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Abstract
The difficulty and complexity of the real-world numerical optimization problems has grown manifold, which demands
efficient optimization methods. To date, various metaheuristic approaches have been introduced, but only a few have earned
recognition in research community. In this paper, a new metaheuristic algorithm called Archimedes optimization algorithm
(AOA) is introduced to solve the optimization problems. AOA is devised with inspirations from an interesting law of physics
Archimedes’ Principle. It imitates the principle of buoyant force exerted upward on an object, partially or fully immersed
in fluid, is proportional to weight of the displaced fluid. To evaluate performance, the proposed AOA algorithm is tested on
CEC’17 test suite and four engineering design problems. The solutions obtained with AOA have outperformed well-known
state-of-the-art and recently introduced metaheuristic algorithms such genetic algorithms (GA), particle swarm optimization
(PSO), differential evolution variants L-SHADE and LSHADE-EpSin, whale optimization algorithm (WOA), sine-cosine
algorithm (SCA), Harris’ hawk optimization (HHO), and equilibrium optimizer (EO). The experimental results suggest that
AOA is a high-performance optimization tool with respect to convergence speed and exploration-exploitation balance, as it
is effectively applicable for solving complex problems. The source code is currently available for public from: https://www.
mathworks.com/matlabcentral/fileexchange/79822-archimedes-optimization-algorithm
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1 Introduction

Over the past few decades, the numerical optimization prob-
lems have become increasingly complex and require highly
efficient methods to solve. For example, design cost prob-
lems in engineering and accuracy problems in data mining
often demand methods to find optimum from a large number
of available solutions, without wasting efforts in search-
ing sub-optimal regions. Due to complex nature and highly
non-convex landscapes, the search-space related to these
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problems pose several challenges to optimization meth-
ods [1]. These include exceptionally complex modalities of
the search environment; proportional to the problem size,
as well as, growing problem dimensionality [2]. The con-
ventional deterministic methods, based on simple calculus
rules perform exhaustive search, cannot produce as efficient
solutions as heuristic (trial-and-error) methods within lim-
ited computational resources. The non-deterministic meth-
ods, also called metaheuristic algorithms, have generated
extraordinary results in several practical real-world opti-
mization problems [3, 4]. Numerous applications of these
methods can be found in extensive literature related to meta-
heuristic research. To name a few domains, drug design [5],
feature selection [6], motif discovery problem [7, 8], engi-
neering, medical, agriculture, finance and economics are
among the beneficiaries [9, 10].

Amongst some of the most successful metaheuristic
algorithms are simulated annealing (SA) [11], particle
swarm optimization (PSO) [12], genetic algorithms (GA)
[13], ant colony optimization (ACO) [14], and artificial
bee colony (ABC) [15]. Whereas, some recently introduced
methods have also earned adequate attention among
researchers due to their efficient problem solving ability;

Published online: 29 September 2020

Applied Intelligence (2021) 51:1531–1551

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01893-z&domain=pdf
http://orcid.org/0000-0002-8127-7233
https://www.mathworks.com/matlabcentral/fileexchange/79822-archimedes-optimization-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/79822-archimedes-optimization-algorithm
mailto: essam.halim@mu.edu.eg


such as, Grey wolf optimization (GWO) [16], Harris’ hawks
optimizer (HHO) [4], bacterial foraging optimization (BFO)
[17], moth-flame optimization (MFO) [18], salp swarm
algorithm (SSA) [19], and whale optimization algorithm
(WOA) [20].

Generally speaking, algorithms that maintain simplicity,
ease of implementation as well as ability to avoid local
optima are those which stand out among others. This is the
reason despite increasingly introduced novel metaheuristic
algorithms, only a few retain interest in research community
while others often vanish. Among other features, trade-
off balance between exploration and exploitation is always
critical for metaheuristic algorithms [21]. The algorithms
that maintain such balance on a large variety of optimization
problems, are the successful ones. Nevertheless, a general
procedure of any metaheuristic algorithm can be outlined as
Algorithm 1.

Algorithm 1 Pseudo-code of a metaheuristic algorithm.

procedure METAHEURISTIC( params)
initialize population of candidate solutions
evaluate the initial solutions and remember the best
one
while termination criteria not met do

generate new solutions by modifying existing
ones
evaluate new solutions
if new solutions are better than existing then

update population
end if
remember the best solution found so far

end while
return the best solution found

end procedure

Besides animals and inspects, powerful phenomena from
physics, chemistry, and mathematics have been derived
for producing novel optimization methods. The prominent
methods devised by the inspirations borrowed from the
discipline of Physics are: charged system search (CSS)
[22] follows Coulomb and Newtonian’s laws, gravitational
search algorithm (GSA) [23] based on gravitational theory,
ray optimization (RO) [24] observes ray theory and Henry
gas solubility optimization (HGSO) based on Henry law
[25]. The optimization methods introduced on the basis of
Chemistry is chemical reaction optimization (CRO) [26]
which mimics molecular interactions in a chemical reaction.
Sine-cosine algorithm (SCA) [27] utilizes trigonometry
functions and stochastic fractal search (SFS) [28] employs
a mathematical concept called fractals.

Essentially, the laws of physics have already produced
significant outcomes when formulated into optimization

techniques; examples are: thermal exchange optimization
(TEO) [29] utilizes Newtonian’s laws of cooling, lightening
search algorithm (LSA) [30] is inspired by the lightening
phenomena in nature, atom search optimization (ASO) [31],
equilibrium optimization (EO) [32], magnetic optimization
algorithm (MOA) [33] borrows idea from Bict-Savart law
of electromagnetism, electromagnetic field optimization
(EFO) [34] and ions motion optimization (IMO) [35] are
based on attraction-repulsion mechanism of electromagnets
and ions versus cations, respectively. In this vein, this study
is motivated to continue taking inspirations from the laws
of physics. This time, we present Archimedes optimization
algorithm (AOA) which is based on the law of physics called
Archimedes’ principle.

The metaheuristic algorithms mentioned earlier include
those that are simple yet effective while others are
complicated as well. Some of these algorithms have proven
track record of solving numerous optimization problems
while others are being effectively modified for improved
search performance. Additionally, there is constant influx
of new ideas competing with classic methods like SA,
PSO, ABC, and ACO while implemented on complex
and highly non-linear optimization problems [36]. Due
to no-free-lunch theorem [37] which explains the reason
why one algorithm or method cannot outperform others
on all optimization problems, the room for improvement
in existing methods and the opportunities to introduce
new methods will always exist. Because, some algorithms
will be good on one types of problems and poor on
others. However, successful metaheuristic algorithm may
be considered as the one which performs well, or at least
produces acceptable solutions, on most of the problems.
But, keeping in view the wider spectrum of optimization
problems, one cannot guarantee that algorithm has been
tried and test rigorously. However, we can validate a
metaheuristic performance on commonly agreed test suite.
Based on the argument, this research also employs the
commonly used test environment for experimenting and
evaluating performance of the proposed AOA algorithm.

Archimedes’ principle explains the law of buoyancy.
It states the relationship between an object immersed in
a fluid (let’s say water) and buoyant force applied on
it. Accordingly, an object’s buoyancy is subject to an
upward force equal to weight of the fluid displaced. If the
object’s weight is greater than the weight of fluid displaced,
the object will sink. Otherwise, it will float when the
weight of object and displaced fluid is same. In AOA, the
population individuals are the objects immersed in fluid.
These objects have density, volume, and acceleration which
play important role in buoyance of an object. The idea of
AOA is to reach a point where objects are neutrally buoyant;
meaning that the net force of fluid is equal to zero. We
examined AOA performance by employing an extensive
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test-bed comprising of unconstrained benchmark functions
and constrained engineering design problems, and found
that the proposed approach is efficient with its global search
ability.

To sum up, a new population-based algorithm called
Archimedes optimization algorithm (AOA) based on the law
of physics known as Archimedes’ principle is proposed in
this paper to compete with the state-of-the-art and recent
optimization algorithms, including other physics-inspired
methods. It is worth mentioning that the presented algorithm
maintains balance between exploration and exploitation.
This characteristic makes AOA suitable for solving complex
optimization problems with many local optimal solutions
because it keeps a population of solutions and investigates a
large area to find the best global solution. In summary, the
main contributions of this research are as follows:

1. We propose a new population-based algorithm, namely
Archimedes optimization algorithm (AOA), which
mimics the Archimedes’ principle.

2. The statistical significance, convergence ability,
exploitation - exploration ratio and the diversity of
AOA solutions are evaluated.

3. A series of experiments, comprising of CEC’17 test
suite and real-world engineering design problems, are
performed to investigate the impact of the proposed
algorithm over a challenging test suite in metaheuristic
literature.

4. The search efficiency of AOA is validated against
well-established algorithms like GA, PSO, L-SHADE,
and LSHADE-EpSin, as well as, recent additions like
WOA, SCA, HHO, and EO.

This paper is organized as follows. Section 2 explains the
basics of Archimedes’ principle and design framework of
the proposed AOA algorithm. The concept of exploration
and exploitation is given in Section 3 which also
presents a way to measure these important features of an
optimization algorithm. The empirical evaluation of AOA
on extensive test environment is given in Section 4. Here,
a comprehensive analysis and comparison is also made
against the selected metaheuristic algorithms. The final
discussion and conclusion is presented in Section 5.

