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Abstract This paper proposes a novel nature-inspired

algorithm called Multi-Verse Optimizer (MVO). The main

inspirations of this algorithm are based on three concepts in

cosmology: white hole, black hole, and wormhole. The

mathematical models of these three concepts are developed

to perform exploration, exploitation, and local search, re-

spectively. The MVO algorithm is first benchmarked on 19

challenging test problems. It is then applied to five real

engineering problems to further confirm its performance.

To validate the results, MVO is compared with four well-

known algorithms: Grey Wolf Optimizer, Particle Swarm

Optimization, Genetic Algorithm, and Gravitational Search

Algorithm. The results prove that the proposed algorithm is

able to provide very competitive results and outperforms

the best algorithms in the literature on the majority of the

test beds. The results of the real case studies also

demonstrate the potential of MVO in solving real problems

with unknown search spaces. Note that the source codes of

the proposed MVO algorithm are publicly available at

http://www.alimirjalili.com/MVO.html.

Keywords Optimization � Meta-heuristic � Algorithm �
Benchmark � Genetic Algorithm � Particle Swarm
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1 Introduction

Nature has been the main inspiration for the majority of the

population-based stochastic optimization techniques. As

the name of such techniques implies, they perform opti-

mization randomly. The optimization process is usually

started by creating a set of random solutions. These initial

solutions are then combined, moved, or evolved over a pre-

defined number of steps called iterations or generations.

This is almost the main framework of all population-based

algorithms. What makes an algorithm different from others

in this field is the mechanism of combining, moving, or

evolving the solutions during optimization.

For instance, Genetic Algorithms (GAs) [1] utilize the

survival of the fitter individuals in nature in order to select

the best solutions and then combine them based on the

reproduction of chromosomes. Particle Swarm Optimiza-

tion (PSO) [2] was inspired by social and individual

thinking of birds when flying, so it obliges the candidate

solutions to move around a search space with respect to

their own personal best position obtained so far as well as

the best position that the swarm found so far. Gravitational

Search Algorithm (GSA) [3] uses the Newtonian laws of

motion in order to move its search agents towards the

promising regions of a search space.
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Another common concepts among different population-

based algorithms are exploration and exploitation. The

former refers to the phase that an algorithm tries to dis-

cover different promising regions of a search space glob-

ally. Generally speaking, abrupt changes in candidate

solutions are fruitful at this stage. In contrary, the latter

concept is the convergence ability an algorithm around the

obtained promising solutions in the exploration phase. A

proper balance between exploration and exploitation can

guarantee proceeding towards the global optimum.

Recently, there has been a growing interest in proposing

new algorithms or improving the current ones in this field.

A significant number of practical applications also ac-

companies the theoretical works. The reason of this re-

markable popularity might be originated from the so-called

No Free Lunch (NFL) theorem for optimization [4]. This

theorem has been proved logically that there is no opti-

mization technique for solving all optimization problems.

The NFL theorem, obviously, makes this area of research

open, in which researchers are allowed to improve/adapt

the current algorithms for solving different problems or

propose new algorithms for providing competitive results

compared to the current algorithms.

In this work, a novel stochastic population-based algo-

rithm is proposed called Multi-Verse Optimizer (MVO).

As its name implies, MVO is inspired by the theory of

multi-verse in physics. Three main concepts of the multi-

verse theory (white hole, black hole, and wormhole) are

mathematically modelled to construct the MVO. The rest

of the paper is organized as follows.

Section 2 provides the literature review of the stochastic

optimization techniques. Section 3 discusses the concepts

of multi-verse theory and proposes the MVO algorithm.

The test beds and results are demonstrated in Sect. 4. The

real engineering problems are solved and discussed at the

end of Sect. 4 as well. Eventually, Sect. 5 concludes the

work and suggests some directions for future studies.

2 Related works

Generally speaking, stochastic optimization techniques can

be divided into two main categories: single-solution-based

versus population-based. The former class of algorithms

starts the optimization process with a single random solu-

tion and improves it over a pre-defined number of gen-

erations. Simulate annealing (SA) [5], local searches [6, 7],

and hill climbing [8] belong to this class of algorithms. The

advantages of single-solution-based algorithms are: sim-

plicity and low number of function evaluation. However,

the main disadvantage is the high probability of entrapment

in local optima. In addition, since at every run a single

solution is involved, there is no information sharing, and

the algorithm should deal with lots of issues such as local

optima, isolation of optima, deceptiveness, bias of the

search space, and premature convergence with only one

candidate solution.

In contrast to single-solution-based algorithms, popula-

tion-based algorithms initiate the optimization process with

a set of random solutions and improve them over the course

of iterations. This set of solutions is sometimes called

candidate solutions’ set. PSO, GA, Ant Colony Optimiza-

tion (ACO) [9, 10], Artificial Bee Colonies (ABC) [11],

and GSA [11] are some of the most popular algorithms in

this class. The main advantage of the population-based

algorithms is that there can be information exchange be-

tween the candidate solutions. Therefore, they can handle

the issues such as local optima, isolation of optima, de-

ceptiveness, bias of the search space, and premature con-

vergence easier and faster. Another advantage is the less

probability of entrapment in local solutions compared to

the single-solution-based algorithms. The disadvantages of

these algorithms are: less simplicity and the need for high

number of function evaluation at each iteration.

The literature shows that the population-based algo-

rithms have become a reliable alternative to single-solu-

tion-based algorithms due to the above-mentioned

advantages. The application of these methods can also be

found in a wide range of fields, emphasizing the merits of

these techniques. Generally speaking, the design process of

an algorithm starts with an inspiration. The inspiration

could be from behaviour of creatures, natural phenomena,

or social events. After the inspiration, different potential

mathematical models are generated to design the algo-

rithm. The best combination of mathematical models is

then found by conducting experiments on various test beds.

The operators of algorithms in this field are usually de-

signed to accomplish two phases: exploration versus ex-

ploitation. In the former phase, an algorithm should be

equipped with mechanisms to search the search space as

extensively as possible. In fact, promising regions of the

search space are identified in this phase. In the exploitation

phase, however, there should be emphasizes on local search

and convergence towards promising areas obtained in the

exploration phase. Exploration and exploitation are two

conflicting stages with no specific mathematical definition.

The exploration phase usually comes before exploitation,

but there is a need to re-explore the search space in case of

local optima stagnation, which is quite common in real

problems with unknown search spaces.

