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Abstract
Finding an optimal solution for emerging cyber physical systems (CPS) for better efficiency and robustness is one of the
major issues. Meta-heuristic is emerging as a promising field of study for solving various optimization problems applicable
to different CPS systems. In this paper, we propose a new meta-heuristic algorithm based on Multiverse Theory, named
MVA, that can solve NP-hard optimization problems such as non-linear and multi-level programming problems as well as
applied optimization problems for CPS systems. MVA algorithm inspires the creation of the next population to be very
close to the solution of initial population, which mimics the nature of parallel worlds in multiverse theory. Additionally,
MVA distributes the solutions in the feasible region similarly to the nature of big bangs. To illustrate the effectiveness of the
proposed algorithm, a set of test problems is implemented and measured in terms of feasibility, efficiency of their solutions
and the number of iterations taken in finding the optimum solution. Numerical results obtained from extensive simulations
have shown that the proposed algorithm outperforms the state-of-the-art approaches while solving the optimization problems
with large feasible regions.

Keywords Meta-heuristics · Constrained optimization · Multiverse algorithm (MVA) · Bi-level optimization

1 Introduction

Meta-heuristic algorithms can be applied for training
neural networks in solving real-life problems, though each
algorithm has its own limitations. For instance, there are
recently some of the prominent meta-heuristic algorithms
that been widely used in optimizing the neural network
accuracy include Particle Swarm Optimisation (PSO) [5],
Bat Algorithm (BA) [9], FireFly (FF) [12]. However,
literature cannot identify a single algorithm to be the best for
solving all optimization problems, this has also been proved
by the well-known No Free Lunch (NFL) theorem [29].
In this theorem, there was a logical prove supporting the
aforementioned claim that there is no such meta-heuristic
best suited for solving all types of optimization problems.
In another words, there is a group of meta-heuristic
algorithms perform the best in solving a set of problems,
while the same group might give poor performance in
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solving different set of optimization problems. Hence,
this NFL theorem has opened the door to researchers
on keep developing new algorithms trying to achieve the
best solution for different kind of problems. Besides, the
challenges of heavy computational cost, existence of hastily
convergence, mutation rate, crossover rate, time taken in
fitness evaluation chiefs to boost current algorithm or
develop new one.

Artificial Neural Networks (ANNs), which are normally
used in pattern recognition, computer vision, solving
real-world problems (liner or non-liner problems) and
classification, are normally need to be trained or optimized
using a wide range of meta-heuristics algorithms that mainly
classified as a single-solution-based or population-based.
Population-based meta-heuristics algorithms are widely
used recently due to their ability in cooperatively finding
the optimal solution over the course of training process.
This kind of algorithms is mainly found as a concept of
Swarm Intelligence (SI) that was proposed by [30]. The
main process of meta-heuristics’ behavior was formulated
based on the evolutionary concept of the SI agents.

Evolutionary or nature-inspired algorithms like Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Bat
Algorithm (BA), Fire Fly (FF), and Gray Wolfe Optimizer
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(GWO) are widely used in various optimization prob-
lems in different fields. For instant, the feature selection
is a vital process that mainly reflect on the accuracy of
a classification model as well as optimizing the param-
eters via the use of meta-heuristic algorithms. The fea-
ture selection through this process is another extension
of distinct research dimension. However, there are still
some limitations with the widely used classifiers such as:
computationally expensive, high algorithmic complexity,
extensive memory requirements, and selection of appropri-
ate kernel parameters, which are mostly tricky. Specifically,
when a meta-heuristic algorithm well handles a problem
with high accuracy may not produce the same inspiring
results for another problem with different requirements.