2 Design framework

The proposed Archimedes optimization algorithm (AOA)
generally emulates what happens when objects of different
weights and volumes are immersed in a fluid. It captures the
related phenomenon explained by Archimedes’ principle
which is described in the following subsection. Next, the
implementation of this law of physics in terms of an
optimization algorithm is explained.

Fig. 1 a An object is immersed in a fluid, and b The volume of fluid
displaced

2.1 Archimedes’ principle

Archimedes’ principle states that when an object is
completely or partially immersed in a fluid, the fluid exerts
an upward force on the object equal to weight of the fluid
displaced by the object. Figure 1 shows that when an object
is immersed in a fluid, it will be experienced by an upward
force, called buoyant force, equal to weight of the fluid
displaced by the object [38].

2.1.1 Theory

Assume that many objects immersed in the same fluid
(Fig. 2) and each one tries to reach the equilibrium state.
The immersed objects have different densities and volumes
that cause different accelerations.

The object will be in the equilibrium state if the buoyant
force Fb is equal to the object’s weight Wo:

Fb = Wo,

pbvbab = povoao (1)

where p is the density, v is the volume, and a is the
gravity or acceleration, subscripts b and o are for fluid
and immersed object, respectively. This equation can be
rearranged as:

ao = pbvbab

povo

(2)

Fig. 2 Many objects immersed in the same fluid
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If there is another force influenced on the object
like collision with another neighbouring object (r), the
equilibrium state will be:

Fb = Wo,

Wb − Wr = Wo,

pbvbab − prvrar = povoao (3)

2.2 Archimedes optimization algorithm (AOA)

AOA is a population-based algorithm. In the proposed
approach, the population individuals are the immersed
objects. Like other population-based metaheuristic algo-
rithms, AOA also commences search process with initial
population of objects (candidate solutions) with random vol-
umes, densities, and accelerations. At this stage, each object
is also initialized with its random position in fluid. After
evaluating the fitness of initial population, AOA works in
iterations until termination condition meets. In every itera-
tion, AOA updates the density and volume of every object.
The acceleration of object is updated based on condition
of its collision with any other neighbouring object. The
updated density, volume, acceleration determines the new
position of an object. Following is the detailed mathematical
expression of AOA steps.

2.2.1 Algorithmic steps

In this section, we introduce mathematical formulation of
the AOA algorithm. Theoretically, AOA can be considered
as a global optimization algorithm as it encompasses
both exploration and exploitation processes. Algorithm
2 presents the pseudo-code of the proposed algorithm;
including population initialization, population evaluation,
and updating parameters. Mathematically, steps of the
proposed AOA are detailed as following.

Step 1—Initialization Initialize the positions of all objects
using (4):

Oi = lbi + rand × (ubi − lbi); i = 1, 2, ..., N (4)

where Oi is the ith object in a population of N objects. lbi

and ubi are the lower and upper bounds of the search-space,
respectively.

Initialize volume (vol) and density (den) for each ith
object using (5):

deni = rand

voli = rand (5)

where rand is a D dimensional vector randomly generates
number between [0, 1]. And finally, initialize acceleration
(acc) of ith object using (6):

acci = lbi + rand × (ubi − lbi) (6)

In this step, evaluate initial population and select the
object with the best fitness value. Assign xbest , denbest ,
volbest , and accbest .

Step 2—Update densities, volumes The density and vol-
ume of object i for the iteration t + 1 is updated using
(7):

dent+1
i = dent

i + rand × (denbest − dent
i)

volt+1
i = volti + rand × (volbest − volti ) (7)

where volbest and denbest are the volume and density
associated with the best object found so far, and rand is
uniformly distributed random number.

Step 3—Transfer operator and density factor In the begin-
ning, collision between objects occurs and, after a period of
time, the objects try to reach at equilibrium state. This is
implemented in AOA with the help of transfer operator T F

which transforms search from exploration to exploitation,
defined using (8):

T F = exp

(
t − tmax

tmax

)
(8)

where transfer T F increases gradually with time until
reaching 1. Here t and tmax are iteration number and max-
imum iterations, respectively. Similarly, density decreasing
factor d also assists AOA on global to local search. It
decreases with time using (9):

dt+1 = exp

(
tmax − t

tmax

)
−

(
t

tmax

)
(9)

where dt+1 decreases with time that gives the ability to
converge in already identified promising region. Note that
proper handling of this variable will ensure balance between
exploration and exploitation in AOA.

Step 4.1—Exploration phase (collision between objects
occurs) If T F ≤ 0.5, collision between objects occurs,
select a random material (mr) and update object’s
acceleration for iteration t + 1 using (10):

acci
t+1 = denmr + volmr × accmr

dent+1
i × volt+1

i

(10)

where deni , voli , and acci are density, volume, and
acceleration of object i. Whereas accmr , denmr and
volmr are the acceleration, density, and volume of random
material. It is important to mention that T F ≤ 0.5
ensures exploration during one third of iterations. Applying
value other than 0.5 will change exploration-exploitation
behavior.
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Step 4.2—Exploitation phase (no collision between objects)
If T F > 0.5, there is no collision between objects, update
object’s acceleration for iteration t + 1 using (11):

acct+1
i = denbest + volbest × accbest

dent+1
i × volt+1

i

(11)

where accbest is the acceleration of the best object.

Step 4.3—Normalize acceleration Normalize acceleration
to calculate the percentage of change using (12):

acct+1
i−norm = u × acct+1

i − min(acc)

max(acc) − min(acc)
+ l (12)

where u and l are the range of normalization and set to
0.9 and 0.1, respectively. The acct+1

i,norm determines the
percentage of step that each agent will change. If the
object i is far away from global optimum, acceleration
value will be high—meaning that the object will be in the
exploration phase; otherwise, in exploitation phase. This
illustrates how the search transforms from exploration to
exploitation phase. In normal case, the acceleration factor
begins with large value and decreases with time. This helps
search agents move towards the global best solution and at
the same time they move away from local solutions. But, it
is noteworthy to mention that there may remain a few search
agents that need more time to stay in exploration phase than
normal case. Hence, AOA achieves the balance between
exploration and exploitation.

Step 5—Update position If T F ≤ 0.5 (exploration phase),
the ith object’s position for next iteration t + 1 using (13)

xt+1
i = xt

i +C1 ×rand ×acct+1
i−norm×d ×(xrand −xt

i ) (13)

where C1 is constant equals to 2. Otherwise, if T F > 0.5
(exploitation phase), the objects update their positions using
(14).

xt+1
i =xt

best +F ×C2 ×rand×acct+1
i−norm ×d×(T ×xbest −xt

i ) (14)

where C2 is a constant equals to 6. T increases with time
and it is directly proportional to transfer operator and it
is defined using T = C3 × T F . T increases with time
in range [C3 × 0.3, 1] and takes a certain percentage from
the best position, initially. It starts with low percentage
as this results in large difference between best position
and current position, consequently step-size of random
walk will be high. As the search proceeds, this percentage
increases gradually to decrease difference between the best
position and the current position. This leads to achieving an
appropriate balance between exploration and exploitation.

F is the flag to change the direction of motion using (15):

F =
{+1 if P≤0.5

−1 if P>0.5 (15)

where P = 2 × rand − C4.

Step 6—Evaluation Evaluate each object using objective
function f and remember the best solution found so far.
Assign xbest , denbest , volbest , and accbest .

2.2.2 Sensitivity analysis

Generally, full factorial and fractional factorial design
techniques are applied for parameter sensitivity analysis in
an algorithm, however high computational cost becomes
a major limitation in this regard. Secondly, because
metaheuristic algorithms are stochastic in nature, and
generate varying solutions each time executed, running
them multiple times when considering full factorial designs
for evaluating all parameter combinations for all test
functions will be nearly infeasible for the length of an initial
study [39], like in this case. Therefore, in this subsection, we
provide general parameter configuration guidance for AOA
control variables C1 to C4. We perform sensitivity analysis,
with limited full factorial design approach, using three
functions selected from three different categories of CEC’17
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Table 1 Sensitivity analysis for
AOA parameters under
different scenarios

Scenarios Parameters values Cost function value (Dim = 50)