Another challenge when designing an algorithm is the

transition between exploration and exploitation. There is no

clear rule for an algorithm to realize the most suitable time

for transiting from exploration to exploration due to both

unknown shape of search spaces and stochastic nature of

population-based algorithms. The majority of population-
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based algorithms have been tuned adaptively to smoothly

transit between exploration and exploitation. For instance,

the inertia weight in PSO is mostly decreased linearly from

0.9 to 0.4 in order to reduce the impacts of velocity vectors

on particle movements and emphasize exploitation as it-

erations increase.

The above paragraphs show the challenges that a de-

signer encounters when developing a new meta-heuristic.

The following section proposes a novel meta-heuristic

based on the concepts of multi-verse theory.

3 Multi-Verse Optimizer

3.1 Inspiration

The big bang theory [12] discusses that our universe starts

with a massive explosion. According to this theory, the big

bang is the origin of everything in this world, and there was

nothing before that. Multi-verse theory is another recent

and well-known theory between physicists [13]. It is be-

lieved in this theory that there are more than one big bang

and each big bang causes the birth of a universe. The term

multi-verse stands opposite of universe, which refers to the

existence of other universes in addition to the universe that

we all are living in [13]. Multiple universes interact and

might even collide with each other in the multi-verse the-

ory. The multi-verse theory also suggests that there might

be different physical laws in each of the universes.

We chose three main concepts of the multi-verse theory

as the inspiration for the MVO algorithm: white holes,

black holes, and wormholes. A white hole has never seen in

our universe, but physicists think that the big bang can be

considered as a white hole and may be the main component

for the birth of a universe [14]. It is also argued in the

cyclic model of multi-verse theory [15] that big bangs/

white holes are created where the collisions between par-

allel universes occur. Black holes, which have been ob-

served frequently, behave completely in contrast to white

wholes. They attract everything including light beams with

their extremely high gravitational force [16]. Wormholes

are those holes that connect different parts of a universe

together. The wormholes in the multi-verse theory act as

time/space travel tunnels where objects are able to travel

instantly between any corners of a universe (or even from

one universe to another) [17]. Conceptual models of these

three key components of the multi-verse theory are illus-

trated in Fig. 1.

Every universe has an inflation rate (eternal inflation)

that causes its expansion through space [18]. Inflation

speed of a universe is very important in terms of forming

stars, planets, asteroids, black holes, white holes, worm-

holes, physical laws, and suitability for life. It is argued in

one of the cyclic multi-verse models [19] that multiple

universes interact via white, black, and wormholes to reach

a stable situation. This is the exact inspiration of the MVO

algorithm, which is conceptually and mathematically

modelled in the following subsection.

3.2 MVO algorithm

As discussed in the preceding section, a population-based

algorithm divides the search process into two phases: ex-

ploration versus exploitation. We utilize the concepts of

white hole and black hole in order to explore search spaces

by MVO. In contrast, the wormholes assist MVO in ex-

ploiting the search spaces. We assume that each solution is

analogous to a universe and each variable in the solution

is an object in that universe. In addition, we assign each

solution an inflation rate, which is proportional to the cor-

responding fitness function value of the solution. We also

use the term time instead of the iteration in this paper since

it is a common term in multi-verse theory and cosmology.

During optimization, the following rules are applied to

the universes of MVO:

1. The higher inflation rate, the higher probability of

having white hole.

Fig. 1 White hole, black hole, and wormhole

Neural Comput & Applic (2016) 27:495–513 497

123



2. The higher inflation rate, the lower probability of

having black holes.

3. Universes with higher inflation rate tend to send

objects through white holes.

4. Universes with lower inflation rate tend to receive

more objects through black holes.

5. The objects in all universes may face random move-

ment towards the best universe via wormholes regard-

less of the inflation rate.

The conceptual model of the proposed algorithm is illus-

trated in Fig. 2.

This figure shows that the objects are allowed to move

between different universes through white/black hole tun-

nels. When a white/black tunnel is established between two

universes, the universe with higher inflation rate is con-

sidered to have white hole, whereas the universe with less

inflation rate is assumed to own black holes. The objects

are then transferred from the white holes of the source

universe to black holes of the destination universe. This

mechanism allows the universes to easily exchange objects.

In order to improve the whole inflation rate of the uni-

verses, we assume that the universes with high inflation

rates are highly probable to have white holes. In contrary,

the universes with low inflation rates have a high prob-

ability of having black holes. Therefore, there is always

high possibility to move objects from a universe with high

inflation rate to a universe with low inflation rate. This can

guarantee the improvement of the average inflation rates of

the whole universes over the iterations.

In order to mathematically model the white/black hole

tunnels and exchange the objects of universes, we utilized a

roulette wheel mechanism. At every iteration, we sort the

universes based of their inflation rates and chose one of

them by the roulette wheel to have a white hole. The fol-

lowing steps are done in order to do this.

Assume that

U ¼

x11 x21 . . . xd1
x12 x22 . . . xd2

..

. ..
. ..

. ..
.

x1n x2n . . . xdn

2
6664

3
7775

where d is the number of parameters (variables) and n is the

number of universes (candidate solutions):

x
j
i ¼

x
j
k r1\NIðUiÞ
x
j
i r1�NIðUiÞ

�
ð3:1Þ

where x
j
i indicates the jth parameter of ith universe, Ui

shows the ith universe, NI(Ui) is normalized inflation rate

of the ith universe, r1 is a random number in [0, 1], and x
j
k

indicates the jth parameter of kth universe selected by a

roulette wheel selection mechanism.

The pseudocodes for this part are as follows:

SU=Sorted universes
NI=Normalize inflation rate (fitness) of the universes
for each universe indexed by i

Black_hole_index=i;
for each object indexed by j

r1=random([0,1]);
if r1<NI(Ui)

White_hole_index= RouletteWheelSelection(-NI);
U(Black_hole_index,j)= SU(White_hole_index,j);

end if
end for

end for

…….. Universe (1)          .…….

.

.

.

.

.

…….. Universe (2)          .…….

…….. Universe (3)          .…….

…….. Universe (n-1)       .…….

…….. Universe (n)          .…….

