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Abstract: Terms such as exploitation, exploration, intensification and 
diversification are routinely employed in the metaheuristic literature to explain 
empirical runtime performance. Six prevalent views on exploitation and 
exploration are identified in the literature, each expressing a different aspect of 
these notions. The consistency and meaningfulness of these views are 
substantiated by their deducibility from the proposed novel definitions of 
exploitation and exploration, based on the hypothetical construct of a probable 
fitness landscape. This unifies, and thereby clarifies, the terminology and 
understanding of metaheuristics. 
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1 Introduction 

Metaheuristic algorithms are extremely effective optimisation techniques, which have 
been applied in a number of fields (Kelly and Osman, 1996; Osman and Laporte, 1996; 
Griffis et al., 2012). Typically a metaheuristic approximately optimises a problem by 
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iteratively improving candidate solutions (Luong et al., 2013), which converge to a (near) 
optimal value. 

Although they are practically proficient, metaheuristics are notoriously hard to 
analyse. Papadimitriou and Steiglitz (1982) affirmed this claim as follows: “Although 
very little has been rigorously established about the performance of such algorithms, they 
often seem to do remarkably well on certain problems”. Due to the stochastic nature of 
metaheuristics (Blum and Roli, 2003; Yang, 2011), it is difficult to put practically useful 
theoretical bounds on performance runtime; hence they are often studied empirically 
instead of theoretically. Empirical simulations of problem instances may be used to 
demonstrate the performance of algorithms in particular problem classes (Jagerskupper, 
2003). For example, recently a new empirical methodology has been used to show that 
certain metaheuristics have superior performance in the problem class of binary  
real-world problems (García-Martinez et al., 2012). Although empirical results indicate 
expected runtime performance, they do not guarantee performance nor do they yield 
explicit explanations for performance. As Cohen (1995) puts it [according to Watson 
(2010)]: “It is good to demonstrate performance, but it is even better to explain 
performance”. 

To complement empirical analysis, qualitative descriptions may be used to explain 
the performance of an algorithm. The most common terminology used in these 
explanations includes: exploitation, exploration, intensification and diversification. These 
terms are used extensively in the literature, appearing in the vast majority of articles in 
the leading journals on metaheuristics (see Section 2). Hence, these terms are of great 
importance in the field of metaheuristics. 

However, there are no universally agreed upon definitions for these terms (Eiben and 
Schippers, 1998; Naudts and Schippers, 1999). Specific definitions may be given in each 
context of use, but these must be shown to be meaningful and consistent with the rest of 
the literature in order to be generally effective. If the terminology is meaningless or 
inconsistently applied then it loses its communicative power and thereby undermines its 
use in research publications. 

In this paper we identify six prevalent views of exploitation and exploration in the 
literature and argue that they are meaningful and reasonably consistent. This is a direct 
consequence of them being derivable from novel definitions of exploitation and 
exploration proposed in this paper. In turn, these definitions are based on a hypothetical 
construct, the probable fitness landscape (PFL), which is also presented. A limitation is 
that the definitions only apply when the PFL is applicable, that is for continuous fitness 
functions. 

The paper is structured as follows: In Section 2 the current use of the terms 
exploitation, exploration, intensification and diversification is reviewed. The PFL is 
introduced in Section 3 and is used to formally define the notions of exploitation  
and exploration, from which the prevalent views on exploitation and exploration  
are deduced, in Section 4. Finally, the paper concludes with some ideas for future work in 
Section 5. 

2 Literature review 

In ‘Review of metaheuristics and generalised evolutionary walk algorithm’, Yang (2011, 
p.3) states that “the main components of any metaheuristic algorithms are: intensification 
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and diversification, or exploitation and exploration”. These terms are certainly 
extensively used in the literature. The Journal of Heuristics, IEEE Transactions on 
Evolutionary Computation and Evolutionary Computation, three of the leading journals 
in the field of metaheuristics, respectively referred to these terms (and their derivatives) 
in 81%, 91% and 71% of papers during the period 2011 – 2012 (see the Appendix for 
details). The frequency of use of the terms varies. In all of the journals, exploration and 
diversification are used more frequently than exploitation and intensification, with the 
IEEE Transactions on Evolutionary Computation mentioning diversification in more than 
eight times the number of papers than for intensification. 

Although the terms are ubiquitously employed, they do not have universally accepted 
definitions. Eiben and Schippers (1998) reviewed how exploration and exploitation are 
used in the literature on evolutionary algorithms (EAs). They remark that “most authors 
leave their definitions implicit and use the intuitive meaning of the concepts to explain 
the working of EAs” and “that there is no general consensus on these matters; several 
authors represent contradicting views”. 