Well-known meta-heuristic algorithms have been sim-
ulated mimicking animals/insects’ behavior [1–11, 16–18,
21, 22, 32, 33]. Ant Colony Optimization (ACO) [2] sim-
ulated social life of ants, PSO [3] came from behavior
of swarm life of animals such as birds, fishes and so on.
Other famous meta-heuristics are as follows: Artificial Bee
Colony Algorithm [4], krill herd algorithm [5], BA [6],
social spider optimization [7], Chicken Swarm Optimiza-
tion (CSO) [8], firefly algorithm [9], Multi-Verse Optimizer
[26], Quantum multiverse optimization algorithm [27],
Chaotic multi-verse optimizer [28]. However, the investiga-
tion of applying various heuristic algorithms and determine
the best result is motivated through the need for the best tun-
ing between the common feature of these algorithms that is
the division of the search process into two phases: explo-
ration and exploitation. Searching for appropriate weighing
scale between these two phases is still considered as an
open challenge job. This is due to the nature of stochas-
tic behavior of meta-heuristics algorithms. One of the very
good approaches that recently widely used is the evolution-
ary or nature-inspired algorithms, which originates from the
meta-heuristic search algorithms family motivated by the
theories and biological evolution and the actions of swarms
of nature’s creation. Table 1 shows the brief description of
the nature-inspired algorithms.

Similarly, Cyber-physical systems (CPS) have tight
integration of computation, communication, and control
engineering with physical elements. CPS systems such as
medical CPS, transportation CPS and energy CPS can
benefit from proper design and optimization techniques. All
CPS systems are emerging faster than before due to progress
in real-time computing, communications, control, and
artificial intelligence. Multi-objective design optimization
approaches help to maximize the efficiency, capability,
performance, and safety of CPS systems. The proposed
approaches in this paper can be applied to above mentioned
CPS systems for improved efficiency and performance
where time-varying sampling patterns, sensor scheduling,
real-time control, feedback scheduling, task and motion
planning and resource sharing can be optimized.

Therefore, in this paper a new algorithm is proposed
that has ability to solve various kinds of optimization
problems. The proposed algorithm has been modelled and
simulated by using inspiration of multiverse theory, named
Multi-Verse Algorithm (MVA). Computational results show
that MVA is successful to propose efficient and feasible
solutions for different problems. MVA is constructed from
easy conception of multiverse theory, which is implemented
using MATLAB platform. MVA algorithm is organized
based on initial population, explosion of solutions and
principle concepts such as feasible and infeasible regions.
Therefore, the algorithm has low computational complexity
in comparison with the state of the arts approaches.

The MVA has some new remarkable features as it
has been inspired from a scientific theory not based on
behavior of animals or insects, which it gives more stable
and accurate behavior. Moreover, MVA can solve difficult
optimization problems such as bi-level programming
problems. The algorithm is extensive according to different
kinds of problem in computational results.

The MVA has been made from two conceptions:
population of solution and the theory of parallel worlds. The
algorithm starts from feasible and infeasible solutions and
carries on using main conceptions of multiverse theory. In

Table 1 Comparison of
meta-heuristic algorithms Algorithm Approach

Genetic algorithm (GA) Inspired by the process of natural selection

Particle swarm optimization (PSO) Mimics Bird Flocking behavior

Ant Colony Optimization (ACO) Mimics Foraging behaviour and ants colony structure

Artificial Bee Colony Algorithm (ABC) Mimics foraging behavior of honey bees

Firefly Algorithm (FA) Inspired by the flashing behavior tropical fireflies

Bat Algorithm (BA) inspired by echolocation of bats

Grey Wolf Optimizer (GWO) Inspired by the behavior of Gray Wolves

Multiverse Optimizer (MVO) Mathematical formulation is based The white/black hole tunnels

The proposed MVA Inspired from multiverse eruption
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fact, details of theory are used in all steps of MVA such as:
creation of the initial population, explosion of the solutions
(big bangs) and movement of universes to find the optimal
solution. MVA is compared with other classic and meta-
heuristic approaches. Comparison confirms efficiency of
the proposed meta-heuristic algorithm.

The rest of paper is organized as follows: Section 2
presents a source of inspiration of the proposed MVA.
Section 3 details out a conceptual design and simulation
of the proposed MVA algorithm from the multiverse
theory. This is followed by Section 4, which presents
computational results of MVA technique. Section 5 shows
the comparison of our MVA and existing well-known
meta-heuristic algorithms and Section 6 shows convergence
behavior of the MVA. Finally, Section 7 concludes the
paper.

