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a b s t r a c t 

This paper proposes a novel metaheuristic algorithm called Chimp Optimization Algorithm (ChOA) in- 

spired by the individual intelligence and sexual motivation of chimps in their group hunting, which is 

different from the other social predators. ChOA is designed to further alleviate the two problems of slow 

convergence speed and trapping in local optima in solving high-dimensional problems. In this paper, a 

mathematical model of diverse intelligence and sexual motivation of chimps is proposed. In this regard, 

four types of chimps entitled attacker, barrier, chaser, and driver are employed for simulating the diverse 

intelligence. Moreover, four main steps of hunting, i.e. driving, chasing, blocking, and attacking, are im- 

plemented. The proposed ChOA algorithm is evaluated in 3 main phases. First, a set of 30 mathematical 

benchmark functions is utilized to investigate various characteristics of ChOA. Secondly, ChOA was tested 

by 13 high-dimensional test problems. Finally, 10 real-world optimization problems were used to evaluate 

the performance of ChOA. The results are compared to several newly proposed meta-heuristic algorithms 

in terms of convergence speed, the probability of getting stuck in local minimums, and exploration, ex- 

ploitation. Also, statistical tests were employed to investigate the significance of the results. The results 

indicate that the ChOA outperforms the other benchmark optimization algorithms. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Metaheuristic Optimization Algorithms (MOAs) have become

ery popular in engineering applications. As the complicacy of

roblems increases, the need for new MOAs becomes obvious more

han before. The reasons for this demand, can be summarized

nto five major motivations: (i) simple concepts and structure,

hich assists scientists to learn MOAs quickly and apply them to

heir problems; (ii) derivation-free mechanisms: this makes MOAs

ighly suitable for real-world engineering problems with costly or

nknown gradient information; (iii) local optima avoidance: they

ave greater abilities to avoid local minima compared to conven-

ional optimization algorithms; (iv) flexibility, which refers to the

ertinence of MOAs to different problems without any specific

hanges in their structure (they assume problems as black boxes);

v) relatively simple and entirely effective hardware implementa-

ion, the majority of MOAs have parallel structures, therefore, hard-

are implementation and parallel computing (e.g. via Filed Pro-

rammable Gate Array (FPGA)) can strongly increase their perfor-
ances. 
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Nature-inspired MOAs solve optimization problems by imitating

hysical or biological phenomena. They can be divided into four

ajor categories: physics-based, evolution-based, swarm-based, 

nd human-based methods. Evolutionary Algorithms (EAs) are usu-

lly inspired by the concepts of natural evolution. The search pro-

ess initiates with a stochastically generated population which is

volved over following generations. The prominent feature of EAs

s that the best individuals are always merged together to create

he subsequent generation of individuals. This let the population

e optimized over the course of generations. The most popular

A is Genetic Algorithms (GA) ( Holland, 1992 ) that simulates the

arwinian evolution concepts. Some other popular EAs are Dif-

erential Evolution (DE) ( Storn & Price, 1997 ), Evolution Strategy

ES) ( Beyer & Schwefel, 2002 ), and Biogeography-Based Optimizer

BBO) ( Khishe, Mosavi, & Kaveh, 2017 ; Kaveh et al., 2019). 

Physics-based methods mimic the physical concepts in the

orld so that a stochastic set of search agents communi-

ate and move entire search space pursuant physical concepts.

ome of the most popular methods are Simulated Annealing

SA) ( Kirkpatrick, Gelatt, & Vecchi, 1983 ), Big-Bang Big-Crunch

BBBC) ( Erol & Eksin, 2006 ), Gravitational Search Algorithm (GSA)

 Rashedi, Nezamabadi-Pour, & Saryazdi, 2009 ), Chaotic Fractal Walk

rainer ( Khishe, Mosavi, & Moridi, 2018 ), and Adaptive Best-mass

ravitational Search Algorithm ( Mosavi, Khishe, Parvizi, Naseri, &

yat, 2019 ). 

https://doi.org/10.1016/j.eswa.2020.113338
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
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Fig. 1. Two different plot of relationship between body size and brain size in various mammals. 

Fig. 2. Phylogeny of super-family Hominoid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Human and chimp DNA. 
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The third group of MOAs includes algorithms inspired by

human behaviours in the literature. Some of the most popu-

lar techniques are Tabu (Taboo) Search (TS) ( Osman, 1993 ), Im-

perialist Competitive Algorithm (ICA) ( Atashpaz-Gargari & Lucas,

2007 ), Teaching Learning Based Optimization (TLBO) ( Rao, Savsani,

& Vakharia, 2011 ), Interior Search Algorithm (ISA) ( Ravakhah,

Khishe, Aghababaee, & Hashemzadeh, 2017 ), Innovative Gunner

(AIG) ( Pijarski & Kacejko, 2019 ). 

The forth group of MOAs includes Swarm Intelligence-based Al-

gorithms (SIAs) that originates from natural behaviour of animals

in their herds, flock, colonies, and schools. The most popular algo-

rithm, in this category, is Particle Swarm Optimization (PSO) ( Han,

Lu, Hou, & Qiao, 2016 ). Two other popular swarm-based algorithms

are Ant Colony Optimization (ACO) ( Dorigo, Birattari, & Stutzle,

2006 ) and Artificial Bee Colony (ABC) ( Basturk & Karaboga, 2006 ). 
Other recently proposed SIAs are Cuckoo Search (CS) ( Yang &

eb, 2009 ), Bat-inspired Algorithm (BA) ( Yang, 2010 ), Firefly Algo-

ithm (FA) ( Yang, 2010 ), Krill Herd (KH) ( Gandomi & Alavi, 2012 ),

rey Wolf Optimizer (GWO) ( Emary, Zawbaa, & Grosan, 2017 ),

WO with Levy ́Flight ( Heidari & Pahlavani, 2017 ), chaotic GWO

 Heidari & Abbaspour, 2017 ), evolutionary population dynamics
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Fig. 4. The first phase of hunting process (exploration). 

Fig. 5. The second phase of hunting process (exploitation). 
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Fig. 6. Mathematical models of dynamic coefficients (f) related to independent 

groups for (a) ChOA1 and (b) ChOA2. 

Table 1 

The dynamic coefficient of f vector. 

Groups ChOA1 ChOA2 

Group1 1.95 −2 t 1/4 / T 1/3 2.5 −( 2log (t)/ log (T)) 

Group2 1.95 −2 t 1/3 / T 1/4 ( −2 t 3 /T 3 ) + 2 . 5 

Group3 ( −3 t 3 /T 3 ) + 1 . 5 0.5 + 2exp[ −( 4 t/T) 2 ] 

Group4 ( −2 t 3 /T 3 ) + 1 . 5 2 . 5 + 2 (t/T) 2 − 2 ( 2 t/T) 

 

 

 

 

 

 

e  
nd Grasshopper Optimization Approaches (GOA) ( Mafarja et al.,

017 ), binary Salp Swarm Algorithm (BSSA) with crossover scheme

 Farisa et al., 2018 ), hybrid GOA and MLP ( Heidari, Farisa, Aljarah,

 Mirjalili, 2019 ), hybrid binary Ant Lion Optimizer (ALO) with

ough set and approximate entropy ( Mafarja & Mirjalili, 2019 ), hy-

rid MLP and Salp Swarm Algorithm (MLP-SSA) ( Khishe & Moham-

adi, 2019 ), improved Monarch Butterfly Optimization (MBO) al-

orithm ( Sun, Chen, Xu, & Tian, 2019 ), Improved Whale Trainer

IWT) ( Khishe & Mosavi, 2019 ), and hybrid Dragonfly Optimization

lgorithm and MLP (DOA-MLP) ( Khishe & Saffari, 2019 ). 

This category of MOAs started to be interesting since PSO

as proven to be very competitive with EAs, human-based, and

hysical-based methods. Totally, SIAs have some advantages over

ther MOAs that are listed below: 
• SIAs memorize search space information over the course of it-

eration while EAs discard any information of the prior genera-

tions. 
• SIAs almost use memory to keep the best solution acquired so

far. 
• SIAs generally have fewer parameters to adjust compare to

other MOAs. 
• SIAs have fewer operators compared to EAs (crossover, muta-

tion, immigration, and so on). 
• SIAs are easier to implement than the other MOA groups. 

In spite of the demand for more function evaluation, the lit-

rature shows that SIAs are highly appropriate for solving real



4 M. Khishe and M.R. Mosavi / Expert Systems With Applications 149 (2020) 113338 

Fig. 7. Two and three-dimensional position vectors and their possible next loca- 

tions. 

Fig. 8. Position updating in ChOA. 
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orld engineering problems since they are able to elude local min-

ma, exploring the search space more complete, and exploiting the

lobal optimum more reliable than any other MOAs. In addition,

he No Free Lunch (NFL) theorem shows that all the MOAs execute

qually on all optimization problems ( Wolpert & Macready, 1997 ).

ence, there are still problems that have not been solved, or they

an be resolved better by new MOAs. The main motivations of this

rticle are these two reasons, in which a novel SIAs is proposed

nd compared to the current well-known MOAs in the literature. 

In spite of the considerable number of recently proposed publi-

ations in this field, there are yet other intelligent swarming be-

aviours in nature that have not obtained merit attention. One

f the amazing swarming behaviours in nature is the Intelligent

roup Haunting (IGH) of chimps. Since there is no research in the

iterature to simulate the IGH of chimps, this article aims to first

iscover the main characteristics of chimps’ IGH. An MOA is then

roposed based on the modelled IGH called Chimp Optimization

lgorithm (ChOA). In addition to NFL theorem underpinning work

otivation, the main reasons for choosing chimps from among nu-

erous swarming behaviour are individual intelligence and sexual

otivation. These two vary from the other hunters in nature. 

Irrespective of the differences between the MOAs, a common

haracteristic is the division of the search producer into two

hases: exploration and exploitation. The exploration phase refers

o the producer of investigating the search space as widely as pos-

ible. A MOA needs to have random operators to stochastically and

lobally discover the search space in order to reinforce this phase.

evertheless, exploitation refers to the local search ability around

he promising areas gained in the exploration phase. Having strong

perators within these two phases or finding a proper balance

etween them is considered a challenging point in the literature

 Mirjalili, 2015 , 2016 ). 

The main differences between the social behaviour of chimps

nd any other flocking behaviours are: 

1) Individuals’ Diversity: In a group of chimps, individuals are not

basically quite similar in terms of ability and intelligence, but

they all perform their tasks as members of a hunting group.

