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Abstract Hybrid heuristic methods have lately been pointed out as an efficient
approach to combinatorial optimization problems. The main reason behind this is
that, by combining components from different metaheuristics, it is possible to explore
solutions (which would be unreachable without hybridization) in the search space.
In particular, evolutionary algorithms may get trapped into local optimum solutions
due to the insufficient diversity of the solutions influencing the search process. This
paper presents a hybridization of the recently proposed metaheuristic—intelligent-
guided adaptive search (IGAS)—with the well-known path-relinking algorithm to
solve large scale instances of the maximum covering location problem. Moreover, it
proposes a slight change in IGAS that was tested through computational experiments
and has shown improvement in its computational cost. Computational experiments
also attested that the hybridized IGAS outperforms the results found in the literature.

Keywords Intelligent-guided adaptive search · Path-relinking · Maximum covering
location problem · Large scale

1 Introduction

The maximal covering location problem (MCLP) aims at identifying the best sites
to locate p facilities to cover customers’ demands as much as possible. Moreover,
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each facility has a coverage ratio r establishing whether a given facility can meet the
customer demand. A set of facilities M = {1, . . . ,m} and customers N = {1, . . . , n}
compose each instance of the problem as points in a cartesian coordinate. A facility
can address the demand ki of a customer i within its coverage ratio as long as it is
open (one of the p chosen sites). The distance between a facility j and a customer i
is here defined as di j . Let Ys = {Y 1

s ,Y 2
s . . . ,Y p

s } be a set of variables that indicates
which facilities are chosen in the solution s. MCLP can be formulated as follows:

max f (s) =
∑

i∈N
ki min{1, |{ j : j ∈ Ys, di j ≤ r}|} (1)

subject to

|Ys | = p (2)

Church and ReVelle (1974) first introduced MCLP that Garey and Johnson (1979)
have later proved to be N P-hard.

Several studies in the literature rely on solving benchmarkMCLP instances (Galvão
and ReVelle 1996; Galvão et al. 2000; Karasakal and Karasakal 2004; ReVelle et al.
2008; Jia et al. 2007; Resende 1998). However, only few studies handle large-scale
applications properlywhich are, nowadays, the primary focus of study in data analysis.
For example, locating facilities (central points) with million of points in communica-
tion networks is highly relevant. In particular, recent versions of commercial packages,
such as CPLEX (2014), can solve instances with up to 2000 nodes in reasonable time.
However, large-scale applications remain a challenge in MCLP.

Máximo et al. (2017) have recently introduced a metaheuristic named intelligent-
guided adaptive search (IGAS), which solved MCLP problem instances with up to
7730 nodes. The authors compared the results achieved by IGAS with those found in
the literature and with CPLEX limited to 20,000s. It was verified that the proposed
solutionmethod was very efficient in solving large-scaleMCLP instances outperform-
ing the other methods.

IGAS is a recent heuristic and thus has not been widely explored yet. There are
indications that its performance may be improved by hybridizing it with an intensifi-
cation heuristic. Similarly to the largely studied greedy randomized search procedures
metaheuristic (Feo and Resende 1989), this type of hybridization may speed up the
convergence to a good quality solution, as suggested in Máximo et al. (2017). Like-
wise, hybridizations of GRASP (Feo and Resende 1989) with path-relinking (Glover
1996) are common in the literature, to develop a memory mechanism to GRASP that
is iteration-independent.

Different from GRASP, IGAS has a memory mechanism in its original form. This
is due to the influence of a topological neural network known as growing neural gas
(GNG) (Fritzke 1995). As a consequence, if hybridized with IGAS, path-relinking
would play the roles of intensification and diversification by combining features of
the elite set of solutions.

The primary contribution of this paper is the enhancement in quality of the best
MCLP solutions for large-scale instances, achieved by hybridizing IGAS with path-
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relinking. This paper also presents a detailed performance analysis to attest the
efficiencyof IGASwith path-relinking.Computational experiments indicate that IGAS
with path-relinking outperformed IGAS showing outstanding results. Another contri-
bution of this study is the refinement of solutions constructed by IGAS.

The remainder of this paper is organized as follows. Section 2 sets forth IGAS
with path-relinking, named IGASPR, to solve the MCLP. Section 3 details the compu-
tational experiments carried out. To sum up, Sect. 4 provides insights into the main
contributions of this paper and suggests future work directions.

2 IGAS with path-relinking (IGASPR)

IGASwasfirst proposed as an attempt to address the gap betweenmemory and iteration
independency in the widely studied GRASP metaheuristic (Resende and Werneck
2006). GRASP is a two-phase and multi-iterative algorithm. The first phase, known
as construction phase, is incremental and semi-greedy, producing a feasible solution
at the end. The second phase is an improvement step, to which each solution found in
the first phase is submitted.

Máximo et al. (2017) have shown a comprehensive comparison between IGAS
and GRASP demonstrating that IGAS clearly excells GRASP in performance when it
comes to solving MCLP large-scale instances. The main difference between GRASP
and IGAS is that the latter has a learning step that enables the storage of information
fromprevious iterations. This happens bymeans of an unsupervised learning algorithm
called growing neural gas (Fritzke 1995). GNG influences the construction phase,
informing the features of the best solutions up to that iteration.

