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A B S T R A C T

Feature selection (FS) represents an optimization problem that aims to simplify and improve the quality of
highly dimensional datasets through selecting prominent features and eliminating redundant and irrelevant
data to classify results better. The goals of FS comprise dimensionality reduction and enhancing the classifica-
tion accuracy in general, accompanied by great significance in different fields like data mining applications,
pattern classification, and data analysis. Using powerful optimization algorithms is crucial to obtaining the best
subsets of information in FS. Different metaheuristics, such as the Sooty Tern Optimization Algorithm (STOA),
help to optimize the FS problem. However, such kind of techniques tends to converge in sub-optimal solutions.
To overcome this problem in the STOA, an improved version called mSTOA is introduced. It employs the
balancing exploration/exploitation strategy, self-adaptive of the control parameters strategy, and population
reduction strategy. The proposed approach is proposed for solving the FS problem, but also it has been
validated over benchmark optimization problems from the CEC 2020. To assess the performance of the mSTOA,
it has also been tested with different algorithms. The experiments in terms of FS provide qualitative and
quantitative evidence of the capabilities of the mSTOA for extracting the optimal subset of features. Besides,
statistical analyses and no-parametric tests were also conducted to validate the result obtained by the mSTOA
in optimization.
1. Introduction

Optimization can be indicated as a process in which a solution that
minimizes or maximize a problem is found (Heidari et al., 2019). Differ-
ent problems require optimization tools to search for the best solution.
In real life, optimization is present to search for optimal routes, the
best flight according to a specific budget, or to save time (Houssein,
Emam et al., 2022). Metaheuristics are important tools that provide
strategies to create efficient optimization algorithms (Houssein, Helmy
et al., 2022). They can be efficiently carried out to solve challenging
real-world problems by searching for the optimal solution under certain
circumstances (Houssein, Emam et al., 2021; Zamani et al., 2022). It
means that the exact solution is not guaranteed, but the algorithm can
provide one of the best solutions (Hashim et al., 2022; Nadimi-Shahraki
& Zamani, 2022).
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Nowadays, one of the most recent development technologies in
artificial intelligence is machine learning (ML) (Houssein, Abohashima
et al., 2022). The success of ML depends on features extracted from the
data. Herein, feature sets can comprise not only features of relevance
but also noisy and irrelevant information. In feature selection (FS),
the datasets are massive, and the instances are highly dimensional
due to the nature of the data acquisition processes (Deng et al., 2019;
Houssein, Hassaballah et al., 2022). However, features or attributes do
not have equal values. Actually, a certain proportion of features can be
repetitive, irrelevant, or both. FS can be defined as an operation that
chooses a small subset from the relevant features. FS is an essential
technique that helps eliminate irrelevant or redundant features to
provide faster data mining algorithms, minimize data storage space, en-
hance predictive accuracy, facilitate interpretation for the researchers,
and minimize the issue of overfitting. The main difference between FS
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and feature extraction is that in the extraction process, the subset of
features is created by removing the non-desired information (Yadav
et al., 2019).

FS is the crucial step for the preprocessing phase in pattern recog-
nition and data mining problems that focus on filtering features and
selecting a useful subset from an obtained training dataset (Thaher
et al., 2022). The advantages of performing the feature selection in-
clude minimizing the dimensionality curse, reducing the training time
for the construction of a model, overfitting problems avoided and im-
proving the generalization built models. For several medical problems
involving biomedical signal processing, medical image, DNA microar-
ray data, chemical data, and drugs, the collected data from several
medical resources have very high dimensions of feature (Houssein,
Hassan et al., 2022). To overcome these problems, related literature has
demonstrated the positive impact of using feature selection for several
medical domain data.

FS methods used in ML and data-mining can be classified into three
methods (Wah et al., 2018): (1) filter, (2) wrapper, and (3) hybrid or
embedded methods. In filter methods, every feature subset is assessed
by employing an objective function based on the correlation among
features or relevance to a target without using a classifier. In contrast,
wrapper methods use learning algorithms or classifiers to assess the in-
fluence of the selected feature subset, where a group of search strategies
can be performed to reach the optimal feature subset that has the most
significant importance value. The wrapper-based techniques generate
better results when compared to filter approaches (Hastie et al., 2005).
Despite the wrapper methods employed for FS demand more time, they
provide more precise results (Wang et al., 2018). In the same context,
the utilization of metaheuristic algorithms (MAs) can be beneficial by
adapting the fitness function in these algorithms to evaluate the quality
of every feature group of features (Wan et al., 2016). Embedded feature
selection methodologies are suggested to overcome the shortcomings
reported in filter and wrapper methodologies. Contrary to wrapper
approaches, they are efficacious on the computational side. Embedded
approaches account for the classifier’s bias in contradistinction to filter
methods.

There are several metaheuristic algorithms suggested in the state-
of-the-art, for instance, White Shark Optimizer (WSO) (Braik et al.,
2022), Komodo Mlipir (KMA) algorithm (Suyanto et al., 2022), Golden
Jackal Optimization (GJO) (Chopra & Ansari, 2022), Artificial Hum-
mingbird (AHA) algorithm (Zhao et al., 2022), Rat Swarm Optimiza-
tion (RSO) (Dhiman et al., 2021), Chameleon Swarm (CSA) algo-
rithm (Braik, 2021), Archimedes Optimization (AOA) algorithm
(Hashim et al., 2021), Gravitational Search (GSA) algorithm (Rashedi
et al., 2009), and Reptile Search (RSA) algorithm (Abualigah et al.,
2022). The dynamic search behavior and global search capability
discriminate these algorithms, by making superior in solving distinct
optimization issues, specifically FS problems. In the literature, dis-
tinct metaheuristic algorithms were implemented for solving the FS
problem. For instance, whale optimization algorithm (WOA) (Mirjalili
& Lewis, 2016), Moth-flame optimization (MFO) algorithm (Mirjalili,
2015), Teaching learning-based optimizer (TLBO) (Rao et al., 2011),
in addition to Harris hawks optimizer (HHO) (Heidari et al., 2019).
Although many researchers have done significant research on promot-
ing the feature selection methodologies, certain drawbacks were found
in some areas of these suggested methodologies. Actually, the classical
optimization algorithms shows slow converge in the FS area and can
easily trap into the best local solutions (Morales-Castañeda et al., 2020).
Furthermore, the search strategies for these algorithms shows restricted
capabilities, where a gap can be found in switching between the phases
of search, which causes imbalanced performance. For this reason, the
performance of key feature selection is restricted, and differentiating
the relative basic features is challenging. Therefore, there is a recent
direction in the state-of-the-art on feature selection that aims to adjust
or hybridize the present techniques to promote one technique so as to
2

enhance the search effectiveness of another.
Sooty Tern Optimization Algorithm (STOA) simulates the behaviors
of migration and attacking for sooty terns in a real-life (Dhiman & Kaur,
2019); the algorithm has attracted researchers’ attention. Initially,
STOA was tested over 44 benchmark test functions and six constrained
industrial applications. Due to its performance in Dhiman and Kaur
(2019), researchers carried it out on several other problems. For ex-
ample, in Jia et al. (2021), authors introduced a hybrid version that
merges the STOA to differential evolution (DE), called STOA-DE. STOA-
DE was employed for the FS process to enhance the search efficiency
and convergence rate. Singh et al. (2022) employed the STOA in solar
power systems to optimize the parameters of a solar cell/module. In Ali
et al. (2020), STOA is suggested to design optimal model predictive
control (MPC); the method was used to provide the optimal parameters
for MPC and decrease the integral time absolute error (ITAE) of the
frequencies and tie-line power deviations. Although the STOA has
demonstrated satisfactory results, it may still make flaws/weaknesses
which MAs may face in general, like local search problem (Jia et al.,
2021) and STOA cannot make the balancing between local and global
search. From the convergence curves that have been drawn in this
paper (see Section 5.4), for the counterparts algorithms, including the
STOA, specifically in plots F1, F2 and F9. It is observed that STOA, with
a blue marker, gets good fitness values in the early function evaluations
(FE) with fast convergence and high exploration. However, the STOA
does not evolve over the remaining FE results with a low exploitation
rate; it demonstrates that the STOA gets into local regions instead of
searching for the global regions, and the exploration and exploitation
transition need to be boosted.

Thus, to address the previous shortcomings and improve the use of
STOA, this motivates us to introduce a bio-inspired metaheuristic algo-
rithm called the modified Sooty Tern Optimization Algorithm (mSTOA)
for solving complex problems. The introduced mSTOA employs three
strategies: the exploration/exploitation balance strategy, self-adaptive
for control parameters, and population reduction strategy. The perfor-
mance of mSTOA is assessed on popular benchmark test functions and
well-known data sets as a feature selection mechanism. In the mSTOA,
migration is indicated as a seasonal movement for sooty terns from
existing place to another for finding the most abundant and prosperous
food sources to supply adequate energy.

The mSTOA performance is assessed on the benchmark CEC’2020
test suite and nine common FS datasets. Further, the mSTOA is com-
pared against the original algorithm STOA (Dhiman & Kaur, 2019) and
some state-of-the-art algorithmic methods, called the improved multi-
operator differential evolution algorithm (IMODE) (Sallam et al., 2020)
as one of the CEC’2020 competition winners, gravitational search algo-
rithm (GSA) (Rashedi et al., 2009), grey wolf optimizer (GWO) (Mir-
jalili et al., 2014), harris hawks optimization (HHO) (Heidari et al.,
2019), whale optimization algorithm (WOA) (Mirjalili & Lewis, 2016),
and slime mould algorithm (SMA) (Li et al., 2020). According to the
test results, the mSTOA has high performance compared with other
algorithms. In summary, we can formulate the main contributions of
the paper in the following:

• The traditional STOA is enhanced by adding the following mech-
anisms; self-adaptive for control parameters strategy, balancing
exploration/exploitation strategy, and population reduction strat-
egy.

• The mSTOA is introduced as an alternative feature selection
methodology.

• The mSTOA is suggested to enhance its local search ability and
give a solution to the premature convergence issue.

• The proposed mSTOA realized superior results in comparison with
its counterparts.