Each individual’s ability can be useful in a special phase of the

hunting event. Therefore, a chimp according to his special abil-

ity takes responsibility for a part of hunt ( Stanford, 1996 ). In

this article, a mathematical model of diverse chimps called in-

dependent chimps is proposed. In other words, various models

with diverse curvatures, slopes, and interception points are uti-

lized to give chimps different behaviours as in natural hunting

duties. Independent chimps can improve the exploration phase

by discovering the searching space more thoroughly. 

2) Sexual Motivation: As well as nutritional advantages of group

hunting, it has also been proved that chimps’ hunting is af-

fected by the probable social benefits of obtaining meat (Stan-

ford et al., 1994). Acquiring meat provides an opportunity to

trade it in return for social favours, e.g. sex and grooming. This

incentive in the final stage causes chimps to forget their re-

sponsibilities in hunting process. Therefore, they try to obtain

meat chaotically. This unconditional behaviour in final stage

lead to improve exploitation phase and convergence rate. 

To sum up, the main contribution of the paper can be catego-

ized as follow: 

� Stage 1: According to the comprehensive background study

in literature, MOAs are categorized into four main groups

as physics-based, evolution-based, swarm-based, and human-

based. The result of this stage was choosing a swarm-based al-

gorithm based on their ability and our target. 

� Stage 2: A comprehensive study has been done to choose a spe-

cial creature that has not been previously modelled and also
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Fig. 9. Position updating mechanism of chimps and effects of |a| on it. 

Fig. 10. The chaotic maps used in the article. 

Table 2 

Chaotic maps. 

No Name Chaotic map Range 

1 Quadratic x i + 1 = x 2 i − c , c = 1 (0,1) 

2 Gauss/mouse x i +1 = { 1 x i = 0 
1 

mod ( x i , 1) 
otherwise 

(0,1) 

3 Logistic x i + 1 = αx i (1 − x i ), α= 4 (0,1) 

4 Singer x i +1 = μ(7 . 86 x i − 23 . 31 x 2 
i 

+ 28 . 75 x 3 
i 

− 13 . 302875 x 4 
i 
) , μ = 1 . 07 (0,1) 

5 Bernoulli x i + 1 = 2 x i ( mod 1) (0,1) 

6 Tent x i +1 = { 
x i 

0 . 7 
x i < 0 . 7 

10 
3 

(1 − x i ) 0 . 7 ≤ x i 
(0,1) 

 

 

 

 

 

 

having special intelligent behaviour. So, the result of this stage

was choosing chimp and it’s Intelligent Group Haunting (IGH). 

� Stage 3: Discovering and modelling the main characteristics of

Intelligent Group Haunting (IGH) of chimps (i.e.: diverse intelli-

gence and sexual motivation) 

� Stage 4: The implementation of four main steps of hunting as

(driving, chasing, blocking, and attacking) 
s  

c  
� Stage 5: Evaluation of the proposed ChOA algorithm by 30

mathematical benchmark functions, 13 high-dimensional test 

problems, and 10 real-world optimization problems. 

The rest of the paper is structured as follows. Section 2 de-

cribes the chimp optimization algorithm developed in the arti-

le. Optimization problems and their experimental results are pre-
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Table 3 

Unimodal benchmark function. 

Function Dim Range f min 

F 1 (x ) = 

∑ n 
i =1 x 

2 
i 

30, 100 [ − 100, 100] 0 

F 2 (x ) = 

∑ n 
i =1 | x i | + 

∏ n 
i =1 | x i | 30, 100 [ − 10, 10] 0 

F 3 (x ) = 

∑ n 
i =1 ( 

∑ i 
j−1 x j ) 

2 
30, 100 [ − 100, 100] 0 

F 4 ( x ) = max i {| x i |,1 ≤ i ≤ n } 30, 100 [ − 100, 100] 0 

F 5 (x ) = 

∑ n −1 
i =1 [100 ( x i +1 − x 2 

i 
) 

2 + ( x i − 1) 
2 
] 30, 100 [ − 30, 30] 0 

F 6 (x ) = 

∑ n 
i =1 ([ x i + 0 . 5]) 

2 
30, 100 [ − 100, 100] 0 

F 7 (x ) = 

∑ n 
i =1 ix 

4 
i 

+ random [0 , 1) 30, 100 [ − 1.28, 1.28] 0 

Fig. 11. Presents the pseudo-code of ChOA. 
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sented and discussed in Sections 3. Finally, Section 4 concludes the

work and suggests directions for further research. 

2. Chimp optimization algorithm 

This section presents and discusses the inspiration of ChOA

method. Afterwards, it provides the mathematical model of the

proposed algorithm. 

2.1. Inspiration 

Chimps (sometimes called Chimpanzees) are one of two merely

African species of great ape. They are as much as the closest to

the humans’ living relatives. As shown in Fig. 1 , the chimps, as

well as the dolphins, have the most similar Brain to Body Ratio

(BBR) to humans. As discussed in Roth and Dicke (2005) mammals

with relatively larger BBR are mostly assumed to be smarter. The

chimp and the human DNA are so similar because they are de-

scended from a single ancestor species (Hominoid) that lived seven

or eight million years ago. Fig. 2 indicates the phylogeny of super-

family Hominoid ( Israfil, Zehr, Mootnick, Ruvolo, & Steiper, 2011 ).
s shown in Fig. 3 , these two species share a 98.8% of their DNAs

 Tomkins & Bergman, 2012 ). 

The chimp’s colony is a fission-fusion society. This kind of soci-

ty is one in which the combination or size of the colony changes

s time passes and members move throughout the environment.

or chimps that live in fission-fusion colonies, group composition

s a dynamic property ( Couzin & Laidre, 2009 ). Considering these

ssues, the independent group concept is proposed. In this tech-

ique, each group of the chimps independently attempts to dis-

over the search space with its own strategy. In each group, chimps

re not quite similar in terms of ability and intelligence, but they

re all doing their duties as a member of the colony. The ability of

ach individual can be useful in a particular situation. 

In a chimp colony, there are four types of chimps entitled

river, barrier, chaser, and attackers. They all have different abil-

ties, but these diversities are necessary for a successful hunt.

rivers follow the prey without attempting to catch up with it.

arriers place themselves in a tree to build a dam across the pro-

ression of the prey. Chasers move rapidly after the prey to catch

p with it. Finally, attackers prognosticate the breakout route of

he prey to infliction it (the prey) back towards the chasers or

own into the lower canopy. These steps of hunting process are

hown in Fig. 4 . Attackers are thought to need much more cog-

itive endeavour in prognosticating the subsequent movements of

he prey, and they are thus remunerated with a larger piece of

eat after a successful hunt. This important role (attacking) corre-

ates positively with the age, smartness, and physical ability. More-

ver, chimps can change duties during the same hunt or keep their

ame duty during the entire process ( Boesch, 2002 ). 

It has been proven that chimps hunt to obtain meat for trad-

ng in social favours such as coalitionary support, sex or grooming

 Stanford et al., 1996 ). So, by opening up a new realm of privileges,

martness may have an indirect effect on hunting. To the best of

ur knowledge, in addition to humans, this social incentives has

een proposed only for chimps. Hence, it would represent a criti-

al difference between chimps and other social predators that de-

end on cognitive ability. This social incentive (sexual motivation)

auses the chimps to act chaotically in the final stage of hunting

rocess so that all chimps abandon their special duties and they

ry to get meat, frantically. Generally speaking, the hunting pro-

ess of chimps is divided into two main phases: Exploration which

onsists of driving, blocking and chasing the prey and Exploitation

hich consists of attacking the prey. These two phases are shown

n Figs. 4 and 5 , respectively. Then, all of these concepts of ChOA

re mathematically formulated in the following section. 

.2. Mathematical model and algorithm 

In this section, mathematical models of independent group,

riving, blocking, chasing and attacking are presented. Correspond-

ng ChOA algorithm is then specified. 

.2.1. Driving and chasing the prey 

As mentioned above, the prey is hunted during the explo-

ation and exploitation phases. To mathematically model driving

nd chasing the prey, Eqs. (1) and ( 2 ) are proposed. 

 = 

∣∣c . x prey (t) − m . x chimp (t) 
∣∣ (1)

 chimp (t + 1) = x prey (t) − a . d (2)

Where t indicates the number of current iteration, a, m , and c

re the coefficient vectors, X prey is the vector of prey position and

 chimp is the position vector of a chimp. a, m , and c vectors are

alculated by the Eqs. (3) –( 5 ), respectively. 

 = 2 . f . r 1 − f (3)
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Fig. 12. Convergence curve of algorithms on the unimodal test functions. 
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Fig. 12. Continued 
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t  

g  
c = 2 . r 2 (4)

m = Chaotic _ value (5)

In which, f is reduced non-linearly from 2.5 to 0 through

the iteration process (in both exploitation and exploration phase).

Where r 1 and r 2 are the random vectors in the range of [0,1]. Fi-

nally, m is a chaotic vector calculated based on various chaotic

map so that this vector represents the effect of the sexual moti-

vation of chimps in the hunting process. A full description of this

vector will be described in detail in the following subsections. In

the conventional population-based optimization algorithm, all par-

ticles have similar behaviour in local and global searches so that
he individuals can be considered as a single group with one com-

on search strategy. However, theoretically, in every population-

ased optimization algorithm, different independent groups that

ave a common goal can be used to have a direct and ran-

om search result at the same time. In the following, indepen-

ent groups of chimp using different strategies to update f will

e modelled mathematically. Updating the independent groups can

e implemented by any continuous function. These functions must

e chosen in such a way that during each iteration f is reduced

 Mirjalili, Lewis, & Sadiq, 2014 ). 

These four independent groups use their own patterns to search

he problem space locally and globally. Also among various strate-

ies which have been tested, two different versions of ChOA with
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Fig. 13. Convergence curve of algorithms on the multimodal test functions. 
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Fig. 13. Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

7  

d  

u

 

s  

t  

f

2

 

a  

p  

t  

t  

p  

s  

(  

c  

a  

c  

i  

c  

b

d
d

 

x
x

 

x  
various independent groups called ChOA1 and ChOA2 are selected

to have the best performance in the benchmark optimization prob-

lems. The dynamic coefficients of f have been proposed in Table

1 and Fig. 6 . In this table, T represents the maximum number of

iterations, and t indicates the current iteration. These dynamic co-

efficients have been chosen with various curves and slopes so that

each independent group has specific searching behaviour for the

sake of improving the performance of ChOA. 

Some points may be considered to understand how indepen-

dent groups are effective in ChOA: 

• Independent groups have different strategies to update f , so

chimps could explore the search space with different capabil-

ity. 
• Diverse and dynamic strategies of f cause balancing between

global and local search. 
• Independent groups contain non-linear strategies such as loga-

rithmic and exponential functions for f , so ChOA could be ef-

fective in solving complex optimization problems. 
• ChOA with independent groups could be adaptable in solving a

wider range of optimization problems. 