This paper presents an IGAS-path-relinking hybrid, referred to here as IGASPR.
Through this solution method, path-relinking works in every iteration of the IGAS
search process. Consequently, each IGASPR iteration may be divided into four parts:
construction phase, local search phase, learning process and path-relinking search. All
parts are repeated until a stop criterion is reached. The flowchart in Fig. 1 illustrates
the proposed method.

In the beginning of an iteration, the solution construction algorithm incrementally
searches for a feasible solution using accumulated information from the neural net-
work. This means that there is no or low effect from the GNG network (learning) in
the first iterations. After this, the solution is refined in the local search phase (in case
it is not a local optimum already). The average solution value f̄ is then updated, since
it consists in the mean solution values obtained in the local search phase. Value f ∗ is
the best solution found so far. Parameter b̄ = f̄ + η( f ∗ − f̄ ) aims at restricting the
solutions to be presented to the GNG network. Value b̄ varies in the interval [ f̄ , f ∗],
as parameter η ∈ [0, 1]. Set E stores the best solutions found in previous iterations,
the elite solutions.

2.1 Updating structure

Before describing each phase of IGASPR, this section discusses the impact of adding
and/or removing a facility j on the objective function of a given solution, i.e., the sum
of the demands that facility j exclusively meets in the solution.
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Fig. 1 IGAS with path-relinking (IGASPR)

Let set C j = {i ∈ N | di j ≤ r} represent all clients within the coverage ratio of
facility j . The impact of facility j on solution s can be calculated as presented in
Eq. (3).

� j =
∑

i∈C j

ki (1 − min{1, |{l ∈ Ys\{ j} | dil ≤ r}|}) (3)

2.2 Construction phase

Algorithm1displays a pseudocode of the IGASPRconstruction phase. It can be roughly
divided into two phases. The first phase consists in inserting �ωp� facilities following
a semi-greedy criterion guided by information contained in the GNG network. The
second phase refers to the insertion of p − �ωp� facilities at random in the partial
solution.

The GNG network is an undirected graph. Then, let G = (V, E) be such network.
A neuron v ∈ V (G), picked at random, guides the semi-greedy process. More specifi-
cally, every neuron has an associated vector of atributteswv ∈ [0, 1]m . The element at
each position l of wv ,wv

l , represents the weight of facility l in that neuron. On the one
hand, if wv

l ≈ 1, then it was verified that neuron v was mostly influenced by solutions
that contained facility l. On the other hand, if wv

l ≈ 0, l did not belong to the majority
of the solutions that trained node v.

The construction phase is a semi-greedy strategy that builds a solution by preferably
choosing the elements that provide the largest priorities to the partial solution according
to node v. Obviously, in the beginning of the routine the partial solution is empty. In
line with this, the procedure iteratively updates the list of possible facilities to enter
the partial solution, referred to as CL. In this list, the facilities are sorted in decreasing
order ofwv . A restricted list of candidates (RCL) storing the best candidates (facilities)
from CL contains the first ϕ elements of CL.
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Data: α, ϕ, ω, G
Result: Feasible solution s

1 Ys = ∅
2 Randomly choose a v ∈ V (G)

3 CL ← M
4 Sort CL in decreasing order of wv

l
5 for j ← 1 to �ωp� do
6 RCL = {l ∈ CL : position of l in CL ≤ ϕ}
7 Randomly choose l ∈ RCL and make Ys ← Ys ∪ {l}
8 CL ← M\Ys
9 end

10 Randomly add p − �ωp� facilities to s.
Algorithm 1: IGASPR Construction Phase

The procedure then randomly selects some facilities, without any influence from
the GNG network to ensure diversity in the process of finding solutions. Parameter
ω ∈ [0, 1] controls this diversification, as it is the percentage of facilities chosen by
the influence of a node from the GNG network.

This construction phase differs from that proposed in Máximo et al. (2017) by line
10. In that case, IGAS selected the p − �ωp� facilities using another semi-greedy
strategy. Accordingly, the remaining facilities j (candidates to be in solution s) were
sorted in a list CL according to their aggregated values, � j . Then, after randomly
choosing one of the best α|CL| facilities, the aggregated costs were updated (in case
the solution was not complete) and the process was repeated until it provided a feasible
solution. This slight change in IGAS substantially simplified the construction phase
and diminished its CPU-time. It is enough to observe that, in line 10, Algorithm 1
does not employ any sorting algorithm, different from the version of IGAS found in
the literature.

Algorithm 1 returns a feasible solution and its complexity is O(m log m). This
phase has an asymptotic complexity of O(pmn) in the version found in the literature,
demonstrating an advantage of the strategy presented here.

2.3 Local search phase

Local search (LS) consists of an intensification heuristic to identify local optimal
solutions. Considering a neighborhood of solution s,N (s), Definition 1 states a local
optimum.

Definition 1 In a maximization problem, a local optimum solution is a solution s in
which, for every s′ ∈ N (s), f (s′) ≤ f (s).