• Distinct metrics for statistical as well as qualitative analyses assess

the performance for the suggested mSTOA.
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The rest of this paper is presented as following, Section 2 discusses
related work, highlighting several recent related works. The basic
concepts of the Sooty Tern Optimization Algorithm and Support Vector
Machines (SVM) are presented in Section 3. Section 4 demonstrates the
proposed mSTOA describing the Sooty Tern Optimization Algorithm
with GA, new hybrid algorithm, fitness function, and classification ap-
proaches. Section 5 shows the evaluation of the mSTOA in optimization
benchmark problems. Section 6 are presented the results of the mSTOA
for feature selection. Finally, Section 7 discusses the conclusion and
some future directions.

2. Related work

In FS methodologies, it is prospected to get a high accuracy ratio
in the classification of features comprised in the dataset. Reducing
the number of features represents the main objective, and it assists in
decreasing the search space dimensions, which keeps the most relevant
features only (Hussien et al., 2017). In this regard, the FS approaches
are indicated as wrapper and filter (Pinheiro et al., 2012). Herein,
wrapper approaches are employed in identifying the optimal subset
of features. The computational time over large datasets represents the
main disadvantage of these approaches. In filter methods, it is not es-
sential to use classifiers. The FS involves four steps: (1) selection of the
appropriate features. (2) utilizing different metrics for evaluating the
subset. (3) identification of another set. (4) feature validation (Hous-
sein, Saber et al., 2022). On the other side, wrapper-based techniques
show better results when compared to filter approaches (Hastie et al.,
2005). Despite the wrapper approaches for FS demand more time, their
results are more accurate (Wang et al., 2018). To avoid these issues, FS
is adapted to be improved by making them search for the best subset of
features (Wan et al., 2016). The utilization of MAs can be very helpful.
These algorithms employ the fitness function to assess the quality of
each feature group. Different FS approaches have been applied in the
related literature.

FS can be considered an NP-Hard problem because many potential
solutions exist, mainly when the feature domain is of high dimensions.
To provide a proper solution, a binary version of different metaheuris-
tics methods is proposed; such approaches work as wrapper techniques
for FS. Many opportunities have appeared in the FS field for selecting
significant features. In Houssein, Emam et al. (2022), Houssein, Helmy
et al. (2022) and Houssein, Hassaballah et al. (2022), FS can be broken
down into four steps (1) Choose the suitable features, (2) analyze the
subset using various metrics, (3) identify other sets, and (4) feature
validation. Other FS methods (Cai et al., 2018) include wrapper, fil-
ter, and hybrid methods. Nevertheless, the wrapper method produces
more accurate results than those of the filter approach, although it is
more time-consuming. The hybrid method integrates two methods. The
quality of each set of features is evaluated using the fitness function
of MAs, which is a complementary part of FS and machine learning
algorithms. These suggested systems’ success relies on feature relevance
to the target domain (Kılıç et al., 2021).

Many metaheuristics algorithms (Hashim et al., 2022; Houssein,
Saad et al., 2020) are applied for solving the FS problem, such as the
Search and Rescue optimization algorithm (SAR), which is a hybrid
with k-NN, and a wrapper FS method proposed in Houssein, Saber
et al. (2022). It minimizes the search space size, finds the best subset
features, and increases classification accuracy. In the same context,
Henry Gas Solubility Optimizer (HGSO) is merged with boosted HHO
utilizing Heavy-tailed distributions to improve search space (Abd Elaziz
& Yousri, 2021). This approach has been applied to FS problems
for some chemical and UCI datasets. In this study, a developed MA
technique addresses the FS problem and avoids the demerits of classic
FS methods. Thus, more hybrid MAS are increasingly being developed
for this purpose and to improve the quality of results (Abd Elaziz &
3

Yousri, 2021).
Recently, the typical MAs such as particle swarm optimizer (PSO)
(Gupta & Saini, 2017), cuckoo search (CS) (Rodrigues et al., 2013),
bee colony optimizer (BCO) (Hancer et al., 2018), genetic algorithm
(GA) (Kennedy & Eberhart, 1997), enhanced multi-operator differen-
tial evolution (IMODE) algorithm (Sallam et al., 2020), gravitational
search algorithm (GSA) (Rashedi et al., 2009), grey wolf optimizer
(GWO) (Mirjalili et al., 2014), HHO (Heidari et al., 2019), whale
optimization algorithm (WOA) (Mirjalili & Lewis, 2016), and slime
mould algorithm (SMA) (Li et al., 2020) have been employed for FS.
These algorithms have iterative searches in a bounded space for optimal
solutions. While the classical GA (Kennedy & Eberhart, 1997) relies
on natural selection, the CS, BCO, and PSO are obtained from swarm
behaviors. In between those, PSO is a classical approach generally
utilized for optimization issues because it gives low computational cost,
possesses few parameters for tuning, and has a fast convergence. The
PSO is also adjusted to operate with multiple sub-swarms. In the binary
PSO, indicated as BPSO, the movement of particle is in state space and
limited to 0, and 1 in each dimension is suggested. BPSO is utilized
in different problems like location facility, vehicle routing problems,
and feature selection. In Wang et al. (2007), the authors presented a
modified version from the BPSO based on the operator of the mutation
along with genotype–phenotype representation. On the other side, FS
and the parameters of SVM kernel (Huang & Dun, 2008) are improved
simultaneously by PSO.

The application of the MAs combined with machine learning tools
is so common (Hashim et al., 2019; Houssein, Helmy et al., 2021).
They are employed in chemical compound design. Herein, the testing
is carried out using 80 train samples besides to 20 test samples because
the chemical information demands more features. Furthermore, the
algorithms of machine learning are implemented in drug design. The
commonly utilized approaches include support vector machines, the
wisdom of crow, neural networks, k-NN, and deep learning. A popular
application is to predict the molecular compounds’ properties relevant
to virtual screening. The instance that demonstrates the possibility of
using machine learning as a classification tool for many problems in
cheminformatics is presented in Houssein, Neggaz et al. (2021). FS and
support vector machine (SVM) kernel parameters are optimized simul-
taneously (Huang & Dun, 2008). FS has been widely used in various
applications as Bioinformatics has along with history with sequence
analysis. Content and signal analysis are two sorts of challenges that
can be categorized in FS. The content analysis examines a sequence’s
general properties, such as its propensity to code for proteins or its
ability to perform a specific biological function. In contrast, the signal
analysis identifies the sequence’s key motifs as regulatory or gene
structural elements.

The work presented in Abd Elaziz et al. (2020) shows the utiliza-
tion of feature selection methodologies for selecting the essential drug
descriptors. Here, FS has deemed as a problem of multi-objective opti-
mization involving two conflicting goals. Minimizing selected feature
numbers and maximizing the dependency degree for the descriptor.
In Tharwat et al. (2016), it is declared how the FS methods are utilized
in drug development. For the FS phase, the features used are discrim-
inated based on rough set-based methods. At this step, three distinct
rough set-based approaches were employed to select fewer features
from the feature vector: DMFS, QRFS and EBFS. The objective of
employing these algorithmic methods is to diminish the entire number
of features that lead to a reduction of the classification time besides
improving the classification performance. Another example is presented
in Abd Elaziz and Yousri (2021), where FS approaches are presented
and applied to multiple domains primarily to treat the data of high
dimensions. There are diverse FS methods based upon metaheuristic
techniques which have been presented to tackle the issue of FS and
keep away from the drawbacks of conventional FS methods. Feature
selection represents an important complementary part of the machine
learning systems, where the most successful ML approaches highly rely

on the features employed in training.
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On the other hand, in Kılıç et al. (2021), FS can be considered
an NP-Hard problem because many potential solutions exist, mainly
when the feature domain is high dimensional. Under this assumption,
different methods have been suggested using optimization algorithms
as metaheuristics. For instance, a multi-population particle swarm op-
timizer (MPPSO) is suggested for feature selection. In Neggaz et al.
(2020), the authors mentioned that FS is an essential preprocessing
step that helps avoid the advert influence of noisy, misleading, besides
inconsistent features. The proposed method employs a metaheuristic
algorithm (MA) for choosing the prominent features so that they can
simplify and improve the quality of the datasets with high dimensions,
to devise an effective knowledge extraction system. Nevertheless, such
approaches often lack the local optimally issue when applied to datasets
with massively big feature-size due to the considerably large solution
domain. In Hashim et al. (2019), a novel methodology for dimensions
reduction by utilizing Henry gas solubility optimizer (HGSO) to select
the valuable features to improve classification accuracy.

In Hashim et al. (2020), the authors explain that using classi-
fiers in the filter procedure is unnecessary. In the works presented
in Hastie et al. (2005) and Wan et al. (2016), it has been shown
that wrapper-based solutions outperform filter approaches with regard
to the accuracy of results. Although the wrapper approaches for FS
are more time-consuming, they yield more precise results. FS may
be tweaked to be more efficient by identifying the best subset of
attributes to tackle a range of problems. MAs have many advantages;
when they are used in FS, the fitness function assesses the quality
of every set of features. Since learning algorithms are involved in
the FS process, wrapper-based techniques have attracted significant
attention (Cai et al., 2018). Therefore, the performance of learning
algorithms influences the selection of significant features (e.g., a ratio
of correct classification accuracy).

In Hussien et al. (2017), a swarm-based approach utilizing wrap-
per FS has been presented to estimate chemical compound activity.
The optimal subset from the molecular descriptor across the MAO
dataset is chosen using the salp swarm algorithm (SSA). The SSA
is compared with other MA, including the moth-flame optimization
algorithm (MFO), grasshopper optimization algorithm (GOA), and sine–
cosine algorithm (SCA). It is worth noting that SSA, besides the k-NN
classifier, had the best accuracy of 87.35% while keeping 783 chem-
ical descriptors. In Houssein, Hosney et al. (2020), two classification
methodologies, namely, HHO-SVM, besides HHO-kNN, which is based
on the Harris hawks optimizer, have been suggested for the prediction
of the design and discovery of the drug.