To understand the effects of Eqs. (1) and ( 2 ), a two-dimensional

representation of the position vector and a number of possible

neighbours are shown in Fig. 7 a. As can be observed, a chimp in

position ( x,y ) can change its position with respect to prey’s ( x ∗,

y ∗)location. Various locations around the most suitable agent can

be taken considering its current location and changing and setting

the values of a and c vectors. For instance the location of ( x ∗ − x,

y ∗) is obtained by setting a = (1,0), m = (1,1) and c = (1,1). Up-

dated possible locations of a chimp in a three-dimensional space

are indicated in Fig. 7 b. It should be noted that the chimps are
llowed to access any position between the points shown in Fig.

 through the random vectors r 1 and r 2 . So, any chimp can ran-

omly change its location within the space surrounding the prey

sing Eqs. (1) and ( 2 ). 

This concept can be generalized to an n-dimensional search

pace. As mentioned in the previous section, the chimps also attack

he prey with the chaotic strategy. This method is mathematically

ormulated in the following section. 

.2.2. Attacking method (exploitation phase) 

To mathematically model attacking behaviour of chimps, two

pproaches are designed as follows: The chimps are capable of ex-

loring the prey’s location (by driving, blocking and chasing) and

hen encircling it. The hunting process is usually conducted by at-

acker chimps. Driver, barrier and chaser chimps are occasionally

articipate in the hunting process. Unfortunately in an abstract

earch space there is no information about the optimum location

prey). In order to mathematically simulate the behaviour of the

himps, it is assumed that the first attacker (best solution avail-

ble), driver, barrier and chaser are better informed about the lo-

ation of potential prey. So, four of the best solutions yet obtained

s stored and other chimps are forced to update their positions ac-

ording to the best chimps locations. This relationship is expressed

y the Eqs. (6) –( 8 ). 

 Attacker = | c 1 x Attac ker − m 1 x | , d Bar r ier = | c 2 x Bar r ier − m 2 x | , 
 Chaser = | c 3 x Chaser − m 3 x | , d Dri v er = | c 4 x Dri v er − m 4 x | . (6)

 1 = x Attac ker − a 1 ( d Attac ker ) , x 2 = x Bar r ier − a 2 ( d Bar r ier ) , 
 3 = x Chaser − a 3 ( d Chaser ) , x 4 = x Dri v er − a 4 ( d Dri v er ) . 

(7)

 (t + 1) = 

x 1 + x 2 + x 3 + x 4 
(8)
4 
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Fig. 14. Convergence curve of algorithms on the fixed-dimension multimodal benchmark functions. 
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Fig. 14. Continued 
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Fig. 14. Continued 

Table 4 

Multimodal benchmark function. 

Function Range Dim f min 

F 8 (x ) = 

∑ n 
i =1 −x i sin ( 

√ | x i | ) [ − 500, 500] 30,100 -418.9829 × Dim 

F 9 (x ) = 

∑ n 
i =1 [ x 

2 
i 

− 10 cos (2 πx i ) + 10] [ − 5.12, 5.12] 30,100 0 

F 10 (x ) = −20 exp ( −0 . 2 
√ 

1 
n 

∑ n 
i =1 x 

2 
i 
) 

− exp ( 1 
n 

∑ n 
i =1 cos (2 πx i ) ) + 20 + e 

[ − 32, 32] 30,100 0 

F 11 (x ) = 

1 
40 0 0 

∑ n 
i =1 x 

2 
i 

− ∏ n 
i =1 cos ( x i √ 

i 
) + 1 [ − 600, 600] 30,100 0 

F 12 (x ) = 

π
n 
{ 10 sin (πy 1 ) + 

∑ n −1 
i =1 

( y i − 1) 2 [1 + 10 si n 2 (πy i +1 )] 

+( y n − 1) 

2 

} 
+ 

∑ n 
i =1 u ( x i , 10 , 100 , 4) 

[ − 50, 50] 30,100 0 

y i = 1 + 

x i +1 
4 

u ( x i , a, k, m ) = { 
k ( x i − a ) 

m 
x i > a 

0 −a < x i < a 

k (−x i − a ) 
m 

x i < −a 

F 13 (x ) = 0 . 1 { si n 2 (3 πx 1 ) + 

∑ n 
i =1 

( x i − 1) 2 [1 + si n 2 (3 πx i + 1)] 

+ ( x n − 1) 2 [1 + si n 2 (2 πx n )] 
} 

+ 

∑ n 
i =1 u ( x i , 5 , 100 , 4) 

[ − 50, 50] 30,100 0 

Table 5 

Fixed-dimension multimodal benchmark function. 

Function Range Dim f min 

F 14 (x ) = ( 1 
500 

+ 

∑ 25 
j=1 

1 

j+ ∑ 2 
i =1 ( x i −a i j ) 

6 ) 
−1 [ − 65, 65] 2 1 

F 15 (x ) = 

∑ 11 
i =1 [ a i − x 1 (b 2 

i 
+ b i x 2 ) 

b 2 
i 
+ b i x 3 + x 4 ] 

2 

[ − 5, 5] 4 0.00030 

F 16 (x ) = 4 x 2 1 − 2 . 1 x 4 1 + 

1 
3 

x 6 1 + x 1 x 2 − 4 x 2 2 + 4 x 4 2 [ − 5, 5] 2 − 1.0316 

F 17 (x ) = ( x 2 − 5 . 1 
4 π2 x 

2 
1 + 

5 
π x 1 − 6 ) 2 + 10( 1 − 1 

8 π ) cos x 1 + 10 [ − 5, 5] 2 0.398 

F 18 (x ) = [1 + ( x 1 + x 2 + 1) 2 (19 − 14 x 1 + 3 x 2 1 − 14 x 2 + 6 x 1 x 2 + 3 x 2 2 )] 

×[30 + (2 x 1 − 3 x 2 ) 
2 × (18 − 32 x 1 + 12 x 2 1 + 48 x 2 − 36 x 1 x 2 + 27 x 2 2 )] 

[ − 2, 2] 2 3 

F 19 (x ) = − ∑ 4 
i =1 c i exp (− ∑ 3 

j=1 a i j ( x j − p i j ) 
2 
) [1, 3] 3 − 3.86 

F 20 (x ) = − ∑ 4 
i =1 c i exp (− ∑ 6 

j=1 a i j ( x j − p i j ) 
2 
) [0, 1] 6 − 3.32 

F 21 (x ) = −∑ 5 
i =1 [(X − a i ) (X − a i ) 

T + c i ] 
−1 

[0, 10] 4 − 10.1532 

F 22 (x ) = −∑ 7 
i =1 [(X − a i ) (X − a i ) 

T + c i ] 
−1 

[0, 10] 4 − 10.4028 

F 23 (x ) = −∑ 10 
i =1 [(X − a i ) (X − a i ) 

T + c i ] 
−1 

[0, 10] 4 − 10.5363 
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Table 6 

The rotated and shifted benchmark functions. 

Function Range Dim f min 

F 24 (x ) = sin ( x 1 ) e 
[ (1 −cos ( x 2 )) 

2 
] 

+ cos ( x 2 ) e 
[ (1 −sin ( x 1 )) 

2 
] + ( x 1 − x 2 ) 

2 
[ − 2 π , 2 π ] 4 -106.764537 

F 25 (x ) = 0 . 5 + 

sin 2 [ 
√ 

x 1 2 + x 2 2 ] −0 . 5 

[1+0 . 001( x 1 2 + x 2 2 )] 
2 [ − 100, 100] 40 0.5 

F 26 (x ) = 

m −1 ∑ 

i =1 

( 0 . 5 + 

sin 2 [ 
√ 

x 2 
1 
+ x 2 

2 
] −0 . 5 

[ 1+0 . 001(x 2 
1 
+ x 2 

2 
) ] 

2 ) [ − 100, 100] 40 0.5 

F 27 (x ) = −4 | sin ( x 1 ) cos ( x 2 ) e 
| cos ((x 2 1 + x 2 2 ) / 200 | | [ − 10, 10] 10 − 10.8723 

F 28 (x ) = −0 . 0 0 01 [ | sin ( x 1 ) sin ( x 2 ) e 
| 100 −[ (x 2 1 + x 2 2 ) 

0 . 5 
] /π| | + 1 ] 0 . 1 [ − 10, 10] 20 0.1 

F 29 (x ) = − exp [ −| cos ( x 1 ) cos ( x 2 ) e 
| 1 −[ (x 2 1 + x 2 2 ) 

0 . 5 
] /π| −1 | ] [ − 11, 11] 30 − 0.96354 

F 30 (x ) = 

m −1 ∑ 

i =1 

( −( x i +1 + 47) sin ( 
√ | x i +1 + x i / 2 + 47 | ) + sin ( 

√ | x i − x i +1 + 47 | )(−x i ) ) [ − 512, 512] 30 959.64 

Table 7 

The naming style for ChOAs. 

Chaotic map Updating Strategies 

Quadratic Gauss/Mouse Logistic Singer Bernoulli Tent 

Type 1 (ChOA1) ChOA11 ChOA12 ChOA13 ChOA14 ChOA15 ChOA16 

Type 2 (ChOA2) ChOA21 ChOA22 ChOA23 ChOA24 ChOA25 ChOA26 

Table 8 

Parameters and initial values of the benchmark algorithm. 

Algorithm Parameter Value 

ChOA f Table I 

r 1, r 2 Random 

m Chaotic 

Number of Chimps 50 

Maximum number of iterations 250 

BBO Habitat modification probability 1 

Immigration probability bounds per gene [0,1] 

Step size for numerical integration of probabilities 1 

Max immigration (I) and Max emigration (E) 1 

Mutation probability 0.005 

Population size 50 

Maximum number of generations 250 

GWO Number of wolf 50 

Upper bound 5 

Lower bound −5 

Maximum number of iterations 250 

LGWO a 0 2 

β ~U(0,2) 

p ~U(0,1) 

ALO w [2,6] 

Number of search agent 50 

Modified bound [ −100,100] 

Maximum number of iterations 250 

BH a [0,1] 

Number of stars 100 

Maximum number of iterations 250 

PSO Cognitive constant ( C 1 ) 1 

Social constant ( C 2 ) 1 

Local constant ( W ) 0.3 

Population size 50 

Maximum number of iterations 250 

GA Type Real coded 

Selection Roulette wheel 

Recombination Single-point (1) 

Mutation Uniform (0.01) 

Layout Full connection 

Population size 50 

Maximum number of iterations 250 

GSA Population size 50 

Number of masses 30 

Gravitational constant 1 

Maximum number of iterations 250 

pa 0.25 

CS Population size 50 

Maximum number of iterations 250 
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Table 9 

The results of unimodal benchmark functions. 