1.1 Key differences of MVA andMVO

The proposed MVA in this paper is completely different
with MVO [26]. In particular, the differences are cate-
gorized into three main aspects: concepts and inspiration,
mathematical formulation, and steps of algorithms. Table 2
summarizes the key differences between the proposed MVA
and MVO in [26].

1.1.1 Concepts and inspiration

The main inspirations of MVO [26] are based on:
white hole, black hole, and wormhole whereas the main
inspirations of our algorithms, MVA, are based on: parallel
and different big bangs.

The mathematical models of concepts in MVO are:
exploration, exploitation, and local search. The mathemati-
cal models of concepts in MVA are: creation of the initial
population, explosion of the solutions, and rotation of uni-
verses to find the optimal solution. Following concepts of
multiverse have never discussed in [26], and this is because
inspirations of two algorithms are different:

1. In the multiverse theory all universes come from very
small and dense particle. Thus, the proposed MVA is
inspired from this idea to create the next population
very near to the solutions of initial population.

2. In the next step, all solutions, which were very near to
each other are distributed in the feasible region same as
big bangs.

3. The best solution of each area will be found and
these solutions construct next population. Each area
corresponds a universe in multiverse theory.

4. In each iteration, better solutions will be surrounded
by more new solutions of the next population. This is
because in the multiverse theory universe with more
dark energy has more galaxies and plants.

5. Likewise, the proposed algorithm focus on the begin-
ning of the world and converting into the present com-
plexity of the world. In the other words, MVA wants
to answer this question: how the world was started and
changed by passing time?”

1.1.2 Mathematical formulation

In reference [26], formulation of the mathematical model is
developed for:

1. The white/black hole tunnels and exchange the objects
of universes.

2. Maintaining the diversity of universes and perform
exploitation.

In our algorithm, formulation and mathematical model have
been proposed for:

a. Initial population:
For each solution, some solutions (based on the rank

of that solution) will be created very near the solution
randomly.

b. Explosion of solutions:
Each solution would be changed in direction of the

vector which connects that solution and the solution of
previous population.

Table 2 Key Differences of MVA and MVO in [26]

MVO [26] MVA

Concepts and inspiration 1. White hole 2. Black hole 3. Wormhole 1. Parallel worlds 2. Different big bangs

Mathematical models 1. Exploration 2. Exploitation 3. Local search 1. Creation of the initial popula-
tion 2. Explosion of the solutions
3. Rotation of universes

The procedure 1. White holes 2. Black holes
3. White holes 4. Black holes 5.
Wormholes

1. Initial population 2. Ranking
of solutions 3. Making dense
solutions 4. Big bangs 5. Finding
best solutions 6. Termination
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1.1.3 The procedure

The procedure of the proposed MVA is based on: Initial
population, Ranking of solutions, Making dense solutions,
Big bangs, Finding best solutions and Termination. Which
is completely different with steps of algorithm in reference
[26]:

1. The higher inflation rate, the higher probability of
having white hole.

2. The higher inflation rate, the lower probability of
having black holes.

3. Universes with higher inflation rate tend to send objects
through white holes.

4. Universes with lower inflation rate tend to receive more
objects through black holes.

5. The objects in all universes may face randommovement
towards the best universe via wormholes regardless of
the inflation rate.

2 Source of inspiration

This section presents a simulation of multiverse theory as
an optimizer, named multiverse algorithm (MVA), Here we
explained the principle concepts of MVA, mathematical
equations and process of the algorithm to find optimal
solution in optimization problems. The basic idea of
multiverse theory is developed from string theory. This
theory states that there are several universes in the world.
More particularly, multiverse theory more than one big bang
are existing besides to the big bang of our universe [10].