In the same context, several techniques for FS are explained; for
instance, in Abd Elaziz et al. (2020), the strategies for selecting medica-
tions based on their features and the importance of chemical descriptors
have been presented. FS can be deemed a problem of multi-objective
optimization that reflects two competing goals: decreasing the number
of features selected and increasing the descriptor dependency degree.
In Liu et al. (2015), many feature extraction approaches have been
presented. To test their prediction performance. During the testing step,
it will be necessary to specify the facial picture view and the recorded
eye-gaze locations.

Moreover, the HHO algorithm with k-NN and SVM using the wrap-
per FS method proposed the best result as in Houssein, Hosney et al.
(2020). It has some disadvantages in achieving the balance between
global and local solutions, so a new version of this algorithm with
genetic operator (Houssein, Neggaz et al., 2021). Also, the Salp swarm
optimization algorithm is proposed with the same idea, but it some-
times cannot achieve the requested balance for the solution (Hussien
et al., 2017). To sum up the existing studies in the state-of-the-art,
Table 1 demonstrates some metaheuristic algorithms besides to ma-
chine learning techniques utilized in Cheminformatics for the design
and discovery of drugs.
4

3. Preliminaries

In the subsequent subsections, we will explain the basics of the
methods that have been used in this paper.

3.1. The algorithm of Sooty Tern Optimization

This section details the mathematical model behind the imple-
mented algorithms, involving the algorithm of Sooty Tern Optimiza-
tion, indicated as STOA (Dhiman & Kaur, 2019). Sooty terns, named
scientifically Onychoprion fuscatus, represent sea birds that exist all over
the world. A vast range of sooty terns comprises species that have
distinct sizes and masses. The sooty tern is described as an omnivorous
bird that eats insects, reptiles, fishes, amphibians, earthworms, and so
on. In order to attract earthworms kept out of sight under the ground,
the sooty tern produces a rain-like sound made with its feet, and it
also uses bread crumbs to attract fishes. Sooty terns generally live in
colonies and use their intelligence in finding and attacking their prey.
The most eminent things about sooty terns are their attacking and
migrating behaviors. Migration is indicated as a seasonal movement
for sooty tern from an existing place to another so as to reach the
most abundant and prosperous food sources that can supply adequate
energy. Such behavior is characterized by the following. Through the
migration, sooty terns are grouped together to travel. The initial po-
sitions from them are different for the avoidance of collisions among
each other. In the grouping, sooty tern travels in the direction of the
fittest sooty tern is indicated as the best survival. In other words, the
sooty tern to lower fitness value than others. According to the fittest
found sooty tern, the initial positions from the other sooty terns can
be updated. A flapping mode in flight is used by sooty terns when
attacking in the air. Such behaviors are formulated in a way associated
with the objective function to be optimized. The rest of the section
explains the mathematical model for the STOA operators.

3.1.1. Migration behavior (exploration)
Collision avoidance. Here, 𝑆𝐴 is utilized in the computation of

positions from the new search agent for the avoidance of collision
between its adjoining search agents (ex., the sooty terns). This process
is performed as follows:

𝐶𝑠t = 𝑆𝐴 × 𝑃𝑠t (𝑧) (1)

where 𝐶𝑠t is the position of a search agent which have not collided
with any other search agent. 𝑃𝑠t (𝑧) indicates the current position for the
search agent. 𝑧 denotes the current iteration, whereas 𝑆𝐴 refers to the
movement of the search agent within a search space, and it is computed
as:

𝑆𝐴 = 𝐶𝑓 −
(

𝑧 ×
(

𝐶𝑓∕MAXFEs
))

(2)

where 𝑧 = 0, 1, 2,… ,𝑀𝐴𝑋FEs . 𝑀𝐴𝑋FEs is the maximum number for
function evaluations, 𝐶𝑓 is a control variable that adjusts the 𝑆𝐴 that
decreases linearly from 𝐶𝑓 till zero. The value of the variable 𝐶𝑓 is
assigned as 2.

Converge toward the best neighbor’s direction. Search agents
converge toward the optimal neighbor’s direction after collision avoid-
ance. This process is conducted by using Eq. (3).

�⃗�𝑠𝑡 = 𝐶𝐵 ×
(

⃖⃖⃖⃖⃖⃖⃗𝑃𝑏𝑠𝑡(𝑧) − 𝑃𝑠𝑡(𝑧)
)

(3)

where �⃗�𝑠𝑡 refers the different locations for search agent, 𝑃𝑠𝑡 towards
the optimal fittest search agent ⃖⃖⃖⃖⃖⃖⃗𝑃𝑏𝑠𝑡. 𝐶𝐵 represents a random variable
that is in charge of a better exploration and it is computed as follows:

𝐶𝐵 = 0.5 × 𝑟𝑎𝑛𝑑 (4)
where rand refers to a random number that lies between the [0, 1] range.
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Table 1
Extensive review on several proposed approaches.

Ref Year Method Dataset Results

(Zainudin et al.,
2017)

2017 Filter-based feature selection
approach as well as other medical
benchmarks that integrated the
relief-f to differential evolution
(DE)for selecting the features of the
highest relevancy.

QSAR
Biodegrada-
tion

An accuracy of 85.4% where there
were only 16 relevant molecular out
of 41 features.

(Hussien et al.,
2017)

2017 Wrapper feature selection for
predicting chemical compound
activity (CCA)

MAO The highest classification accuracy
was 87.35% by only retaining a
number of 783 molecular descriptors
(MDs) out of 1665 features and
introducing the SSA that employed
k-NN as classifier.

(Houssein,
Hosney et al.,
2020)

2020 The HHO-SVM and HHO-kNN were
utilized as classification methods for
predicting the design and discovery
of drugs

MAO and
QSAR
Biodegrada-
tion

For the HHO-k-NN, the best fitness
function values were 97.599% and
84.523% over the MAO and QSAR
Biodegradation datasets, whereas the
HHO-SVM achieved 97.583% and
85.023% over the same datasets,
respectively.

(Martínez et al.,
2019)

2019 Multi-objective optimization
algorithm based FS was suggested for
selecting molecular descriptors over
the QSAR Biodegradation

QSAR
Biodegrada-
tion

An accuracy of 84% and selection
ratio of 37% were reported as the
highest performance over QSAR
Biodegradation dataset.

(Martínez et al.,
2018)

2018 A Bi clustering based method that
aims to decrease number of
molecular descriptors (MD) for the
prediction of chemical compound
Biodegradation where three classifiers
were tested, including, Neural
Network (NN), Random Committee
(RC), and Random Forest(RF)

QSAR
Biodegrada-
tion

The classifier of the best accuracy
was RF which realized 88.81% for
only nineteen MD

(Putra et al.,
2019)

2019 An integration between NN and SVM
was suggested for QSAR modeling

QSAR
Biodegrada-
tion

A correct classification rate of 82%
was reported.

(Dutta et al.,
2019)

2018 An algorithm namely HGSE that
utilizes stochastic graphlet
embedding algorithm (SGE) over
several hierarchical configurations to
deal with molecular graph dataset

MAO With accuracy 95.71%

(Goh et al.,
2018a)

2018 An old neuronal architecture
(Multi-layer perceptron) was fused
with recent architecture through the
deep learning for predicting chemical
activity. Two models including
DeepBioD+ and DeepBioD were
applied to QSAR Biodegradation
dataset

QSAR
Biodegrada-
tion

The accuracy results were 90% and
87.5% for DeepBioD+ and DeepBioD,
respectively.

(Goh et al.,
2018b)

2018 Deep learning model was
implemented for predicting chemical
activity

QSAR
Biodegrada-
tion

An accuracy of 86.7% was reported

(Atwood &
Towsley, 2016)

2016 A graph-structured based data model
was produced by carrying out a
representational deep learning
architecture namely diffusion CNN.

MAO An accuracy rate of 75.14% was
obtained.
s
s
E
n

Updating corresponding to the optimal search agent: Eventu-
ally, a search agent (ex., sooty tern) updates its own position depending
on the taken optimal search agent as follows:

�⃗�𝑠𝑡 = 𝐶𝑠𝑡 + �⃗�𝑠𝑡 (5)

where �⃗�𝑠𝑡 is employed to define the gap between both search agent and
optimal fittest search agent.

3.1.2. Attacking a behavior (exploitation)
Sooty terns are able to modify the velocity and angle of attack; to

perform this change, they move the wing to increase the altitude. To
attack the prey, they move in a spiral in the air; this process is described
as:

𝑥′ = 𝑅 × sin(𝑖) (6)
5

adius 𝑃
𝑦′ = 𝑅adius × cos(𝑖) (7)

𝑧′ = 𝑅adius × 𝑖 (8)

𝑟 = 𝑢 × 𝑒𝑘𝑣 (9)

𝑅adius indicates the radius for each turn in the spiral, 𝑖 denotes a
variable from the [0 ≤ 𝑘 ≤ 2𝜋] range. While 𝑢 and 𝑧 help in defining the
piral, 𝑒 represents the base for the natural logarithm. The constants are
et as 𝑢 = 1 and 𝑣 = 1. The new positions are computing using as a base
qs. (6)–(9). The next equation describes the procedure to compute the
ew positions.

⃗ (𝑧) =
(

�̄� 𝑥
(

𝑥′ + 𝑦′ + 𝑧′
))

⋅ 𝑃− (𝑧) (10)
st 𝑠𝑡 bst
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Fig. 1. Classification task by SVM.

Where 𝑃𝑠𝑡(𝑧) updates the positions from other search agents and
hen retains the optimal solution.

.2. Support vector machines

Support Vector Machines, abbreviated as SVMs, represent a popular
achine learning method (Rodriguez-Perez et al., 2017). It is based

n mapping data by using kernel functions. The main purpose is to
et the optimal solution. An SVM provides a linear model for several
lassifications or regression problems.

SVM indicates an extensively used machine-learning methodology
n Cheminformatics. One of the applications of SVM is the prediction
f toxicity-related qualities such as mutagenic toxicity, HERF block-
ng, toxicity categorization, and phospholipidosis toxicity. Algorithm 1
hows the pseudo-code for SVM 1 while Fig. 1 provides a graphical
xplanation.