Algorithm F 1 F 2 F 3 F 4 F 5 F 6 F 7 

ChOA11 Ave 5.9216e-33 1.0792e-19 1.9616e-08 1.0878e-08 27.1256 0.78715 0.0011101 

Std 0.0000507 0.00017244 0.0015376 0.00029664 0.001221 0.00066241 0.0004353 

p -value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

ChOA12 Ave 6.8573e-49 2.1821e-28 1.3912e-08 1.4402e-12 27.1546 0.2159 0.0011056 

Std 0.00000003 0.00000035 0.0000141 0.00001211 0.0016241 0.00091769 0.683e-05 

p -value N/A N/A N/A N/A 0.0001 0.0001 N/A 

ChOA13 Ave 5.793e-25 2.6344e-15 0.0016344 2.0177e-06 27.1812 0.59441 0.0014983 

Std 0.00044803 0.0025339 0.0008674 0.00036884 0.0012275 0.00022243 0.000892 

p -value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

ChOA14 Ave 2.2761e-07 1.337e-06 2.3752 0.029591 29.0001 0.92924 0.0020332 

Std 0.00068042 0.00028847 0.00061586 9.2999e-05 0.00070309 0.00028788 0.0012945 

p -value 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 

ChOA15 Ave 1.7851e-09 1.0453e-07 1.9476 0.028648 28.0388 1.2473 0.0019176 

Std 0.0023071 0.00058469 0.0014968 0.00034511 0.00048538 0.0024164 0.0001202 

p -value 0.00797 0.00797 0.00797 0.00797 0.00797 0.00797 0.00797 

ChOA16 Ave 2.0825e-05 9.8232e-05 2.02153 2.4511 33.9835 3.9568 0.010535 

Std 0.00088144 0.00020824 0.00048348 0.00014341 0.00076807 0.0008887 0.0009381 

p -value 0.00797 0.0047 0.0047 0.0047 0.00797 0.00797 0.0001 

BBO Ave 0.013011 0.2334 3.9745 1.7185 40.8825 0.39002 0.081996 

Std 0.00028037 0.0013183 0.00057292 0.00036264 0.00034323 0.0007505 3.456e-05 

p -value 6.39e-05 6.39e-05 0.0047 6.39e-05 0.00797 0.00797 0.0001 

BH Ave 0.27385 1.132 3.9664 1.0276 50.9993 0.065608 0.11347 

Std 0.00093598 6.3233e-05 0.0016358 0.00026678 0.0021593 0.00073555 2.793e-05 

p -value 0.00797 6.39e-05 6.39e-05 6.39e-05 0.00797 0.00797 0.0001 

ALO Ave 1.2444 2.3692 3.8894 33.7621 63.3616 2.0344 0.79273 

Std 0.00092526 7.7181e-05 0.0010751 0.0011727 0.0007689 0.00073103 0.001886 

p -value 0.0057 6.39e-05 6.39e-05 6.39e-05 6.39e-05 6.39e-05 6.39e-05 

GWO Ave 5.0555e-13 4.6933e-08 0.7213 0.00074374 28.8595 1.2504 0.0014836 

Std 0.00040636 0.00013043 0.00078211 7.9584e-06 7.3315e-05 0.00063077 0.0005685 

p -value 0.0057 0.0049 6.39e-05 6.39e-05 6.39e-05 0.0049 0.0057 

ChOA21 Ave 1.6375e-26 6.8737e-17 3.8819e-07 1.4583e-06 27.1736 0.50289 0.0016598 

Std 0.00057013 0.00068177 0.00016291 0.00029769 0.00010131 0.00098584 0.0015441 

p -value 0.00797 0.0049 0.0049 0.0057 0.0049 0.0049 0.0057 

ChOA22 Ave 1.552 1.1836 1.759 0.9313 58.5251 1.2803 3.3205 

Std 0.00114 0.0013475 9.319e-05 0.00077073 0.0011949 0.0019343 0.0011812 

p-v alue 0.00797 0.0049 0.0049 0.00797 0.0057 0.0049 0.0057 

ChOA23 Ave 0.0042069 0.46036 2.06 0.7323 20.8532 0.058577 0.10077 

Std 0.00031728 8.4022e-05 0.0013834 0.00052112 0.00010311 0.00026976 7.668e-05 

p-v alue 0.0057 0.00797 0.0049 0.00797 N/A 0.0057 0.00797 

ChOA24 Ave 0.43608 0.65876 2.7305 1.8589 39.7043 0.18706 0.072983 

Std 0.00087541 0.001156 0.00011975 0.0030722 0.00026654 0.0011506 0.0004988 

p -value 0.0057 0.0057 0.0049 0.0049 0.0057 0.00797 0.00797 

ChOA25 Ave 0.02323 0.58268 3.3941 1.9377 40.7174 0.0064761 0.063093 

Std 0.00027643 0.00016033 0.0012325 0.0011574 0.00032931 0.00000431 0.0010881 

p -value 0.0057 0.0049 0.0049 0.0057 0.00797 N/A 0.00797 

ChOA26 Ave 0.10797 0.16594 2.6906 1.3117 38.7458 0.070298 0.11899 

Std 0.00036936 0.00084257 0.00013504 0.00023687 0.0015624 0.0016968 0.0005133 

p -value 0.0057 0.00797 0.0049 0.0049 0.0057 0.0049 0.0049 
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Fig. 8 shows the process of updating the search chimp’s location

n two-dimensional search space regarding the position of other

himp positions. As it can be seen, the final position is located

andomly in a circle which is defined by attacker, barrier, chaser

nd driver chimp positions. In other words, the prey position is

stimated by four best groups and other chimps randomly update

heir positions within its vicinity. 

.2.3. Prey attacking (utilization) 

As mentioned previously, in the final stage, the chimps will at-

ack the pray and finish the hunt as soon as the prey stops mov-

ng. To mathematically model the attacking process, the value of f

hould be reduced. Note that the variation range of the a is also

educed by f . In other words, a is a random variable in the interval

f [ −2 f ,2 f ], whereas the value of f reduces from 2.5 to 0 in the pe-

iod of iterations. When the random values of a lie in the range of

 −1,1], the next position of a chimp can be in any location between
ts current position and the position of the prey. Fig. 9 shows that

he inequality forces the chimps to attack the prey. 

According to the operators that have already been presented,

hOA allows the chimps to update their positions according to the

ositions of attacker, barrier, chaser, and driver chimps and attack

he prey. However, ChOAs may still be at the risk of trapping in

ocal minima, so other operators are required to avoid this issue.

lthough, the proposed driving, blocking, and chasing mechanism

omehow shows exploration process, ChOA requires more opera-

ors to emphasize exploration phase. 

.2.4. Searching for pray (exploration) 

As previously mentioned, the exploration process among the

himps is mainly done considering the location of attacker, bar-

ier, chaser, and driver chimps. They diverge to seek for the prey

nd aggregate to attack prey. In order to mathematically model

he divergence behaviour, the a vector with a random value bigger
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Table 10 

The results of multimodal benchmark functions. 

Algorithm F 8 F 9 F 10 F 11 F 12 F 13 

ChOA11 Ave −6432.073 5.6843e-14 3.9968e-14 0 0.03789 0.59045 

Std 3.2605 0.0007579 0.014542 0 0.00062651 0.018694 

p -value 0.0001 N/A 0.0057 0.0057 0.0049 0.0049 

ChOA12 Ave −3150.5985 2.738 7.9936e-15 0 0.29035 1.7768 

Std 21.9845 0.008412 0.000851 0 0.015873 0.0097053 

p -value 0.0057 0.0057 0.0049 0.0049 0.0001 0.0001 

ChOA13 Ave −3628.8022 5.6843e-14 1.0036e-13 0 0.043508 0.53169 

Std 5.1249 0.0012031 0.0051235 0 0.010383 0.003692 

p -value 0.0057 0.0057 0.0049 0.0049 0.0001 N/A 

ChOA14 Ave −5652.3897 1.1596 2.9619 0.036661 0.16291 3.0763 

Std 7.6746 0.0030101 0.010755 0.0015965 0.014936 0.018627 

p -value 0.0057 0.0057 0.0049 0.0049 

ChOA15 Ave −5594.9085 1.3417 2.9668 0.014122 0.07438 2.8352 

Std 4.5861 0.0010454 0.0075506 0.013896 0.00086557 0.019978 

p -value 0.00747 0.0001 0.0057 0.0057 0.0049 0.0049 

ChOA16 Ave −5588.3064 5.5591e-05 2.9668 0.42516 0.4587 2.2013 

Std 21.4912 0.0064053 0.013362 0.0076654 0.007336 0.018548 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 0.0001 

BBO Ave −9952.6876 1.0027 0.5129 0.29361 2.1009 4.8418 

Std 7.2952 0.012332 0.01008 0.0074866 0.0089069 0.0047195 

p -value 6.39e-05 6.39e-05 6.39e-05 0.0057 0.0057 0.0049 

BH Ave −9230.6623 2.0007 0.6284 0.31144 1.1078 0.39991 

Std 5.5351 0.017319 0.011713 0.0096344 0.014307 2.8186e-05 

p -value 6.38e-05 6.39e-05 6.39e-05 6.39e-05 6.38e-05 6.38e-05 

ALO Ave −7167.2698 2.4653 0.8945 2.5676 1.5463 5.7996 

Std 10.5861 0.012509 0.0092374 0.016871 0.0043937 0.00586957 

p -value 6.38e-05 6.38e-05 6.39e-05 6.39e-05 6.39e-05 0.0001 

GWO Ave −5665.3886 1.4001 2.9667 0.014955 0.081592 2.316 

Std 24.838 0.0066279 0.0073361 0.0084009 0.0056174 0.010415 

p -value 6.39e-05 6.39e-05 6.39e-05 6.39e-05 6.39e-05 0.0001 

ChOA21 Ave −6738.8454 0.0026 1.2168e-15 0 0.027962 0.8424 

Std 6.4067 0.010056 0.0000505 0 0.0000267 0.023382 

p -value 6.39e-05 6.39e-05 N/A N/A N/A 0.0045 

ChOA22 Ave −2609.1446 2.2198 0.7874 0.13063 0.1821 0.52586 

Std 3.81561 0.013331 0.00065341 0.0036728 0.0076626 0.000825 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 N/A 

ChOA23 Ave −1023.9291 1.0698 1.2264 0.12105 3.0047 2.513 

Std 1.8642 0.0032444 0.010339 0.016238 0.0046195 0.0013249 

p -value N/A 0.00747 0.0057 0.0057 0.0049 0.0049 

ChOA24 Ave −9655.5997 1.42 0.7238 0.010202 0.283 5.1047 

Std 10.4246 0.0070324 0.002375 0.011905 0.016156 0.02809 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 0.0001 

ChOA25 Ave −9146.7686 1.6997 1.7298 0.025172 7.4374 4.3983 

Std 9.9677 0.017173 0.014912 0.010107 0.013853 0.0070056 

p -value 0.0001 0.00747 0.0057 0.0057 0.0049 0.0049 

ChOA26 Ave −9026.9166 1.7645 1.3173 0.01028 0.89062 3.9773 

Std 4.356 0.006938 0.014907 0.013683 0.00010712 0.00455227 

p -value 0.00747 0.00747 0.00747 0.0057 0.0057 0.0049 
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than 1 or smaller than −1 is used, so that the search agents are

forced to diverge and get distant from prey. This procedure shows

the exploration process and allows the ChOA to search globally. Fig.