However, they do acknowledge a few prevalent views, namely that “selection is 
commonly seen as the source of exploitation, while exploration is attributed to the 
operators mutation and recombination”, “exploitation is the usage of information” and 
“that exploration and exploitation are opposite forces” which must be balanced.  
A sample of more recent papers confirms the continued expression of the first (Hansheng 
and Lishan, 1999; Ursem, 2002; Bosman and Thierens, 2003; Chen et al., 2009; Al-Naqi 
et al., 2010), second (Yen et al., 2001; Liu et al., 2007; Chen et al., 2009; Yang, 2011; 
Xiao et al., 2012) and third views (Hansheng and Lishan, 1999; Alba and Dorronsoro, 
2005; Ortiz-Boyer et al., 2005; Tasoulis et al., 2005; Chen et al., 2009; Alam et al., 2010; 
Al-Naqi et al., 2010; Linhares and Yanasse, 2010). Other prevalent views in the 
literature, not identified by Eiben and Schippers, include: “a latent viewpoint [which] 
interprets exploration and exploitation as global search and local search, respectively” 
(Chen et al., 2009; Yuen and Chow, 2009; Khan and Sahai, 2012; Yang, 2012), that 
exploitation is short-term whereas exploration is long-term (Chen et al., 2011a, 2011b; 
Couceiro et al., 2012), and that exploitation and exploration correspond to intensification 
and diversification, respectively (Hansheng and Lishan, 1999; Blum and Roli, 2003; 
Nakamichi and Arita, 2004; Alba and Dorronsoro, 2005; Linhares and Yanasse, 2010; 
Ollion and Doncieux, 2011). In summary, the prevalent views propound that exploitation 
and exploration are, respectively: 

1 local and global search 

2 selection and reproduction operators 

3 information utilisation and information acquisition 

4 short-term and long-term strategies 

5 intensification and diversification 

6 opposite forces which must be balanced. 

These are by no means the only views on the terminology. Many of the alternative views 
are less elucidatory, such as the circular: 
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“Exploitation is the property of the algorithm to thoroughly explore a specific 
region of the search space, looking for any improvement in the best currently 
available solutions). Exploration is the property to explore wide portions of the 
search space, looking for promising regions, where exploitation procedures 
should be employed.” (Mendes and Linhares, 2004) 

Another example of an uninstructive definition is, “Exploitation is defined ... as the 
ability of an algorithm to step into the direction of desired improvement” (Beyer, 1998). 
Stepping in the desired direction of improvement is the objective of most algorithms and 
is not specific to exploitation. Although there is some truth to these views, they provide 
little value without further context or content. 

A recent study (Črepinšek et al., 2013) confirms the lack of progress made in 
understanding the terminology. If anything, as the research community has grown, the 
situation has become worse as the number of views has increased with little effort being 
spent on separating the wheat from the chaff. Extracting the prevalent views from the 
literature and determining which are meaningful and consistent with each other is 
essential to clarifying the terminology. Without this the research community will remain 
unable to communicate its ideas effectively. 

Demonstrating that each of the prevalent views on exploitation and exploration 
follow from fundamental definitions of these terms will unify, and thereby clarify, the 
terminology. The notion of a PFL is introduced in the following section, which is used as 
a basis for such definitions. In Section 4 it is demonstrated how each of the prevalent 
views may be deduced from the PFL. 

3 The PFL 

The notion of the PFL was inspired by that of a fan chart. Fan charts have been used 
since 1997 by the Bank of England (1998) to describe its best prevision of future inflation 
graphically. The observed past data on inflation is connected by a simple line chart which 
diverges for future time values to represent a range of possible outcomes, with more 
probable outcomes having a darker shade of colour. An example of a fan chart is 
provided in Figure 1. 

The outcome for all future time values is uncertain. Although for each time value 
there exists an outcome that could be calculated in the future, it is not currently known 
and may therefore be considered as random. This randomness is not complete, but 
defined by a probability distribution that depends on the information of the past 
observational data and known properties of inflation. Hence, for each future point in time 
there is a probability distribution of outcomes, as displayed in the fan chart. 

This same notion may be applied to metaheuristics. Consider a continuous fitness 
function f : S  R, where S ⊂ Rn is the search space of the optimisation problem. It is 

assumed, without loss of generality, that maximising the fitness function is the objective 
of the optimisation problem. The fitness landscape (FL) is the surface in S × R defined 

by the fitness function (s, f (s)), where s ∈ S. 
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Figure 1 Fan chart of inflation in Britain 

 

Notes: Observed past data are connected by a simple line chart until a certain time 
(1996), after which possible outcomes are projected. The dark band of future 
outcomes indicates the expected outcome, whereas less probable outcomes are 
displayed in lighter shades. 