Algorithm 1 A SVM Algorithm Pseudo-code
Inputs: Loading the data of training and testing.
Outputs:Calculating accuracy.
Select a value for cost 𝐶 and 𝛤 of SVM.
while (a stopping criterion is not reached) do

Execute train step for SVM on every data point.
Execute classify step for SVM on every test data point.

end while
Return the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

4. The proposed mSTOA

This section explains the suggested mSTOA in detail. The mSTOA
has been proposed to overcome the STOA’s drawbacks. The short-
comings rely on the problem that is solved and involve: (1) slow
convergence, (2) being trapped with sub-optimal regions, together
with (3) an improper equilibrium among exploration and exploitation
phases. The principle steps of mSTOA are formulated as follows:

• Initialization stage: The mSTOA starts the optimization operation
with a population of agents initialized randomly using uniform
distribution as follows:

P𝑖𝑛𝑖𝑡𝑖𝑎𝑙st = 𝐿𝐵𝑖 + rand𝑖
(

𝑈𝐵𝑖 − 𝐿𝐵𝑖
)

𝑖 = 1, 2,… , 𝑁𝑃 (11)

where 𝑋initial
𝑖 refers to random initialized 𝑖th solution vector,

𝑈𝐵𝑖, 𝐿𝐵𝑖 refers upper and lower bounds for the 𝑖th solution re-
spectively; further the bounds 𝑈𝐵 ,𝐿𝐵 are problem dependents,
6

𝑖 𝑖
for the 𝑖th portion of the solution, 𝑁𝑃 indicates the population
size while rand𝑖 ∈ [0, 1] symbolizes random value.

• Update stage: A traditional STOA is enhanced by comprising the
subsequent mechanisms:

1. Balancing exploration/exploitation strategy.
2. Self-adaptive for control parameters strategy.
3. Population reduction strategy.

The steps of the suggested mSTOA methodologies are detailed in the
subsequent subsections.

4.1. Strategy for balancing exploration/exploitation

The proposed mSTOA adopts two different exploration strategies;
the main idea of these strategies is adopted from Houssein, Çelik et al.
(2022) to boost the introduced mSTOA performance.

The introduced strategies retain both diversity and convergence
in the evolutionary process. Specifically, the first method reduces the
population diversity and further concentrates on exploiting the search
space nearer population best solutions within the population in the
traditional STOA. The second moderate strategy targets to enhance
the search process through a combination of the stochastic nature
represented in a stochastic selection and the local random walk for
directing the search operation to exploit a neighborhood for the current
solution. Further, a newly proposed method called the self-adaptive
control method is applied to the two inherited strategies. It adjusts
the adaptive parameters and guarantees a soft balance and transition
between the exploration/exploitation stages, considering the various
search space.

• Stochastic moderate exploration/exploitation strategy:
This strategy is inherited from the study in Das et al. (2009).
It targets to enhance the search process through a combination
of the stochastic nature represented in a stochastic selection
and the local random walk for directing the search operation
to exploit a neighborhood for the current solution. The moder-
ate strategy has two terms; the distance between two randomly
selected space solutions (exploration), the distance between the
current taken solution, and the optimal one in the population (ex-
ploitation). Additionally, the greedy method called ‘‘DE/target-
to-best/1/bin’’ scheme is applied for the mutation target and
provided in Eq. (12). Where 𝑢𝑗 is the 𝑗𝑡ℎ portion of the newly
generated solution, 𝑋𝑖,𝑗 indicates the 𝑗𝑡ℎ portion of the current 𝑖𝑡ℎ
solution. F1 and F2 refer to the scaling factors, 𝑃𝑠𝑡(𝑗) refers to the
𝑗𝑡ℎ position of the best solution, and 𝑋𝑟1 −𝑋𝑟2 are two solutions
chosen randomly from between all population’s solutions.

𝑢𝑗 = 𝑋𝑖,𝑗 + 𝐹1 × (𝑋𝑖,𝑗 − 𝑃𝑠𝑡(𝑗)) + 𝐹2 × (𝑋𝑟1 −𝑋𝑟2). (12)

• Stochastic short exploration strategy:
This strategy aims to reduce population diversity. It simulates
the idea in Ćrepinšek and Mernik (2013), further concentrating
on exploiting the search space nearer population best solutions
within the population in the traditional STOA. The short-term ex-
ploration strategy is the attacking behavior operation in Eq. (10)
in the original STOA.
Furthermore, the selection method is based on the adaptive
crossover rate (CR) operator. Thus, this strategy represents a mod-
erate strategy that works between the exploration side for Eq. (12)
and the exploitation side for Eq. (10) to achieve the equilibrium
in the exploration/exploitation phases of the algorithm as follows:

𝑉 𝑒𝑐𝑗 =
{

𝑢𝑗 if
(

𝐶𝑅 ≥ 𝑟𝑎𝑛𝑑 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑
)

𝑤𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(13)

where 𝑉 𝑒𝑐𝑗 is the moderate distance generated solution, 𝑢𝑗 is
𝑡
the mutated target. 𝑗 symbolizes the 𝑗 ℎ part in the solution
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dimension, 𝑗𝑟𝑎𝑛𝑑 refers to a discrete number produced randomly
∈ [1, 𝐷] where 𝐷 symbolizes the dimension from a solution. The
𝑗 = 𝑗𝑟𝑎𝑛𝑑 guarantee that the condition is correct at least once,
i.e., the mutation is performed at least one time, the 𝑤𝑗 represents
the stochastic short exploration strategy and computed as follows:

𝑤𝑗 =
{

𝑃st (𝑧) 𝑖𝑛 𝐸𝑞. (10) if (𝑡 ≤ 𝑟𝑎𝑛𝑑)
𝑋𝑖,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(14)

where 𝑃st (𝑗) represents the exploitation walk of solutions and
explained in Eq. (10), 𝑋𝑖,𝑗 refers to the 𝑗𝑡ℎ portion of the current
𝑖𝑡ℎ solution, rand symbolizes a random number generated across
the range [0,1], the 𝑡 operator control the algorithm walk either
direct the solution to exploit around the promising regions in the
last iteration or maintain the solution useful information through
the early iterations, the 𝑡 is adjusted as follows:

𝑡 =
(

1 − 𝐹𝐸
𝑀𝐴𝑋_𝐹𝐸𝑠

)

𝑒
(

𝑎2∗
(

𝐹𝐸
𝑀𝐴𝑋_𝐹𝐸𝑠

))

(15)

where 𝐹𝐸 symbolizes the current number for function evalu-
ations, while 𝑀𝐴𝑋_𝐹𝐸𝑠 indicates the maximum number for
function evaluations, 𝑎2 is a random number produced by:

𝑎2 =
{

𝑟𝑎𝑛𝑑 if (𝑟𝑎𝑛𝑑 ≤ 1∕2)
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(16)

where rand symbolizes a random number generated over the
range [0,1].

4.2. Self-adaptation of the control parameters in the mSTOA

The control parameters significantly affect optimization algorithms’
performance, especially in the equilibrium between exploration/
exploitation processes (Houssein, Rezk et al., 2022; Oliva et al., 2020).
To set the values of these parameters, a self-adaptive procedure is
required (Houssein, Çelik et al., 2022). The best configuration of the
control variables is unknown and can be tuned for each optimization
problem (Eiben & Schoenauer, 2002). The proposed mSTOA intro-
duces a self-adaptation of control parameters method. In these phases,
stochastic moderate exploration/exploitation strategy, crossover rate
CR, and scaling factors (𝐹1, 𝐹2) are updated adaptively to guarantee a
soft balance and transition among the exploration/exploitation stages
considering the various optimization problems’ search space.

𝐶𝑅 = 𝑟𝑎𝑛𝑑 (17)

The CR is updated with Eq. (17), in case the newly produced
solution is more optimal than the other current solutions as depicted in
Algorithm 2. Otherwise, the CR parameter is updated based on Eq. (18)
as follows:

𝐶𝑅 = 𝑟𝑎𝑛𝑑 × (0.1 − 0.05) + 0.05 (18)

The scaling factors F1 and F2 are generated as follows:

𝐹1 = cos 𝑡 + (𝑟𝑎𝑛𝑑 − 0.5) (19)

𝐹2 = sin 𝑡 + (𝑟𝑎𝑛𝑑 − 0.5) (20)

where 𝑟𝑎𝑛𝑑 indicates uniform distributed random number ∈ [0, 1], 𝑡 is
computed by Eq. (15).

4.3. Population reduction feature

The number of search agents 𝑁𝑃 in population-based algorithms is
vital in adjusting the algorithm convergence rate (Morales-Castañeda
et al., 2021). Further explaining, on the one hand, the small size of
population agents can converge rapidly but, in contrast, raise the proba-
bility of getting into a local optimum. Furthermore, the population with
7

a large agent size converges slower but provides a better exploration of
the search space. The proposed mSTOA applies linear reduction of the
population method as follows:

𝑁𝑃 (𝑡+1) = round
[(

𝑁𝑃max −𝑁𝑃min
𝑀𝐴𝑋−𝐹𝐸𝑠

)

∗ 𝐹𝐸 +𝑁𝑃min

]

(21)

where 𝑁𝑃𝑚𝑎𝑥 refers size for the initial population (𝑁𝑃 ), 𝑁𝑃𝑚𝑖𝑛 sym-
olizes the specified minimum population size, 𝑁𝑃𝑚𝑖𝑛 = 16 in cur-
ent study, 𝐹𝐸 indicates the current number of function evaluations
hereas 𝑀𝐴𝑋_𝐹𝐸𝑠 represents the maximum number for function
valuations.

The mSTOA optimization process steps are formulated in Algorithm
. Furthermore, detailed steps for mSTOA processes exhibited are
rovided in the flowchart of Fig. 2.

.4. Time complexity

A time complexity for the mSTOA is concentrated fundamentally on
he operation of evolving the optimization solution through the position
pdate. Thus, it can be expressed as in the following:

(𝑚𝑆𝑇𝑂𝐴) = (𝑂( mSTOA position update )) (22)

(𝑚𝑆𝑇𝑂𝐴) = 𝑂 (𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦)

+ 𝑂 (𝑆ℎ𝑜𝑟𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦) (23)

(𝑚𝑆𝑇𝑂𝐴) = 𝑂 (𝑁𝑃 ×𝑀𝐴𝑋_𝐹𝐸𝑠) (24)

here 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 refers to the moderate update strat-
gy proposed in (12),

𝑆ℎ𝑜𝑟𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 refers to the short update strategy proposed
n (10), 𝑁𝑃 is the population size, 𝑀𝐴𝑋_𝐹𝐸𝑠 symbolizes the maxi-
um number for function evaluations. It is worthy attention that the

ig-O from both STOA and mSTOA is the same. Hence, the developed
pproach is found to be competitive with the standard STOA with
egard to the big-O.