9 shows that the inequality | a | > 1 forces the chimps to scatter in

the environment to find a better prey. This section is inspired from

GWO (Mirjalili, 2013). 

Another ChOA component that affects the exploration phase is

the value of c . As in Eq. (4) , c vector elements are random variables

in the interval of [0,2]. This component provides random weights

for prey to reinforce ( c > 1) or lessen ( c < 1) the effect of prey lo-

cation in the determination of the distance in Eq. (5) . It also helps

ChOA to enhance its stochastic behaviour along the optimization

process and reduce the chance of trapping in local minima. c is

always needed to generate the random values and execute the ex-

ploration process not only in the initial iterations, but also in the

final iterations. This factor is very useful for avoiding local minima,

c

specially in the final iterations. c vector is also considered as the

nfluence of the obstacles which prevent chimps from approach-

ng the prey in nature. In general, natural obstacles in the path

f chimps prevent them from approaching the prey with proper

peed. This is the precise expression of the c vector effect. Depend-

ng on chimp’s position, the c vector can assign a random weight

o prey in order to make the hunt harder or easier. 

.2.5. Social incentive (sexual motivation) 

As mentioned previously, acquiring meet and subsequent social

otivation (sex and grooming) in the final stage causes chimps to

elease their hunting responsibilities. Therefore, they try to obtain

eat forcefully chaotic. 

This chaotic behaviour in final stage helps chimps to further al-

eviate the two problems of entrapment in local optima and slow

onvergence rate in solving high-dimensional problems. 
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Table 11 

The results of fixed-dimension multimodal benchmark functions. 

Algorithm F 14 F 15 F 16 F 17 F 18 

ChOA11 Ave 0.998 0.020364 −1.0316 0.39792 3 

Std 0.00059718 0.010885 0.0095395 0.0047829 0.010803 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 

ChOA12 Ave 0.998 0.00034398 −1.0316 0.39792 3 

Std 0.0057686 0.00000001 0.021147 0.00026104 0.009066 

p -value 0.00747 N/A 0.0057 0.0049 0.0049 

ChOA13 Ave 0.99801 0.00067708 −1.0316 0.39865 3.0001 

Std 0.0047493 0.0068029 0.0096524 0.015434 0.03319 

p -value 0.0001 0.0001 0.00747 0.0057 0.0057 

ChOA14 Ave 0.998 0.0012896 −1.0316 0.39833 3.0002 

Std 0.00037144 0.011627 0.0052976 0.0020581 0.0067462 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 

ChOA15 Ave 0.99802 0.00125 −1.0316 0.39796 3.0001 

Std 0.014758 0.0077204 0.016366 0.0023049 0.00043324 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 

ChOA16 Ave 0.99809 0.0013562 −1.0316 0.39805 3.0001 

Std 0.0024767 0.0011969 0.00089862 0.0062243 0.0070154 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 

BBO Ave 0.998 0.00042263 −1.0316 0.39789 3 

Std 0.0090912 0.01693 0.014821 0.0065533 0.01335 

p -value 6.39e-05 6.39e-05 6.39e-05 6.39e-05 

BH Ave 0.998 0.020363 −1.0316 0.39789 3 

Std 0.0038131 0.00066429 0.012439 0.014056 0.021488 

p -value 6.39e-05 6.39e-05 6.39e-05 6.39e-05 6.39e-05 

ALO Ave 0.998 0.020363 −1.0316 0.39789 3 

Std 0.021358 0.0017314 0.012602 0.0096567 0.007996 

p -value 6.39e-05 6.39e-05 6.39e-05 6.39e-05 6.39e-05 

GWO Ave 0.998 0.0012849 −1.0316 0.39842 3.0001 

Std 0.018609 0.020989 0.021182 0.0097607 0.0099344 

p -value 6.38e-05 6.39e-05 6.38e-05 6.39e-05 6.38e-05 

ChOA21 Ave 0.998 0.00035113 −1.0316 0.39789 3.0004 

Std 0.0063754 0.0028921 0.0011222 0.013257 0.011011 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 

ChOA22 Ave 2.9821 0.00099085 −1.0316 0.39789 3 

Std 0.0078901 0.0042495 0.010545 0.00093272 0.016413 

p -value 0.00747 0.0057 0.0057 0.0049 0.0001 

ChOA23 Ave 0.998 0.00034349 −1.0316 0.39789 3 

Std 0.0001241 0.00000013 0.0000741 0.000793 0.0001531 

p -value N/A N/A N/A N/A N/A 

ChOA24 Ave 0.998 0.00033082 −1.0316 0.39789 3 

Std 0.0092874 0.0071116 0.0061951 0.0045872 0.01198 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 

ChOA25 Ave 0.998 0.0016554 −1.0316 0.39789 3 

Std 0.0056774 0.006215 0.0010265 0.0086782 0.0020994 

p -value 0.0047 0.00757 0.0057 0.0049 0.0049 

ChOA26 Ave 0.998 0.00030769 −1.0316 0.39789 3 

Std 0.010431 0.0032917 0.0047039 0.0044647 0.00028328 

p -value 0.00547 0.00457 0.0057 0.0049 0.0049 
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The chaotic maps which have been used to improve the perfor-

ance of ChOA are explained in this section. Six chaotic maps have

een used in this article as shown in Table 2 and Fig. 10 . These

haotic maps are deterministic processes which also have random

ehaviour. In this article, value 0.7 has been considered as the pri-

ary point of all the maps in accordance with reference ( Saremi,

irjalili, & Lewis, 2014 ). To model this simultaneous behaviour, we

ssume that there is a probability of 50% to choose between either

he normal updating position mechanism or the chaotic model to

pdate the position of chimps during optimization. The mathemat-

cal model is expressed by Eq. (9) . 

 chimp (t + 1) = 

{
x prey (t) − a . d i fμ< 0 . 5 

Chaotic _ value i fμ ≥ 0 . 5 

(9) 
Where μ is a random number in [0,1]. 

In brief, the searching process in ChOA begins with generat-

ng a stochastic population of chimps (candidate solutions). Then,

ll chimps are randomly divided into four predefined independent

roups entitled attacker, barrier, chaser and driver. Each chimp up-

ates its f coefficients using the group strategy. During the iter-

tion period, attacker, barrier, chaser and driver chimps estimate

he possible prey locations. Each candidate solution updates its dis-

ance from the prey. Adaptive tuning the c and m vectors cause

ocal optima avoidance and faster convergence curve, simultane-

usly. The value of f is reduced from 2.5 to zero, to enhance the

rocess of exploitation and attacking the prey. The inequality | a | >

 results in divergence of the candidate solutions, otherwise, they

ventually converge toward the prey. Fig. 11 presents the pseudo-

ode of ChOA. 
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Table 12 

The results of fixed-dimension multimodal benchmark functions (continued). 

Algorithm F 19 F 20 F 21 F 22 F 23 

ChOA11 Ave −3.8622 −3.1969 −2.593 −10.2537 −9.3837 

Std 0.019162 0.018342 0.022841 0.014715 0.0066907 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 

ChOA12 Ave −3.8619 −3.1825 −6.7593 −9.2651 −7.9056 

Std 0.0071951 0.00030283 0.0070818 0.0043589 0.0081338 

p -value 0.001 0.00747 0.0057 0.0057 0.0001 

ChOA13 Ave −3.8614 −3.3106 −7.9664 −8.6936 −10.0206 

Std 0.012393 0.0093514 0.016142 0.0085863 0.0021619 

p -value 0.00452 0.00747 0.0057 0.0057 0.0049 

ChOA14 Ave −3.8547 −2.0591 −4.8606 −5.0383 −5.0358 

Std 0.006271 0.0001319 0.01722 0.0076048 0.013176 

p -value 0.0045 N/A 0.00747 0.0057 0.0057 

ChOA15 Ave −3.8548 −2.6329 −5.0189 −0.91158 −5.1029 

Std 0.021395 0.014033 0.013209 0.0041865 0.0017119 

p -value 0.0001 0.00747 0.0057 0.0057 0.0049 

ChOA16 Ave −3.8624 −2.2492 −4.8537 −4.8401 −4.8898 

Std 0.00026981 0.0075036 0.00034583 0.008309 0.0075659 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 

BBO Ave −3.8628 −3.322 −5.1008 −2.7519 −10.5364 

Std 0.0051 0.0044809 0.010935 0.014868 0.014644 

p -value 6.38e-05 6.39e-05 6.38e-05 0.00005 6.39e-05 

BH Ave −3.8628 −3.2031 −2.6829 −10.4029 −10.5364 

Std 0.0034586 0.00073532 0.0091199 0.0021605 0.022491 

p -value 6.38e-05 6.39e-05 6.38e-05 0.00005 6.39e-05 

ALO Ave −3.8628 −3.1974 −10.1532 −10.4029 −10.5364 

Std 0.0077814 0.0075256 0.0051117 0.0067976 0.016077 

p -value 6.38e-05 6.39e-05 6.38e-05 0.00005 6.39e-05 

GWO Ave −3.8541 −3.0731 −0.88288 −5.0532 −5.0601 

Std 0.0027469 0.00016015 0.0067064 0.0016984 0.0034639 

p -value 6.38e-05 6.39e-05 6.38e-05 0.00005 6.39e-05 

ChOA21 Ave −3.8627 −3.322 −10.1505 −10.4028 −10.5336 

Std 0.011721 0.011144 0.003524 0.0017081 0.0044508 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 

ChOA22 Ave −3.8628 −3.322 −2.6829 −10.4029 −10.5364 

Std 0.0053146 0.00084038 0.0039454 0.0004916 0.0018552 

p -value 0.0045 0.00747 0.0057 N/A 0.0001 

ChOA23 Ave −3.8628 −3.2031 −10.1532 −2.7659 −10.5364 

Std 0.000045 0.0001641 0.0000534 0.0035001 0.0015218 

p -value N/A N/A N/A N/A 

ChOA24 Ave −3.8628 −3.322 −5.1008 −10.4029 −10.5364 

Std 0.013575 0.0039439 0.010463 9.5041e-05 0.022171 

p-value 0.00747 0.0057 0.0057 0.0049 0.0049 

ChOA25 Ave −3.8628 −3.2031 −10.1532 −10.4029 −10.5364 

Std 0.003998 0.011924 0.0079751 8.3701e-05 0.0023049 

p -value 0.00747 0.0057 0.0057 0.0049 0.0049 

ChOA26 Ave −3.8628 −3.322 −10.1532 −10.4029 −10.5364 

Std 0.012586 0.01132 0.018268 0.02068 0.012983 

p -value 0.0045 0.00747 0.0057 0.0057 0.0049 
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3. Simulation results and discussion 

In this section, the ChOA is tested on 30 benchmark functions.