The probing process of LS, therefore, depends on the investigated neighborhood.
Moreover, the systematics behind LS involves replacing a given solution s′ by the
best solution within its neighborhood (best improvement strategy), or by a solution
better evaluated than s′ (first improvement strategy). Then, by iteratively searching
for a better solution, a local optimum is returned at some point (in case it exists).
Otherwise, the problem has no local optimum and, consequently, no global optimum.

IGAS employs a 1-neighborhood LS method that has the following definition.
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Definition 2 The 1-neighborhood of a solution s,N 1(s), includes all solutions s′ that
for a distance metric D, D(s′, s) ≤ 1.

The distance metric between a pair of solutions s and s′ here employed is the
cardinality of the symmetric difference between sets Ys and Ys′ divided by 2. Therefore
D(s, s′) = |Ys�Ys′ |/2.

In line with this, given a solution s, the used LS will identify better valued solutions
in the N 1 here defined by simply changing a facility l ∈ Ys for another facility
j ∈ M\Ys , such as � j > �l . This process is repeated until it is no longer possible
to find a j and l that satisfy this criterion. It is worth mentioning that this method is
similar to that used in Resende (1998). Algorithm 2 displays the first improvement LS
method employed in the introduced metaheuristic.

Data: s
Result: s∗

1 s∗ ← s
2 repeat
3 Find the first pair ( j, l) such that j ∈ M\Ys∗ and l ∈ Ys∗ such that � j > �l
4 Ys∗ ← Ys∗\{l} ∪ { j}
5 until ( j, l) is ∅;

Algorithm 2: Local Search.

The asymptotic complexity of LS is O(pmn).

2.4 Learning phase

Machine learning algorithms based on topological mappings, such as self-organizing
maps (Kohonen 1982) and GNG (Fritzke 1995), have been widely employed in
solving unsupervised problems. The primary goal of these techniques is to extract
meaningful subsampling of high dimensional feature spaces. In particular, GNG is a
self-organizing network that uses unsupervised competitive learning to perform such
task.

GNG is the result of a combination between competitive Hebbian learning (CHL)
and growing cell structures (GCS). On the one hand, to define CHL, Martinetz (1993)
introduced the concept of creating an edge between the two winning neurons of a
given input. On the other hand, to define GCS, Fritzke (1994) determined a dynamic
mechanism for creating neurons. Then, Fritzke (1995) introduced the GNG network,
based on the so-called neural gas (NG) network (Martinetz and Schulten 1991), which
starts with all neurons pre-defined. At the beginning, the GNG network is empty and
so the neurons pop up in an iterative manner in the learning process.

Therefore, GNG is a dynamic neural network that self-adapts to the set of inputs.
This characteristic for IGAS is highly relevant because the solutions are presented to
the network as they are found along during the search process. During this process
and guided by the inputs, the GNG network topology is formed and updated, thus
intensifying the identification of regions with best solutions. The neural network is
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able to disregard irrelevant regions and migrate to those where the solutions are more
promising.

It is worth mentioning that the GNG learning has a low computational cost and
consequently does not degrade the performance of the solution method. This is one of
the reasons for choosing the GNG network in IGAS. Moreover, its topology restricts
disseminating unnecessary information through the network.

A graphG = (V, E) represents the GNG network, where V (G) is its set of vertices
and E(G) its set of edges. δ(v) indicates the neighborhood of a vertex v ∈ V (G).
Each neuron v ∈ V (G) has an m-dimensional vector of weights wv that maps its set
of features as well as its accumulated error, a scalar θv . An edge {u, v} ∈ E(G) is
aged A{u,v} and this attribute is used to update the network in the learning process.

G starts with a single neuron v, and the values for wv
j , ∀ j ∈ M , are chosen at

random within the interval [0, 1] and its accumulated error initiates with a null value.
The learning process consists in updating the network with the information con-

tained in the input data Ys . To perform this update, one must find the two closest
neurons to the input data. This is a criterion from the competitive learning. Function
ρ [Eq. (4)] calculates the proximity of data input Ys and a neuron v.

ρ(s, v) =
∑

j∈Ys

(
1 − wv

j

)2 +
∑

j∈M\Ys

(
wv

j

)2
(4)

The closest neuron to input Ys is here called v1 and the second nearest neuron
v2. After identifying these neurons, if edge {v1, v2} does not belong to E(G) and v2
exists, the algorithm adds an edge {v1, v2} to the set E(G) assigning null to its age,
i.e., A{v1,v2} = 0. In case {v1, v2} already exists, its age restarts, i.e., it receives a null
value. This edge indicates that there exists an input in this part of the graph. Then, the
algorithm moves neuron v1 and its neighborhood toward the input data. The variation
on v1 must be greater than on its neighborhood. For this reason, the update rates of the
winner neuron and its neighborhood are represented by εb and εn , respectively. The
update is indicated in Eqs. (5)–(8):

w
v1
j = εb

(
1 − w

v1
j

)
∀ j ∈ Ys (5)

w
v1
j = εb − w

v1
j ∀ j ∈ M\Ys (6)

wv′
j = εn

(
1 − wv′

j

)
∀v′ ∈ δ(v1),∀ j ∈ Ys (7)

wv′
j = εn − wv′

j ∀v′ ∈ δ(v1),∀ j ∈ M\Ys (8)