C1 C2 C3 C4 f5 f12 f26

1 1 2 1 0.5 9.08E+02 7.20E+09 1.16E+04

2 1 2 1 1 1.03E+03 2.72E+10 1.34E+04

3 1 2 2 0.5 7.71E+02 4.06E+07 1.29E+04

4 1 2 2 1 8.39E+02 9.22E+07 1.14E+04

5 1 4 1 0.5 8.63E+02 5.93E+09 1.15E+04

6 1 4 1 1 1.06E+03 2.97E+10 1.38E+04

7 1 4 2 0.5 8.21E+02 3.70E+07 1.06E+04

8 1 4 2 1 8.25E+02 2.19E+07 1.10E+04

9 1 6 1 0.5 8.91E+02 3.59E+09 8.04E+03

10 1 6 1 1 1.00E+03 1.22E+10 1.42E+04

11 1 6 2 0.5 8.22E+02 2.68E+07 1.09E+04

12 1 6 2 1 8.16E+02 1.04E+08 1.14E+04

13 2 2 1 0.5 8.00E+02 2.13E+08 1.02E+04

14 2 2 1 1 9.96E+02 4.22E+09 1.21E+04

15 2 2 2 0.5 7.66E+02 3.24E+08 8.73E+03

16 2 2 2 1 8.07E+02 4.94E+09 1.13E+04

17 2 4 1 0.5 7.85E+02 6.15E+09 1.09E+04

18 2 4 1 1 9.64E+02 4.54E+09 1.22E+04

19 2 4 2 0.5 7.73E+02 1.80E+07 1.01E+04

20 2 4 2 1 7.79E+02 3.07E+07 1.06E+04

21 2 6 1 0.5 8.00E+02 5.55E+08 1.17E+04

22 2 6 1 1 9.51E+02 7.96E+09 9.98E+03

23 2 6 2 0.5 7.56E+02 8.62E+06 7.13E+03

24 2 6 2 1 7.85E+02 7.33E+07 9.92E+03

Bold entries highlight the best results achieved by a particular algorithm on a particular problem

test suite. The selected functions are 50 dimensional Shifted
and Rotated Rastrigin’s function (f5), Hybrid Function 2
(N = 3) (f12), and Composite Function 6 (N = 5) (f26).
The range of values for these parameters are as followings:
C1 ∈ {1, 2}, C2 ∈ {2, 4, 6}, C3 ∈ {1, 2}, and C4 ∈
{0.5, 1}; however, based on optimization problem landscape
and difficulty, different values may also be experimented.
In our preliminary testing, based on several scenarios given
in Table 1 and illustrated via Fig. 3, it is clear that scenario

number 23 is the best values for these parameters. With
parameter settings as C1 = 2, C2 = 6, C3 = 2, and
C4 = 0.5, AOA achieved the best cost function values.

3 Exploration and exploitation

The efficient search ability of a metaheuristic algorithm
heavily relies on two essential foundations: exploration and

Fig. 3 Cost function values achieved for different scenarios presented in Table 1 pertaining to AOA parameters C1 to C4
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Table 2 Parameter settings of
AOA and selected algorithms Algorithms Parameters

GA Population-size = 30

Crossover = Whole arithmetic, Probability = 0.8

Mutation = Gaussian, Probability = 0.05

PSO Swarm size = 30

Inertia weight decreases linearly from 0.9 to 0.4 (Default)

C1 (individual-best acceleration factor) increases linearly from 0.5 to 2.5 (Default)

C2 (global-best acceleration factor) decreases linearly from 2.5 to 0.5 (Default)

L-SHADE Population-size = 30

Pbest = 0.1, Arc rate = 2

LSHADE-EpSin Population-size = 30

Pbest = 0.1, Arc rate = 2

WOA Whales Number = 30

a variable decreases linearly from 2 to 0

a2 linearly decreases from −1 to −2

SCA Number of agents = 30

Number of elites = 2

HHO Harris Hawk Number = 30

E0 variable changes from −1 to 1 (Default)

EO Number of particles = 30

Generation probability (GP) = 0.5

α1 = 2, α2 = 1

AOA Objects Number = 30

C1 = 2, C2 = 6

C3 = 2 and C4 = 0.5 (CEC and engineering problems)

exploitation [21, 40, 41]. Exploration refers to the search
in far reached neighbourhoods for finding global optimum,
whereas exploitation is focusing search on already iden-
tified potential neighbourhood for converging to optimum
solution. Generally, a metaheuristic algorithm starts search
process with more exploration and less exploitation; but
gradually, the ratio inverts as the search progresses towards
the end [44]. Accordingly, the population individuals need
to spread all over the search-space and gradually converge
to the promising region.

It is crucial to maintain trade-off balance between the two
contradictory abilities. This is possible by measuring explo-
ration and exploitation, to adjust search mechanism. The
empirical analysis of population diversity, using exploration
and exploitation measurements, can be performed when
solving a variety of optimization problems. To determine
local search ability, problems with unimodal nature are suit-
able. While, for analysing global search ability, multimodal
optimization problems are considered. This study obtained
exploration and exploitation measurement while solving
a variety of optimization problems, using the approach
presented by K. Hussain et al. [41]. The research used
dimension-wise diversity measurement. According to the
method, the increased average distance within a dimension
means exploration, whereas the decreased distance refers

to exploitation which suggests that the population individ-
uals are close to each other on the search space. In case of
insignificant average diversity within certain iterations, it is
suggested that the population has converged. Equation (16)
explains the process of measuring dimension-wise diversity:

Divj = 1

N

N∑
i=1

median(xj ) − x
j
i ;

Divt = 1

Dim

Dim∑
j=1

Divj (16)

In (16), x
j
i denotes the j th dimension of the ith

population individual and median(xj ) the median value of
the j th dimension of whole population with N individuals.
Divj denotes the average diversity for dimension j and
Divt the average population diversity for iteration t . When
the diversity is measured for all iterations, the percentage of
exploration and exploitation can be achieved using (17):

Exploration% = Divt

Divmax

× 100;

Exploitation% = |Divt − Divmax |
Divmax

×100, t = 1, 2, ..., tmax (17)
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Table 3 Statistical results obtained for the CEC’17 functions with Dim = 30

Fun. Measure GA PSO L-SHADE LSHADE-EpSin WOA SCA HHO EO AOA

f1 Mean 4.69E+10 3.57E+03 2.74E+09 5.34E+10 1.08E+09 3.60E+03 3.17E+07 6.40E+03 2.71E+03

Std. Dev. 7.50E+09 3.52E+03 1.41E+09 4.17E+09 3.15E+08 2.31E+09 7.47E+06 6.54E+03 1.25E+04

f3 Mean 1.71E+08 1.45E+04 1.21E+05 1.23E+05 2.95E+05 6.66E+04 3.99E+04 2.69E+04 1.27E+04

Std. Dev. 2.13E+08 7.15E+03 3.94E+04 1.52E+04 7.46E+04 1.33E+04 6.79E+03 8.38E+03 1.29E+04

f4 Mean 1.88E+04 4.94E+02 8.18E+02 1.18E+04 8.74E+02 2.35E+03 5.55E+02 4.99E+02 4.79E+02

Std. Dev. 3.59E+03 2.55E+01 1.56E+02 2.22E+03 4.64E+01 6.92E+02 1.46E+01 2.48E+01 2.90E+00

f5 Mean 8.41E+02 6.32E+02 7.65E+02 9.45E+02 8.58E+02 8.14E+02 7.40E+02 6.77E+02 6.22E+02

Std. Dev. 3.36E+01 3.51E+01 1.92E+01 1.75E+01 5.22E+01 2.64E+01 4.90E+01 2.44E+01 2.45E+01

f6 Mean 6.67E+02 6.41E+02 6.33E+02 6.91E+02 6.91E+02 6.60E+02 6.73E+02 6.01E+02 6.18E+02

Std. Dev. 5.77E+00 1.08E+01 9.51E+00 5.61E+00 1.52E+01 6.28E+00 9.36E+00 8.31E-01 7.04E+00

f7 Mean 1.08E+03 9.27E+02 1.08E+03 1.19E+03 1.29E+03 1.21E+03 1.30E+03 8.98E+02 8.66E+02

Std. Dev. 3.33E+01 1.18E+01 5.43E+01 1.43E+01 5.18E+01 4.61E+01 5.43E+01 3.33E+01 4.45E+01

f8 Mean 1.09E+03 9.86E+02 1.05E+03 1.20E+03 1.07E+03 1.09E+03 1.05E+03 8.90E+02 8.85E+02

Std. Dev. 2.69E+01 1.14E+01 2.45E+01 2.60E+01 4.81E+01 2.13E+01 3.46E+01 1.81E+01 1.54E+01

f9 Mean 1.24E+04 3.23E+03 5.66E+03 1.51E+04 1.16E+04 7.92E+03 7.55E+03 2.40E+03 1.26E+03

Std. Dev. 2.11E+03 1.25E+03 2.76E+03 1.32E+03 5.87E+03 1.54E+03 1.90E+03 4.48E+02 5.72E+02

f10 Mean 8.06E+03 4.80E+03 7.69E+03 8.59E+03 6.73E+03 8.66E+03 6.14E+03 5.21E+03 5.10E+03

Std. Dev. 3.16E+02 6.05E+02 2.72E+02 2.31E+02 9.07E+02 3.33E+02 3.57E+02 7.53E+02 5.98E+02

f11 Mean 4.66E+04 1.24E+03 2.52E+03 7.33E+03 6.90E+03 3.45E+03 1.29E+03 1.29E+03 1.24E+03

Std. Dev. 3.71E+04 4.34E+01 1.01E+03 2.13E+03 3.18E+03 1.08E+03 3.41E+01 4.29E+01 4.68E+01

f12 Mean 1.10E+10 1.17E+05 9.73E+07 6.91E+09 3.17E+08 2.15E+09 3.69E+07 7.58E+05 3.53E+05

Std. Dev. 1.14E+09 1.04E+05 2.44E+07 1.20E+09 1.29E+08 5.75E+08 2.63E+07 7.77E+05 6.59E+05

f13 Mean 2.34E+10 1.56E+04 3.23E+06 3.41E+09 1.21E+06 9.15E+08 6.68E+05 1.79E+04 5.13E+03