. Experimental series 1: Applying mSTOA in solving CEC’20 test
uit

The experiment utilizes functions from the CEC’2020 benchmark
o assess the proposed mSTOA performance, involving quantitative
nd qualitative measures. The quantitative measures used are: (1) the
ean and (2) the standard deviation (STD) for the optimal solutions
rovided by all the algorithms utilized in the comparison. Further-
ore, the qualitative metrics encompass (1) search history, (2) average

itness history, together with (3) optimization history. To realize fair
omparison assessment, the mSTOA results were compared to other
even MAs, namely Improved Multi-operator Differential Evolution Al-
orithm (IMODE) (Sallam et al., 2020), Gravitational Search Algorithm
GSA) (Rashedi et al., 2009), Grey wolf optimization (GWO) (Mirjalili
t al., 2014), Harris hawks optimizer (HHO) (Heidari et al., 2019),
hale optimization algorithm (WOA) (Mirjalili & Lewis, 2016), Slime
ould algorithm (SMA) (Li et al., 2020) and original STOA. For all

nvestigated algorithms, population size along with maximum number
or function evaluations (FEs) have been chosen as 30 and 10,000,
espectively. Besides that, each algorithm is executed in 30 runs for
very function, eventually, the results are taken up to the average
erformance for these runs with 𝐷𝑖𝑚 = 10. Table 2 gives the parameter

settings applied to every algorithm.
Instead of employing the default parameter values, the Taguchi tun-

ing method is utilized to get the proper parameter values. The compar-
ative algorithms’ parameters are tuned firstly to get the convenient pa-
rameters’ settings providing the best performance. The Taguchi (Byrne,
1986) method depends on the Orthogonal Array (OA) along with
the mean analysis, so as to assess the impact of an algorithm-tuned
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Fig. 2. The flowchart of the proposed mSTOA.
Table 2
Parameter settings in counterpart algorithms.

Algorithm Parameters settings

Common settings The Population size: 𝑁𝑃 = 30
Maximum function evaluations : 𝑀𝐴𝑋𝐹𝐸𝑠 = 30000
Dimensions of problem 𝐷𝑖𝑚 = 10
Independent runs number: 30

IMODE 𝑎𝑟𝑐ℎ_𝑟𝑎𝑡𝑒 = 2.6

GSA G0 = 100, 𝑎𝑙𝑝ℎ𝑎 = 20,
𝑅𝑝𝑜𝑤𝑒𝑟 = 1, 𝑅𝑛𝑜𝑟𝑚 = 2

GWO 𝑎 linearly decreases from 2.3 till 0

HHO 𝐸0 = 1.67, 𝐸1 = 1, 𝑏𝑒𝑡𝑎 = 1.5

WOA 𝛼 = 1

SMA 𝑧 = 0.13

STOA 𝐶𝑓 = 0

parameters regarding statistical analysis of the conducted experiments.
Further, the OA represents fractional factorial matrix from the numbers
organized so that every row refers to the factors’ level at each run,
while the columns represent the factors changed from each run. Table 2
illustrates the best parameters setting in each algorithm that have been
obtained using the Taguchi tuning method .

5.1. Description of the function set for CEC’2020 benchmark

This assessment process for the new version of the Sooty Tern
Optimization Algorithm (STOA), called mSTOA, is discussed in this
section. Consequently, the test problems were chosen from the IEEE
Congress on an Evolutionary Computation (CEC) (Mohamed et al.,
2020) to measure the performance shown by the suggested algorithms.
First of all, the function set for the CEC’2020 benchmark involves 10
8

test functions involving (1) unimodal, (2) multimodal, and (3) hybrid,
besides (4) composition functions. In this regard, the mathematical
formulation and the attributes for this benchmark test are shown in
Table 3; ’Fi*’ indicates the value of optimum global with 𝐷𝑖𝑚 = 10.

Fig. 3 gives a 3D visualization for the functions in the CEC’2020 to
facilitate understanding of the nature and differences of each problem.

5.2. The statistical result analysis

Table 4 gives the mean besides to (standard deviation) STD for the
best values taken from the suggested algorithm and the rest of the
method for every CEC’2020 benchmark function, of 𝐷𝑖𝑚 = 10, the
optimal results (the minimum values) are highlighted in bold.

According to the uni-modal test function F1, it has a uni-modal
space with global region to test the optimizer exploration, the mSTOA
and IMODE reached the optimal solution with a stable performance
reflected on the mean and STD metrics, these measures prove the
convenient way of applying the moderate-distance-strategy with the
adaptive CR parameter, on the other side, the traditional STOA and
GWo show the worst mean and STD values, over the testing methods of
the F2-F4 functions in multi-modal spaces, these functions types have a
global and local regions, such that to test the algorithm exploration and
exploitation, the proposed mSTOA exhibits a comparative performance
compared to the IMODE (CEC’2020 competition winner) algorithm, this
behavior reflects the effective local-optima avoidance obtained after
applying the diversity maintain in population size reduction method
and exploration/exploitation balance in Eq. (13), while the HHO and
GSA algorithms got a limited performance, the hybrid functions include
F5, F6 and F7, the proposed mSTOA obtain a better performance after
the IMODE algorithm; on contrary, the GSA and WOA algorithms show
a limited performance compared to the remaining optimizers, on the
last composition functions symbolized as F8, F9 and F10, the proposed
mSTOA obtain near-optimal solution, however the IMODE algorithm
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Fig. 3. A 3D visualization for the functions of CEC’2020 benchmark.
Table 3
Summary on the function set for CEC’2020 benchmark.

No. Description of function Fi*

Unimodal function

F1 Shifted and Rotated Bent Cigar
Function(CEC2017 F1)

100

Multimodal functions

F2 Shifted and Rotated Schwefel’s
Function(CEC2014 F11)

1100

F3 Shifted and Rotated Lunacek
bi-Rastrigin Function(CEC2017
F7)

700

F4 Expanded Rosenbrock’s plus
Griewangk’s Function(CEC2017
F19)

1900

Hybrid functions

F5 Hybrid Function1 (N =
3)3)(CEC2014 F17)

1700

F6 Hybrid Function2 (N =
4)(CEC2017 F16)

1600

F7 Hybrid Function3 (N =
5)(CEC2014 F21)

2100

Composition functions

F8 Composition Function1 (N =
3)(CEC2017 F22)

2200

F9 Composition Function2 (N =
4)(CEC2017 F24)

2400

F10 Composition Function3 (N =
5)(CEC2017 F25)

2500

show better stability than mSTOA on F9; additionally the superior
performance on F10 is assigned to the mSTOA algorithm.

With respect to mean and STD, the results reflected that the sug-
gested algorithm is actually superior in solving six functions from the
9

CEC’2020 benchmark in comparison to the other competitors. Further-
more, mSTOA took the first rank with regard to Friedman’s average
rank-sum test.

5.3. Boxplot behavior analysis

The boxplot analysis can be utilized in displaying data distribution
characteristics, as too many local minima are associated with that class
of functions. So as to realize a better understanding of the distribution
of the results, Fig. 4 is employed to view the boxplot of results from
every algorithm and function. Boxplots are tools used for depicting the
distributions of data into quartiles. A maximum and minimum indicate
the lowest and largest data points the algorithm reaches, representing
the edges for the whiskers. In this context, the upper and lower quar-
tile are delimited using the rectangles’ ends. Also, a narrow boxplot
indicates a high agreement among data. Fig. 4 reveals the results of
boxplot for ten functions with 𝐷𝑖𝑚 = 10. Additionally, boxplots for the
proposed mSTOA are very narrow, in most functions, in comparison to
the distribution of other algorithms and, therefore, with the most lower
values. The proposed mSTOA acts better than the rest competitors on
the majority of test functions while yielding limited performance on
only F1 and F7.

5.4. Analyses on convergence behavior

Convergence analysis for the suggested mSTOA is presented in
this subsection in contrast to the other competitive algorithms. Fig. 5
depicts the convergence curves for the proposed mSTOA along with
counterparts for the functions of CEC’2020. In most functions, it is
noted that the proposed mSTOA succeeded in reaching a stable point.

In Fig. 5, the convergence curves are depicted for F1 test func-
tion in a uni-modal space. The mSTOA algorithm achieves an early
exploration more clearly than the IMODE, GSA, and STOA algorithms.
The mSTOA convergence follows a degradation phase in the middle
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Table 4
The calculated mean and STD from fitness values on 30 runs taken by other competitor algorithms by using the functions of CEC’2020 (𝐷𝑖𝑚 = 10).