The primary feature of the GNG network is its growth over time. To implement this
behavior, first it is necessary to find the appropriate place to insert a new neuron in the
network. This place is where the algorithm introduced a significant amount of data
and where the region is represented by a low number of neurons. The GNG network
keeps track of such regions by accumulating, in each neuron, the sum of the distances
between the input data for which the neuron was the winner—the accumulated error.
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θv1 = θv1 + ρ(s, v1) (9)

According to the GNG learning, old errors must not stand out in relation to new
ones. For this reason, in every iteration, the algorithm diminishes the errors of the
nodes by a factor β. Equation (10) shows how this update works.

θv = βθv ∀v ∈ V (G) (10)

In order for the network to have a dynamic behavior, it is necessary to disregard
the regions where no data have been presented for a number of iterations. The GNG
network has an aging process on the edges. It works by incrementing the age of the
edges incident to the winner neuron v1 by one, as indicated in Eq. (11).

A{v1,v′} = A{v1,v′} + 1, ∀ v′ ∈ δ(v1) (11)

In this way, the learning algorithm removes all edges with ages exceeding a thresh-
old, set to amax . This step plays the role of the migration process. The process may
result in disconnected neurons, if the neurons are exclusively incident to the removed
edges. In this case, the algorithm also removes the corresponding neurons.

During the learning process, the insertion of new neurons and edges occurs peri-
odically. However, the number of nodes in the network cannot exceed the imposed
limit of maxG . At each λ iterations, as long as it is possible, the growing phase adds
a new neuron v̂ in the network. The ideal position for inserting v̂ is between neurons
ve = argmaxv∈V (G) θv and v′

e = argmaxv′∈δ(ve) θv′
. Then, the procedure removes

edge {ve, v′
e} and inserts edges {v̂, ve} and {v̂, v′

e}. Weight wv̂ receives the average
value of wve and wv′

e . The learning proceeds by reducing the accumulated errors of
ve and v′

e by half to assign this reduction to θ v̂ . When the GNG network has only one
neuron, ve, the updates are slightly different. A new neuron v̂ is added to the network
as well as an edge {v̂, ve}. Both weights and accumulated error of the new neuron v̂

receive the same values as those of ve. Then, both θ v̂ and θve are reduced by half.
Algorithm 3 shows the detailed process of inserting new elements in the network.
The detailed process of inserting new elements in the network occurs as shown in

Algorithm 4.
The asymptotic complexity of the learning strategy is O(m).

2.5 Path-relinking

Themetaheuristic path-relinking (PR) is an intensification strategy proposed in Glover
(1996) to further investigate good quality solutions hybridized with a tabu search
(Glover 1998, 1999).

PR consists in defining paths between a pair of solutions (initial solution and guid-
ing solution) with the purpose of finding intermediate high-quality solutions. This
metaheuristic works by iteratively adding attributes from the guiding solution to the
path solution, which starts as a copy of the initial solution, until they coincide.
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Data: β, εb , εn , s, count, λ, amax,maxG ,G
Result: Updated G

1 if |V (G)| > 1 then
2 Find the two closest neurons to s, v1 and v2
3 Add edge {v1, v2} with age zero
4 Update the weights of the neighborhood of v1: Eqs. (7) and (8)
5 Increase the age of the incident edges of v1 by one
6 end
7 else
8 Assign the single vertex from V (G) to v1
9 end

10 Update the data input error of v1: Eq. (9)
11 Update the weight of v1: Eqs. (5) and (6)
12 Increase count by one
13 if |V (G)| > 2 then
14 Remove the disconnected neurons
15 end
16 if count mod λ = 0 and |V (G)| < maxG then
17 G ←Neuron insertion (G)
18 end
19 Update the error of all neurons: Eq. (10)

Algorithm 3: GNG presentation

Data: G
Result: Updated G

1 if |V (G)| > 1 then
2 Find the neuron with the largest error, ve
3 Find the neighbor of ve with the largest error, v′

e
4 Add a new neuron v̂ between ve and v′

e
5 Add edges {v̂, ve} and {v̂, v′

e}, both with null age, and remove edge {ve, v′
e}

6 Initiate the error of v̂ with the average error of ve and v′
e and diminish the errors of ve and v′

e by
half

7 end
8 else
9 Let ve ∈ V (G)

10 Add a new neuron v̂ to G with θ v̂ = θve and wve = wv̂

11 Add the edge {v̂, ve} to G
12 Diminish the errors of ve and v̂ by half
13 end

Algorithm 4: Neuron insertion

In PR, to better address the steps of the path, it is necessary to define a distance
metric between solutions. Then, the distance between the path solution and the guiding
solution iteratively decreases until it is null. The distancemetric enables one to estimate
the number of iterations needed to accomplish the path.

The literature regarding solution methods based on the PR is vast (Resende and
Ribeiro 2005).