The first 23 test functions are the classical benchmark functions

used in the many kinds of research ( Digalakis & Margaritis, 2001 ;

Molga & Smutnicki, 2005 ; Yang, 2010 ). Generally, these functions

are divided into three groups: unimodal, multimodal, and fixed-

dimension multimodal which are reported in Tables 3–5 , respec-

tively. In these tables, dim indicates the dimension of the problem,

fmin is the minimum reported in the literature, and Range is the

boundary of the problem’s search space. 

The three aforementioned groups of benchmark functions are

utilized with different characteristics to test the performance of

the ChOA from different aspects. As their names imply, unimodal

benchmark functions have a single minimum so they can test the

exploitation and convergence rate of ChOA. In contrast to uni-
odal, multimodal benchmark functions have more than one min-

mum, making them more challenging than unimodal benchmarks.

herefore, exploration and local minima avoidance of optimizers

an be tested by the multimodal benchmark functions. It should be

entioned that the difference between fixed-dimensional multi-

odal benchmarks in Table 4 and multimodal benchmarks in Table

 is the ability to define the desired number of design variables.

he mathematical models of fixed-dimensional benchmark func-

ions do not let us tune the number of design variables, but they

repare various search space compared to multimodal benchmark

unctions in Table 4 . 

In the following, in order to have a comprehensive compari-

on, we use other newly proposed rotated and shifted benchmark

unction defined in the IEEE CEC 2013 special session and Compe-

ition on Niching Methods for Multimodal Function Optimization

 Li, Engelbrecht, & Epitropakis, 2013 ) and also ( Mishra, 2007 ). The
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Table 13 

The results of shifted and rotated benchmark functions. 

Algorithm F 24 F 25 F 26 F 27 F 28 F 29 F 30 

ChOA11 Ave −104.6332 2.0711e-5 1.9616e-9 −8.2221 0.9256 −0.78715 1000.254 

Std 0.0000607 0.0011244 0.0001376 0.000114 0.001221 0.00054 10.2254 

p -value 0.007937 0.0001 0.0001 0.0047 0.0047 0.0001 0.00747 

ChOA12 Ave −103.2584 1.1821e-4 1.4412e-8 −7.0022 0.9946 −0.5214 999.547 

Std 0.004101 0.0000122 0.0001457 0.000012 0.00162 0.00091 11.2547 

p -value 0.007937 0.0001 0.0001 0.0047 0.0047 0.0001 0.00747 

ChOA13 Ave −102.2589 2.6224e-5 2.0041e-7 −7.1245 0.8812 −0.59441 1001.0254 

Std 0.0022803 0.0021139 0.005574 0.00022 0.0099275 0.00044 12.2547 

p -value 0.007937 0.0001 0.0001 0.0047 0.0047 0.0001 0.00747 

ChOA14 Ave −102.2369 0.0012 1.22335 −6.029591 0.8001 10.9291 985.635 

Std 0.068042 0.0022847 0.00001586 9.2999e-05 0.000703 0.00028 9.2514 

p -value 0.007937 0.0001 0.0001 0.0047 0.0047 0.0001 0.00747 

ChOA15 Ave −102.3251 1.0453e-4 1.33254 −6.0286 1.0888 10.2473 998.254 

Std 0.03071 0.001845 0.0014448 0.00011 0.000485 0.00241 2.2547 

p -value 0.007937 0.0001 0.0001 0.0047 0.0047 0.0001 0.00747 

ChOA16 Ave −102.3214 0.0058 3.12451 −6.0011 1.0005 15.9568 1000.0214 

Std 0.000224 0.00980824 0.00048348 0.000121 0.00076 0.00089 5.5454 

p -value 0.007937 0.0001 0.0001 0.0047 0.0047 0.0001 0.0047 

BBO Ave −100.8888 3.2584 4.9745 −5.7122 1.8825 2.39002 1005.888 

Std 0.0002803 0.01183 0.0005112 0.00364 0.000343 0.0007505 12.547 

p -value 6.38e-05 6.39e-05 6.38e-05 0.00005 6.39e-05 6.39e-05 6.39e-05 

BH Ave −99.2233 4.2154 4.1214 −5.3621 1.0093 1.065608 1009.214 

Std 0.002298 0.001254 0.0011118 0.00026 0.00215 0.000735 14.2147 

p -value 6.38e-05 6.39e-05 6.38e-05 0.00005 6.39e-05 6.39e-05 6.39e-05 

ALO Ave −100.2589 5.2104 3.2147 −6.3254 1.3644 8.0344 999.357 

Std 0.0011126 0.000114 0.0020711 0.00117 0.0007689 0.00073 3.2546 

p -value 6.38e-05 6.39e-05 6.38e-05 0.0001 6.39e-05 6.39e-05 6.39e-05 

GWO Ave −102.9999 0.14572 0.00013 −6.00074 1.8595 10.2504 984.2145 

Std 0.0002236 0.0002243 0.001111 0.000123 7.3315e-05 0.000639 4.5454 

p -value 6.38e-05 6.39e-05 6.38e-05 0.00047 6.39e-05 6.39e-05 6.39e-05 

ChOA21 Ave −104.2312 1.8737e-17 0.004e-09 −7.2145 0.1006 −0.50289 968.245 

Std 0.0001013 0.0002177 9.319e-05 0.000297 0.000007 0.00098584 3.2458 

p -value 0.007937 0.4429 N/A 0.0081 N/A N/A 0.0047 

ChOA22 Ave −105.2587 0.1245e-20 3.8819e-07 −7.5214 21.5251 −0.2803 960.999 

Std 0.0000114 0.0000075 0.00088791 0.0000707 5.22119 0.0019343 1.25478 

p -value N/A N/A 0.0047 N/A 6.39e-05 0.04785 N/A 

ChOA23 Ave −104.8555 0.00036 3.7777 −6.1323 0.8532 1.058577 987.245 

Std 0.0003172 8.4022e-05 0.0013834 0.00012 0.000125 0.00026976 3.6547 

p -value 0.007937 0.0001 0.0001 0.00014 0.0074 0.0001 0.0047 

ChOA24 Ave −103.2555 0.00876 4.2305 −7.0009 0.7043 2.18706 984.258 

Std 0.0012541 0.001156 0.0001175 0.00307 0.000266 0.0011506 5.2145 

p -value 0.007937 0.0001 0.0001 0.00047 0.0047 0.00047 0.00747 

ChOA25 Ave −103.2411 1.58268 5.3941 −6.9377 159.7174 3.0064761 982.021 

Std 0.0017643 0.0011603 0.0012325 0.00174 0.00032931 0.0008431 4.25896 

p -value 0.007937 0.0001 0.0001 0.000041 0.0001 0.0047 0.00747 

ChOA26 Ave −102.0541 0.16594 4.2211 −6.3117 111.7458 2.088298 1000.024 

Std 0.0016936 0.003257 0.00013504 0.000287 0.0015624 0.00169 7.2145 

p -value 0.007937 0.0001 0.00098 0.00021 0.0001 0.0001 0.00747 
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emaining benchmark functions are more complex and follow the

aradigm of composition functions. The mathematical models of

hese benchmark functions are shown in Table 6 . 

The ChOAs have been divided into and named with regard to

he type of the dynamic strategies for independent groups (illus-

rated in Table 1 ) and the number of the chaotic maps (illustrated

n Table 2 ). For instance, if the dynamic strategy number one-

from Table 1 ) and tent map (from Table 2 ) has been used to en-

ance ChOA, the name of that algorithm will be ChOA16 in such

 way that 1 refers to the dynamic strategy type 1 and 6 refers to

he row number of the temp map in Table 2 . This type of naming

as been thoroughly shown in Table 7 . 

Figs. 12 to 15 draw a comparison between the convergence

urves of different algorithms for unimodal, multimodal, fixed-

imension multimodal, and rotated and shifted benchmark func-

ions, respectively. 
For verifying the results, the ChOAs are compared to ALO

 Mirjalili, 2015 ) as a kind of SIAs, BBO (Simon, 2008) as a pow-

rful kind of EAs and BH (Hatamlou, 2013) as a physics-based al-

orithm. In addition, the ChOAs are compared with GWO ( Mirjalili

t al., 2014 ) as the most famous hunting-based benchmark algo-

ithm. The parameters of these algorithms are presented in Table

 . 

For these experiments, each test is carried out a Windows 10

ystem using Intel Core i7, 3.8 GHz, 16 G RAM and, Matlab R2016a.

he ChOA algorithms were run 30 times on each benchmark func-

ion. The statistical results (Average (Ave), Standard Deviation (Std),

nd p -value) are reported in Tables 9 to 13 . The best results are il-

ustrated in bold type. The concepts of Ave and Std can be used

o show the algorithms capability of avoiding the local minima.

he lower the value of Ave, the greater the algorithms capability of

nding a solution near the global optimum. Although the Ave value
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Table 14 

The results of unimodal benchmark functions (100-dimensional). 

Function ChOA PSO GSA BH 

Ave Std Ave Std Ave Std Ave Std 

F1 2.8e-09 1.1e-09 2.799 0.721 86.213 0.04243 9.34 2.0731 

F2 44.16 18.17 23.87 2.432 152.44 0.00122 320.82 38.28 

F3 194.11 42.18 391.34 41.57 169.88 0.03780 900.75 409.06 

F4 2.18 0.0846 3.131 0.0879 10.265 0.0013 5.6670 0.8293 

F5 13.94 1.71 75.2342 5.245 321.13 0.05329 117.80 49.07 

F6 1.60e-07 1.09e-08 3.421 1.206 207.13 0.0003 4.2056 1.005 

F7 0.000546 0.004407 1.721 4.0133 2.309 1.99e-05 0.4344 0.0127 

GWO CS LGWO GA 

Ave Std Ave Std Ave Std Ave Std 

F1 4. 989 2. 678 3.80e-05 1.85e-05 6.1218 0.5744 18.7475 15.500 

F2 28.647 0.9384 33.10 0.0656 22.191 1.0191 526.612 92.127 

F3 2219 85.540 1,9527 52.7511 1852 418.4 933.21 332.1 

F4 3.689 0.4572 2.9362 0.6877 2.736 0.0947 8.5144 0.5321 

F5 262.7 11.490 27.672 13.88 11.171 0.76 91.4449 62.706 

F6 13.99 2.1091 1.17e-05 1.55e-05 1.11e-05 1.05e-05 40.56 23.681 

F7 0.8391 0.05354 0.00131 0.0087 0.00273 0.00041 9.56 5.1061 
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of the two algorithms can be equal, their performance in finding

the global optimum may differ in each iteration. Thus, Std is used

to make a better comparison. To have a lower dispersion of results,

the Std should have a small value. 

