory concept supplied LMHHO with
ample options of optimal locations where further search could
be made.

This discussion can be further validated from exploration-
exploitation graphs presented in Figs. 12, 13, 14 and 15 for
both low and high-dimensional problems. Generally, from the
graphs, it is obvious that HHO started with high exploration
and low exploitation; and later after middle of the search
process, it turned into exploitative algorithm but sudden spike
in diversity made HHO highly explorative search behavior.
However, this did not maintain longer and HHO lost explo-
ration ability to converge in sub-optimal locations, as com-
pared to LMHHO. Contrarily, from exploration-exploitation
graphs for low and high-dimensional problems, it shows
that despite starting search with high exploration and low
exploitation, LMHHO maintained exploration up to certain
level and exploitation relatively lower than in HHO, after
halfway towards the end of iterations. This confirms that
maintaining exploration ability up to certain level towards
the end of search process helps avoid ending up in losing
even better optimal results. Fig. 20 provides summary of
explorative and exploitative behaviors HHO and LMHHO on
ten classic benchmark functions for D = 30 and D = 500.
Based on evidence of improvement in search behavior

from the in-depth behavioral analysis presented in this study,
following important theoretical characteristics can be sup-
ported from practical results provided in the form of diversity
measurement and exploration-exploitation analysis:

• HHO is an efficient search strategy, however it loses
population diversity towards the end of search process,
which hurts its ability of finding even better optimal
locations.

• HHO maintains dynamic search behavior, as it regains
exploration ability during search process, but suddenly
keeps on losing population diversity in later part of
iterations.

• The long-term memory concept proposed in LMHHO
provides ample options for population individuals to
keep on searching for promising regions for even better
optimal results.

• The proposed LMHHO also resembles HHO search
behavior in initial search iterations, however opposite to
HHO, it maintains explorative ability up to a reasonable
level to avail possibility of improving search results.

• The proposed long-term memory concept is general
and can be implemented in various other population-
based metaheuristic algorithms, for improved search
efficiency.

VI. CONCLUSION
This study proposed long-term memory concept in HHO
algorithm, to present modified variant in the form of
LMHHO. The proposed LMHHO improved search efficiency
by applying multiple global best locations in position update
strategy. Instead of relying on single global best location,
LMHHO keeps a record of multiple best experiences dur-
ing search, which it utilizes to maintain population diversity
even towards the end of iterations. The empirical analy-
ses suggest that LMHHO did not lose exploration ability
throughout iterations, and maintained it up to certain level.
Despite, low diversity as compared to HHO, LMHHO main-
tained trade-off balance between exploration and exploita-
tion throughout towards the end of search process. While
investigated on numerical optimization problems with low
and high-dimensional landscapes, LMHHO proved its search
efficiency by achieving better search results as compared to
the original and various other established and recently intro-
duced counterparts. LMHHO achieved global optimum value
on eight out of ten 30 and 500-dimensional classic benchmark
problems. These problems included both unimodal and mul-
timodal functions. Moreover, LMHHO also generated supe-
rior results than the competitive methods on more than 68%
of 100-dimensional CEC’17 functions. However, the com-
plex functions of CEC’17 demand further improvement in
LMMHO, which extends opportunity for further research on
developing more efficient methods for long-term memory
related operations in LMHHO. Further evident from imple-
mentation on real-life optimization problem in the form of
optimal power flow in power generation systems, LMHHO
outperformed HHO and different other metaheuristic tech-
niques from literature applied in the same problem. In OPF
problem, LMHHO was employed on minimizing fuel cost,
emission, and power loss when simulated on IEEE-30 bus
system as test environment. Overall, the empirical study
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using both the categories of optimization problems affirmed
that efficiency, stability, and applicability of the proposed
approach.

Generally, from this study, it is learnt that when applying
appropriate tools for in-depth performance analysis, a signif-
icant comprehension can be achieved on search behaviors of
metaheuristic algorithms. As discussed in this paper, in the
presence of numerous metaheuristic methods, with various
different metaphors, the introduction of yet another algorithm
may reinvent the wheel. Therefore, better analytical tech-
niques, such as proposed in this study, are needed to make
simple but effective modification in existing methods for
improved search results. Additionally, there are also several
potential research directions that can be drawn from this
study. For example; (a) implementation of LMHHO on even
higher dimensional problems with complex search space;
(b) integration of the proposed long-termmemorymechanism
on various other metaheuristic algorithms; and (c) more item
selection mechanisms, other than Roulette Wheel approach
used for memory item selection in this paper, can be evaluated
for developing robust search strategies.
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