Meta-heuristics have main concepts, which have been
simulated from treatment of animals, insects or natural
events. The most important concept of ant colony is
pheromone of ants, particle swarm optimization has been
based on the global best, while main concept of genetic
algorithm is combination, warming of egg in laying chicken
algorithm (LCA) and explosion in big bang algorithm are
the most important concepts of these algorithms. In this
paper, we have inspired MVA algorithm from mainly from
the existence of several worlds and big bangs.

As mentioned previously according to the multiverse
theory there are several universes. Thus, MVA algorithm
starts with a set of solutions as initial population. In the
multiverse theory all universes come from very small and
dense particle, so this is great idea to create the next
population very near to the solutions of initial population,
which has been simulated by our MVA algorithm. In the
next step all solutions, which were very near to each other,
are distributed in the feasible region same as big bangs.

Eventually, the best solution of each area will be accord-
ingly explored and found, afterwards, these solutions will
construct the next population. Each area corresponds a uni-
verse in multiverse theory. In each iteration, better solutions
will be surrounded by more new solutions of the next popu-
lation. This is because in the multiverse theory universe with
more dark energy has more galaxies and plants.

Likewise, the proposed algorithm focuses on the
beginning of the world and converting into the present
complexity of the world. In the other words, MVA intends
to answer this question: “how the world was started and
changed by passing time?” One of the features of MVA
is based on population. Particularly, in each iteration the
algorithm changes and modifies population as well as the
set of solutions.

Fig. 1 The flowchart of proposed MVA

3278 E. Hosseini et al.



3 The proposedmultiverse algorithm (MVA)

This section presents the detail of the proposed MVA
technique in terms of its process of generating solutions
and populations, followed by the process of explosion of
solutions, then the main procedure of MVA is presented by
this section accordingly. Figure 1 illustrates the procedure
of the proposed MVA.

3.1 The solutions and populations

Initial population is created in feasible region same as the first
hypotheses of multiverse theory, which is stating that there
are parallel worlds not just one. In fact, each solution in
MVA displays a universe in multiverse theory. In multiverse
theory, each universe is defined as a dark energy and this is
great idea to sort solutions of populations and to correspond
a rank to each solution based on their objective functions.

The number of random solutions is defined according
to the rank of original solution. In fact, the algorithm
tries to generate more solutions close to the relatively
better solutions. This is exactly taken from the concept
of multiverse theory, which states that a universe with
large dark energy is larger and has more galaxies. For
each solution x(i), the random solutions x(j) are created
according to non-equation ||xi − xj || ≤ ε, which is the
famous Euclidean norm in mathematics [31].

In Rn, i=1,2,...,n and j=1,2,...,m,ε is a small positive
number, n is number of solutions in previous population
and m is defined according to the rank of xi , it is larger
for solutions which have better rank. This procedure is
illustrated in Algorithm 1. In the algorithm, i is defined
as number of solutions that are generated randomly at the
beginning of the MVA technique, j is defined as number of
solutions for each previous solution and The value of j is
calculated based on the objective function. Further, k is the
number of iterations of the algorithm.

As illustrated in Fig. 2a, 24 feasible solutions in the
initial population (blue points) have been shown for a given
problem and next population (green points) is distributed
close to them according to the solution ranking in the initial
population with ε=0.2.

3.2 Explosion of solutions

In the explosion process of MVA, each solution of current
population (green points) is going away from the solution of
previous population (blue points) after the big bangs. This
has been simulated from the big bang of each universe in
multiverse theory. In fact, each solution would be changed
in direction of the vector, which connects the current
solution and the solution of previous population. These
movements are according to xj = xi + λdij known as
the equation of movements, where, dij is distance between
points xi, xj andλ is a constant.

Moreover, MVA tries to explode all solutions which are
near to previous solutions. These solutions have been shown
by black points in Fig. 2b. The best solution in each universe
has been shown by red points. As illustrated in Fig. 2b,
The algorithm will continue by tagging the red points to be
categorised as new population. Then, the solutions in current
generation (red points) are highlighted to be better than
solutions obtained by the previous population (blue points
initial population). Algorithm 2 shows the pseudo code of
the stage of explosion of solutions.