According to Derrac, García, Molina, and Herrera (2011) , statis-

tical tests are required to evaluate the performance of MOAs ad-

equately. Comparing MOAs according to their Ave and Std values

is not enough ( Garcia, Molina, Lozano, & Herrera, 2009 ) and a sta-

tistical test is needed to indicate a remarkable improvement of a

new MOA in comparison to the other existing MOAs to solve a

particular optimization problem (Mirjalili & Lewis, 2013). In order

to see whether the results of ChOA differ from other benchmark

algorithms in a statistically significant way, Wilcoxon’s rank-sum

( Wilcoxon, 1945 ), which is a non-parametric statistical test, was

performed and the significance level of 5% accomplished. The cal-

culated p -values of the Wilcoxon’s rank-sum are given in the re-

sults as well. The N/A in tables is the abbreviation of ‘‘Not Appli-

cable’’ which means that the corresponding MOA cannot be com-

pared with itself in the rank-sum test. Conventionally, p -values less

than 0.05 are considered as strong evidence against the null hy-

pothesis. Note that p -values greater than 0.05 are underlined in the

tables. 

3.1. Evaluation of exploitation ability 

Functions F1, F2,…, F7 have only one global optimum since they

are unimodal. These benchmark functions permit to evaluate the

exploitation capability of the investigated MOAs. Table 9 illustrates

ChOAs is very competitive with other MOAs. It can be seen from

Table 9 that ChOA12 has the best results in five out of seven uni-

modal test functions. 

Fig. 12 shows the convergence curves of the algorithms. As can

be seen from these curves, ChOA12 has the best convergence rates

for most of the benchmark functions, followed by ChOA11 and

ChOA21. 

It is worth mentioning that unimodal test functions have no lo-

cal minima and there is only one global minimum in the search

space. So these kinds of benchmark functions are quite appro-

priate for evaluating the convergence capability of MOAs. Conse-

quently, the results of the ChOAs show that independent groups

could improve significantly the convergence ability of the ChOAs.

The two main reasons for the superior results is that the chimps

have diversity in their fission-fusion societies and are able to ex-

ploit knowledge of the position of near optimal solutions effec-
ively and they also utilize the chaotic maps biasing chimps to

ove quickly toward the global optimum (prey). As can be seen

rom Fig. 12 and Table 9 , among the two proposed group sets, the

rst group set indicates much superior results for unimodal bench-

ark function. This better result can be well justified by Fig. 6 . Ac-

ording to this figure, ChOA1 has an excellent local search ability

ecause the forms of updating strategies were chosen in such a

ay that different groups tend to converge faster than ChOA2 and

hey search more locally than globally. In other words, the reduc-

ion rate of the independent groups’ coefficient of ChOA1 is faster

han those coefficients of ChOA2. So, ChOA1 allows chimps to dis-

over the search space more locally than globally, because the am-

litude of the searching coefficient decreases severely after almost

ne-quarters of the allowed iterations. 

It should be noted that this considerable improvement has not

een made only with categorizing chimps to independent groups

ut also by utilizing the new chaotic map in such a way that this

haotic behaviour in final stage helps chimps to further decline

he problems of slow convergence rate. As can be seen from Fig.

2 and Table 4 , the chaotic map number two i.e., Gauss/mouse

ap has the most significant effect on the global minima finding

nd convergence speed so that ChOA12 has the best results in the

ve out of seven unimodal benchmark functions and at least the

econd best optimizer in other benchmark functions. The afore-

entioned algorithm can hence provide fair exploitation ability. 

These superior results of ChOA12 are based on the special form

f the Gauss/mouse map. This chaotic map has very special shape

n such a way that in early stage it has large and extremely

ariable amplitude, while its amplitude and variableness decrease

everely in the final stages. This special shape of Gauss/mouse map

auses chimps to behave both very extensively in early stage and

n focus of the final stages. Generally speaking, chaotic maps pro-

ide soft transition between global and local search ability. These

aps prevent chimps from quickly becoming trapped in local min-

ma because chimps have stochastically movement even in the fi-

al stages. This stochastic movement in the final stage may be con-

idered as sexual motivations. This is the main reason for the supe-

ior results of the proposed maps (specially the Gauss/mouse map).

In this way, chimps tend to broadly discover promising regions

f search space and exploit the best one. Chimps change abruptly

n the early stages of the hunting process and then gradually con-

erge. However, there is no additional computational cost for the

roposed algorithm. 
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Fig. 15. Convergence curve of algorithms on the rotated and shifted multimodal benchmark functions. 
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Fig. 15. Continued 

Table 15 

The results of multimodal benchmark functions (100-dimensional). 

p ChOA PSO GSA BH 

Ave Std Ave Std Ave Std Ave Std 

F8 −44,426 144.5 −18,136 4962.4 −35,969 1876 −25,632 869.47 

F9 11.89 1.005 62.58 2.301 12.01 0.12365 60.38 7.96 

F10 0.3058 0.00542 1.183 0.07627 1.293 0.0974 1.159 0.0077 

F11 0.0014 0.00021 270.2 11.49 400.5 0.8532 411 22.42 

F12 0.3982 0.09591 2.07e + 05 2.77e + 05 1.00e + 08 1.99e + 05 1.09e + 09 2.28e + 08 

F13 0.13915 0.22199 1.24e + 06 3.82e + 05 1.00e + 08 1.99e + 05 1.25e + 09 3.85e + 08 

GWO CS LGWO GA 

Ave Std Ave Std Ave Std Ave Std 

F8 −55,771 3097.8 −52,600 156.04 −39,753 649.69 −28,660 1011 

F9 58.95 6.653 45.58 7.889 13.45 1.058 137.8 3.155 

F10 1.544 0.06684 17.654 2.982 2.4297 0.038545 1.361 0.0421 

F11 0.0011 0.00011 0.001191 0.001148 1.7048 0.014301 175.8 7.3 

F12 2.37e + 07 1.22e + 07 1.00e + 10 0.0045 2.426 0.05985 3.14e + 09 2.54e + 08 

F13 3.87e + 07 1.80e + 07 1.00e + 10 0.0568 0.0014 0.0568 1.38e + 10 1.45e + 09 
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Table 16 

The general description of real-world constrained optimization problem. D is the total number of decision variables of 

the problem, g is the number of inequality constraints and h is the number of equality constraints. 

No ID Problems D g h 

1 RC01 Heat Exchanger Network Design (case 1) 9 0 8 

2 RC04 Reactor Network Design (RND) 6 1 4 

3 RC11 Two-reactor Problem 7 4 4 

4 RC14 Multi-product batch plant 10 10 0 

5 RC16 Optimal Design of Industrial refrigeration System 14 15 0 

6 RC23 Optimal Design of Industrial refrigeration System 5 8 3 

7 RC35 Optimal Sizing of Distributed Generation for Active Power Loss Minimization 153 0 148 

8 RC37 Optimal Power flow (Minimization of Active Power Loss) 126 0 116 

9 RC45 SOPWM for 3-level Inverters 25 24 1 

10 RC51 Beef Cattle(case 1) 59 14 1 
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.2. Evaluation of exploration ability 

In contrast to unimodal benchmark functions, multimodal prob-

ems include many local minima whose number increases drasti-

ally with the number of design variables (problem size). Hence,

his kind of benchmark functions turns very helpful if the inten-

ion is to evaluate the exploration capability of a MOA and avoid-

ng local minima. Table 10 and Fig. 13 show the results for multi-

odal benchmark functions (F8-F13). As the results show, ChOAs

ave also fair exploration capability. In fact, ChOAs always is the

ost efficient algorithm in the all of the benchmark problems. This

s due to the four different mechanisms of exploration in ChOAs

eading this algorithm into the global optimum in the early stages

nd chaotic mechanism guaranteeing to reach the best result in the

nal stages. 

The results of Table 10 indicate that the independent groups in-

reased the performance of ChOA in terms of avoiding local min-

ma. As may be observed in Fig. 13 , similar to the results of uni-

odal benchmark functions, the convergence speed of ChOAs is

lmost better than the other MOAs. The ChOA group set 2 (espe-

ially ChOA21) have the best convergence rates among the ChOAs.

he group set 2 has the special updating coefficients so that these

pecial updating forms give ChOA more randomized search ability

n comparison with ChOA group set 1; therefore, the chimps are

ot easily trapped in local minima. In other words, the reduction

ate of the independent groups’ coefficient of ChOA2 is less than

hose coefficients of ChOA1. As a result, the updating coefficients

f ChOA2s allows chimps to discover globally the search space. Be-

ause the amplitudes of the searching coefficient decrease gradu-

lly after almost three-quarters of the allowed iterations. 

In addition, the ChOA21 outperform other ChOA2s through its

pecial chaotic map (Quadratic map). In this map, a very slight

hange of the input value can lead to significantly various be-

aviour of the map’s amplitude. This particular behaviour of the

uadratic map causes chimps to explore the search space com-

letely even in the final stages in such a way that this map

nhances the exploration capability of ChOA21 more than other

hOAs combined with the other chaotic map. 

Unlike the multimodal test functions, the fixed-dimension mul-

imodal benchmark functions have few local minima. As shown in

ables 11 and 12 , the results of all MOAs are similar on six of

he functions. However, the ChOA outperform the other MOAs on

20 to F22. ChOA23 has the best results in the almost all of these

enchmark functions. Fig. 14 shows the convergence rate of the

lgorithms dealing with fixed-dimension benchmark functions. All

he MOAs have close convergence curves, somewhat better for the

hOAs. The analogy of results and convergence rate is owing to the

ow dimensional characteristic of these benchmark problems; the

ffect of independent groups is more apparent for the high dimen-

ional problems. To sum up, the results indicate that the indepen-

ent groups and the chaotic maps are profitable for ChOA in terms

t

ot only of avoiding local optima but also improved convergence

peed. The results of the ChOA show that the proposed indepen-

ent groups permit chimps to have various patterns for following

he social behaviour of the whole society, resulting in higher local

inima avoidance ability. 