Source: Bank of England (1998) 

At any stage during the execution of a metaheuristic the current population (possibly 
consisting of a single candidate solution) is known, which is equivalent to past 
observational data. The known properties of the fitness function are analogous to the 
known properties of inflation. Together these may be used to construct the PFL, which 
graphically represents the fitness probability distribution of every point in the search 
space. In the PFL every coordinate in S × R is assigned a value according to a grey 

colour scheme. The darker a coordinate is, the larger the probability that it is in the FL. 
If a candidate solution sp is in the current population, then its fitness f(sp) is known 

with certainty. It is represented in the PFL by a black dot at (sp, f(sp)) with white for all 
coordinates in {sp} × R\f(sp). 

The fitness of all points not in the current population is uncertain. Although for each 
point there exists a fitness value that can be calculated, it is not currently known and may 
therefore be considered as random. This randomness is not complete, but defined by a 
fitness probability distribution that depends on the information of the current population 
and known properties of the fitness function. Hence, for each point in the search space 
there is a fitness probability distribution, as illustrated in the PFL. 

If a point is not in the current population, then the fitness probability distribution 
cannot be determined with certainty, since this would require knowing the point’s fitness 
value, which is uncertain. This reduces the PFL to a hypothetical construct that cannot be 
calculated with certainty. However, the PFL does have two governing principles. Firstly, 
sp is of higher than average fitness, since it has survived selection. Therefore, the 
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expected fitness decreases away from sp. Secondly, the further away a point in S is to sp 
the larger the range of its possible fitness values, due to the (Lipschitz) continuity of the 
fitness function. The increase in range of possible fitness values according to the 
definition of Lipschitz continuity may be seen in Figure 2 [reproduced from ‘Lipschitz 
continuity’, (n.d.)]. Thus the variance of the fitness probability distribution increases 
away from sp. 

Figure 2 A Lipschitz continuous function f has the defining property that there exists a constant 
K ≥ 0 such that |f(x1) – f(x2)| ≤ K||x1 – x2|| for all x1, x2 

 

Note: This may be represented as a double cone (shown in white) whose vertex can be 
translated along the search space, so that the fitness function (shown in black) 
always remains entirely outside the cone. 

Figure 3 illustrates an example of the PFL for a population containing a single candidate 
solution. A single black dot is located at (sp, f(sp)), indicating that the point is definitely in 
the FL, whereas there is a fitness probability distribution for all other points in the search 
space. It is clear from the figure that the expected fitness decreases, whereas the variance 
of the fitness probability distributions increases, away from the candidate solution. 

Figure 3 The PFL of a single candidate solution sp 
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The notion of a PFL may be naturally extended to populations with multiple candidate 
solutions, as shown in Figure 4. It is evident that the FL agrees with the PFL at points in 
the current population, that is they both have single black dots corresponding to the 
fitness values of the points in the current population. For points not in the current 
population the PFL provides a good approximation of the FL, with darker points in the 
PFL having a higher probability of coinciding with the FL. 

Figure 4 The PFL of multiple candidate solutions 

 

Note: A possible FL is shown as a solid line, whereas the PFL is a grey distribution. 

A more accurate PFL can be constructed if more properties about the particular fitness 
function are known. In fact, the same current population may produce different PFLs, 
depending on the known properties of the fitness function. For example, a PFL associated 
with a rough fitness function will exhibit fitness probability distributions with more 
variance than that associated with a smooth fitness function. If a metaheuristic has 
memory structures, such as a tabu search, then many features of the fitness function may 
be known and the fitness probability distributions might be very accurate. In fact, if the 
fitness values of points in previous populations have been recorded, then the fitness 
values of some points not in the current population are known with certainty and are 
represented by black dots in the PFL. 

Even though the PFL cannot be constructed with certainty, there are techniques  
for approximating the FL, known as meta-models (also called surrogate models or  
fitness approximations) (Emmerich et al., 2002; Jin, 2005; Torczon and Trosset, 1998). 
Meta-models are typically used to estimate fitness values (equivalent to determining the 
expected fitness) of new candidate solutions if the computation of the actual fitness 
values is extremely time-consuming. This is done by interpolating the fitness values of all 
previously generated candidate solutions. One of the most popular meta-models is 
Kriging (Klein, 2009), for which the error estimation of the approximation (similar to the 
variance of the fitness probability distribution) may also be determined. 