White/black hole tunnelWormhole tunnel

Best universe 
created so far

Fig. 2 Conceptual model of the proposed MVO algorithm (I(U1)[ I(U2)[ ���[ I(Un-1)[ I(Un))
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As may be seen in these pseudocodes and Eq. (3.1), the

selection and determination of white holes are done by the

roulette wheel, which is based on the normalized inflation

rate. The less inflation rate, the higher probability of

sending objects though white/black hole tunnels. Please

note that -NI should be changed to NI for the maximiza-

tion problems. The exploration can be guaranteed using

this mechanism since the universes are required to ex-

change objects and face abrupt changes in order to explore

the search space.

With the above mechanism, the universes keep ex-

changing objects without perturbations. In order to main-

tain the diversity of universes and perform exploitation, we

consider that each universe has wormholes to transport its

objects through space randomly. In Fig. 2, white points

represent transferred objects through the wormholes. It

may be observed that the wormholes randomly change the

objects of the universes without consideration of their in-

flation rates. In order to provide local changes for each

universe and have high probability of improving the in-

flation rate using wormholes, we assume that wormhole

tunnels are always established between a universe and the

best universe formed so far. The formulation of this

mechanism is as follows:

x
j
i ¼

Xj þ TDR� ubj � lbj
� �

� r4þ lbj
� �

r3\0:5

Xj � TDR� ubj � lbj
� �

� r4þ lbj
� �

r3� 0:5

(
r2\WEP

x
j
i r2�WEP

8>><
>>:

ð3:2Þ

where Xj indicates the jth parameter of best universe

formed so far, TDR is a coefficient, WEP is another co-

efficient, lbj shows the lower bound of jth variable, ubj is

the upper bound of jth variable, x
j
i indicates the jth pa-

rameter of ith universe, and r2, r3, r4 are random numbers

in [0, 1].

The pseudocodes are as follows (assuming that ub and lb

indicate upper bound and lower bound of the variables):

It may be inferred from the pseudocodes and mathematical

formulation that there are two main coefficients herein:

wormhole existence probability (WEP) and travelling dis-

tance rate (TDR). The former coefficient is for defining the

probability of wormhole’s existence in universes. It is re-

quired to increase linearly over the iterations in order to

emphasize exploitation as the progress of optimization

process. Travelling distance rate is also a factor to define

the distance rate (variation) that an object can be teleported

by a wormhole around the best universe obtained so far. In

contrast to WEP, TDR is increased over the iterations to

have more precise exploitation/local search around the best

obtained universe. Wormhole existence and travelling

distance rates are illustrated in Fig. 3. The adaptive for-

mula for both coefficients are as follows:

WEP ¼ minþ l� max�min

L

� �
ð3:3Þ

where min is the minimum (0.2 in this paper), max is the

maximum (1 in this paper), l indicates the current iteration,

and L shows the maximum iterations.

TDR ¼ 1� l1=p

L1=p
ð3:4Þ

where p (in this paper equals 6) defines the exploitation

accuracy over the iterations. The higher p, the sooner and

more accurate exploitation/local search.

Note that WEP and TDR can be considered as constants

as well, but we recommend adaptive values according to

the results of this paper.

After all, the general steps and pseudocodes of the MVO

algorithm are provided in the ‘‘Appendix 1’’.

In the MVO algorithm, the optimization process starts

with creating a set of random universes. At each iteration,

objects in the universes with high inflation rates tend to

move to the universes with low inflation rates via white/

black holes. Meanwhile, every single universe faces

for each universe indexed by i
for each object indexed by j

r2=random([0,1]);
if r2<Wormhole_existance_probability

r3= random([0,1]);
r4= random([0,1]);
if r3<0.5

U(i,j)=Best_universe(j) + Travelling_distance_rate * (( ub(j) - lb(j)) *
r4 + lb(j));

else   
U(i,j)=Best_universe(j) - Travelling_distance_rate * (( ub(j) - lb(j)) *
r4 + lb(j));

end if
end if
end for

end for
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random teleportations in its objects through wormholes

towards the best universe. This process is iterated until the

satisfaction of an end criterion (a pre-defined maximum

number of iterations, for instance).

The computational complexity of the proposed algo-

rithms depends on number of iterations, number of uni-

verses, roulette wheel mechanism, and universe sorting

mechanism. Sorting universe is done in every iteration, and

we employ the Quicksort algorithm, which has the com-

plexity of O(n log n) and O(n2) in the best and worst case,

respectively. The roulette wheel selection is run for every

variable in every universe over the iterations and is of

O(n) or O(log n) based on the implementation. Therefore,

the overall computational complexity is as follows:

O MVOð Þ ¼ O l O Quick sortð Þ þ n� d � O roulette wheelð Þð Þð Þð Þ
ð3:5Þ

O MVOð Þ ¼ O l n2 þ n� d � log n
� �� �

ð3:6Þ

where n is the number of universes, l is the maximum

number of iterations, and d is the number of objects.

To see how the proposed algorithm theoretically has the

potential to solve optimization problems, some observa-

tions are as follows:

• White holes are more possible to be created in the

universes with high inflation rates, so they can send

objects to other universes and assist them to improve

their inflation rates.

• Black holes are more likely to be appeared in the

universes with low inflation rates so they have higher

probability to receive objects from other universes. This

again increases the chance of improving inflation rates

for the universes with low inflation rates.

• White/black hole tunnels tend to transport objects from

universes with high inflation rates to those with low

inflation rates, so the overall/average inflation rate of all

universes is improved over the course of iterations.

• Wormholes tend to appear randomly in any universe

regardless of inflation rate, so the diversity of universes

can be maintained over the course of iterations.

• While/black hole tunnels require universes to abruptly

change, so this can guarantee exploration of the search

space.

• Abrupt changes also assist resolving local optima

stagnations.

• Wormholes randomly re-span some of the variables of

universes around the best solution obtained so far over

the course of iterations, so this can guarantee exploita-

tion around the most promising region of the search

space.

• Adaptive WEP values smoothly increase the existence

probability of wormholes in universes. Therefore,

exploitation is emphasized during optimization process.

• Adaptive TDR values decrease the travelling distance

of variables around the best universe, a mechanism for

increasing the accuracy of local search over the

iterations.

• The convergence of the proposed algorithm is guaran-

teed by emphasizing exploitation/local search propor-

tional to the number of iterations.

The following section investigates these theoretical claims

in practice.