2.5.1 Proposed PR

Let E be the set of elite solutions, which stores the best overall solutions. Let D be the
previously defined distancemetric, i.e., half the cardinality of the symmetric difference
between a pair of sets.
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Fig. 2 A PR example

The proposed PR takes a 1-neighborhood at each step to define the path solutions.
The neighborhood is restricted to the set of facilities that belong to the symmetric
difference and that decreases the distance between the path and the guiding solutions.
Figure 2 illustrates a PR between two solutions with 6 facilities.

Considering j ∈ {1, . . . , 6}, the i t-th vector in Fig. 2 indicates the path solution
at the i t-th step of the path. The positions colored in orange are the facilities that do
not belong to the initial solution added to the corresponding path solution. The most
recently swapped facilities in the path are indicated by a two-point arrow.

Algorithm 5 presents the PR procedure. It is possible to note that the elite solution,
set E , and a solution s are relevant input data for constructing the paths.

Data: E , s∗, s, β, εb , εn , count, λ, amax,maxG ,G
Result: The best solution s∗

1 Select a solution sE ∈ E according to the probability distribution indicated in Eq. (12)
2 Randomly select between s and sE and assign it to sguide
3 Assign the solution not chosen to be sguide in line 2 to spath
4 while Ysguide �= Yspath do
5 ( j, l) ← argmax j∈Ypath\Ysguide , l∈Ysguide \Yspath (�l − � j )

6 Yspath ← Yspath\{ j} ∪ {l}
7 if f (s∗) < f (spath) then
8 s∗ ← spath
9 s∗ ← Local Search(s∗)

10 Update E with s∗
11 G ← GNG presentation(β, εb , εn , s

∗, count, λ, amax,maxG ,G)
12 end
13 end

Algorithm 5: PR algorithm.

Algorithm5 aims at reconnecting paths between the current solution s and a solution
sE ∈ E . First, sE is chosen considering a probability distribution that favours the best
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quality solutions:

P (sE ) = e − psE(
e2 − e

)
/2

(12)

where e = |E | and psE is the position of sE in E , and where E is sorted in decreasing
order of objective function values. This formula prioritizes the best solutions with the
highest objective functions.

After choosing sE , the algorithm randomly selects between s and sE which will
be the initial and the guiding solutions, as presented in Pessoa et al. (2013). Then,
as part of PR, it chooses a facility that belongs to the symmetric difference between
the path solution and the guiding solution and that pertains to the initial solution. The
algorithm picks the facility that incurs in the best objective function value to the path
solution, even though it may worsen the quality of the current solution. If the path
solution is better than the best overall solution, it applies a local search to the path
solution and updates it as the best overall solution. If the best overall solution has just
been updated, it is presented to the GNG network and the algorithm replaces the worst
solution in the elite set E with the new best overall solution. The complexity of this
algorithm is O(pmn).

A PR closely related to the one proposed here can be found in Resende andWerneck
(2006). In that study, the authors address the uncapacitated facility location problem
and the criterion of the facility swaps is the same as the PR here proposed; the differ-
ences lie on the elite solutions set and the post-optimization process.

The elite set E comprises the best solutions found in the search process and cannot
exceed the size limit maxE .

Algorithm 6 shows a detailed procedure of IGASPR, that has as input the instance
data. The instance data refer to all the parameters of the MCLP.

3 Computational experiments

The experiments were carried out in a cluster with 104 nodes, each with 2 Intel Xeon
E5-2680v2 processors of 2.8 GHz, 10 cores and 128 GB DDR3 1866 MHz of RAM.
All the metaheuristics were implemented in Java.

The computational experiments used the same set of instances presented inMáximo
et al. (2017), which are based on four data sets representing the demographic density
of the following counties: Bronx, Manhattan, San Francisco and Kings. The authors
compiled the data sets from the 2010 United States census. Their primary features are
shown in Table 1. Additionally, the set of instances contained a total of 24 instances,
as p ∈ {50, 60, 70, 80, 90, 100}.

The metric to measure the distance between two points i and j , di j , is the 2-
norm (Euclidean). Then, it is enough to consider their latitude-longitude coordinates,
(lati , loni ) and (lat j , lon j ), to calculate di j in meters, using Eq. (13). This equation
follows the spherical law of cosines, where R the radius of the earth (R = 6,378,100).
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Data: Instance data
Result: The best solution s∗

1 Set parameter values for: η, β, α, ϕ, ω, λ, amax,maxG
2 Initiate G with a single vertex v̂, θ v̂ ← 0 and the vector wv̂ with random values [0, 1]
3 f̄ , f ∗, b̄, i ter, count ← 0
4 while elapsed time < time limit do
5 s ← IGASPR Construction Phase(α, ϕ, ω, G)
6 s ← Local Search(s)
7 if f ∗ < f (s) then
8 s∗ ← s
9 f ∗ ← f (s)

10 end
11 f̄ ← ( f̄ × i ter + f (s))/(i ter + 1)
12 b̄ ← f̄ + η( f ∗ − f̄ )
13 if f (s) > b̄ then
14 G ← GNG presentation( β, εb , εn , s, count, λ, amax,maxG ,G)
15 end
16 Update E with s if D(s′, s) > 0 ∀ s′ ∈ E
17 s∗ ← PR algorithm(E , s∗, s, β, εb , εn , count, λ, amax,maxG ,G)
18 i ter ← i ter + 1
19 end

Algorithm 6: IGASPR.