Functions IMODE GWO GSA WOA HHO SMA STOA mSTOA

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

F1 1.00E+02 1.77E−14 3.80E+07 1.08E+08 6.35E+02 6.10E+02 2.75E+06 5.04E+06 6.14E+05 2.58E+05 9.34E+03 3.93E+03 1.66E+08 1.92E+08 1.00E+02 2.71E−05
F2 1.18E+03 5.90E+01 1.60E+03 1.74E+02 2.54E+03 3.12E+02 2.26E+03 3.85E+02 2.03E+03 2.69E+02 1.58E+03 1.58E+02 1.78E+03 2.10E+02 1.30E+03 1.78E+02
F3 7.19E+02 4.08E+00 7.32E+02 1.27E+01 7.16E+02 2.81E+00 7.66E+02 1.47E+01 7.89E+02 1.93E+01 7.24E+02 4.89E+00 7.61E+02 1.45E+01 7.18E+02 3.42E+00
F4 1.90E+03 2.73E−01 1.90E+03 2.46E+00 1.90E+03 4.47E−01 1.91E+03 2.77E+00 1.91E+03 2.75E+00 1.90E+03 3.95E−01 1.90E+03 9.36E−01 1.90E+03 5.68E−01
F5 1.80E+03 1.01E+02 8.17E+03 5.51E+03 5.62E+05 1.10E+05 2.15E+05 2.38E+05 6.00E+04 4.42E+04 7.14E+03 5.13E+03 1.12E+04 5.26E+03 1.82E+03 5.64E+01
F6 1.60E+03 2.68E−01 1.61E+03 2.41E+01 1.66E+03 2.56E+01 1.61E+03 8.51E+00 1.61E+03 9.13E+00 1.60E+03 3.08E−01 1.60E+03 2.67E−01 1.60E+03 2.15E−01
F7 2.11E+03 8.73E+00 8.00E+03 4.41E+03 2.64E+05 2.03E+05 5.66E+04 5.03E+04 2.03E+04 2.66E+04 2.52E+03 3.31E+02 1.21E+04 9.56E+03 2.19E+03 8.79E+01
F8 2.30E+03 2.30E+03 2.31E+03 2.30E+03 2.30E+03 2.30E+03 2.37E+03 2.31E+03 2.31E+03 2.31E+03 2.30E+03 2.25E+03 2.99E+03 2.32E+03 2.30E+03 2.30E+03
F9 2.54E+03 1.09E+02 2.74E+03 1.15E+01 2.65E+03 1.27E+02 2.76E+03 5.75E+01 2.81E+03 1.24E+02 2.76E+03 6.12E+00 2.75E+03 1.06E+01 2.58E+03 1.31E+02
F10 2.93E+03 2.29E+01 2.94E+03 1.49E+01 2.94E+03 1.38E+01 2.95E+03 1.18E+01 2.92E+03 2.44E+01 2.93E+03 2.61E+01 2.94E+03 3.77E+01 2.91E+03 2.31E+01

Friedman mean rank 4.5 2.3 6.8 4.7 6.8 6.2 3.3 1.4

Rank 4 2 7 5 8 6 3 1
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Fig. 4. The resulted boxplot curves for the suggested mSTOA and the competitors taken by the testing functions involved in CEC’2020, with 𝐷𝑖𝑚 = 10.
Table 5
The description of the used datasets.

Dataset No of features No of instance

baseBrainT21 326 73
baseBrainT91 5527 60
Lymphography 18 148
HeartEW 19 270
ZOO 16 101
vote 16 300
ND 326 103
WineEW 13 178
Mofn 13 1000

iterations as a balance exploration/exploitation middle phase. Over the
final iterations, the mSTOA shows comparative exploitation regarding
the other algorithms. In contrast, the STOA, GWO, and WOA algo-
rithms show the worst convergence rates. This performance is due to
applying adaptive parameters to balance short (exploration) and long
(exploitation) walks in the proposed mSTOA. The convergence over
the F2-F4 test methods, are illustrated in Fig. 5(b-d), in multi-modal
spaces, the mSTOA achieves a comparative performance towards the
11
promising regions, which is reflected in the convergence behavior. Fur-
thermore, the mSTOA is working well over the hybrid functions, which
is illustrated in Fig. 5(e-g) by F5, F6, together with F7. Furthermore,
the composition functions symbolized by F8, F9, along with F10, as
depicted in Fig. 5(h-j) illustrated that the suggested mSTOA realized
comparative performance in solving problems of complex spaces in a
very near away to that of a real world. Such quick convergence for
the (near)-optimal solutions is observed and indicates that the proposed
mSTOA is promising to solve optimization issues that demand fast com-
putation, including online optimization issues. Although the mSTOA
realizes the lowest average from the optimal so-far solutions with the
stable convergence in the majority of the test functions; however the
mSTOA has a limit on F2, F9, and late exploration on F10. These limits
can be probable that the mutation CR and the population reduction step
are not working in a proper way. This limit can be handled by a middle
coordination step between the two parameters.

5.5. The qualitative metrics analysis

Although the result analyses shown previously emphasize that the
proposed mSTOA is of high performance, more tests and analyses
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Fig. 5. The resulted convergence curves for the suggested mSTOA and the competing algorithms taken by the testing functions involved in CEC’2020, with 𝐷𝑖𝑚 = 10.
can permit us to deduce robust conclusions concerning the algorithm
performance in real problem-solving. As an example, observing the
particles’ behavior involving the search agents gives more insights into
an optimization searching process and algorithm’s convergence. Also,
qualitative analysis for the proposed mSTOA is depicted in Fig. 6. In
addition, the agent’s behaviors are viewed in Fig. 6, which involve 3D
views for (1) the functions, (2) search history, and (3) average fitness
history, in addition to convergence curves.

The subsequent points are worthwhile in contrast to the previous
qualitative analysis:

• With respect to domain’s topology — the functions in a 3D view :
For the first column in Fig. 6, the function is illustrated in 2-
dimensional space. In this context, the functions have a specific
topology. This gives insights into determining the type/shape of
functions that makes the algorithm realize the best performance.

• Respecting the search history: For the second column in Fig. 6,
search history is displayed for agents, starting from the first
iteration till reaching the last one. Counter lines are used to depict
the search domain, for which we can notice gradation from the
shown blue-colored lines to the red-colored lines, which indicates
an increase in the fitness value. The search history reflects that the
proposed mSTOA, for some functions, can find the areas in which
fitness values are the lowest.

• With regard to average fitness history: For the third column in Fig. 6,
an average fitness history is presented, i.e., the averages for fitness
value which is a function for the iteration number. In this regard,
12
this average gives insights into the agents’ general behavior and
role in the improvement operation. It is noted that all history
curves decrease, reflecting the population’s improvement over
each iteration. Such constant enhancement substantiates a behav-
ior of collaborative searching and boosts the efficiency of the law
of updating particles.

6. Experimental series 2: Application of mSTOA on feature selec-
tion (FS)

For assessing the availability of mSTOA in reality, in this work,
we benchmark the mSTOA by executing the problem of FS. As a
critical phase of the classification problem, FS represents a challenging
operation of tackling the search space of high dimensions. The goal of
FS represents the choice of the fewest representative feature sets from
an original data set to realize the best accuracy of classification, which
means that FS implements a dimensionality reduction procedure. Fur-
thermore, the classification accuracy for the classifier in this processing
is utilized to validate the efficiency of dimensionality reduction.

6.1. Description of the datasets

We have used some standard data set as shown in (see Table 5), that
collected from Machine Learning Repository.1

1 https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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Fig. 6. The resulted qualitative metrics by the testing functions involved in the CEC’2020 benchmark: the 3D views for the functions, the search history, an average fitness history,
along with an optimization history.
6.2. Architecture of FS based on mSTOA

The wrapper FS method is implemented to select the critical fea-
ture from several features and remove unnecessary ones. In this step,
mSTOA-SVM produces 𝑁 swarm agents over the first population. Every
individual is considered a part of molecular features (descriptors) to be
chosen for evaluation. That step is significant in both convergence and
aptitude for the best solution. In this context, the population 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
is produced randomly using:

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖 = 𝑙𝑏𝑖 + 𝜆𝑖 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖), 𝑖 = 1, 2,… , 𝑁 (25)

The lower (𝑙𝑏𝑖) and upper (𝑢𝑏𝑖) bounds for every candidate solution
𝑖 lie in the [0, 1] range. The 𝜆𝑖 represents a random number ∈ [0, 1].
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For selecting a feature subset, the intermediate step named binary
conversion is essential before the fitness evaluation process. Thus, each
solution 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖 undergoes binary conversion (𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑏𝑖𝑛) by using:

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑏𝑖𝑛 =
{

1 if 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖 > 0.5
0 otherwise. (26)

For clearing deeply the operation of conversion, a solution 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖

with ten features given as 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖 = [0.6, 0.2, 0.9, 0.33, 0.15, 0.8, 0.2,
0.75, 0.1, 0.9] is considered. Eq. (26) applies the operation of conversion
to produce a binary vector 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑏𝑖𝑛 = [1, 0, 1, 0, 0, 1, 0, 1, 0, 1], where 1
implies that the features are picked out; otherwise, are not picked out.
This indicates that 1𝑠𝑡, 3𝑟𝑑, 6𝑡ℎ, 8𝑡ℎ, and the last features of original
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Algorithm 2 Pseudo-code for mSTOA.

1: Initialization: Initialize the population of agents Pst 𝑖𝑛𝑖𝑡𝑖𝑎𝑙

2: Initialize the parameter 𝑆𝐴 and 𝐶𝐵
3: Assess the fitness for every agent.
4: Assign Pbst to the best search agent.
5: while (𝐹𝐸 < MAX_FEs) do
6: for each 𝑖 search agent do
7: for (every solution portion (𝑋𝑖,𝑗)) do
8: if the rand ≤ CR or the 𝑗𝑟𝑎𝑛𝑑 = j then ⊳ Update

strategy.
9: 𝑉 𝑒𝑐𝑗 = moderate_distance_strategy(𝑋𝑖,𝑗) Eq. (12)

10: else
11: if t ≤ rand then ⊳ Update strategy.
12: 𝑉 𝑒𝑐𝑗 = short_distance_strategy(𝑋𝑖,𝑗) Eq. (10)
13: else
14: 𝑉 𝑒𝑐𝑗 = 𝑃st (𝑗) Eq. (14)
15: end if
16: end if
17: end for
18: if 𝑓 (𝑉 𝑒𝑐) < 𝑓 (𝑋𝑖) then
9: Update values of CR (Eq. (17)), F1 (Eq. (19)), F2

(Eq. (20))
0: else
1: Update values of CR (Eq. (18)), F1 (Eq. (19)), F2

(Eq. (20))
2: end if
3: end for
4: Update parameter 𝑆𝐴 and 𝐶𝐵
5: Assess the fitness from each search agent.
6: Update Pbst to the optimal search agent.
7: Update 𝑡 with Eq. (15)
8: Call method of feature selection.
9: Call SVMs classifier.
0: 𝐹𝐸 = 𝐹𝐸 + 1
1: end while

datasets represent relevant ones that must be selected, whereas the
others represent irrelevant features that must be ignored. After deter-
mining the selected features subset, the calculation of fitness function
is done for each agent 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖𝑏𝑖𝑛 to decide the quality of the features.