4 Results and discussion

We selected 19 benchmark functions in the literature as test

beds for comparison [20–23]. To improve the difficultly of

the test functions F1–F13, we randomly shift the optima of

test functions at every run. The rest of the test functions, F14–

F19, are six composite benchmark functions provided by

CEC 2005 special session [24, 25]. It is worth mentioning

here that the dimension of the test functions is also considered

50. The test functions are listed in Tables 1, 2, and 3. The

shape of the composite functions is also illustrated in Fig. 4.

The employed test functions can be divided into three

groups: unimodal, multi-modal, and composite. Unimodal

test functions have one global optimum, so they are suit-

able for benchmarking the exploitation of algorithms. The

multi-modal test functions, however, have a global opti-

mum as well as multiple local optima with number expo-

nentially increasing with the dimension. Eventually,

composite test functions are considered as the combination

of the first two groups with random rotation, shift, and

biasing. The composite test functions are more similar to

the real search spaces and good for benchmarking the ex-

ploration and exploitation of algorithms simultaneously.

In order to have a fair comparison, the algorithm is run

30 times. We also conduct Wilcoxon’s nonparametric

0 L
0

0.2

0.4

0.6

0.8

1

Light years (l)

WEP
TDR

Fig. 3 Wormhole existence probability (WEP) versus travelling

distance rate (TDR)
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statistical test over this 30 runs in order to draw a statis-

tically meaningful conclusion. Such statistical test must be

done due to the stochastic nature of meta-heuristics [26,

27]. Any p values\0.05 evidence the statistical significant

superiority of the results. After all, the statistical results are

provided in Tables 4, 5, and 6. Note that the number of

universes is 30 and the maximum number of iterations is

equal to 500. WEP is increased linearly from 0.2 to 1, and

TDR is decreased from 0.6 to 0 using Eqs. (3.3) and (3.4),

respectively.

For the verification of the results, the MVO algorithm is

compared to PSO [2] as the best algorithm among SI-based

techniques, GA [1] as the best evolutionary algorithms,

GSA [3] as one of the best and recent physics-based al-

gorithms, and Grey Wolf Optimizer (GWO) [28] as one of

the most recent algorithms.

4.1 Unimodal test functions and exploitation

The results of Table 4 show that the proposed algorithm is

able to provide very competitive results on the unimodal

test functions. The p values in Table 7 also prove that the

superiority is significant in the majority of the cases. This

testifies that the proposed algorithm has a high exploitation

ability, which is due to the integrated adaptive WEP/TDR

constants and wormholes combined that assist MVO to

provide high exploitation.

4.2 Multi-modal test functions and exploration analysis

After proving the exploitation of MVO, we are going to

discuss the exploration of this algorithm. The results of

multi-modal test function can be seen in Table 5. The re-

sults of this table evidence that the proposed algorithm is

again able to provide very promising performance. It may

be observed that this algorithm outperforms others on F8,

F11, F12, and F13. The p values of Table 7 suggest that

the superiority of the MVO algorithm is statistically sig-

nificant in the majority of times. In addition, p values show

that the MVO algorithm rejects the null hypothesis on F9

and F10, proving that the results of this algorithm are very

competitive.

Table 1 Unimodal benchmark

functions
Function Dim Range fmin

F1 xð Þ ¼
Pn

i¼1 x
2
i

50 [-100, 100] 0

F2 xð Þ ¼
Pn

i¼1 xij j þ
Qn

i¼1 xij j 50 [-10, 10] 0

F3 xð Þ ¼
Pn

i¼1

Pi
j�1 xj

� �2 50 [-100, 100] 0

F4 xð Þ ¼ maxi xij j; 1� i� nf g 50 [-100, 100] 0

F5 xð Þ ¼
Pn�1

i¼1 100 xiþ1 � x2i
� �2þ xi � 1ð Þ2

h i
50 [-30, 30] 0

F6 xð Þ ¼
Pn

i¼1 xi þ 0:5½ �ð Þ2 50 [-100, 100] 0

F7 xð Þ ¼
Pn

i¼1 ix
4
i þ random 0; 1½ Þ 50 [-1.28, 1.28] 0

Table 2 Multi-modal benchmark functions

Function Dim Range fmin

F8 xð Þ ¼
Pn

i¼1 �xisin
ffiffiffiffiffiffi
xij j

p� �
50 [-500, 500]

F9 xð Þ ¼
Pn

i¼1 x2i � 10cos 2pxið Þ þ 10

 �

50 [-5.12, 5.12] 0

F10 xð Þ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 x

2
i

q� �
� exp 1

n

Pn
i¼1 cos 2pxið Þ

� �
þ 20þ e

50 [-32, 32] 0

F11 xð Þ ¼ 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1 cos

xiffi
i

p
� �

þ 1 50 [-600, 600] 0

F12 xð Þ ¼ p
n

10sin py1ð Þ þ
Xn�1

i¼1
yi � 1ð Þ2 1þ 10sin2 pyiþ1ð Þ


 �
þ yn � 1ð Þ2

n o

þ
Xn

i¼1
u xi; 10; 100; 4ð Þ

yi ¼ 1þ xi þ 1

4

uðxi; a; k;mÞ ¼
k xi � að Þm xi [ a

0 �a\xi\a

k �xi � að Þm xi\� a

8><
>:

50 [-50, 50] 0

F13 xð Þ ¼ 0:1 sin2 3px1ð Þ þ
Xn

i¼1
xi � 1ð Þ2 1þ sin2 3pxi þ 1ð Þ


 �
þ xn � 1ð Þ2 1þ sin2 2pxnð Þ


 �n o

þ
Xn

i¼1
u xi; 5; 100; 4ð Þ

50 [-50, 50] 0
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Superior exploration of the proposed algorithm is due

to the white and black holes that allow universes to ex-

change different objects. Travelling an object from a

universe to the other causes sudden changes and promotes

exploration. This is similar to the crossover operator in

GA that highly emphasizes exploration of the search

spaces.

Exploration always comes with local optima avoidance.

In fact, stagnation in local solutions can be resolved by

promoting exploration. In addition to the discussion

provided in the preceding paragraph, local optima avoid-

ance of MVO also can be reasoned by the employed black/

white hole concepts. Abrupt changes of universe are very

useful in case of local optima stagnation.