Std. Dev. 4.07E+09 1.64E+04 3.46E+06 9.54E+08 3.84E+05 4.21E+08 4.26E+05 1.68E+04 3.62E+03

f14 Mean 6.95E+07 3.06E+04 4.66E+05 7.34E+06 9.82E+06 1.12E+06 9.12E+06 1.19E+05 4.24E+04

Std. Dev. 3.95E+07 3.04E+04 3.46E+05 4.89E+05 2.59E+06 3.85E+05 2.54E+05 3.70E+04 1.25E+04

f15 Mean 3.16E+09 1.17E+04 3.10E+05 3.49E+08 2.27E+06 4.26E+07 1.11E+05 4.79E+03 2.74E+03

Std. Dev. 1.59E+09 1.07E+04 3.21E+05 1.31E+08 3.67E+06 3.22E+07 1.13E+05 2.74E+03 1.20E+03

f16 Mean 8.45E+03 2.70E+03 3.96E+03 4.53E+03 3.74E+03 3.95E+03 3.82E+03 2.42E+03 2.06E+03

Std. Dev. 2.79E+03 2.90E+02 1.90E+02 1.45E+02 1.09E+03 2.38E+02 2.66E+02 3.42E+02 2.66E+02

f17 Mean 3.02E+04 2.23E+03 2.65E+03 3.28E+03 2.91E+03 2.64E+03 2.50E+03 2.12E+03 2.09E+03

Std. Dev. 4.81E+04 1.93E+02 1.40E+02 1.95E+02 3.23E+02 2.88E+02 3.09E+02 2.19E+02 1.43E+02

f18 Mean 4.68E+08 1.90E+05 3.97E+05 1.94E+07 1.24E+07 9.49E+06 2.54E+06 7.54E+05 1.90E+05

Std. Dev. 2.64E+08 2.30E+05 1.81E+05 1.16E+07 6.47E+06 4.99E+06 1.02E+06 5.47E+05 2.68E+05

f19 Mean 3.19E+09 4.91E+08 3.94E+06 6.36E+06 9.32E+06 8.47E+07 5.64E+05 3.03E+04 5.65E+03

Std. Dev. 1.77E+09 1.32E+04 4.13E+05 9.88E+07 5.06E+06 4.12E+07 5.59E+05 2.03E+03 2.12E+03

f20 Mean 3.09E+03 2.53E+03 3.01E+03 2.91E+03 2.82E+03 2.90E+03 2.85E+03 2.29E+03 2.48E+03

Std. Dev. 1.63E+02 1.81E+02 1.98E+02 1.10E+02 1.98E+02 1.43E+02 1.86E+02 1.26E+02 1.92E+02

f21 Mean 2.64E+03 2.44E+03 2.54E+03 2.72E+03 2.60E+03 2.59E+03 2.61E+03 2.44E+03 2.35E+03

Std. Dev. 4.64E+01 5.07E+01 1.45E+01 1.36E+01 2.00E+01 2.62E+01 4.52E+01 2.02E+01 2.16E+01

f22 Mean 8.41E+03 4.80E+03 4.79E+03 8.26E+03 6.55E+03 9.01E+03 5.77E+03 3.51E+03 7.16E+03

Std. Dev. 2.18E+03 2.30E+03 2.98E+03 5.41E+02 2.45E+03 2.49E+03 2.99E+03 1.97E+03 2.35E+03

f23 Mean 3.50E+03 2.87E+03 2.93E+03 3.30E+03 3.07E+03 3.05E+03 3.25E+03 2.73E+03 2.87E+03

Std. Dev. 1.85E+02 7.21E+01 2.35E+01 2.98E+01 1.06E+02 2.96E+01 6.49E+01 1.92E+01 7.22E+01

f24 Mean 3.51E+03 3.00E+03 3.09E+03 3.53E+03 3.23E+03 3.24E+03 3.43E+03 2.99E+03 2.97E+03

Std. Dev. 1.20E+02 6.30E+01 2.72E+01 4.78E+01 6.98E+01 3.01E+01 1.17E+02 2.34E+01 3.19E+01

f25 Mean 8.40E+03 2.91E+03 3.18E+03 6.26E+03 3.10E+03 3.48E+03 2.94E+03 2.95E+03 2.91E+03

Std. Dev. 1.78E+03 2.08E+01 1.30E+02 4.10E+02 3.28E+01 1.43E+02 1.62E+01 2.73E+00 1.78E+01
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Table 3 (continued)

Fun. Measure GA PSO L-SHADE LSHADE-EpSin WOA SCA HHO EO AOA

f26 Mean 1.34E+04 5.87E+03 6.41E+03 1.01E+04 9.31E+03 7.60E+03 8.21E+03 4.34E+03 3.24E+03
Std. Dev. 2.38E+03 1.51E+03 5.93E+02 5.89E+02 1.01E+03 3.93E+02 1.18E+03 7.24E+02 1.68E+03

f27 Mean 4.55E+03 3.27E+03 3.32E+03 3.94E+03 3.48E+03 3.51E+03 3.65E+03 3.22E+03 3.20E+03
Std. Dev. 3.38E+02 3.52E+01 3.60E+01 9.09E+01 8.82E+01 4.41E+01 3.28E+02 9.77E+00 2.83E-04

f28 Mean 7.49E+03 3.22E+03 3.71E+03 6.50E+03 3.56E+03 4.23E+03 3.35E+03 3.22E+03 3.30E+03
Std. Dev. 5.16E+02 1.99E+01 1.78E+02 3.88E+02 1.50E+02 2.36E+02 3.48E+01 1.93E+01 1.17E+01

f29 Mean 6.98E+04 3.92E+03 4.64E+03 5.81E+03 5.42E+03 5.05E+03 4.90E+03 3.68E+03 3.68E+03
Std. Dev. 5.34E+04 2.22E+02 8.41E+01 8.42E+01 3.70E+02 1.93E+02 6.31E+02 2.27E+02 2.13E+02

f30 Mean 2.75E+09 9.95E+03 7.82E+06 4.12E+08 3.98E+07 1.41E+08 4.63E+06 1.01E+04 4.05E+03
Std. Dev. 6.85E+08 3.85E+03 3.68E+06 1.03E+08 3.06E+07 4.86E+07 3.85E+06 3.45E+03 1.55E+03

Bold entries highlight the best results achieved by a particular algorithm on a particular problem

where Divt is population diversity of t th iteration and Divmax

is the maximum diversity found in all tmax iterations.
Having discussed the exploration-exploitation measure-

ment using population diversity, it is important to mention
that the population diversity does not guarantee that an effi-
cient exploration is being performed by the search agents.
However, it definitely clarifies that the search is being per-
formed on distant locations in search space. On the other
hand, it also suggests that the candidate solutions under
consideration are diversified and not stagnant. Contrar-
ily, population with reduced diversity indicates exploita-
tion; yet, it is essential that the search is being performed
around global optimum region. That said, it can be con-
templated that exploration-exploitation measurement using
population diversity has certain limitations. Nevertheless,
in the absence of direct exploration-exploitation measure-
ment approach [42], this study follows the method proposed
in [41]. Because, in previous research, mostly population
diversity is adopted as a measure for controlling explorative
and exploitative search strategies. To the best of authors
knowledge, there exists only one research [43] that proposed
a direct measure of exploration-exploitation for evolution-
ary algorithms, calling it ancestry tree-based approach;
however, its limitation to evolutionary algorithms motivates
this study to apply diversity-based exploration-exploitation
measurement on the proposed method.

4 Experimental results

To investigate effectiveness of the proposed AOA algorithm,
we have employed 29 test functions of CEC’17 test suite and
four constrained engineering design problems, which are
widely used in existing empirical literature [16, 20, 23, 45].
All of these functions are minimization problems which are
useful for evaluating optimization method characteristics
such as search efficiency and convergence rate.

4.1 Parameter settings

Since a metaheuristic algorithm is stochastic in nature, its
results may vary each time an algorithm is executed. There-
fore, we performed each experiment 30 times with parameter
settings mentioned in Table 2. As mentioned in the table,
apart from AOA, several other algorithms including
well established methods like GA, PSO, L-SHADE, and
LSHADE-EpSin, as well as, newly introduced methods like
WOA, SCA, HHO, and EO were also used to solve the same
experimental suite for comparison purpose. For fair compar-
ison, all the algorithms were run with a maximum of 1000
iterations (30000 function evaluations). The algorithms
were programmed in MATLAB 8.0.604 (2014b) 64-bit ver-
sion and executed on computation environment of Intel Core
i7 CPU 2.00GHz, 2.5GHz, 8GB RAM and 64-bit operating
system. Besides the parameters of the selected algorithms
presented in Table 2, the common settings include popula-
tion size (N = 30), maximum iterations (tmax = 1000), and
30 independent runs for each optimization problem.