sing the fitness function in the problem of feature selection is of two
ain goals: selecting a less number of feature items and realizing the

mallest classification error or reaching highest classification accuracy.
erein, the optimal solution is indicated as the one with the most
ccurate classification together with selecting the smallest amount of
eatures. The SVM classifier evaluates solutions. At each iteration, a
maller subset of features is selected by each solution, then the SVM
lassification algorithm is employed for training data samples by the
elected feature subset and calculating the accuracy. So, the objective
unction presented in Eq. (27) is used to define the fitness for the 𝑖th
olution as follows:

The solutions provided by mSTOA must be assessed through the it-
rative process to verify their performance. Herein, the fitness function,
eferred to as 𝑓𝑜𝑏𝑗, and employed by the mSTOA is formulated using:

𝑜𝑏𝑗 = 𝛼 + 𝛽
|𝑅|
|𝐶|

− 𝐺. (27)

𝛽 = 𝛼 (28)

𝑓𝑜𝑏𝑗 > 𝑇 (29)

The 𝑅 denotes the classification error rate while the 𝐶 refers to
the number of feature elements within the dataset, 𝛼, and 𝛽 represent
two parameters referring to the significance of classification quality
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(computed by the classifiers), along with the length of the subset,
respectively. The range [0, 1] defines the 𝛼. 𝐺 denotes the classifier’s
group column (i.e., label column in the dataset), and 𝑇 indicates the
condition in which every algorithm is compared to the fitness function
(i.e., the iteration numbers). Accordingly, the 𝑓𝑜𝑏𝑗 has to be larger than
𝑇 to maximize the solution.

The mSTOA-SVM algorithm optimization process steps are formu-
lated in Algorithm 2. Furthermore, steps of mSTOA processes with
details are given in the flowchart of Fig. 7. The SVM is employed as
a classifier in the phase of FS. Regarding the classification strategy, we
employed the hold-out, which specializes 80% as a train set, whereas
the remaining data is assigned as a test set. SVM (Algorithm 1).

Moreover, the FS method based on mSTOA combined with SVM
steps are detailed in Fig. 7.

6.3. Performance measures

The subsequent metrics are employed to estimate the efficiency of
mSTOA performance in each of the two problems: optimization and
feature selection:

• Mean fitness value (Mean): This measure assesses the algorithms
that identifies the relationship between the reduction of selection
ratio and minimization of classification error ratio. The lower
values refers to the better fitness value which is formulated as
in the following:

𝑀𝑒𝑎𝑛 = 1
𝑇

𝑇
∑

𝑖=1
𝑓𝑜𝑏𝑗 (30)

• Best fitness (Best): The best fitness is calculated using the follow-
ing equation:

𝐵𝑒𝑠𝑡 = max
𝑖=1

𝑄𝑖 (31)

• Worst fitness (Worst): The worst fitness is calculated using the
following equation:

𝐵𝑒𝑠𝑡 = min
𝑖=1

𝑄𝑖 (32)

• Standard deviation (STD): the metric is employed to assessing
the algorithm quality by analyzing the results computed across
different runs as formulated in the next equation:

𝑆𝑇𝐷 =

√

√

√

√
1

𝑇 − 1

𝑇
∑

𝑖=1
(𝑓𝑜𝑏𝑗 −𝑀𝑒𝑎𝑛)2 (33)

• Average Selection Size of features (ASS-AD): An average size for
the features selected from the dataset to the overall features is
calculated for 𝑇 times by using the following equation:

𝐴𝑆𝑆 − 𝐴𝐷 = 1
𝑇

𝑇
∑

𝑖=1

𝐴𝑉 𝐺𝑠𝑖𝑧𝑒𝑖

𝐿
(34)

• Sensitivity: Is a performance metric to a binary classification. It
defines the percentage of recognized positive instances, computed
as follows:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(35)

• Specificity: Is the proportion of detected negatives between the
negative population in medical diagnosis, shown as follows:

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(36)

where 𝑇 is the whole number of iterations, and 𝑄 symbolizes
the best score realized so far in each iteration. The 𝐴𝑉 𝐺𝑠𝑖𝑧𝑒𝑖 is the
number of feature elements selected from a dataset, and 𝐿 denotes
the original dataset’s feature count. Moreover, the TP, TN, FN, and
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Fig. 7. The architecture of FS based on mSTOA.
Fig. 8. The obtained convergence curves for the suggested mSTOA and the competitors taken on SVM.
FP symbolize the true positive, true negative, false negative, and false
positive, respectively.

Besides the previously mentioned measures, Wilcoxon’s rank-sum
test (𝑃 -value) (Wilcoxon, 1992) is used which helps to determine
whether the hypothesis is correct or not. If the 𝑝-value is found less
15
than 0.05, the best values for (𝑃 -value) might be considered significant
evidence versus the null hypothesis.

6.4. Statistical results analysis

Firstly, the proposed mSTOA-SVM and other compared algorithms
are assessed on ten medical datasets. The proposed mSTOA has
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Table 6
The values of Mean, STD, Best, Worst, sensitivity, specificity, ASS-AD, and 𝑃 -value taken by the counterparts algorithms based on the SVM over the
first five datasets.
Dataset Algorithms Mean STD Best Worst Attributes Sensitivity Specificity ASS-AD 𝑃 -value

baseBrainT21

mSTOA 0.95 0.052705 98.230 97.998 2957 91.990 90.191 0.00028795 3.5039e−11
STOA 0.94 0.002700 96.100 95.198 1775 89.100 88.100 0.00028780 2.5030e−10
WOA 0.89 0.041000 91.030 89.090 372 86.121 85.090 0.0014495 2.2030e−10
GWO 0.80 0.031623 88.011 85.011 59 84.110 80.010 0.011578 1.1130e−9
HHO 0.91 0.041000 91.030 90.190 2957 86.121 85.090 0.00028795 3.5039e−10
SMA 0.92 0.052000 94.130 93.990 202 88.100 90.191 0.00028795 2.5039e−9
IMODE 0.79 0.021621 90.110 89.110 1073 82.010 81.111 0.00093185 1.0010e−8
GSA 0.76 0.001621 89.110 88.110 1070 81.010 80.111 0.00093180 1.0020e−8

baseBrainT91

mSTOA 0.970 0.155280 97.131 96.190 587 89.291 88.889 0.0017036 0.03125
STOA 0.96182 0.031623 95.101 94.290 310 88.110 87.910 0.0032218 3.4680e−08
WOA 0.89571 0.082435 88.778 87.271 3121 82.134 81.190 0.0014495 2.1031e−10
GWO 0.79 0.021600 86.110 84.001 759 82.100 81.100 0.001578 1.0130e−8
HHO 0.92238 0.054973 90.120 89.090 2127 84.020 83.080 0.00027781 1.5038e−10
SMA 0.901 0.022100 91.031 90.100 2836 66.667 77.778 0.00035261 1.4039e−6
IMODE 0.78 0.020420 89.010 88.102 1179 80.010 79.011 0.00084185 1.0110e−7
GSA 0.76 0.010421 88.010 86.102 1170 80.017 78.011 0.00074185 1.0010e−7

Lymphograph

mSTOA 0.94333 0.035312 94.117 93.120 10 80.010 97.180 0.0003071 0.02100
STOA 0.91 0.016102 92.121 90.170 6 86.110 84.801 0.0032200 2.0181e−07
WOA 0.94236 0.023095 86.160 84.660 14 79.120 78.011 0.061096 0.00019302
GWO 0.92 0.017213 82.333 81.001 5 80.110 79.110 0.001048 1.1020e−8
HHO 0.88 0.015713 87.110 85.160 8 80.111 79.460 0.125 0.00097656
SMA 0.86897 0.025691 89.121 88.110 11 75.130 72.008 0.090909 0.015625
IMODE 0.90667 1.1703e−16 84.667 83.167 7 80.100 79.101 0.090909 0.00019644
GSA 0.91667 1.1503e−16 83.660 82.160 6 80.120 78.101 0.070909 0.00009644

HeartEW

mSTOA 0.92037 0.017568 96.030 95.020 9 88.190 87.870 0.14286 0.015625
STOA 0.91081 0.020620 94.600 92.271 9 87.211 86.711 0.0022208 2.1680e−07
WOA 0.89815 0.023505 88.593 86.185 7 80.130 79.090 0.12788 0.0078125
GWO 0.87407 0.011501 83.010 82.100 7 81.120 80.110 0.11111 0.00048828
HHO 0.87407 0.011712 89.021 88.191 7 80.010 82.081 0.00017780 1.2030e−9
SMA 0.82407 0.033100 92.032 90.120 9 63.660 73.178 0.00032220 1.2019e−4
IMODE 0.8937 0.017568 88.593 87.037 7 78.110 77.110 0.00024085 2.0120e−6
GSA 0.91037 0.017560 87.593 86.034 6 77.110 76.110 0.00014085 2.0020e−5

BreastEW

mSTOA 0.98440 0.0026980 98.123 97.246 16 88.190 83.670 0.0625 2.5562e−06
STOA 0.98509 0.0059206 97.123 96.368 7 85.110 83.211 0.0022208 0.03125
WOA 0.87802 0.01502 88.390 87.180 6 80.031 77.080 0.11780 0.0068023
GWO 0.8607 0.010500 85.000 84.004 6 80.100 79.100 0.11010 0.00047820
HHO 0.87407 0.011712 91.021 90.191 7 80.010 82.081 0.00017780 1.2030e−9
SMA 0.82407 0.033100 93.032 92.120 9 63.660 73.178 0.00032220 1.2019e−4
IMODE 0.89030 0.017568 86.290 84.030 6 77.100 76.100 0.00023074 1.0120e−5
GSA 0.90030 0.007568 85.190 83.030 5 76.120 75.100 0.00013074 1.0020e−6
achieved the highest value, but the GSA algorithm achieved the lowest
results for mean and STD statistical results, as shown in Tables 6,
and 7. The proposed mSTOA-SVM minimizes accuracy and decreases
the number of features. Also, the mSTOA-SVM achieved the best
value for mean, STD, worst, best, and CPU time across all datasets.
Based on the previously presented analysis, the proposed mSTOA-SVM
approach has realized better results than its other counterparts. The
STOA represents the second-ranked algorithm, whereas the GSA comes
in the last rank. With the aim of fair comparison that employs the same
parameter settings, the search agent’s number was assigned as 30 in all
experiments with a different number of dimensions, according to the
different dimensions of datasets.