4.3 Composite test functions

and exploration/exploitation analysis

This subsection discusses the balance between exploration

and exploitation, which is an essential feature of stochastic

Table 3 Composite benchmark functions

Function Dim Range fmin

F14(CF1)

f1; f2; f3; . . .; f10 ¼ Sphere function

[,1, ,2, ,3,…, ,10] = [1, 1, 1,…, 1]

[k1, k2, k3…, k10] = [5/100, 5/100, 5/100, …, 5/100]

20 [-5, 5] 0

F15(CF2)

f1; f2; f3; . . .; f10 ¼ Griewank’s function

[,1, ,2, ,3,…, ,10] = [1, 1, 1,…, 1]

[k1, k2, k3, …, k10] = [5/100, 5/100, 5/100, …, 5/100]

20 [-5, 5] 0

F16(CF3)

f1; f2; f3; . . .; f10 ¼ Griewank’s function

[,1, ,2, ,3,…, ,10] = [1, 1, 1,…, 1]

[k1, k2, k3, …, k10] = [1, 1, 1, …, 1]

20 [-5, 5] 0

F17(CF4)

f1; f2 ¼ Ackley’s function

f3; f4 ¼ Rastrigin’s function

f5; f6 ¼ Weierstrass function

f7; f8 ¼ Griewank’s function

f9; f10 ¼ Sphere function

[,1, ,2, ,3, …, ,10] = [1, 1, 1,…, 1]

½k1; k2; k3; . . .; k10� ¼ ½5=32; 5=32; 1; 1; 5=0:5; 5=0:5; 5=100; 5=100; 5=100; 5=100�

20 [-5, 5] 0

F18(CF5)

f1; f2 ¼ Rastrigin’s function

f3; f4 ¼ Weierstrass function

f5; f6 ¼ Griewank’s function

f7; f8 ¼ Ackley’s function

f9; f10 ¼ Sphere function

[,1, ,2, ,3,…, ,10] = [1, 1, 1,…, 1]

½k1; k2; k3; . . .; k10� ¼ ½1=5; 1=5; 5=0:5; 5=0:5; 5=100; 5=100; 5=32; 5=32; 5=100; 5=100�

20 [-5, 5] 0

F19(CF6)

f1; f2 ¼ Rastrigin’s function

f3; f4 ¼ Weierstrass function

f5; f6 ¼ Griewank’s function

f7; f8 ¼ Ackley’s function

f9; f10 ¼ Sphere function

[,1, ,2, ,3,…, ,10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

½k1; k2; k3; . . .; k10� ¼ ½0:1 � 1=5; 0:2 � 1=5; 0:3 � 5=0:5; 0:4 � 5=0:5; 0:5 � 5=100;

0:6 � 5=100; 0:7 � 5=32; 0:8 � 5=32; 0:9 � 5=100; 1 � 5=100�

20 [-5, 5] 0
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algorithms for solving real problems. The composite test

functions are suitable for examining the balance of explo-

ration and exploitation in this regard. As presented in

Table 6, the results of the algorithms on composite test

functions are very close. This is due to the difficulty of this

set of test functions. The results prove that the MVO al-

gorithm provides highly competitive results on the com-

posite test functions as well. This evidences that the MVO

algorithm properly balances exploration and exploration

during optimization. This is firstly originated from the

employed adaptive WEP that assists to smoothly transit

between exploration and exploitation phases.

4.4 Convergence analysis

To confirm the convergence of the proposed algorithm, we

provide the search histories, trajectories in the first di-

mension, average fitness of all universes, and convergence

curves in Fig. 7 similarly to [28, 29]. From search history

point of view, second columns of Fig. 5 show that the

Fig. 4 Search space of

composite benchmark functions

Table 4 Results of unimodal benchmark functions

F MVO GWO GSA PSO GA

Ave SD Ave SD Ave SD Ave SD Ave SD

F1 2.08583 0.648651 2319.19 1237.109 2983.667 903.3827 3.552364 2.853733 27,187.58 2745.82

F2 15.92479 44.7459 14.43166 5.923015 10.96518 10.54968 8.716272 4.929157 68.6618 6.062311

F3 453.2002 177.0973 7278.133 2143.116 113,740.4 78,786.15 2380.963 1183.351 48,530.91 8249.75

F4 3.123005 1.582907 13.09729 11.3469 32.2563 6.226765 21.5169 6.71628 62.99326 2.535643

F5 1272.13 1479.477 3,425,462 3,304,309 7582.498 7314.818 1132.486 1357.967 65,361,620 29,714,021

F6 2.29495 0.630813 5009.442 3028.875 74,617.45 8231.224 86.62074 147.3067 49,574.1 8545.149

F7 0.051991 0.029606 0.408082 0.119544 21.16092 12.1566 0.577434 0.318544 18.72524 4.935256

Table 5 Results of multi-modal benchmark functions

F MVO GWO GSA PSO GA

Ave SD Ave SD Ave SD Ave SD Ave SD

F8 -11,720.2 937.1975 -10,739.5 1162.793 -4638.41 805.0488 -6727.59 1352.882 -10,698.6 602.3045

F9 118.046 39.34364 89.13475 37.95765 128.0103 26.90054 99.83202 24.62872 273.2519 29.55218

F10 4.074904 5.501546 9.452571 3.467608 1.654073 1.583499 4.295044 1.308386 18.59657 0.351737

F11 0.938733 0.059535 22.51942 26.68168 1021.705 82.95486 624.3092 105.3874 353.3655 77.26729

F12 2.459953 0.791886 3,200,008 6,746,208 741,596.9 624,375.5 13.38384 8.969122 2.21e?08 1.1e?08

F13 0.222672 0.086407 7,815,082 16,475,640 6,670,046 5,719,826 21.11298 12.83179 4.49e?08 2.26e?08
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universes tend to scatter around the best solutions in the

search space over the course of iterations. In order to see

the changes in the search agents’ variables, the trajectories

of the first universe in the first dimension are depicted in

the fourth column of Fig. 5 as well. It is evident from the

trajectories that universes faced abrupt changes in the ini-

tial steps of iterations. These sudden changes are decreased

gradually over the course of iterations. According to Berg

et al. [30], this behaviour can guarantee that a population-

based algorithm eventually converges to a point and search

locally in a search space.

Another evidence of convergence and improvement in

universes can be concluded from the average fitness of all

universes in Fig. 5. The fifth column of this figure shows

descending trends in the average fitness over the iterations.

This evidences that the model proposed for MVO algo-

rithm can successfully improve the fitness of all universes

and guarantee finding better solutions as iteration increases.