4.2 CEC 2017 test suite analysis

This study employed more complex optimization problems
encompassed in CEC’17 test suite [46] for better per-
formance evaluation of the AOA algorithm. The test-bed
comprises of 30 functions in which function f2 is excluded,
hence 29 functions of different modalities and complexities
are to be employed for the testing of AOA and other coun-
terpart algorithms selected in this study. Functions from
f1 and f3 are unimodal, f4 to f10 are multimodal, f11

to f20 are hybrid, and f21 to f30 are composition func-
tions. All of the test functions maintain a hyperspace of
[−100,100]D . Overall, the CEC’17 test suite is reasonably
complex and dynamic, which can be used for extensive
study of exploration and exploitation capabilities of a meta-
heuristic algorithm.
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Table 4 Statistical results obtained for the CEC’17 functions with Dim=50

Fun. Measure GA PSO L-SHADE LSHADE-EpSin WOA SCA HHO EO AOA

f1 Mean 4.52E+10 1.34E+03 9.14E+09 8.60E+10 8.47E+08 2.57E+10 6.63E+07 6.03E+03 2.50E+02

Std. Dev. 8.37E+09 1.38E+06 1.12E+09 2.26E+09 2.31E+09 8.40E+09 1.21E+08 1.46E+05 7.74E+08

f3 Mean 3.55E+08 1.12E+05 1.30E+05 1.24E+05 2.34E+05 1.75E+05 1.34E+05 1.15E+05 2.01E+05

Std. Dev. 7.05E+08 3.48E+04 4.88E+04 1.11E+04 3.73E+04 2.04E+04 1.39E+04 2.57E+04 5.32E+04

f4 Mean 1.83E+04 5.10E+02 7.56E+02 1.04E+04 2.39E+03 1.10E+04 8.22E+02 5.50E+02 4.80E+02

Std. Dev. 3.06E+03 4.47E+01 1.11E+02 1.58E+03 4.12E+02 1.71E+03 6.33E+01 5.14E+01 7.57E+01

f5 Mean 8.37E+02 7.61E+02 6.91E+02 9.05E+02 9.00E+02 8.02E+02 7.50E+02 6.18E+02 6.00E+02

Std. Dev. 2.72E+01 4.00E+01 2.62E+01 1.25E+01 7.95E+01 3.43E+01 1.75E+01 4.00E+01 3.04E+01

f6 Mean 6.61E+02 6.45E+02 7.42E+02 6.91E+02 6.91E+02 6.84E+02 6.76E+02 6.05E+02 6.37E+02

Std. Dev. 7.59E+00 8.36E+00 2.62E+01 3.36E+00 1.09E+01 6.61E+00 5.16E+00 4.01E+00 6.52E+00

f7 Mean 1.35E+03 1.14E+03 7.42E+02 2.00E+03 1.86E+03 1.77E+03 1.90E+03 1.05E+03 1.14E+03

Std. Dev. 3.11E+01 5.81E+01 2.62E+01 4.65E+01 9.36E+01 6.97E+01 4.95E+01 1.03E+02 9.39E+01

f8 Mean 1.05E+03 9.23E+02 1.02E+03 1.20E+03 1.07E+03 1.07E+03 1.03E+3 9.00E+02 8.51E+02

Std. Dev. 1.91E+01 4.83E+01 2.84E+01 1.17E+01 4.45E+01 2.92E+01 4.63E+01 4.94E+01 3.21E+01

f9 Mean 1.21E+04 1.19E+04 1.49E+03 1.64E+04 2.89E+04 2.99E+04 2.74E+04 3.72E+04 9.26E+03

Std. Dev. 4.55E+03 6.31E+03 1.10E+03 1.08E+03 8.74E+03 3.85E+03 1.87E+03 1.06E+03 4.94E+03

f10 Mean 8.34E+03 4.61E+03 6.53E+03 8.95E+03 7.47E+03 8.48E+03 1.05E+04 4.56E+03 4.06E+03

Std. Dev. 6.80E+02 7.93E+02 4.49E+02 1.56E+02 1.36E+03 5.23E+02 4.77E+02 6.28E+02 1.57E+03

f11 Mean 5.69E+04 1.32E+03 2.15E+03 7.44E+03 4.92E+03 1.21E+04 1.71E+03 7.89E+03 2.15E+05

Std. Dev. 2.60E+04 4.88E+01 6.36E+02 1.65E+03 1.89E+03 2.83E+03 1.06E+02 7.89E+03 7.86E+05

f12 Mean 1.09E+10 1.10E+05 8.00E+07 8.23E+09 1.84E+08 1.00E+09 9.13E+06 1.09E+05 7.42E+04

Std. Dev. 1.42E+09 1.43E+06 5.17E+07 1.20E+09 1.70E+09 6.64E+09 1.49E+08 3.44E+06 6.74E+06

f13 Mean 1.76E+10 9.30E+03 3.58E+06 3.34E+09 1.86E+08 4.53E+09 1.08E+07 2.27E+04 1.41E+04

Std. Dev. 8.71E+09 6.85E+03 2.95E+06 1.31E+09 1.37E+08 1.61E+09 1.38E+07 9.09E+04 1.66E+04

f14 Mean 6.34E+07 3.96E+04 2.86E+04 2.53E+06 2.01E+06 7.95E+05 2.00E+05 9.93E+04 9.03E+03

Std. Dev. 2.97E+07 7.49E+04 1.56E+05 1.76E+10 7.02E+06 4.05E+06 7.53E+05 3.75E+05 4.25E+05

f15 Mean 3.06E+09 6.64E+03 1.74E+05 3.44E+08 1.43E+07 9.78E+08 1.17E+06 3.91E+04 2.01E+04

Std. Dev. 2.22E+09 4.28E+03 1.29E+05 8.90E+07 1.99E+07 3.26E+08 3.57E+05 2.79E+04 1.18E+04

f16 Mean 6.00E+3 2.09E+03 3.03E+03 5.00E+03 3.00E+03 4.02E+03 3.03E+03 2.08E+03 2.05E+03

Std. Dev. 1.39E+03 4.60E+02 2.99E+02 1.13E+02 1.20E+03 2.95E+02 3.47E+02 6.32E+02 4.24E+02

f17 Mean 1.34E+04 3.24E+03 2.46E+03 3.25E+03 4.34E+03 4.82E+03 4.04E+03 3.12E+03 3.07E+03

Std. Dev. 1.02E+04 2.69E+02 1.50E+02 2.09E+02 3.17E+02 3.56E+02 1.76E+02 3.55E+02 3.01E+02

f18 Mean 9.86E+08 1.27E+05 2.86E+05 1.63E+07 3.75E+07 6.65E+06 2.98E+06 9.26E+05 8.85E+04

Std. Dev. 1.52E+08 4.31E+05 1.62E+06 1.16E+07 4.94E+07 1.46E+07 3.91E+06 2.04E+06 1.12E+06

f19 Mean 4.42E+09 1.02E+04 1.05E+06 5.14E+08 2.34E+06 5.55E+08 3.12E+05 1.01E+04 3.07E+03

Std. Dev. 1.11E+09 8.45E+03 7.89E+05 1.42E+08 1.62E+07 2.02E+08 1.44E+06 1.26E+04 4.92E+03

f20 Mean 3.16E+03 3.32E+03 3.09E+03 2.95E+03 3.79E+03 4.18E+03 3.52E+03 3.32E+03 3.32E+03

Std. Dev. 2.51E+02 3.88E+02 1.66E+02 6.64E+01 4.42E+02 2.29E+02 2.92E+02 3.16E+02 3.46E+02

f21 Mean 2.64E+03 2.43E+03 2.54E+03 2.70E+03 2.58E+03 2.62E+03 2.61E+03 2.39E+03 2.35E+03

Std. Dev. 3.79E+01 6.14E+01 3.31E+01 1.57E+01 1.84E+02 3.18E+01 4.35E+01 2.30E+01 3.47E+01

f22 Mean 8.30E+03 9.40E+03 4.22E+03 8.27E+03 1.41E+04 1.70E+04 1.10E+04 1.06E+04 1.23E+04

Std. Dev. 1.60E+03 1.17E+03 2.70E+03 7.67E+02 1.03E+03 2.86E+02 3.84E+02 1.10E+03 2.36E+03

f23 Mean 3.35E+03 3.18E+03 2.89E+03 3.30E+03 3.81E+03 3.70E+03 3.85E+03 3.57E+03 3.18E+03

Std. Dev. 6.28E+01 9.85E+01 2.53E+01 3.49E+01 2.19E+02 4.76E+01 1.54E+02 3.49E+01 1.54E+02

f24 Mean 5.14E+03 2.85E+03 3.21E+03 3.52E+03 3.48E+03 3.46E+03 3.37E+03 2.84E+03 2.75E+03

Std. Dev. 2.15E+01 7.94E+01 2.14E+01 3.18E+01 2.19E+02 8.27E+01 1.31E+02 2.54E+01 2.33E+02

f25 Mean 3.54E+03 3.08E+03 3.07E+03 3.53E+03 3.91E+03 8.92E+03 3.28E+03 3.11E+03 3.16E+03

Std. Dev. 1.06E+02 2.60E+01 2.81E+01 6.31E+01 2.55E+02 1.82E+03 4.94E+01 2.65E+01 4.90E+01
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Table 4 (continued)