Finally, for comprehensive comparison, newly proposed ChOAs

ere tested using some complex, rotated and shifted version of

ultimodal benchmark functions. 

Fig. 15 and Table 13 show the results obtained using afore-

entioned algorithms and benchmark functions. As can be seen,

he convergence rate of ChOAs were significantly better than for

ther MOAs, which is even better than results obtained in previ-

us tests (unimodal, fixed-dimension and multimodal). Because the

omplexity of these benchmark function is more than other bench-

arks. Therefore, the ability of ChOAs in these complex problem is

ore evident than other experiment. 

.3. Optimization of high-dimensional problems using ChOA 

To further confirm the capability of ChOA in working with

igh-dimensional problems, this subsection investigates the 100-

imensional versions of the unimodal (F1 to F7) and multimodal

F8 to F13) optimization test functions introduced in the preced-

ng subsections. 50 search agents (candidate solutions) are utilized

o solve these benchmark optimization problems over 20 0 0 iter-

tions. Finally, the results are illustrated in Tables 14 and 15 for

nimodal and multimodal test functions, respectively. 

As results are shown in Table 14 , the ChOA outperforms all the

ther algorithms on five of the unimodal optimization benchmark

unctions (F1, F3, F4, F6, and F7). Besides, Table 15 indicates that

his algorithm provides the best results on five of the six mul-

imodal optimization benchmark functions (F8, F9, F10, F12, and

13). For the rest of the unimodal and multimodal optimization

enchmark functions, the ChOA is ranked as the second-best af-

er LGWO (F2 and F5), and GWO (F11). Poor performances of the

ajority of algorithms in Tables 14 and 15 show that such high-

imensional optimization benchmark functions can be very chal-

enging. These results highly evidence that the ChOA algorithm can

e very effective for solving high-dimensional optimization prob-

ems as well. 

To sum up, the results of this subsection indicates that ChOAs

ropose high exploitation and exploration. First, the proposed

ndividual intelligence (autonomous group in initial iteration)

nd sexual motivation (chaotic behaviour in final iteration) of

himps in their group hunting promote exploration, enhance the

hOA algorithm to avoid local optima stagnation when solving

igh-dimensional optimization problems. Secondly, the decreasing

hape of f for each independent group of chimps, emphasizes ex-

loitation as iteration increases, which results in a very precise es-

imation of the global optimum. 
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Table 17 

The results of ChOA in comparison with benchmark algorithms for real-world problems. 

Problem Optimization Algorithms 

ID metric GA GSA PSO BH CS GWO LGWO ChOA 

RC01 Ave 2.18E + 02 3.12E + 02 2.23E + 02 3.36E + 02 4.02E + 02 2.12E + 02 2.01E + 02 1.92E + 2 

STD 5.34E −02 2.18E −02 2.81E −02 3.21E −02 3.18E −02 2.85E-02 1.67E-03 1.45E-03 

RC04 Ave −1.38E-01 −3.86E-01 −1.15E-01 −3.60E-00 −3.86E-00 −3.52E-01 −3.56E-01 −3.87E-01 

STD 7.98E −01 1.92E −01 2.84E −01 3.41E −01 3.80E −01 3.96E + 00 2.57E + 00 1.02E −01 

RC11 Ave 12.63E + 01 11.93E + 01 11.62E + 01 10.56E + 01 10.13E + 01 10.17E + 01 10.74E + 01 9.99E + 01 

STD 2.76E + 01 1.67E + 01 2.21E + 01 1.79E + 01 1.97E + 01 1.54E + 01 2.34E + 01 1.34E + 01 

RC14 Ave 9.45E + 04 7.24E + 04 9.82E + 04 9.24E + 04 9.23E + 04 6.12E + 04 5.89E + 04 5.92E + 04 

STD 5.84E + 00 5.62E + 02 1.91E + 00 9.68E + 02 8.10E + 00 1.87E + 01 9.59E + 00 1.01E + 00 

RC16 Ave 4.59E-02 4.09E-02 4.52E-02 4.58E-02 4.89E-02 4.09E-02 4.98E-02 3.99E-02 

STD 2.41E −04 8.58E-02 5.32E −03 2.51E −02 6.98E −03 8.58E-02 3.71E-01 1.58E-02 

RC23 Ave 3.18E + 01 3.75E + 01 2.88E + 01 2.85E + 01 2.27E + 01 2.82E + 01 1.98E + 01 2.02E + 01 

STD 6.78E + 00 4.73E + 00 4.21E + 00 6.73E + 00 1.21E + 00 6.27E + 00 1.02E-02 1.27E + 00 

RC35 Ave 9.78E-02 9.56E-02 9.36E-02 9.74E-02 9.56E-02 9.24E-02 9.81E-02 9.01E-02 

STD 8.64E-02 9.47E-02 9.42E-01 9.64E-01 4.73E + 00 6.56E-01 6.15E-01 5.42E-01 

RC37 Ave 2.85E-02 3.11E-02 3.24E-02 2.94E-02 2.45E-02 3.11E-02 2.92E-02 2.20E-02 

STD 1.64E-02 1.24E-02 1.79E-02 2.02E-02 1.40E-02 1.78E-02 1.68E-02 1.11E-02 

RC45 Ave 4.38E-02 3.92E-02 4.49E-02 4.75E-02 4.12E-02 4.02E-02 3.89E-02 3.99E-02 

STD 1.36E-03 1.07E-03 1.54E-03 1.50E-03 1.81E-02 1.47E-03 1.03E-03 1.53E-03 

RC51 Ave 4.59E + 03 4.91E + 03 5.24E + 03 5.29E + 03 4.89E + 03 4.62E + 03 4.59E + 03 4.55E + 03 

STD 1.49E + 00 2.94E + 00 2.84E + 00 2.75E + 00 2.21E + 00 2.83E + 00 1.90E + 00 1.09E + 00 
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3.4. Results and analysis of real-world problems 

In this section, the effectiveness of ChOA is investigated using

Ten real-world problems from IEEE CEC2020 ( Kumar et al., 2019 ).

It’s worth mentioning that these evaluations are carried out ac-

cording to the guidelines of CEC2020. Note that the complete de-

scription of these real-world problems is described in CEC2020

( Kumar et al., 2019 ). However, the general description of the real-

world problems, used in this section, can be obtained from Table

16 . Also, the results of these evaluations are shown in Table 17 . 

Based on Table 17 , it is seen that the conventional LGWO rep-

resents the best performance in two cases Optimal Design of In-

dustrial refrigeration System (RC23) and SOPWM for 3-level In-

verters (RC45). The proposed ChOA provides the best results in

the remaining real-world optimization test cases (RC01, RC04, RC11,

RC14, RC16, RC35, RC37, and RC51). Therefore, In comparison with

GA , GSA , PSO, BH, CS, GWO and LGWO algorithms, the ChOA’s sta-

tistical results indicate that it can be considered as the best op-

timization algorithm in working with real-world optimization test

problems. The LGWO is also the second best algorithm in dealing

with these test cases. 

4. Conclusion 

This paper proposed a novel hunting-based optimization algo-

rithm called ChOA. The proposed ChOA mimicked the social di-

versity and hunting behaviour of chimps. Four hunting behaviors

(driving, chasing, blocking, and attacking), several operators such

as diverse intelligence and sexual motivation, and also four kinds

of chimps were proposed and mathematically modelled for supply-

ing the ChOA with high exploitation and exploration. The perfor-

mance of ChOA was benchmarked on 30 mathematical test func-

tions, 13 high-dimensional test problems, and 10 real-world opti-

mization problems in terms of exploration, exploitation, local op-

tima avoidance, and convergence rate. As per the superior results

of the ChOA on the majority of the unimodal test functions and

convergence curves, it can be concluded that the proposed algo-

rithm benefits from convergence rate and high exploitation. The

main reason for the high exploitation and convergence speed is

due to the proposed semi-deterministic feature of chaotic maps.

High exploration of ChOA can be concluded from the results of

multimodal and composite test functions, which is because of di-
iding chimps into independent groups and allowing them to have

ifferent searching behaviour. 

Finally, the special decreasing shapes of various f parameter

videnced that the ChOA requires chimps to move suddenly in

he initial steps of the algorithm and locally in the final steps of

he algorithm, which leads to a gentle transition and balance be-

ween exploitation and exploration. The ChOA was compared to

ine well-known optimization algorithms in the literature: PSO,

A , GSA , BH, GWO, CS, BBO, ALO, and LGWO. Wilcoxon statisti-

al tests were also conducted when comparing other optimiza-

ion algorithms. The results indicated that the ChOA provides very

ompetitive results and outperforms other optimization algorithms

n the majority of benchmark functions. The statistical test also

roved that the results were statistically significant for the ChOA.

herefore, it may be concluded from the comparative results that

he proposed ChOA is able to be employed as an alternative opti-

izer for optimizing various high-dimensional optimization prob-

ems. 

The paper also considered solving ten real-world optimization

roblems using the ChOA. The results of the ChOA on these real-

orld problems were compared to a wide range of other optimiza-

ion algorithms. The comparative results indicated that the ChOA

s able to solve real-world optimization problems with unknown

earch spaces as well. Other conclusion remarks that can be made

rom the results of this study are as follows: 

• Dividing chimps in independent groups guarantees exploration

of the search space, particularly for problems of higher dimen-

sionality. 
• The proposed semi-deterministic feature of chaotic maps em-

phasizes the exploitation ability of the ChOA. 
• The use of chaotic maps assists the ChOA algorithm to resolve

local optima stagnations. 
• Local optima avoidance is very high since the ChOA algorithm

employs a four kind of population of search agents to approxi-

mate the global optimum. 
• The special decreasing shapes of various f parameter promotes

exploitation and convergence rate as the iteration counter in-

creases. 
• Chimps memorize search space information over the course of

iteration. 
• ChOA almost uses memory to keep the best solution acquired

so far. 
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• ChOA generally has a few parameters to adjust. 
• Considering the parallel structure of independent groups and

the simplicity of ChOA, it is very easy to implement the pro-

posed algorithm. 
• Chimps are not quite similar in terms of ability and intelligence,

but they all perform their tasks as members of a hunting group.

So, each individual’s ability can be useful in a special phase of

the hunting event. 

Several research directions can be recommended for future

tudies with the proposed algorithm. Utilizing the ChOA to tackle

ifferent optimization problems in different industrial tasks. Also,

odifying ChOA to solve multi- and many-objective optimization

roblems can be investigated as a good contribution. Besides, the

ffectiveness of ChOA can be compared with other hunting-based

ptimizers for solving different optimization problems. Another re-

earch direction is to investigate the effectiveness of other chaotic

aps in improving the performance of the ChOA algorithm. Finally,

t is possible to design a discrete extension of ChOA. 
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