This can be discussed and reasoned according to the white

and black hole concepts of the proposed algorithm. Since

the variables of universes tend to move from a fit universe

to a less fit universe, similarly to the evolution concepts in

GA, the whole universes and their fitness average tend to

be improved over the course of iterations. In addition, we

save the best universe and move it to the next iteration, so

the best universe formed so far is always available to im-

prove the fitness of other universes.

This is similar to the elitism concepts in GA and other

evolutionary algorithms. Eventually, the convergence

curves in Fig. 5 (last column) show that MVO algorithm

finds a better solution iteration by iteration.

4.5 Constrained optimization and classical engineering

problems

In this subsection, a set of five constrained real engineering

problems is solved in order to further investigate the per-

formance of the proposed MVO algorithm. The following

problems have several inequality constraints, so the MVO

algorithm should be able to handle them during optimiza-

tion. Since search agents of the MVO algorithm are fitness

independent, the mechanism of this algorithm does not

need to be altered for handling constraints. We utilize the

simplest constraint handling method, death penalty func-

tions, where search agents are assigned big objective

function values if they violate any of the constraints. As-

signing big fitness values to the violated universes requires

them to have high number of black holes and less number

of white holes. Therefore, they mostly tend to receive ob-

jects rather than sending them.

4.5.1 Welded beam design using MVO

As its name implies, this problem deals with designing a

welded beam with the lowest fabrication cost. The overall

Table 6 Results of composite benchmark functions

F MVO GWO GSA PSO GA

Ave SD Ave SD Ave SD Ave SD Ave SD

F14 10.00017 31.62288 0.00057 0.00044 30.09736 95.1762 20 63.2455 6.41e-05 9.25e-05

F15 30.00705 48.30615 30.0135 67.4900 72.92938 62.39415 60 84.3274 12.6899 20.2671

F16 50.00061 52.70461 20.0020 42.1642 199.5152 168.6623 20 42.1637 10.0435 31.7419

F17 190.3 128.6659 291.347 145.615 420.8455 60.07176 170 48.3045 116.353 80.5314

F18 160.5312 158.2887 60.0005 51.6393 266.2412 147.4886 30 48.3045 21.3184 41.5775

F19 440.005 51.64 380.031 103.286 421.0165 25.80179 400.330 115.792 216.693 160.751

Table 7 p values of the Wilcoxon rank-sum test over 10 runs

(p C 0.05 have been underlined)

F MVO GWO GSA PSO GA

F1 N/A 0.002827 0.000183 0.185877 0.000183

F2 0.009108 0.053903 0.909722 N/A 0.000183

F3 N/A 0.000183 0.000183 0.000183 0.000183

F4 N/A 0.140465 0.000183 0.000183 0.000183

F5 0.677585 0.10411 0.005795 N/A 0.000183

F6 N/A 0.000183 0.000182 0.007284 0.000183

F7 N/A 0.000183 0.000183 0.000183 0.000183

F8 N/A 0.053903 0.000183 0.000183 0.021134

F9 0.121225 N/A 0.002827 0.185877 0.000183

F10 0.121225 0.001315 N/A 0.002827 0.000183

F11 N/A 0.005795 0.000183 0.000183 0.000183

F12 N/A 0.025748 0.000183 0.00033 0.000183

F13 N/A 0.075662 0.000183 0.000183 0.000183

F14 0.064022 0.001315 0.002827 0.001745 N/A

F15 0.472676 0.677585 0.037635 0.466409 N/A

F16 0.064022 0.185877 0.003611 0.01385 N/A

F17 0.088973 0.007285 0.000183 0.969146 N/A

F18 0.021134 0.384673 0.00058 0.048538 N/A

F19 0.01133 0.088973 0.001706 0.206046 N/A
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Fig. 5 Search history, trajectory in first dimension, average fitness of all universes and convergence
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system and structural parameters are illustrated in Fig. 6

[31].

This figure shows that there are four design parameters

for this problem to be optimized: thickness of weld (h),

length of attached part of bar (l), the height of the bar (t),

and thickness of the bar (b). The obtained design should not

violate seven constraints when a load applies on the top of

the bar. Some of the constraints are as follows: side con-

straints, shear stress (s), end deflection of the beam (d),
buckling load on the bar (Pc), and bending stress in the

beam (h). Full details for this problem can be found in the

‘‘Appendix 2’’.

Fig. 6 Design parameters of

the welded beam design

problem

Table 8 Comparison results of

the welded beam design

problem

Algorithm Optimal values for variables Optimal cost

h l t b

MVO 0.205463 3.473193 9.044502 0.205695 1.72645

GSA 0.182129 3.856979 10.0000 0.202376 1.87995

CPSO 0.202369 3.544214 9.048210 0.205723 1.72802

GA (Coello) N/A N/A N/A N/A 1.8245

GA (Deb) N/A N/A N/A N/A 2.3800

GA (Deb) 0.2489 6.1730 8.1789 0.2533 2.4331

HS (Lee and Geem) 0.2442 6.2231 8.2915 0.2443 2.3807

Random 0.4575 4.7313 5.0853 0.6600 4.1185

Simplex 0.2792 5.6256 7.7512 0.2796 2.5307

David 0.2434 6.2552 8.2915 0.2444 2.3841

Approx 0.2444 6.2189 8.2915 0.2444 2.3815

Fig. 7 Gear train design

problem
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This problem has been very popular in the literature.

Some of the works that solved this problem are as follows:

GA [31–33], CPSO [34], HS [35], Richardson’s random

method, Simplex method, Davidon–Fletcher–Powell, and

Griffith and Stewart’s successive linear approximation

[36]. We compare our algorithm with these works and

provide the results in Table 8.

The results of the algorithms on welded beam design

problem show that the MVO algorithm is able to find a

design with the minimum cost. The superiority of the re-

sults compared to mathematical approaches is due to the

local optima avoidance of this algorithm. The proposed

algorithm also outperforms PSO, GA, and GSA, which

shows that this algorithm is able to effectively search for

optimal solutions in real search spaces as well.

4.5.2 Gear train design using MVO

As may be seen in Fig. 7 and ‘‘Appendix 2’’, this problem

has four parameters, and the objective is the minimization

of gear ratio [37]. The gear ratio is calculated as follows

[38]:

Gear ratio ¼ angular velocity of output shaft

angular velocity of input shaft

The parameters of this problem are discrete with the in-

crement size of 1 since they define the teeth of the gears

(nA, nB, nC, nD). There constraints are only limited the

variable ranges.