Table 1 Summary of the data
sets used in the experiments

County–state m r (m)

Manhattan–NY 2713 400

Bronx–NY 3839 600

San Francisco–CA 5137 600

Kings–NY 7730 800

di j = arccos(cos(lati ) cos(lat j ) cos(lon j − loni ) + sin(lati ) sin(lat j ))R (13)

Let UBbe the linear relaxation solution value of a problem. The quality of a solution
s of this problem is assessed by the gap between its objective function value and UB.
Equation (14) presents how this gap can be calculated.

gap = 100
(UB − f (s))

UB
(14)

The performances of IGASPR, GRASP (Resende 1998) and IGAS were assessed
and contrasted. The parameter configuration for bothGRASP and IGAS followedwhat
is suggested in the literature. In addition, GRASP was hybridized with the introduced
PR (GRASPPR).

This section presents the experiments reported in this paper and is subdivided as
follows: (1) an experiment that shows how the parameters of IGASPR were defined;
(2) a performance analysis presenting the improvement of the quality of the solutions
when the learning step in the search process is considered; (3) a performance analysis
to demonstrate that the modified IGAS proposed in this paper outperforms IGAS
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in its original setting; (4) an experiment with time-to-target plots (TTT-plots) (Aiex
et al. 2007) to prove that IGASPR outperforms IGAS and GRASPPR; (5) an experiment
that reports the results obtained using IGASPR, GRASP (Resende 1998) and IGAS,
considering the entire set of instances of Máximo et al. (2017); (6) and a comparison
between IGASPR and CPLEX v.12.6 time limited in 20,000s on the model proposed
by Church and ReVelle (1974).

3.1 Parameters for the IGASPR

This subsection describes the tuning of the IGASPR parameters. To achieve this, first
the performance of IGASPR was analyzed by varying the values of ω, η and ϕ. The
GNG parameters were fixed with the same values suggested in the literature after their
fine tuning with ParamILS (Hutter et al. 2009): εb = 0.6, εn = 0.003, amax = 110,
λ = 60, β = 0.980 and maxG = 10. Heinke and Hamker (1998) pointed out that all
GNG parameters are not sensitive to changes, then a set of default values are usually
adopted. The size of the elite set of the PR phase,maxE , was empirically defined as 6.

The investigated ranges for parameters ω, η and ϕ were:

• ω ∈ {0.5, 0.55, . . . , 0.9};
• η ∈ {0, 0.1, . . . , 0.9};
• ϕ ∈ {20, 30, 40, 50}.

The analysis consisted in running 30 independent executions for each combination
of all possible values for the parameters, in the defined ranges, and using the 24
instances. The time limit for each execution was 300s. A summary of the achieved
results is displayed in Fig. 3. It is possible to notice that the combination of parameters
ω = 0.7, η = 0.4 and ϕ = 40 resulted in the best mean gaps.

Furthermore, after establishing the best values for the three parameters, the size of
the elite set considering maxE ∈ {2, 4, . . . , 20} was varied. The mean results showed
thatmaxE was not sensitive to such variation since it did not have a significant impact
on the performance of IGASPR. Therefore, maxE was kept with the value 6.

After analyzing these four parameters, we then studied the behavior of the six GNG
parameters considering the following ranges:

• εb ∈ {0.1, 0.2, . . . , 1};
• εn ∈ {0.001, 0.002, . . . , 0.01};
• λ ∈ {10, 20, . . . , 100};
• maxG ∈ {2, 4, . . . , 20};
• amax ∈ {50, 60, . . . , 150};
• β ∈ {0.970, 0.975, . . . , 0.995}.

Like parameter maxE , no relevant impact on the performance of IGASPR was
noticed by varying these parameters, and therefore, the values suggested in Máximo
et al. (2017) were used for the GNG parameters.
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Fig. 3 Mean gaps of 24 instances varying the parameters ϕ, ω and η

3.2 Improvement with learning

This section presents an experiment that shows the quality of the solutions found
in the construction phase and in the local search phase with different values for ω.
Note that ω is the percentage of elements added to the solution in the construction
phase using knowledge learnt at previous iterations. Therefore, this experiment aims
at demonstrating the impact of the learning step on the search process.

Thus, by varying this parameter, it is possible to notice the interference of the
learning step during the iterations of the algorithm. In this experiment, 1000 iterations
were equally distributed in the interval [0, 0.7] in order to define ω to solve the Bronx
instance with p = 70 and r = 600. Therefore, considering a step of 0.0007 in the
interval [0, 0.7] to define ω, Fig. 4 illustrates the solutions found by the construction
and local search phases of IGASPR.