Fun. Measure GA PSO L-SHADE LSHADE-EpSin WOA SCA HHO EO AOA

f26 Mean 1.85E+04 5.28E+03 5.53E+03 1.03E+04 7.10E+03 6.11E+03 9.03E+03 3.34E+03 1.98E+03
Std. Dev. 1.97E+03 2.60E+03 2.31E+02 2.94E+02 2.84E+03 6.26E+02 2.11E+03 4.69E+02 2.76E+03

f27 Mean 4.04E+03 3.63E+03 3.28E+03 3.90E+03 4.81E+03 4.79E+03 5.45E+03 3.42E+03 3.20E+03
Std. Dev. 2.32E+02 1.22E+02 1.69E+01 4.46E+01 6.14E+02 1.82E+02 6.73E+02 7.31E+01 2.64E-04

f28 Mean 7.52E+03 3.34E+03 3.86E+03 6.35E+03 5.09E+03 8.26E+03 3.73E+03 3.50E+03 3.46E+03
Std. Dev. 1.13E+03 4.19E+01 3.90E+02 2.12E+02 3.15E+02 8.18E+02 1.28E+02 4.42E+01 1.70E+02

f29 Mean 4.74E+04 4.83E+03 4.68E+03 6.01E+03 8.89E+03 8.50E+03 6.23E+03 4.38E+03 4.29E+03
Std. Dev. 3.68E+04 4.24E+02 2.72E+02 1.42E+02 1.42E+03 6.96E+02 7.39E+02 3.95E+02 3.37E+02

f30 Mean 6.86E+09 2.34E+04 1.13E+06 4.26E+08 1.88E+07 2.10E+08 1.70E+07 2.03E+04 3.42E+03
Std. Dev. 1.36E+09 1.89E+05 5.05E+06 3.98E+07 1.33E+08 2.90E+08 2.67E+07 4.29E+05 3.87E+03

Bold entries highlight the best results achieved by a particular algorithm on a particular problem

4.2.1 Statistical results

When employing 29 test functions of CEC’17 test suite, the
experimental study proved that AOA showed its efficient
search performance for this test-bed. Considering the results
of 30 and 50 dimensional CEC’17 functions (Tables 3
and 4), AOA outperformed other selected metaheuristic
algorithms for 19 and 16 functions, respectively. According
to Table 3, EO achieved better optimum values than
AOA for four functions (f6, f20, f22, and f23), while
it performed equally well as AOA for f29 with 30
dimensions. Similarly, PSO also performed better than AOA
for two 30 dimensional CEC’17 functions (f12 and f18),
while it generated equally better solution as of AOA for
functions f11, f18, and f25. The least performers for these
functions were GA, L-SHADE, LSHADE-EpSin, WOA,
SCA, and HHO. On the other hand, for 50 dimensional
CEC’17 functions (Table 4), AOA produced superior results
than others for 16 functions. On the other hand, AOA
underperformed than EO for f6 and f22, L-SHADE for f7,
f9, f17, f20, and f23, PSO for f3, f11, f13, f15, f25, and
f28. In this context, GA, LSHADE-EpSin, WOA, SCA, and
HHO methods remained the least performers.

To statistically validate the results achieved by AOA,
we performed nonparametric Wilcoxon Ranksum test,
as it serves to produce meaningful comparison between
the proposed and alternative methods. The p-values for
the test are given in Table 5 where �, �, and ≈
indicate that AOA is significantly better than the alternative
method, it is significantly inferior than the other, or
insignificantly different from the competitive method,
respectively. According to Table 5, AOA results remained
significantly better than GA, LSHADE-EpSin, and SCA for
all CEC’17 test functions. On the other hand, for majority of
the test suite, AOA generated significantly better solutions
than WOA and HHO, except for f22 where these methods
remained insignificantly different. In case of PSO and EO,
AOA generated significantly inferior results for five and two

functions, respectively, and AOA remained insignificant for
four functions; rest, AOA remained significantly superior
method than PSO and EO.

4.2.2 Convergence analysis

The convergence ability of AOA and other eight counter-
parts is depicted via Figs. 4 and 5 for CEC’17 test suite
with 30 and 50 dimensions, respectively. In these figures,
the convergence curves for the selected functions are pre-
sented, since graphs for all 29 functions enlarge the length
of the paper significantly. According to convergence curves
for nine selected functions f5, f8, f12, f14, f16, f19, f21,
f26 and f30 the proposed AOA algorithm showed faster
convergence ability. It is because AOA performed search
effectively by maintaining trade-off balance between explo-
ration and exploitation. Specially, in case of f18, f21, f26

and f30 for 30 and 50 dimensions, AOA not only converged
faster than other eight algorithms, it also managed to find
comparatively much better optimum solutions.

4.2.3 Exploration-exploitation analysis

The statistical results of AOA on CEC’17 presented in this
section prove its efficiency, for further extensive analysis, we
also recorded exploration-exploitation ratios during search
process. To analyze the relevant search behaviors, Fig. 6
illustrates exploration and exploitation maintained by AOA
while solving some of the 50 dimensional CEC’17 problems.

As it can be observed from line graphs presented in
Fig. 6 that AOA algorithm started with high exploration
and low exploitation, but mostly later transformed into
exploitation strategy during most of the iterations. However,
on f18 and f20 with 50 dimensions, AOA performed
exploration higher than exploitation during searching for
global optimum location (Fig. 6). Similar behavior was
noticed on f7, f18, and f20 with 50 dimensions (Fig. 6).
When observing the general trend, compared to exploration
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Table 5 Wilcoxon ranksum test results for AOA vs. other algorithms (CEC’17 functions with Dim = 50)

Fun. GA PSO L-SHADE LSHADE-EpSin WOA SCA HHO EO

f1 3.02E-11 4.57E-09 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.08E-11 2.19E-08

� � � � � � � �
f3 4.50E-11 3.08E-08 1.41E-04 1.19E-06 1.52E-03 2.97E-01 7.69E-08 2.61E-10

� � � � � � � �
f4 3.02E-11 5.83E-03 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.18E-09 6.28E-06

� � � � � � � �
f5 3.02E-11 2.42E-02 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.27E-05

� � � � � � � �
f6 3.02E-11 6.38E-03 1.73E-06 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

� � � � � � � �
f7 3.02E-11 8.20E-07 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.01E-07

� � � � � � � �
f8 3.02E-11 6.66E-04 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.08E-11 5.56E-04

� � � � � � � �
f9 3.02E-11 3.02E-11 1.78E-10 3.02E-11 6.07E-11 6.70E-11 3.69E-11 1.29E-09

� � � � � � � �
f10 4.98E-11 8.88E-06 4.50E-11 3.02E-11 7.77E-09 2.15E-10 6.70E-11 6.16E-04

� � � � � � � �
f11 2.30E-06 3.01E-11 7.96E-02 6.73E-05 1.30E-01 3.63E-01 8.73E-10 3.00E-11

� � � � � � � �
f12 3.02E-11 1.41E-09 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 9.88E-06

� � � � � � � �
f13 3.02E-11 2.40E-01 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 9.12E-01

� ≈ � � � � � ≈
f14 3.02E-11 1.86E-09 3.02E-11 3.02E-11 2.92E-09 3.69E-11 2.20E-07 1.75E-05

� � � � � � � �
f15 3.02E-11 6.74E-06 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.71E-01

� � � � � � � �
f16 3.02E-11 8.88E-01 3.02E-11 3.02E-11 3.69E-11 3.02E-11 7.39E-11 6.20E-01

� � � � � � � ≈
f17 3.02E-11 8.19E-01 4.98E-11 3.02E-11 1.96E-10 3.02E-11 8.48E-09 2.97E-01

� ≈ � � � � � ≈
f18 3.02E-11 5.97E-09 2.02E-08 3.02E-11 3.02E-11 3.02E-11 1.16E-07 4.98E-04

� � � � � � � �
f19 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

� � � � � � � �
f20 6.70E-11 1.68E-03 2.37E-10 8.15E-11 1.78E-04 2.15E-10 2.51E-02 1.95E-03

� � � � � � � �
f21 3.02E-11 6.38E-03 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 9.07E-03

� � � � � � � �
f22 5.61E-05 4.18E-09 1.17E-09 3.81E-07 8.30E-01 3.65E-08 5.01E-01 1.39E-06

� � � � ≈ � ≈ �
f23 3.02E-11 3.87E-01 6.05E-07 3.02E-11 4.62E-10 6.72E-10 3.34E-11 8.15E-11

� ≈ � � � � � �
f24 1.69E-09 4.38E-01 4.57E-09 3.02E-11 5.57E-03 3.02E-11 1.33E-10 3.02E-11

� ≈ � � � � � �
f25 3.02E-11 7.38E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 4.44E-07 4.11E-07

� � � � � � � �
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Table 5 (continued)

Fun. GA PSO L-SHADE LSHADE-EpSin WOA SCA HHO EO

f26 3.02E-11 6.55E-04 2.16E-03 3.02E-11 3.02E-11 3.02E-11 1.29E-09 5.01E-04

� � � � � � � �
f27 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

� � � � � � � �
f28 3.02E-11 7.06E-01 1.78E-10 3.02E-11 1.60E-07 3.02E-11 5.60E-07 9.47E-01

� ≈ � � � � � ≈
f29 3.02E-11 1.95E-03 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.69E-11 2.81E-02

� � � � � � � �
f30 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

� � � � � � � �

and exploitation behavior of AOA, the algorithm maintained
relatively dynamic behavior on CEC’17 functions (Fig. 6).