Although meta-models are very similar to the PFL, there are two differences. Firstly, 
the PFL only depends on the information of the current population and known properties 
of the fitness function, whereas meta-models usually use the information from all 
previously generated candidate solutions. Secondly, and more significantly, meta-models 
typically do not take into account the first principle of the PFL (that a candidate solution 
in the current population is of higher than average fitness). Thus, meta-models are not 
applicable when the current population only has one candidate solution and there is no 
record of the fitness values of previous points, as is the case for simulated annealing, 
since there are not enough points to interpolate. The PFL, on the other hand, is generally  
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applicable. In the case of simulated annealing, the PFL would look similar to Figure 3, 
with the expected fitness away from the current candidate solution decreasing more 
sharply as the search progresses (due to the increase in the expected difference between 
the fitness of the current candidate solution and the average). 

The PFL, unlike the FL, represents what is actually known at any stage during the 
execution of a metaheuristic. This makes the PFL a useful notion. Arguably the PFL is, 
and has always been, the fundamental concept that researchers have used implicitly to 
devise new metaheuristics and decide which metaheuristics to implement. The advantage 
of formalising this notion, with its two general principles, is that it may be used to deduce 
the consequences of the concept formally – specifically to define relevant terminologies. 
These may aid in intuiting, describing and explaining the performance of metaheuristics. 

4 Unification of prevalent views 

At each iteration during the execution of a metaheuristic, new candidate solutions must 
be generated. From the PFL definitions of exploitation and exploration can be made as 
follows: 

• exploit: to generate candidate solutions at points of high expected fitness 

• explore: to generate candidate solutions at points of high variance. 

These novel definitions come directly from the notions of expected fitness and variance 
in the PFL and therefore share the same limitations as the PFL. Since the PFL cannot be 
explicitly calculated, it is impossible to determine the exact expected fitness of a point. 
Hence it is impossible to determine the degree of exploitation in generating a candidate 
solution at that point. However, it can be used to compare two points. If a point is closer 
to a candidate solution, then it has a higher expected fitness and generating a candidate 
solution at that point is more exploitative. Likewise, the closer point has lower variance 
and generating a candidate solution at that point is less explorative. 

The prevalent views on exploitation and exploration can be deduced from the above 
definitions of exploitation and exploration. If the views stem from the same definitions, 
then they are necessarily consistent and simply represent different insights into the same 
phenomenon. 

4.1 Local and global search 

Local and global search are not themselves well defined terms. It is understood that local 
search refers to a search that is only able to reach a local maximum, whereas a global 
search may find any maximum. They may be thought of as hill climbing and pure random 
search (also known as uniform search), respectively. The ability to generate a candidate 
solution at any point in the search space, including the global maximum, is the key 
characteristic of a global search. By contrast, a local search is unable to generate points 
outside of the neighbourhood of a local maximum. Hence the essential characteristic of 
local search is that it only generates close to a candidate solution, whereas global search 
may generate far from a candidate solution. 
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Exploitation generates new candidate solutions at points of high expected fitness. 
These points are close to candidate solutions and therefore correspond to a local search. 
Meanwhile exploration generates at points of high variance, which are far away from 
current candidate solutions, corresponding to a global search. 

4.2 Selection and reproduction operators 

Exploitation and exploration have been used to refer to operators of an algorithm. An 
example are the following definitions (Bosnian and Thierens, 2003): 

“Exploitation indicates the parts of an EA that are concerned with the selection 
of a set of parent solutions from the current population and the construction of a 
new population given the current population, the selected set of parent solutions 
and the set of offspring solutions. This definition of exploitation thus includes 
traditional selection, but also all replacement schemes such as crowding.” 

“Exploration indicates the part of an EA that is concerned with the generation 
of new offspring solutions from a given set of parent solutions...” 

These definitions agree with the prevalent view that “selection is ... the source of 
exploitation, while exploration is attributed to the operators mutation and recombination”. 

To see how this view follows from the above definitions, the principles of the PFL are 
appealed to. Without selection the first governing principle of the PFL, namely that a 
candidate solution in the current population is of higher than average fitness, would fail. 
Hence exploitation, which generates at points of high expected fitness, would be 
impossible. Thus selection is the source of exploitation. Exploration, which generates at 
points of high variance, is possible without selection. This is because the second 
governing principle of the PFL, namely that the further away a point in S is to sp the 
larger the range of its possible fitness values, would still hold true. Hence operators 
which explore, i.e., generate candidate solutions at points of high variance, would still be 
possible, and so exploration is attributed to the operators mutation and recombination. 