In order to solve multi-objective problems, Algorithm 2
updates and evaluates the solutions based on Equation 1:

BS =
{

x1 if a < 0
x2 if a > 0

(1)

If we consider all objective functions are representing
minimization problems and BS is defined as a better
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Fig. 2 Initial population and its
changing process in simulation
of big bangs

solution between x1, x2, and f = (f1, f2, ..., fn) then a is
defined in (2):

a =
n∑

i=1

(fi(x1) − fi(x2)) (2)

and

BS =
{

x1 if a > 0
x2 if a < 0

(3)

Equation 3 for the cases where all objective functions are
representing maximization problems.

3.3 The procedure of theMVA

This section presents the procedure of the proposed MVA
meta-heuristic technique. Algorithm 1 provides initial
solution and population as stated in steps 1 to 3 while steps
4 to 6 are solved by Algorithm 2.

1. Initial population is generated in all feasible regions. N
is number of solutions, k = 0 andε is a given positive
small number, i = 1. This step is illustrated in Fig. 3a.

2. All solutions will be sorted according to their objective
function. In this step, a specific rank is assigned to each
solution. This step is illustrated in Fig. 3b.

3. For each solution xi from initial population, some
solutions will be generated close to xi . Number of
these solutions depends on the rank of xi in step two.
For example, the number of solutions in the current
population will be gathered near to the best solution
in the previous population. In fact, current population
is distributed among solutions of previous generation.
This step is illustrated in Fig. 3c.

4. All solutions in current population are getting away
from solutions of previous generation. Here, solutions
will be exploded into the space as illustrated in 3d.

5. Find the best solution of current population. If j < 2 let
j=j+1 and, then go to the step 2. This step is illustrated
in Fig. 3e.

6. If d(f (xj+1), f (xj )) < ε then the algorithm will be
finished and xj+1 is the best solution by MVA xj is the
best solution in j th iteration. Otherwise, let j=j+1 and
go to the step 2, d is defined in mathematical metric 4

Fig. 3 Steps of the MVA to
obtain optimal solution R2
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Table 3 Results of MVA for
Ackley Function - Example 2 Algorithms N. Agents N. Iterations Optimal solution F Min ε Initial solution

MVA 24 1 (−3.2, −2.3) 12.2634 0.1 (−5, −8, 20.16)

MVA 24 2 (0,0) 0 0.1 (−5, −8, 20.16)

[31] and Fig. 3 shows the process of the algorithm to
find optimal solution in R2 (2 Dimension).

max
i

|f (xi
j+1) − f (xi

j )| = d(f (xj+1), f (xj )) (4)

4 Computational results

In this section, both kinds of continuous in small size and
discrete in large size optimization problems are solved.

4.1 Continuous problems

In this section, almost all kinds of continuous optimization
problems: constrained, unconstrained, linear, non-linear,
multi-level and multi-objective are solved.

Example 1 Consider Ackley Function (AF):

min−20exp(−0.2
√
0.5(x2+y2))−exp(0.5(cos(2πx)

+cos(2πy))) + exp(1) + 20 (5)

The proposed MVA is applied to solve the optimization
problem in (5). Table 3 depicts the process of how the
algorithm reaches to the optimal solution (0,0) after just
two iterations. Further, the process of the algorithm, initial
population, optimal solution of generations and constraints
of the problems have been shown for two iterations in Fig. 4.
As can be seen, the optimal solution, big red point in Fig. 4d,
has surrounded by solution of generation 2.