4.3 Engineering design problems

We further tested AOA for solving four constrained
engineering design problems: tension/compression spring

design, welded beam design, pressure vessel design, and
speed reducer design.

4.3.1 Welded beam design problem

The first problem is to minimize the cost of welded
beam design (Fig. 7). Coello [47] first proposed this

Fig. 4 Convergence curves of competitor algorithms on CEC’17 functions with 30 dimensions
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Fig. 5 Convergence curves of competitor algorithms on CEC’17 functions with 50 dimensions
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Fig. 6 Exploration and exploitation phases in AOA on the CEC’17 functions with 50 dimensions
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Fig. 7 Welded beam design problem

problem, since then it is used as benchmark for performance
evaluation of optimization methods. The cost is optimized
subject to shear stress (τ ), bending stress (σ ) in the beam,
buckling load on the bar (Pb), end deflection of the
beam (δ), and side constraints. The four decision variables
are h(x1), l(x2), t (x3), b(x4). Appendix A provides
mathematical details of the problem.

The results of AOA on welded beam problem are
presented in Tables 6 and 7. The best solution obtained by
AOA and other counterparts are given in Table 6, whereas

Table 6 Best solution obtained from competitor algorithms for the
welded beam problem

Algorithm h l t b fcost

GA 0.2372 6.1252 8.1687 0.29 2.6740

PSO 0.2843 7.5333 7.6664 0.3274 3.2731

L-SHADE 0.2389 3.4067 9.6383 0.2901 2.0701

LSHADE-EpSin 0.2884 3.1057 9.3491 0.2999 2.0157

WOA 0.329 2.5471 6.8078 0.3789 2.3584

SCA 0.1947 3.7831 9.1234 0.2077 1.7796

HHO 0.2134 3.5601 8.4629 0.2346 1.8561

EO 0.2057 3.4705 9.0366 0.2057 1.7449

AOA 0.2057 3.4705 9.0366 0.2057 1.7249

Bold entries highlight the best results achieved by a particular
algorithm on a particular problem

Table 7 Results obtained from competitor algorithms for the welded
beam problem

Algorithm Best Mean Worst Std. Dev.

GA 2.6740 2.5324 2.0410 3.30E+01

PSO 3.27314 3.57351 4.02801 4.00E-01

L-SHADE 2.0701 2.1361 3.2226 5.88E+01

LSHADE-EpSin 2.0157 2.4165 2.8978 4.49E+01

WOA 2.3584 2.5685 2.7862 2.14E-01

SCA 1.7796 1.9326 2.0683 7.40E-02

HHO 1.8561 1.9302 1.9759 6.47E-02

EO 1.7449 1.7555 1.8849 1.86E-03

AOA 1.7249 1.7304 1.8716 2.67E-02

Bold entries highlight the best results achieved by a particular
algorithm on a particular problem

statistical comparison is presented in Table 7. According to
the comparative results, AOA achieved optimum parameter
values resulting in best cost function value 1.72485 for
this particular design problem. Moreover, AOA also showed
better convergence ability than other eight counterparts
while solving this problem (Fig. 7b).

Fig. 8 Tension/compression string design problem
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Table 8 Best solution obtained from competitor algorithms for the
tension/compression spring problem

Algorithm d D N fcost

GA 0.0598 0.4121 9.1320 0.019824

PSO 0.0582 0.7952 5.2794 1.733190

L-SHADE 0.0555 0.4706 7.4552 0.018662

LSHADE-EpSin 0.0592 0.4983 8.8980 0.017227

WOA 0.0507 0.3339 12.7645 0.012683

SCA 0.0500 0.3171 14.1417 0.012797

HHO 0.0562 0.4754 6.6670 0.013016

EO 0.0512 0.3445 12.0455 0.012682

AOA 0.0508 0.3348 11.7020 0.012681

Bold entries highlight the best results achieved by a particular
algorithm on a particular problem

4.3.2 Tension/compression spring design problem

The second problem is to minimize weight of the spring
(Fig. 8) based on certain constraints; such as, outside
diameter limits, surge frequency, minimum deflection, and
shear stress. The detail of this problem is well explained in
[48]. The problem consists of three independent variables
d or x1 (wire diameter), D or x2 (coil diameter), and P

or x3 (number of active coils). The mathematical model of
tension/compression spring design problem is provided in
Appendix B.

On this problem also, AOA generated best parameter
values among other competitive algorithm (Table 8).
Table 9 suggests that the objective function value for
tension/compression spring design achieved by AOA
(0.01268) is lower than the ones achieved by eight other

Table 9 Results obtained from competitor algorithms for the
tension/compression spring problem

Algorithm Best Mean Worst Std. Dev.

GA 0.019824 0.028191 0.034820 2.45E+01

PSO 1.733190 1.143211 1.745412 8.48E+05

L-SHADE 0.018662 0.019992 0.022592 1.48E+02

LSHADE-EpSin 0.017237 0.016214 0.020034 1.01E+01

WOA 0.012683 0.014709 0.017211 2.30E-03

SCA 0.012807 0.013859 0.015869 4.30E-04

HHO 0.013026 0.014160 0.016034 1.64E-03

EO 0.012682 0.013536 0.015711 2.20E-04

AOA 0.012681 0.013369 0.015625 7.44E-04

Bold entries highlight the best results achieved by a particular
algorithm on a particular problem

Fig. 9 Speed reducer design problem

algorithms. The convergence ability of AOA and other
algorithms is illustrated via Fig. 8b.

4.3.3 Speed reducer design problem

The third engineering design optimization problem taken in
this study is speed reducer design problem (Fig. 9). Here,
an optimization method is to optimize or minimize the
weight of the mechanical device based on certain constraints
associated with multiple components such as gear teeth
bending stress, surface stress, shafts stresses, and transverse
deflections of the shafts [49]. The weight is calculated with
the help of seven variables, respectively, face width (b or
x1), teeth module (m or x2), pinion teeth number (z or x3),
first shaft length between bearings (l1 or x4), second shaft
length between bearings (l2 or x5), and first diameter (d1

or x6) and second shafts (d2 or x7). Appendix C provides
mathematical expression of the problem.

The proposed AOA algorithm generated optimum values
for the design parameters of speed reducer problem,
compared to rest of the methods applied (Table 10). This
resulted in best objective design value 2.995E + 03 against
the counterpart methods (Table 11). The convergence graph
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Table 10 Best solution
obtained from the competitor
algorithms for the speed
reducer problem

Algorithm X1 X2 X3 X4 X5 X6 X7 fcost

GA 3.5592 0.7133 19.659 7.9365 8.0197 3.6719 5.3276 3.73E+03

PSO 3.5307 0.7251 23.7382 8.0033 7.9409 3.8991 5.4332 5.60E+03

L-SHADE 3.3626 0.7418 26.2003 7.5158 8.2479 3.8144 5.2271 4.34E+03

LSHADE-EpSin 3.5987 0.7358 19.8452 7.4775 7.9874 3.4014 5.2777 3.31E+03

WOA 3.4975 0.7 17 7.4863 7.8054 3.7245 5.2853 3.68+E02

SCA 3.4935 0.7 17 7.3 7.8 3.3671 5.2798 3.01E+03

HHO 3.4981 0.7 17 7.6398 7.8 3.3582 5.2853 3.00E+03

EO 3.4976 0.7 17 7.3 7.8 3.3501 5.2857 3.00E+03

AOA 3.4976 0.7 17 7.3 7.8 3.3501 5.2857 3.00E+03

Bold entries highlight the best results achieved by a particular algorithm on a particular problem

presented in Fig. 9b also shows that AOA converged to a
better optimum location than the competitive algorithms.

4.3.4 Pressure vessel design problem

Lastly, the fourth engineering design problem considered
in this study is pressure vessel design problem (Fig. 10).
The problem is to minimize the cost of pressure vessel
design [50]. The cost is optimized with the help of four
design variables: Ts or x1 (shell thickness), Th or x2 (head
thickness), R or x3 (inner radius), and L or x4 (cylinder
length). The mathematical model of the speed reducer
design problem is described in Appendix D.

According to the results of pressure vessel design
problem (Table 12), the proposed approach AOA achieved
parameter settings. The objective function value achieved by
AOA was 5.90E + 03 which is better than other algorithms
applied on this problem (Table 13). Figure 10b also suggests

Table 11 Results obtained from competitor algorithms for the speed
reducer problem

Algorithm Best Mean Worst Std. Dev.

GA 3.73E+03 8.14E+03 1.73E+04 4.15E+03

PSO 5.60E+03 6.93E+03 8.84E+03 1.70E+03

L-SHADE 4.34E+03 3.18E+04 6.00E+04 2.10E+04

LSHADE-EpSin 3.31E+03 2.28E+04 7.47E+04 2.39E+04

WOA 3.68E+02 4.13E+02 3.68E+03 1.09E+03

SCA 3.01E+03 3.14E+03 3.34E+03 9.03E+01

HHO 3.00E+03 3.89E+03 4.45E+03 7.82E+02

EO 3.00E+03 3.00E+03 3.00E+03 1.37E-12

AOA 3.00E+03 3.00E+03 3.00E+03 1.22E-12

Bold entries highlight the best results achieved by a particular
algorithm on a particular problem

that AOA maintained efficiency convergence ability on this
problem as well.