The best solutions curve up to a given iteration demonstrates the improvement in
quality of the LS solutions after the construction phase and after PR.
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Fig. 4 Figure that highlights the best gaps found after the construction and local search phases, and the
best gaps found after path-relinking varying ω along the iterations

3.3 Proving the better performance of the introduced IGAS

In this experiment, we present the performance profiles introduced by Dolan andMoré
(2002) to attest that the modified IGAS outperforms IGAS (Máximo et al. 2017). The
graphic displays the relation between the percentage of the np problems solved (y-
axis) by a given algorithm s with a performance better than or equal to a factor τ ∈ R

(x-axis) multiplied by the value of the best performance metric found among all ns
algorithms. Let us consider that the metric must be minimized. Therefore, for a given
τ , such percentage is denoted by φs(τ ):

φs(τ ) =
∣∣∣
{

tps
mins′∈{1,...,ns} tps′

≤ τ : ∀p
}∣∣∣

np

Figure 5 compares the performance profiles of IGAS and the modified IGAS. The
metric considered is the time to achieve the best solution, since both versions obtained
the same final solutions. The results indicate that the modified IGAS outperforms
IGAS. One may observe that when τ = 1, the modified IGAS presented 90% for
φs(τ ), which indicates that the modified IGAS algorithm showed a better time than
IGAS in 90% of the solutions. As τ grows, it is noteworthy that the curves only cross
when φs(τ ) = 1, showing that the modified IGAS is better than IGAS. Moreover,
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Fig. 5 Performance profiles (Dolan and Moré 2002) comparing IGAS (Máximo et al. 2017) with the
modified IGAS here proposed using a new strategy to construct solutions

φs(τ ) = 1 for the modified IGAS when τ = 1.1, whereas for IGAS, this happens
when τ = 3.5.

As this version of IGAS is better than the previous one, it was employed in the
hybridization with PR, IGASPR.

3.4 TTT-plots analysis

In addition to the quality expressed by the objective function, this paper shows the
TTT-plots (Aiex et al. 2007, commonly used to compare metaheuristics hybridized
with PR. This graphic illustrates the cumulative probability of an algorithm to achieve
a target solution within a considered time for a given instance. In this experiment,
we considered 100 runs for each of the following algorithms: GRASPPR, IGAS and
IGASPR.

Figure 6 shows the results when the value of the target solution is defined as
1,573,000 for the Manhattan County instance with p = 100 and r = 400. This means
the time every algorithm took to obtain the first solution (whose objective function
was at least the value of the target solution) was considered. The results for GRASP
are not reported in this experiment because it did not achieve the target solution in any
of the one hundred executions carried out in the time limit of 106 s.

IGASPR was more effective than IGAS, as can be seen in Fig. 6. IGASPR took on
average 46.9 s to obtain the target solution, whereas IGAS took on average 487.9 s.
Therefore, IGASPR proved to be 10 times faster than IGAS. GRASPPR presented the
worst computational performance, taking 25,507.4 s, on average, to achieve the target
solution.
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Fig. 6 TTT-plots comparing IGASPR with IGAS and GRASPPR using the Manhattan instance with
p = 100 and r = 400

In this same experiment, 100 independent executions of the Kings instance were
carried out, with p = 90 and r = 800, and considering a time limit of 1000s. The
gap between the best solution up to that moment and its UB was registered for each
run, and the average gap among the 100 executions for that period in time was then
calculated. Figure 7 displays the relation between this average gap (y-axis) and the
time to achieve the gap (x-axis).

It canbeobserved inFig. 7 that IGASand IGASPRpresented thehighest convergence
rates when compared to the other algorithms. In particular, in just 8 s, IGASPR achieved
an average gap lower than the one achieved by GRASPPR in 1000s. Both IGAS and
IGASPR obtained gaps that were better than the best gap achieved byGRASP in 1000s.

Finally, in order to assess the robustness of the metaheuristics, a box plot diagram
was designed. It shows the 100 executions of the four analyzed algorithms under a
time limit of 300s, as can be seen in Fig. 8. The San Francisco instance with p = 100
and r = 600 was employed in this analysis. This graphic shows the distribution of the
final gaps obtained by the metaheuristics.

The results show that IGAS and IGASPR had a tight data distribution in compar-
ison to the other algorithms. Moreover, IGASPR obtained the best results among all
algorithms, as previously mentioned.

3.5 Comparative performance analysis

In this experiment, the performance of IGASPR was compared to the performance of
the other three algorithms using the entire set of 24 instances. Each algorithm was
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Fig. 7 Relation between the average gap in 100 executions within the corresponding time using the Kings
instance with p = 90 and r = 800

Fig. 8 Box plot of the final gaps achieved by the four metaheuristics considering 100 independent runs
and p = 100 and r = 600 for the San Francisco instance

carried out 30 times with a time limit of 300s. Tables 2 and 3 present the results of
this experiment:

• Best Best gap found in 30 executions.
• Worst Worst gap found in 30 executions.
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Fig. 9 Performance profiles (Dolan and Moré 2002) comparing GRASP, GRASPPR, IGAS and IGASPR

• Median Median gap found in 30 executions.
• Average Average gap found in 30 executions.
• Time Average time in seconds that an algorithm took to find the best solution in
each of the 30 executions.