Example 2 Consider Hölder Table Function (HTF):

The optimization problem that is represented by (6) has
been solved by MVA. The results is shown in Table 4.
The process of the algorithm, initial population, optimal
solution of generations and constraints of the problems
have been shown for two iterations in Fig. 5. Holder
Table Function has four global optimal solutions, (8.05502,
9.66459), (-8.05502, 9.66459), (8.05502, -9.66459), (-
8.05502, -9.66459), with -19.2085 objective function value.
The proposed algorithm incredibly obtains (-8.05502, -
9.66459) just after two iterations.

min−|sin(x)cos(y)exp(|1 −
√

(x2 + y2)/π |)| (6)

Example 3 Consider Mishra’s Bird Function (MBF):

min sin(x)exp((1 − cos(y))2)

+cos(y)exp((1 − sin(x))2) + (x − y)2 (7)

The problem has been solved by MVA, results have been
shown in Table 5 and also the process of the algorithm,
initial population, optimal solution of generations in
addition to the constraints of the problems have been
shown for two iterations in Fig. 6. Global optimal of
Mishra’s Bird Function is (-3.1302468, -1.5821422), with
objective function value of -106.7645367. MVA could find
the optimal solution during two populations, which has
been shown in Table 5 and also in Fig. 6d as the large red
point.

Fig. 4 Generations move to find optimal solution by MVA- Example 1
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Table 4 Results of MVA for
Hölder Table Function -
Example 3

Algorithms N. Agents N. Iterations Optimal solution F Min ε Initial solution

MVA 24 2 (−8.05, −9.66) −19.20 0.1 (−5, −6, −0.35)

Fig. 5 Generations move to find optimal solution by MVA- Example 2

Table 5 Results of MVA for
Mishra’s Bird Function -
Example 4

Algorithms N. Agents N. Iterations Optimal solution F Min ε Initial solution

MVA 24 2 (-3.13,-1.58) −106.7 0.1 (0,0,2.71)

Fig. 6 Generations move to find optimal solution by MVA- Example 3
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Table 6 Comparison of MVA
and other methods- Example 4 Algorithms N. Agents N. Iterations Optimal solution F Min ε (x,y)

MVA 24 4 (4,4) −12 0.1 (2,2)

Classic methods [13] None None (4,4) −12 None None

LS and TM [13] None None (3.9,4) −12.1 None None

Example 4 [13]:
Consider the following linear bi-level programming

problem:

min x − 4y

min y

x + y ≥ 3

−2x + y ≤ 0

2x + y ≤ 12

3x − 2y ≤ 4

x, y ≥ 0 (8)

Using Search Results Web results

Karush–Kuhn–Tucker (KKT) conditions the problem
will be converted to the following problem:

min x − 4y

−λ1 + λ2 + λ3 − 2λ4 = −1

λ1(−x − y + 3) = 0

λ2(−2x + y) = 0

λ3(2x + y − 12) = 0

λ4(3x − 2y − 4) = 0

−x − y + 3 ≤ 0

−2x + y ≤ 0

2x + y − 12 ≤ 0

3x − 2y − 4 ≤ 0

x, y, λ1, λ2, λ3, λ4 ≥ 0 (9)

The bi-level programming problem is difficult, because two
objective functions should be optimize in two different
levels at the same time. So proposing a method, which can
solve such kind of problems is significant. MVA proposed
the optimal solution same as exact algorithms according

to Table 6. Number of iteration taken to find the optimal
solution is completely low. Also, the proposed solution by
LS and TM [13], (3.9,4), is feasible for all constraints of the
second level of the problem, but it is infeasible for bi-level
programming problem. Behavior of solutions, constraints of
the problem and optimal solution are shown in Fig. 7.

More examples are solved by MVA and numerical results
and behavior of populations are shown in Tables 7 and 8 for
Examples 5 and 6.

Example 5 [15]
Consider the following linear programming problem

(Fig. 8):

min−3x1 + x2

x1 + 2x2 ≤ 4

−x1 + x2 ≤ 1

x1, x2 ≥ 0 (10)

Example 6 [9] ( Non-linear)
Consider the following non-linear unconstraint optimiza-

tion problem:

max e−(x−4)2−(y−4)2 + e−(x+4)2−(y−4)2 + 2e−x2−y2 + 2e−x2−(y+4)2

(11)