4.3 Information utilisation and information acquisition 

According to Chen et al. (2009), “in learning algorithms, exploration and exploitation 
correspond to the acquisition and utilization of knowledge, respectively”. Two 
propositions are bound together in this claim. The first is that exploitation, as opposed to 
exploration, utilises knowledge and the second is that exploration, opposed as to 
exploitation, acquires knowledge. Both statements are true in part, but not exclusively so. 

The expected fitness of a point depends on both the distance from and the fitness 
values of the candidate solutions in the current generation, whereas the variance just 
depends on the distance. Hence, exploitation (which depends on expected fitness) utilises 
more information than exploration (which, in turn, depends on the variance). Both do 
utilise information, just more so for exploitation as opposed to exploration. 

Whenever a candidate solution is generated at a point and its fitness is evaluated, 
information is acquired about the fitness function. Both exploitation and exploration 
involve generating candidate solutions; therefore both acquire information. The 
difference is that exploitation can only generate in a local neighbourhood, whereas 
exploration can generate anywhere in the search space (see Section 4.1). Hence 
exploration can gather more information, or at least a greater range of information, than 
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exploitation can. Again, both do acquire information, just more so for exploration than 
for exploitation. 

4.4 Short-term and long-term strategies 

The issue of short-term and long-term strategies is connected to that of information 
utilisation and information acquisition. The utilisation of information is of short-term 
benefit, while the acquisition of knowledge is advantageous in the long-term. Hence, 
exploitation, which utilises information, is a short-term strategy; whereas exploration, 
which acquires knowledge, is a long-term strategy. 

A consequence of this is that exploration should be favoured toward the beginning of 
a search, when there are many iterations left to benefit from a long-term strategy. On the 
other hand, exploitation should be prioritised at the end of a search, since at that stage a 
short-term strategy will be more fruitful. 

4.5 Intensification and diversification 

The terms intensification and diversification are often used interchangeably with 
exploitation and exploration, respectively (Nakamichi and Arita, 2004; Alba and 
Dorronsoro, 2005). However, they have subtly different meanings, as noted by Blum and 
Roli (2003, p.271), 

“The term diversification generally refers to the exploration of the search space, 
whereas the term intensification refers to the exploitation of the accumulated 
search experience. These terms [(diversification and intensification)] stem from 
the Tabu Search field and it is important to clarify that the terms exploration 
and exploitation are sometimes used instead, for example in the Evolutionary 
Computation field, with a more restricted meaning.” 

The main difference is that exploitation and exploration refer to points in the search 
space, whereas intensity and diversity refer to the distribution of candidate solutions in 
the search space. This distinction is evident in Figure 5. On the left there is a plot of the 
initial population with possible future generations displayed in the centre, by crosses, and 
on the right, by plus symbols. The cross population exhibits almost no exploration yet 
maintains a diverse population, while the plus population is highly explorative, but results 
in an intense distribution. 

Figure 5 Example populations in a two-dimensional search space exhibiting diversity without 
exploration, and intensity with exploration 

 

The examples in Figure 5 are atypical. Exploration generates far away from candidate 
solutions which tends to create a diverse population, whereas exploitation generates close 
to candidate solutions, generally resulting in an intense population. Hence the terms 
diversification and intensification, meaning the process of making diverse and the process 
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of making intense, respectively, are sometimes used interchangeably with exploration and 
exploitation. 

These notions may be extended beyond the current population to the set of all 
candidate solutions that have been generated throughout the search. This makes the terms 
applicable to metaheuristics, such as tabu search, that have populations consisting of only 
one candidate solution, yet store multiple previously generated candidate solutions in 
memory structures. The terminology has evolved to reflect the different meanings, with 
intensification and diversification traditionally referring to the set of all candidate 
solutions, whereas exploitation and exploration refer to the current population. Blum and 
Roli (2003, p.271) confirm this usage by stating that “exploitation and exploration often 
refer to rather short-term strategies tied to randomness, whereas intensification and 
diversification also refer to medium- and long-term strategies based on the usage of 
memory”. 

4.6 Opposite forces which must be balanced 

All of the above prevalent views have contrasted exploitation and exploration as opposite 
forces. This ultimately stems from the PFL where the expected fitness decreases away 
from candidate solutions, whereas the variance of the probability distributions increase. 
Hence exploitation and exploration have opposing tendencies, to generate close to and far 
from candidate solutions, respectively. 

However, exploitation and exploration are not direct opposites. There may be points 
of high expected fitness and high variance (a moderate distance away from a candidate 
solution with an extremely high fitness value), or low expected fitness and low variance 
(close to a candidate solution with a very low fitness value). 