The performance profiles from Dolan and Moré (2002), explained in Sect. 3.3, was
used in this experiment. Figure 9 compares the best, worst, median and average gaps of
the four algorithms. One may observe through the IGASPR performance profile curve
that it dominates the curves of the other algorithms. This means that IGASPR had the
largest percentage of problems solved within any τ value. Moreover, we point out that
IGASPR presented the best results in 97% of the problems, whereas IGAS, GRASPPR
and GRASP presented the best results in 25, 6 and 1% of the problems, respectively.
These results are observed when τ = 1.

3.6 IGASPR versus CPLEX

In this experiment, the results obtained by IGASPR were compared with results on the
model introduced by Church and ReVelle (1974) using CPLEX v.12.6 (CPLEX 2014)
and run on the same machine. To that purpose, IGASPR was run 100 times, for each of
the 24 instances, with a time limit of 1000s. Table 4 shows the best solutions found by
IGASPR and the results of CPLEX limited in 20,000s. Column ‘Best’ shows the gap
of the best lower bound found by CPLEX to the corresponding linear relaxation and
the elapsed time it took to find it. Moreover, column ‘UB’ reports the linear relaxation
found by CPLEX. The gaps highlighted with asterisks indicate that the best lower
bound found by either CPLEX or IGASPR corresponded to the optimal solution. We

123



562 V. R. Máximo, M. C. V. Nascimento

Table 4 Best solutions for every tested instance

County p UB CPLEX IGASPR

Best Time f (s) Gap

Manhattan 50 1,155,665.95 0.175∗ 8.6 1,153,640 0.175∗
60 1,291,555.70 0.262∗ 16.6 1,288,174 0.262∗
70 1,400,966.42 0.331∗ 36.6 1,396,333 0.331∗
80 1,487,666.36 0.419∗ 54.1 1,481,434 0.419∗
90 1,548,872.76 0.577 8669.6 1,539,992 0.573

100 1,579,918.14 0.360 12,325.8 1,574,256 0.358

Bronx 50 1,212,490.99 0.614∗ 4053.0 1,205,051 0.614∗
60 1,299,609.96 0.736 3210.3 1,290,635 0.691

70 1,354,680.04 0.534 19,268.5 1,348,232 0.476

80 1,379,346.03 0.350 19,547.6 1,376,061 0.238

90 1,384,989.60 0.073 18,790.8 1,384,372 0.045

100 1,385,108.00 0.001 6776.4 1,385,095 0.001

San Francisco 50 621,321.75 0.600 18,575.1 617,592 0.600

60 688,955.63 0.939 19,997.9 683,139 0.844

70 740,942.12 1.168 19,922.8 733,772 0.968

80 777,434.54 1.096 19,165.9 769,781 0.984

90 798,237.81 1.010 19,958.3 791,562 0.836

100 804,711.15 0.612 13,440.4 802,211 0.311

Kings 50 2,033,678.47 0.660 10,696.8 2,022,077 0.570

60 2,255,707.14 1.477 19,724.5 2,227,025 1.272

70 2,410,847.41 1.556 7048.3 2,380,660 1.252

80 2,490,711.39 1.518 7231.1 2,467,701 0.924

90 2,504,700.00 18.923 2782.6 2,502,169 0.101

100 2,504,700.00 0.138 18,581.2 2,504,700 0.000∗

Bold values indicate the best results considering all algorithms in the comparison

also reported the value of the objective function of the best solutions found by IGASPR,
as well as the gap to their linear relaxation.

CPLEX confirmed the optimality of the lower bound found by IGASPR to the Man-
hattan instances when p ∈ {50, 60, 70, 80}, and Bronx when p = 50. In particular,
for Kings with p = 100, the solution obtained by IGASPR was proved to be optimum
because the value of its objective function was equal to the UB.

Experiments were also carried out with the instances proposed in Lorena and
Pereira (2002), but are not reported in this paper due to the low dimensionality of the
instances. These results can be found at https://sites.google.com/site/nascimentomcv/
downloads/sjcinstances.As a result, it is possible to observe that IGASPRoutperformed
all the other heuristics in the comparative analysis.
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4 Final remarks

This paper reports a study performed on intelligent-guided adaptive search (IGAS),
a recently proposed metaheuristic that considers the Growing Neural Gas (GNG)
network as a memory mechanism in the search process.

IGAS efficiently solved large instances of the maximum covering location problem
(MCLP) as proposed in the literature. In spite of the good performance of IGAS, we
provided new insights into this metaheuristic by slightly modifying one of its steps
and hybridizing it with path-relinking.

In a first experiment, we proved that the new version of IGAS is consistently better
than the original IGAS in solving large-scale MCLP instances. In a second experi-
ment, we evaluated the performance of the hybrid, named IGASPR, comparing it with
IGAS, GRASP and GRASPPR. IGASPR further enhanced the quality of the solutions
achieved by themodified IGAS for theMCLP, significantly outperforming every tested
algorithm.

In future works, the authors intend to apply IGAS and its hybridization with path-
relinking with other combinatorial optimization problems, such as the capacitated
facility location problem.
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