We solve this problem with MVO and provide the re-

sults in Table 9. This table shows that the MVO algorithm

Table 9 Comparison results of

the gear train design problem
Algorithm Optimal values for variables Optimal gear ratio

nA nB nC nD

MVO 43 16 19 49 2.7009e-012

ABC [39] 49 16 19 43 2.7009e-012

MBA [39] 43 16 19 49 2.7009e-012

Kannan and Kramer [40] 33 15 13 41 2.1469e-08

Deb and Goyal [41] 49 16 19 43 2.7019e-012

CS [42] 43 16 19 49 2.7009e-012

ISA [38] N/A N/A N/A N/A 2.7009e-012

Fig. 8 Three-bar truss design

problem

Table 10 Comparison results of the three-bar truss design problem

Algorithm Optimal values for variables Optimal weight

x1 x2

MVO 0.78860276 0.40845307 263.8958499

DEDS [43] 0.78867513 0.40824828 263.8958434

PSO-DE [44] 0.7886751 0.4082482 263.8958433

MBA [39] 0.7885650 0.4085597 263.8958522

Ray and Sain [45] 0.795 0.395 264.3

Tsa [46] 0.788 0.408 263.68

CS [42] 0.78867 0.40902 263.9716
Fig. 9 Pressure vessel design problem
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provides similar results compared to other algorithms. The

obtained number of gears of MVO and MBA [39] is

similar. These results prove that the proposed algorithm is

also able to provide very competitive results on the prob-

lem with discrete parameters.

4.5.3 Three-bar truss design using MVO

Generally speaking, truss design problems are very popular

in the literature of meta-heuristics [39, 42]. The objective is

to design a truss with the minimum weight that does not

violate the constraints. The most important issue in de-

signing truss is constraints that include stress, deflection,

and buckling constraints. Figure 8 shows the structural

parameters of this problem.

As can be seen in the full details of this problem in the

‘‘Appendix 2’’, the objective function is very simple, but it

is subject to several challenging constraints. We employ

this test function as a specific test bed with emphasize on

constraints. The results of the MVO algorithm are com-

pared with other algorithms in Table 10.

The results of this table show that MVO provides very

close results to DEDS and PSO-DE. This evidences that the

proposed algorithm is able to effectively optimize chal-

lenging constrained problems as well.

4.5.4 Pressure vessel design using MVO

The pressure vessel design problem is another popular

engineering test problem in the literature of meta-heuristics

Table 11 Comparison results

for pressure vessel design

problem

Algorithm Optimal values for variables Optimum cost

Ts Th R L

MVO 0.8125 0.4375 42.0907382 176.738690 6060.8066

GSA 1.1250 0.6250 55.9886598 84.4542025 8538.8359

PSO (He and Wang) 0.8125 0.4375 42.091266 176.746500 6061.0777

GA (Coello) 0.8125 0.4345 40.323900 200.000000 6288.7445

GA (Coello and Montes) 0.8125 0.4375 42.097398 176.654050 6059.9463

GA (Deb and Gene) 0.9375 0.5000 48.329000 112.679000 6410.3811

ES (Montes and Coello) 0.8125 0.4375 42.098087 176.640518 6059.7456

DE (Huang et al.) 0.8125 0.4375 42.098411 176.637690 6059.7340

ACO (Kaveh and Talataheri) 0.8125 0.4375 42.103624 176.572656 6059.0888

Lagrangian Multiplier (Kannan) 1.1250 0.6250 58.291000 43.6900000 7198.0428

Branch-bound (Sandgren) 1.1250 0.6250 47.700000 117.701000 8129.1036

Fig. 10 Cantilever beam design

problem

Table 12 Comparison results for cantilever design problem

Algorithm Optimal values for variables Optimum weight

x1 x2 x3 x4 x5

MVO 6.023940221548 5.30601123355 4.4950113234 3.4960223242 2.15272617 1.3399595

MMA [55] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA_I [55] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA_II [55] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

CS [42] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

SOS [56] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996
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[42, 47]. This objective is the minimization of the fabri-

cation cost of a vessel. As shown in Fig. 9, one side of the

vessel is flat, whereas the other side has hemispherical

shape. The structural parameters to be optimizers are (see

Fig. 9 and ‘‘Appendix 2’’) thickness of the shell (Ts),

thickness of the head (Th), inner radius (R), and length of

the cylindrical section without considering the head (L).

We found an optimal design for this problem using

MVO and report the relevant results in Table 11. We

compare the results to PSO [48], GA [49–51], ES [52], DE

[53], and ACO [54]. Mathematical methods used are aug-

mented Lagrangian multiplier [40] and branch-and-bound

[37].

The results of this table show that the proposed MVO

algorithm outperforms all other algorithms.

4.5.5 Cantilever beam design using MVO

The structural optimization problem is to minimize the

weight of a cantilever beam with hollow square blocks.

There are five squares of which the first block is fixed and

the fifth one burdens a vertical load. As may be seen in

Fig. 10 and ‘‘Appendix 2’’, five parameters define the

shape of cross section of the cubes.

We also solve this problem by the MVO algorithm and

present the results in the Table 12. The results of this al-

gorithm for this problem are consistent to those of other

real problems, in which the MVO algorithm outperforms

all of other algorithms.

To sum up, the results of the employed five real engi-

neering design problems prove that the MVO algorithm can

be very effective in optimizing real problems. In addition,

the performance of the proposed algorithm is verified in

solving constrained problems. The reason of the superior

results of MVO on constrained problems is that this algo-

rithm efficiently balances exploration and exploitation. For

one, the concepts of white/black holes promote exploration,

which can cover both feasible and infeasible regions of the

search space. For another, increasing the existence of

wormholes emphasizes exploitation and local search around

the best solution obtained so far.

5 Conclusion

This work proposed a novel optimization technique in-

spired from multi-verse theory in physics. Three concep-

tual models of white, black, and wormholes were proposed

to design the MVO algorithm. A comprehensive com-

parative study was conducted on 19 test functions and five

real engineering problems to investigate the efficiency of

the proposed algorithm in solving optimization problems.

The exploration, exploitation, and convergence of MVO

were benchmarked and discussed on the test functions. The

findings demonstrated the value of the proposed algorithm:

• White holes are more possible to be created in the

universes with high inflation rates, so they send objects

to other universes and assist them to improve their

inflation rates.