6.5. Convergence curves analysis

The convergence curves for the suggested mSTOA compared with
other algorithms are presented in Fig. 8 over ten datasets. The proposed
mSTOA reaches a stable point in all datasets, suggesting the ability of
mSTOA to converge well. Furthermore, mSTOA has achieved the largest
average among the best solutions and is the quickest algorithm over
most datasets. This quick convergence for the (near)-optimal solutions
is observed, which makes the suggested mSTOA a promising optimizer
in solving FS problems, and realizes high accuracy compared to other
16

algorithms, as declared in Fig. 8.
6.6. Boxplots curves analysis

The boxplot can be used to evaluate the performance of several
datasets as a non-parametric. However, in descriptive statistics, it is
known that a boxplot is a method to graphically depict groups of
numerical data according to their quartets. Boxplots can have lines
extended in a vertical way from the boxes, denoting variability outside
the lower and upper quartets; thus, the terms ‘‘box-and-whisker dia-
gram’’ and ‘‘box-and-whisker plot’’. The maximum or minimum are the
largest or the lowest data points realized by the algorithm. The plot of
outlines can be shown as individual points. They view variation in the
statistical population’s samples without making assumptions about the
statistical distribution. It is also obvious that space between the various
parts in the box refers to the data’s spread (degree of dispersion) and
skewness and displays outlines. In the experiments, the boxplots for
mSTOA -SVM over the ten datasets are depicted in Fig. 9. The boxplots
of suggested mSTOA are very narrow compared to other distributions
for the competitors in most datasets; thus, it has the most significant
values. Actually, the proposed mSTOA performs well and outperforms
the other algorithms in most of the datasets.

6.7. Discussion

Firstly, the proposed mSTOA and other compared algorithms are
assessed on the CEC’20 benchmark. After that, ten medical datasets

are used to evaluate the proposed mSTOA-SVM performance. For the



Expert Systems With Applications 213 (2023) 119015E.H. Houssein et al.
Table 7
The values of Mean, STD, Best, Worst, sensitivity, specificity, ASS-AD, and 𝑃 -value taken by the counterparts algorithms based on the SVM over the second five
datasets.
Dataset Algorithm Mean STD Best Worst Attributes sensitivity specificity ASS-AD 𝑃 -value

ZOO

mSTOA 0.99330 0.021082 96.020 94.021 9 86.090 85.761 0.1 0.0039063
STOA 0.98095 0.02459 95.010 94.101 10 85.090 84.110 0.0003108 1.3081e−08
WOA 0.86511 0.012035 85.070 83.001 14 79.021 78.010 0.0015090 1.0020e−8
GWO 0.78 0.001701 84.021 83.120 12 81.120 80.120 0.000218 1.0120e−7
HHO 0.931 0.011080 89.100 89.130 13 83.010 80.120 0.00017780 1.5008e−9
SMA 0.90167 0.022100 92.031 90.100 12 66.667 77.778 0.00035261 1.4039e−6
IMODE 0.76 0.021221 85.120 84.102 12 78.120 77.100 0.00172080 1.0020e−5
GSA 0.75 0.011221 84.120 82.102 10 76.120 75.100 0.00072080 1.0020e−6

vote

mSTOA 0.99330 0.021082 99.020 98.021 9 86.090 85.761 0.1 0.0039063
STOA 0.98095 0.02459 97.010 96.101 10 85.090 84.110 0.0003108 1.3081e−08
WOA 0.86511 0.012035 87.070 86.001 10 79.021 78.010 0.0014091 1.0120e−7
GWO 0.77 0.000701 83.001 82.100 10 81.120 80.120 0.000218 1.0100e−6
HHO 0.930 0.021080 89.520 88.120 15 80.112 79.100 0.0000708 1.5109e−7
SMA 0.95160 0.062100 93.031 91.100 12 66.667 77.778 0.00035261 1.4039e−6
IMODE 0.76 0.009220 87.100 86.110 10 78.120 77.100 0.00172080 1.0020e−5
GSA 0.74 0.001220 86.100 84.110 11 77.100 75.100 0.00072080 1.0010e−6

ND

mSTOA 0.99420 0.010081 98.825 97.020 12 85.092 84.460 0.27105 0.0048063
STOA 0.98195 0.03551 96.619 95.951 11 87.199 86.190 0.0004188 1.3090e−07
WOA 0.84501 0.001030 87.170 86.041 11 77.120 76.917 0.0094090 1.0120e−7
GWO 0.77 0.002800 84.200 83.102 11 82.126 81.325 0.000318 1.0120e−7
HHO 0.920 0.091780 88.621 89.621 12 79.910 78.122 0.0008708 1.6129e−7
SMA 0.94169 0.099100 93.730 92.190 12 78.660 77.778 0.00175261 1.4259e−6
IMODE 0.77 0.018220 86.120 85.196 10 79.127 78.120 0.00172080 1.0120e−7
GSA 0.76 0.008221 85.100 84.190 11 77.120 76.120 0.00072080 1.0020e−6

M-of-n

mSTOA 0.994 0.013499 97.920 95.125 10 84.990 83.669 0.27105 0.0048063
STOA 0.98195 0.03551 96.619 95.951 11 87.199 86.190 0.0004188 1.3090e−07
WOA 0.84501 0.001030 89.170 87.041 11 77.120 76.917 0.0094090 1.0120e−7
GWO 0.77 0.002800 84.200 83.102 11 82.126 81.325 0.000318 1.0120e−7
HHO 0.920 0.091780 92.621 91.621 12 79.910 78.122 0.0008708 1.6129e−7
SMA 0.94169 0.099100 93.730 92.190 12 78.660 77.778 0.00175261 1.4259e−6
IMODE 0.77 0.018220 87.120 88.196 10 79.127 78.120 0.00172080 1.0120e−7
GSA 0.74 0.008200 84.120 83.120 12 75.100 75.100 0.00052180 1.0011e−4

WineEW

mSTOA 0.99722 0.0087841 96.920 92.025 5 82.191 80.061 0.10101 0.0028060
STOA 0.97222 1.1703e−16 95.110 94.129 6 84.091 82.021 0.0012088 1.2010e−06
WOA 0.85501 0.00130 89.011 88.140 9 76.021 75.920 0.0074091 1.0021e−6
GWO 0.76 0.001801 84.101 83.012 10 81.122 80.120 0.001313 1.0110e−6
HHO 0.900 0.041731 93.420 92.120 10 77.112 76.021 0.0013718 1.3120e−6
SMA 0.94444 0.011712 94.121 91.031 10 79.121 76.172 0.00015260 1.3209e−2
IMODE 0.75 0.017201 86.011 87.092 9 77.021 75.141 0.00052081 1.0020e−6
GSA 0.74 0.017200 84.011 85.091 8 76.020 74.140 0.00052000 1.0011e−5
CEC’20 benchmark, quantitative and qualitative metrics are used to
assess mSTOA performance. The proposed mSTOA has achieved the
highest value. However, the GSA algorithm achieved the lowest results
for mean and STD statistical results, as illustrated in Table 4 and the
best figure is the minimum convergence curve and boxplot as drawn
in Fig. 8, and Fig. 9. Fig. 3 shows the parameter space used for the
3D visualization of the CEC’20 functions to understand each problem’s
nature and differences. The qualitative metrics are used to draw robust
conclusions concerning the algorithm’s performance in a real problem
to confirm the high performance for the proposed mSTOA, as shown in
Fig. 6.

For FS, the proposed mSTOA-SVM maximizes accuracy and de-
creases the feature number. The mSTOA -SVM achieved the best mean,
STD, the best value, and worst value, along with CPU time as shown in
Tables 6, and 7, over all datasets. The convergence curves is utilized
as evidence to support this fact, which depicts how the mSTOA -
SVM reaches a stable point over ten medical datasets, as illustrated
in Fig. 8. The convergence curves were chosen since they represent
the relationship between the fitness functions and number of FE. They
indicate the best-performing algorithm depending on the comparison
among different approaches. Boxplot analysis indicates that mSTOA -
SVM achieved higher performance than other algorithms, as shown in
Fig. 9.

Based on the previous analysis, the suggested mSTOA -SVM ap-
proach has achieved better results than the other counterparts. The
STOA represents the second-ranked algorithm, whereas the GSA ranks
17

last. For making a fair comparison using the same parameter settings,
the search agent’s number was assigned as 30 in all experiments with
a different number of dimensions.

7. Conclusion and future directions

This paper suggested an alternative method called mSTOA, a modi-
fied version of the original Sooty Tern Optimization Algorithm (STOA).
The mSTOA employs three strategies: the adopted
exploration/exploitation balance strategy, novel self-adaptive for con-
trol parameters, and an inherited population reduction strategy to
improve the original STOA, so that it avoids local optimal and achieves
a soft transition/balance between both exploration and exploitation
stages. The mSTOA performance is validated on the CEC2020 bench-
mark test suite, and a set of graphical representation methods are
provided, i.e., boxplots, convergence curves, and qualitative metrics.
The results demonstrate the superior performance of the mSTOA;
further, the introduced mSTOA is applied to optimize the feature
selection problem using a set of well-known datasets and classification
approaches. The SVM approach was utilized for data classification and
realized a promising average accuracy rate of 98.718% and 85.718%.
Furthermore, the utilization of mSTOA as a feature extractor signifi-
cantly raised the SVM classification performance. Eventually, the ex-
perimental results reported high classification results for the proposed
algorithm in contrast to other methods.

In future directions, the proposed mSTOA can be utilized in the

following future perspectives, such as; (1) solving other large-scale
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Fig. 9. The boxplot curves for the proposed mSTOA and the competing algorithms taken over SVM.
and real-world optimization issues. (2) Solving different real-world and
engineering issues that have unknown search domains. (3) tackle differ-
ent problems involving feature selection, parameter identification, and
task scheduling. (4) solving multi-objective issues can be considered in
future studies.
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