The statistical significance of the proposed method
against others in case of engineering problems is reported
in Table 14 via p-values generated using nonparametric

Fig. 10 Pressure vessel design problem
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Table 12 Best solution obtained from the competitor algorithms for
the pressure vessel design problem

Algorithm X1 X2 X3 X4 fcost

GA 0.9187 0.8199 46.3430 167.3579 1.67E+04

PSO 1.6186 0.6296 59.2820 146.9644 1.70E+04

L-SHADE 0.8525 0.5775 56.3105 65.7572 7.67E+03

LSHADE-EpSin 0.9330 0.6982 59.9952 47.5678 6.85E+03

WOA 0.9730 0.6512 50.6804 93.0377 7.11E+03

SCA 0.8951 0.4579 44.8371 147.3388 6.40E+03

HHO 0.9833 0.4758 49.9297 98.9036 6.39E+03

EO 0.7929 0.3914 41.1773 188.3950 5.91E+03

AOA 0.7900 0.3899 41.0226 190.4405 5.90E+03

Bold entries highlight the best results achieved by a particular
algorithm on a particular problem

Table 13 Results obtained from competitor algorithms for the pressure
vessel design problem

Algorithm Best Mean Worst Std. Dev.

GA 1.67E+04 3.63E+04 6.03E+04 1.27E+04

PSO 1.701E+04 2.431E+04 3.559E+04 9.91E+03

L-SHADE 7.67E+03 1.47E+04 3.48E+04 7.74E+03

LSHADE-EpSin 6.85E+03 1.87E+05 1.61E+06 5.00E+05

WOA 7.11E+03 1.05E+04 1.35E+04 3.23E+03

SCA 6.40E+03 7.00E+03 8.22E+03 4.30E+02

HHO 6.39E+03 6.61E+03 6.89E+03 2.54E+02

EO 5.91E+03 6.53E+03 7.30E+03 3.98E+02

AOA 5.90E+03 6.52E+03 6.60E+03 4.31E+02

Bold entries highlight the best results achieved by a particular
algorithm on a particular problem

Wilcoxon Ranksum test. In Table 14, �, �, and ≈ indicate
that AOA is significantly better than the alternative method,
it is significantly inferior than the other, or insignificantly
different from the competitive method, respectively. The
p-values suggest that AOA produced significantly better
results than GA, PSO, L-SHADE, LSHADE-EpSin, WOA,
and HHO on all engineering design problems. On the
other hand, when compared with SCA results, AOA results
were significantly better than SCA for three engineering
problems except welded bean design problem. However,
AOA remained insignificantly different from EO on all
engineering design problems.

5 Conclusion and future works

Generally, different critical considerations regarding the
design and performance of an optimization method are
simplicity, robustness, and flexibility. Appropriately dealing
these features, an optimization algorithm can be made
widely acceptable in the research community. In this
connection, recently introduced metaheuristic algorithms,
especially those inspired by physics, have produced
interesting results. This study proposes a new physics-
based metaheuristic algorithm that mimics the Archimedes
law, called Archimedes optimization algorithm (AOA).
In the design of AOA, important criteria related to
the simplicity, efficiency, adaptability, and flexibility are
effectively ensured. AOA is not only simple, as it holds
few control parameters, yet it is robust because the
proposed approach can solve optimization problems by
generating objective function values with minimum error.
The AOA algorithm also maintains ability to adapt its
pool of candidate solutions for avoiding trap in the
suboptimal locations. The search efficacy of the proposed

Table 14 Wilcoxon ranksum test results for AOA vs. other algorithms (CEC’17 functions with Dim = 50)

Problem GA PSO L-SHADE LSHADE-EpSin WOA SCA HHO EO

Tension Spring Design 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.57E-10 3.50E-09 1.49E-01

� � � � � � � ≈
Welded Beam Design 1.21E-12 3.01E-11 3.01E-11 3.01E-11 2.26E-03 1.09E-01 3.64E-02 1.86E-01

� � � � � ≈ � ≈
Pressure Vessel Design 1.33E-11 1.57E-11 1.89E-11 1.82E-11 1.14E-11 1.52E-11 1.53E-11 6.92E-07

� � � � � � � �
Speed Reducer Design 3.02E-11 3.02E-11 3.02E-11 6.70E-11 5.49E-11 1.64E-05 8.31E-03 2.84E-01

� � � � � � � ≈
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approach was tested on complex test functions and four
constrained engineering optimization problems. Based on
the results, it is evident that AOA not only produced the
high quality solutions but also proved its efficiency in
finding the global optimum solution faster than several
other recently introduced counterparts selected in this
study. The AOA algorithm outperformed well-established
optimization methods like GA and PSO, state-of-the-art
like L-SHADE and LSHADE-EpSin, and other recently
introduced methods like WOA, SCA, HHO, and EO.
The proposed algorithm exhibited robust search efficiency
by balancing exploration and exploitation abilities. The
promising solutions on multimodal and composite functions
confirmed its exploration, whereas its exploitation was
validated by the results of unimodal landscapes.

Future potential research directions related to the
proposed AOA involve application on solving more real-
world problems. This will help further validate that the
algorithm is flexible to generate optimum solutions on a
variety of optimization problems.
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Appendix A: Welded beam design problem

Consider x = [x1x2x3x4] = [h l t b]

Minimize f (x)=1.10471x2
1x2+0.04811x3x4 (14.0+x2)

Subject to:

g1 (x) = τ (x) − 13600 ≤ 0

g2 (x) = σ (x) − 30000 ≤ 0

g3 (x) = x1 − x4 ≤ 0

g4 (x) = 0.10471
(
x2

1

)
+0.04811x3x4 (14+x2)−5.0 ≤ 0

g6 (x) = δ (x) − 0.25 ≤ 0

g7 (x) = 6000 − pc (x) ≤ 0

where

τ (x) =
√

(τ ′) + (2τ ′τ ′′)
x2

2R
+ (τ ′′)2

τ ′ = 6000√
2x1x2

τ ′′ = MR

J

M = 6000
(

14 + x2

2

)

R =
√

x2
2

4
+

(
x1 + x3

2

)2

j = 2

{
x1x2

√
2

[
x2

2

12
+

(
x1 + x3

2

)2
]}

σ (x) = 504000

x4x
2
3

δ (x) = 65856000(
30 × 106) x4x

3
3

pc (x) = 4.013
(
30 × 106) √

x2
3x6

4
36

196

⎛
⎜⎜⎝1 −

x3

√
30×106

4
(
12×106)

28

⎞
⎟⎟⎠

with 0.1 ≤ x1, x4 ≤ 2.0 and 0.1 ≤ x2, x3 ≤ 10.0

Appendix B: Tension/compression spring
design problem

Consider:

x = [x1x2x3] = [d D N]

Minf (x) = (x3 + 2) x2x
2
1

subject to:

g1 (x) = 1 − x3
2x3

71785x4
1

≤ 0

g2 (x) = 4x2
2 − x1x2

12566
(
x2x

3
1 − x4

1

) + 1

5108x2
1

− 1 ≤ 0

g3 (x) = 1 − 140.45x1

x2
2x3

≤ 0

g4 (x) = x1 + x2

1.5
− 1 ≤ 0

with 0.05≤x1 ≤2.0, 0.25≤x2 ≤1.3, and 2.0≤x3 ≤15.0

Appendix C: Speed reducer design problem

Minf (x)=0.7854x1x
2
2

(
3.3333x2

3 +14.9334x3−43.0934
)

−1.508x1

(
x2

6 + x2
7

)
+ 7.4777

(
x3

6 + x3
7

)
+ 0.7854(

x4x
2
6 + x5x

2
7

)
Subject to:

g1 (x) = 27

x1x
2
2x3

− 1 ≤ 0
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g2 (x) = 397.5

x1x
2
2x3

− 1 ≤ 0

g3 (x) = 1.93x3
4

x2x3x
4
6

− 1

g4 (x) = 1.93x3
5

x2x3x
4
7

− 1 ≤ 0

g5 (x) = 1

110x3
6

√(
745x4

x2x3

)2

+ 16.9 × 106 − 1 ≤ 0

g6 (x) = 1

85x3
7

√(
745x5

x2x3

)2

+ 157.5 × 106 − 1 ≤ 0

g7 (x) = x2x3

40
− 1 ≤ 0

g8 (x) = 5x2

x1
− 1 ≤ 0

g9 (x) = x1

12x2
− 1 ≤ 0

g10 (x) = 1.5x6 + 1.9

x4
− 1 ≤ 0

g11 (x) = 1.1x7 + 1.9

x5
− 1 ≤ 0

with 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤
x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and 5 ≤ x7 ≤
5.5

Appendix D: Pressure vessel design problem

Minf (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4

+19.84x2
1x3

Subject to:

g1(x) = −x1 + 0.0193x

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −πx2
3x4 − (4/3)πx3

3 + 1, 296, 000 ≤ 0

g4(x) = x4 − 240 ≤ 0

0 ≤ xi ≤ 100, i = 1, 2

10 ≤ xi ≤ 200, i = 3, 4
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