The reason for balancing exploitation and exploration is evident from considering 
their extreme forms. Extreme exploitation is simple hill climbing, unable to escape the 
region of a local maximum, while extreme exploration is pure random search, incapable 
of iterative improvement. Neither of these extremes are ideal and instead a combination is 
required for a successful search. 

Since exploitation and exploration are opposite forces, both of them can be controlled 
by the same operator. For instance, even though in Section 4.2 selection is argued to be 
the source of exploitation, it may also be used to maintain or enhance exploration via 
niching, preselection or fitness sharing (Mahfoud, 1992, 1996). Likewise, some 
reproduction operators, such as crossover, may affect exploitation. 

5 Conclusions 

A literature review has been conducted determining that metaheuristics research relies 
heavily on the terms exploitation, exploration, intensification and diversification to 
explain the empirical runtime performance of algorithms. It emerged from the review that 
the terms exploration and diversification are used more often than exploitation and 
intensification. Considering that a metaheuristic requires a balance between exploration 
and exploitation (as well as between diversification and intensification) it is striking that 
the use of the terminology is not more balanced. This may point to a systematic bias 
toward exploration, resulting in under-performing algorithms. 
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Six prevalent views on exploitation and exploration were identified in the literature, 
each expressing a different aspect of these notions. These views were unified by 
demonstrating that they are deducible from the novel definitions of exploitation and 
exploration, based on the PFL, proposed in this paper. However, it must be noted that 
some of the views did not agree exactly with the novel definitions, even though they did 
share the same sentiment. This demonstrates that the views are meaningful and 
reasonably consistent, and therefore may be expressed effectively in research. It also 
connects all of the views through their equivalence with exploration and exploitation, 
which reveals unintuitive correlations, such as between information usage and 
intensification (via exploitation), or between reproduction operators and long-term 
strategies (via exploration). 

In order to assess (and potentially control) the balance between exploitation and 
exploration, they must be measured. Although some methods of measurement have been 
proposed in the literature (Liu et al., 2012; Črepinšek et al., 2013), how to do this is still 
an open question. Črepinšek et al. (2013, p.8) remark that, 

“Intrinsic to this problem is that we need to know how these two phases 
[(exploitation and exploration)] are identified. If in each process both phases 
can be clearly identified, then some direct measures can be invented. Currently, 
indirect measures for exploration and exploitation are mostly used”. 

This paper goes some of the way to identifying the characteristics of exploitation and 
exploration. As the PFL is a hypothetical construct that cannot be calculated with 
certainty, it cannot be used as a direct measure of exploitation and exploration (this 
possibly reflects the fact that exploitation and exploration intrinsically cannot be 
measured directly). However, the characteristics identified in the prevalent views may 
serve as ‘indirect measures’. For example, diversity may be used in combination with a 
distance metric as a measure (Liu et al., 2012; Črepinšek et al., 2013). The 1/5-th success 
rule (Beyer and Schwefel, 2002) may be interpreted as a measure of whether the search is 
local or global, which is used to control the balance between exploitation and exploration. 
There may also be other characteristics which have yet to emerge in the literature  
that could be used. Which characteristics make for the best measure is likely to be 
problem-dependent and is a topic of future research. 

The formalised notion of the PFL is in itself a useful contribution. It may be the case 
that many researchers already think about metaheuristics using a similar notion to the 
PFL. However, formalising the notion clarifies it and aids in understanding how 
metaheuristics work. Since the only requirement for the PFL is continuity, which is 
arguably common to all metaheuristics whatever the distance measure (García-Martinez 
et al., 2012, p.2129), it should be generally applicable. Future work may include formally 
extending the PFL to discrete problems. 

The argument can be made that the ideas presented in this paper are of no practical 
use. Although it may be true that they are not of any direct practical use, they may still 
have a practical impact. Achieving a greater understanding of metaheuristics and 
clarifying the terminology facilitates deeper research with better communication to the 
research community. As argued by Goldberg (2002), graphical representations, such as 
the PFL, may be the appropriate type of model to progress an area of research. 
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Appendix 

This Appendix details the terminology count of the Journal of Heuristics, IEEE 
Transactions on Evolutionary Computation and Evolutionary Computation for the years 
2011 to 2012. The total number of articles in which a term is used (in an appropriate 
context) over all of the journal articles considered is shown in Table 1. The final column 
‘Any’ refers to the number of papers for which any of the terms are used. Below there are 
sections detailing the count for each journal. 