• Black holes are more likely to be appeared in the

universes with low inflation rates, so they have higher

probability to receive objects from other universes. This

again increases the chance of improving inflation rate

for the universes with low inflation rates.

• White/black hole tunnels tend to transport objects from

universes with high inflation rates to those with low

inflation rates, so the overall/average inflation rate of all

universes is improved over the course of iterations.

• Wormholes tend to appear in any universe randomly

regardless of the inflation rate, so the diversity of

universe is maintained over the iterations.

• While/black hole tunnels require universes to abruptly

change, causing exploration of the search space.

• Abrupt changes also assist resolving local optima

stagnations.

• Wormholes randomly re-span some of the variables

of universes around the best solution obtained so far

over the course of iterations, so this guarantees

exploitation around the most promising region of the

search space.

• Adaptive WEP values smoothly increase the existence

probability of wormholes in universes. Therefore,

exploitation is emphasized during optimization process.

• Adaptive TDR values decrease the travelling distance

of variables around the best universe, a mechanism that

increases the accuracy of local search over the

iterations.

• The convergence of the proposed algorithm is guaran-

teed by emphasizing exploitation/local search propor-

tional to the number of iterations.

For future work, we are planning to design the multi-ob-

jective and binary version of the MVO algorithm.
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Appendix 1

Create random universes (U)
Initialize WER, TDR, and Best_universe
SU=Sorted universes
NI=Normalize the inflation rate (fitnesses) of the universes
while the end criterion is not satisfied 

Evaluate the fitness of all universes
for each universe indexed by i

Update WEP and TDR
Black_hole_index=i;
for each object indexed by j

r1=random([0,1]);
if r1<NI(Ui)

White_hole_index= RouletteWheelSelection(-NI);
U(Black_hole_index,j)=SU(White_hole_index,j);

end if
r2=random([0,1]);
if r2<Wormhole_existance_probability

r3= random([0,1]);
r4= random([0,1]);
if r3<0.5

U(i,j)=Best_universe(j) + Travelling_distance_rate *  ((ub(j) 
- lb(j)) *  r4 + lb(j));

else   
U(i,j)=Best_universe(j) - Travelling_distance_rate *  ((ub(j) 
- lb(j)) *  r4 + lb(j));

end if
end if

end for
end for

end while
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Appendix 2

Welded beam design problem

Consider x~¼ x1 x2 x3 x4½ � ¼ h l t b½ �;
Minimize f x~ð Þ ¼ 1:10471x21x2

þ 0:04811x3x4 14:0þ x2ð Þ;
Subject to g1 x~ð Þ ¼ s x~ð Þ � smax � 0;

g2 x~ð Þ ¼ r x~ð Þ � rmax � 0;
g3 x~ð Þ ¼ d x~ð Þ � dmax � 0

g4 x~ð Þ ¼ x1 � x4 � 0;
g5 x~ð Þ ¼ P� Pcðx~Þ� 0;
g6 x~ð Þ ¼ 0:125� x1 � 0

g7 x~ð Þ ¼ 1:10471x21
þ 0:04811x3x4 14:0þ x2ð Þ � 5:0� 0

Variable range 0:1� x1 � 2;
0:1� x2 � 10;
0:1� x3 � 10;
0:1� x4 � 2

where s x~ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0Þ2 þ 2s0s00

x2

2R
þ ðs00Þ2

r
;

s0 ¼ Pffiffiffi
2

p
x1x2

; s00 ¼ MR

J
;

M ¼ P Lþ x2

2

� �
;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
þ x1 þ x3

2

� �2r
;

J ¼ 2
ffiffiffi
2

p
x1x2

x22
4
þ x1 þ x3

2

� �2� � �
;

r x~ð Þ ¼ 6PL

x4x
2
3

; d x~ð Þ ¼ 6PL3

Ex23x4

Pc x~ð Þ ¼
4:013E

ffiffiffiffiffiffiffiffiffi
x23x

6
4

36

r

L2
1� x3

2L

ffiffiffiffiffiffi
E

4G

r !
;

P ¼ 6000 lb; L ¼ 14 in:; dmax ¼ 0:25 in:;
E ¼ 30� 16 psi; G ¼ 12� 106 psi;

smax ¼ 13600 psi; rmax ¼ 30000 psi

Gear train design problem

Consider x~¼ x1 x2 x3 x4½ � ¼ nA nB nC nD½ �;

Minimize f x~ð Þ ¼ 1

6:931
� x3x2

x1x4

� �2

;

Variable range 12� x1; x2; x3; x4 � 60;

Three-bar truss design problem

Consider x~¼ x1 x2½ � ¼ A1 A2½ �;
Minimize f x~ð Þ ¼ 2

ffiffiffi
2

p
x1 þ x2

� �
� l;

Subject to g1 x~ð Þ ¼
ffiffiffi
2

p
x1 þ x2ffiffiffi

2
p

x21 þ 2x1x2
P� r� 0;

g2 x~ð Þ ¼ x2ffiffiffi
2

p
x21 þ 2x1x2

P� r� 0;

g3 x~ð Þ ¼ 1ffiffiffi
2

p
x2 þ x1

P� r� 0;

Variable range 0� x1; x2 � 1;
where l ¼ 100 cm;P ¼ 2 KN=cm2;

r ¼ 2 KN=cm2

Pressure vessel design problem

Consider x~¼ x1 x2 x3 x4½ � ¼ Ts Th RL½ �;
Minimize f x~ð Þ ¼ 0:6224x1x3x4 þ 1:7781x2x

2
3

þ 3:1661x21x4 þ 19:84x21x3;
Subject to g1 x~ð Þ ¼ �x1 þ 0:0193x3 � 0;

g2 x~ð Þ ¼ �x3 þ 0:00954x3 � 0;

g3 x~ð Þ ¼ �px23x4 �
4

3
px33

þ 1296000� 0;
g4 x~ð Þ ¼ x4 � 240� 0;

Variable range 0� x1 � 99;
0� x2 � 99;
10� x3 � 200;
10� x4 � 200

Cantilever beam design

Consider x~¼ x1x2x3x4x5½ �
Minimize f x~ð Þ ¼ 0:6224 x1 þ x2 þ x3 þ x4 þ x5ð Þ;
Subject to g x~ð Þ ¼ 61

x31
þ 27

x32
þ 19

x33
þ 7

x34
þ 1

x35
� 1� 0;

Variable range 0:01� x1; x2; x3; x4; x5 � 100;
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