 
 
 
 
 



   

 

   

   
 

   

   

 

   

    A unification of the prevalent views on exploitation 309    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 Total terminology count 

Journal Paper # Exploit- Explor- Intens- Divers- Any 

Journal of Heuristics 64 19 40 18 38 52 
IEEE Tr. on Ev. Comp. 100 55 67 8 68 91 
Evolutionary Comp. 45 22 23 5 22 32 

Total 209 96 130 31 128 175 
Percentage - 46% 62% 15% 61% 84% 

Journal of Heuristics 

The terminology count of the Journal of Heuristics is shown in Table 2. If a term is used 
at least once in an appropriate context in an article, then there is a ‘1’ in the 
corresponding cell of the table (if not, then there is a ‘0’). 
Table 2 Terminology count for the Journal of Heuristics 

Paper # Exploit- Explor- Intens- Divers- Any 

1 0 0 0 0 0 
2 0 0 0 0 0 
3 1 1 0 0 1 
4 0 0 0 0 0 
5 1 1 0 0 1 
6 0 1 1 1 1 
7 1 1 1 1 1 
8 0 1 0 1 1 
9 1 1 0 1 1 
10 0 1 0 1 1 
11 0 1 0 1 1 
12 1 1 0 1 1 
13 0 0 0 1 1 
14 0 0 0 0 0 
15 1 0 1 1 1 
16 0 0 0 0 0 
17 0 1 0 0 1 
18 0 0 0 0 0 
19 0 0 0 0 0 
20 0 1 1 1 1 
21 0 0 0 0 0 
22 0 0 0 0 0 
23 1 1 1 1 1 
24 0 1 0 0 1 
25 0 0 0 1 1 
26 0 0 0 1 1 
27 1 0 1 1 1 
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Table 2 Terminology count for the Journal of Heuristics (continued) 

Paper # Exploit- Explor- Intens- Divers- Any 

28 0 1 0 1 1 
29 0 1 0 1 1 
30 1 1 0 1 1 
31 1 1 0 1 1 
32 0 1 1 1 1 
33 0 1 1 1 1 
34 0 1 1 0 1 
35 0 1 1 1 1 
36 0 1 1 1 1 
37 0 0 0 0 0 
38 0 1 0 0 1 
39 1 1 0 1 1 
40 0 1 0 0 1 
41 1 1 1 1 1 
42 1 1 1 1 1 
43 0 0 0 0 0 
44 0 1 0 0 1 
45 0 0 0 1 1 
46 0 1 0 0 1 
47 0 1 0 1 1 
48 0 0 0 1 1 
49 0 1 1 1 1 
50 1 1 0 0 1 
51 0 1 0 1 1 
52 0 0 0 1 1 
53 0 0 0 1 1 
54 1 1 0 0 1 
55 1 1 0 0 1 
56 1 1 0 1 1 
57 0 0 0 1 1 
58 1 1 0 1 1 
59 0 0 0 1 1 
60 0 0 0 0 0 
61 0 1 1 1 1 
62 0 0 1 1 1 
63 1 1 1 0 1 
64 0 1 1 0 1 
Sum 19 40 18 38 52 
Percentage 30% 63% 28% 59% 81% 
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IEEE Transactions on Evolutionary Computation 

The terminology count of the IEEE Transactions on Evolutionary Computation is shown 
in Table 3. If a term is used at least once in an appropriate context in an article, then there 
is a ‘1’ in the corresponding cell of the table (if not, then there is a ‘0’). 
Table 3 Terminology count for the IEEE Transactions on Evolutionary Computation 

Paper # Exploit- Explor- Intens- Divers- Any 

1 1 1 1 1 1 
2 1 1 0 1 1 
3 1 1 0 1 1 
4 1 1 0 1 1 
5 1 1 0 1 1 
6 1 1 0 0 1 
7 0 0 0 1 1 
8 0 0 0 0 0 
9 1 1 0 1 1 
10 1 1 0 1 1 
11 1 0 0 0 1 
12 1 0 0 1 1 
13 0 1 0 1 1 
14 1 0 0 1 1 
15 0 1 1 1 1 
16 1 1 0 1 1 
17 0 1 0 0 1 
18 1 1 0 0 1 
19 0 1 0 0 1 
20 1 1 0 1 1 
21 0 0 0 0 0 
22 0 1 0 1 1 
23 0 1 0 0 1 
24 0 0 0 1 1 
25 1 1 0 1 1 
26 0 1 0 1 1 
27 1 1 0 1 1 
28 1 1 0 1 1 
29 0 0 0 1 1 
30 1 0 0 1 1 
31 0 0 0 0 0 
32 0 0 0 1 1 
33 1 0 0 1 1 
34 0 1 0 1 1 
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Table 3 Terminology count for the IEEE Transactions on Evolutionary Computation 
(continued) 

Paper # Exploit- Explor- Intens- Divers- Any 

35 1 1 1 1 1 
36 1 1 1 1 1 
37 0 0 0 0 0 
38 0 0 0 0 0 
39 1 1 0 1 1 
40 1 1 1 1 1 
41 1 1 0 0 1 
42 1 1 0 1 1 
43 0 1 0 0 1 
44 0 0 0 1 1 
45 1 1 1 1 1 
46 1 0 0 1 1 
47 0 0 0 1 1 
48 0 0 0 0 0 
49 0 0 0 1 1 
50 0 0 0 1 1 
51 0 1 0 0 1 
52 0 0 0 0 0 
53 0 0 0 1 1 
54 1 0 0 0 1 
55 1 1 0 1 1 
56 1 1 0 1 1 
57 1 0 0 1 1 
58 1 1 0 1 1 
59 1 1 0 1 1 
60 1 1 0 0 1 
61 1 1 0 1 1 
62 1 1 0 1 1 
63 0 1 0 1 1 
64 1 1 0 1 1 
65 0 1 0 0 1 
66 0 1 1 1 1 
67 0 0 0 0 0 
68 1 1 1 1 1 
69 1 0 0 0 1 
70 0 0 0 1 1 
71 1 1 0 1 1 
72 0 1 0 1 1 
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Table 3 Terminology count for the IEEE Transactions on Evolutionary Computation 
(continued) 

Paper # Exploit- Explor- Intens- Divers- Any 

73 0 0 0 1 1 
74 1 0 0 1 1 
75 0 1 0 1 1 
76 0 1 0 0 1 
77 0 1 0 0 1 
78 1 1 0 0 1 
79 1 1 0 1 1 
80 1 1 0 1 1 
81 0 1 0 0 1 
82 1 1 0 1 1 
83 1 0 0 1 1 
84 0 0 0 1 1 
85 1 1 0 1 1 
86 1 1 0 1 1 
87 1 1 0 1 1 
88 0 0 0 1 1 
89 0 1 0 0 1 
90 1 1 0 0 1 
91 0 1 0 0 1 
92 1 1 0 1 1 
93 0 0 0 0 0 
94 1 1 0 1 1 
95 0 1 0 1 1 
96 0 1 0 1 1 
97 1 1 0 0 1 
98 0 1 0 0 1 
99 1 1 0 1 1 
100 1 1 0 0 1 

Sum 55 67 8 68 91 
Percentage 55% 67% 8% 68% 91% 

Evolutionary Computation 

The terminology count of the Evolutionary Computation is shown in Table 4. If a term is 
used at least once in an appropriate context in an article, then there is a ‘1’ in the 
corresponding cell of the table (if not, then there is a ‘0’). 
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Table 4 Terminology count for Evolutionary Computation 

Paper # Exploit- Explor- Intens- Divers- Any 

1 0 0 0 0 0 
2 1 1 0 0 1 
3 0 0 0 1 1 
4 1 0 0 0 0 
5 0 0 0 1 1 
6 1 1 0 1 1 
7 0 0 0 0 0 
8 0 1 0 0 1 
9 1 1 0 1 1 
10 1 1 0 1 1 
11 0 0 0 0 0 
12 0 0 0 0 0 
13 0 0 0 0 0 
14 1 0 0 1 1 
15 1 1 0 1 1 
16 0 0 1 1 1 
17 0 0 0 0 0 
18 1 1 0 1 1 
19 0 1 1 1 1 
20 0 0 0 0 0 
21 1 0 0 1 1 
22 1 1 0 0 1 
23 0 0 0 0 0 
24 0 0 0 1 1 
25 0 1 0 1 1 
26 0 0 0 0 0 
27 1 1 0 1 1 
28 1 1 0 1 1 
29 1 0 1 1 1 
30 1 1 0 0 1 
31 0 0 0 0 0 
32 1 1 1 1 1 
33 0 1 0 0 1 
34 1 0 0 0 1 
35 0 1 0 0 1 
36 1 1 0 1 1 
37 0 0 0 0 0 
38 0 0 0 1 1 
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Table 4 Terminology count for Evolutionary Computation (continued) 

Paper # Exploit- Explor- Intens- Divers- Any 

39 1 1 0 0 1 
40 1 1 1 1 1 
41 0 1 0 1 1 
42 1 1 0 0 1 
43 1 1 0 1 1 
44 1 1 0 0 1 
45 0 0 0 0 0 

Sum 22 23 5 22 32 
Percentage 49% 51% 11% 49% 71% 

References from the Journal of Heuristics 
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