Example 7 [23] (Multi-Objective):
Here MVA is used for solving Deb, Thiele, Laumanns

and Zitzler (DTLZ) benchmark problems. Behavior of the
algorithm to find Pareto optimal for DTLZ1 problem has
been shown in Fig. 9. Feasibility of the algorithm is clear
based on Fig. 9c to control sequence, which shows initial
population, because some of solutions in the population
have been reached to Pareto optimal. Moreover, efficiency
of the algorithm is obvious by comparison of Fig. 9a and c.
Most of solutions are completely far from Pareto optimal

Fig. 7 Process of finding
optimal solution by MV-
Example 4
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Table 7 Comparison of MV
and other methods in examples
5 and 6

Examples Optimal solution (OS) Iteration Objective function (x,y)

Example 5 2 3 1.9998 (0,0)

Example 6 −12 2 −10.14 (3.42,0.12)

Table 8 Comparison of MVA
and other methods for DTLZ
problems

ParEGO MVA

Problems k min mean max min mean max

DTLZ1 3 13.42 52.47 112.7 8.54 29.63 76.19

DTLZ1 10 NA NA NA 1.05 1.45 1.76

DTLZ2 3 0.151 0.191 0.243 0.136 0.195 0.203

DTLZ2 10 NA NA NA 0.098 0.154 0.194

DTLZ3 3 81.15 145.5 261.6 46.98 111.67 200.43

DTLZ3 10 NA NA NA 0.79 1.03 1.87

Fig. 8 Behavior of populations
to get optimal solution by
applying proposed MVA for
example 5

Fig. 9 Behavior of populations
to get Pareto optimal solution by
MVA for DTLZ1 with k=2
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Table 9 HV Results of MVA and other algorithm over DTLZ1-DTLZ5

MVA MaOEA/IGD NSGA-III MOEA/D HypE

DTLZ1 8 0.9932(6.84E-4) 0.9998(2.93E-4) 0.9964(6.12E-4) 0.9996(3.52E-5) 0.7213(4.31E-1)

15 0.9914(8.17E-4) 0.9990(3.18E-3) 0.9984(7.23E-4) 0.9987(3.20E-4) 0.6922(5.45E-1)

20 0.9991(2.28E-3) 0.9990(2.32E-3) 0.9983(3.82E-4) 0.9977(7.24E-4) 0.7672(3.88E-1)

DTLZ2 8 0.8745(2.13E-3) 0.7174(3.96E-3) 0.8132(2.78E-3) 0.5221(3.83E-3) 0.1121(3.34E-2)

15 0.9262(2.86E-3) 0.9268(2.62E-3) 0.8832(9.11E-3) 0.3329(1.73E-2) 0.0892(4.12E-2)

20 0.9750(2.81E-3) 0.8905(6.80E-3) 0.9660(3.23E-3) 0.3298(2.10E-2) 0.0633(5.32E-2)

DTLZ3 8 0.5863(4.23E-3) 0.4664(9.25E-2) 0.0055(3.80E-4) 0.5169(5.68E-3) 0.0085(0.76E-5)

15 0.3028(4.40E-3) 0.6984(6.68E-2) 0.0091(0.78E-5) 0.3030(4.43E-3) 0.0133(1.07E-5)

20 0.7547(7.73E-2) 0.7476(7.52E-2) 0.0002(6.48E-4) 0.2162(4.51E-4) 0.0065(5.47E-4)

DTLZ4 8 0.8335(3.41E-3) 0.8338(3.31E-3) 0.8187(6.22E-4) 0.5322(5.87E-2) 0.2537(2.08E-4)

15 0.9665(1.42E-3) 0.9548(1.66E-3) 0.9537(4.24E-4) 0.3150(5.08E-3) 0.1957(0.86E-4)

20 0.9854(1.35E-3) 0.9824(1.33E-3) 0.9947(1.37E-3) 0.2755(7.21E-5) 0.2101(1.07E-4)

DTLZ5 8 0.4832(0.53E-3) 0.4190(0.64E-3) 0.3908(7.67E-3) 0.3174(7.15E-5) 0.0451(2.24E-5)

15 0.3812(8.02E-3) 0.2677(9.71E-3) 0.2178(5.34E-5) 0.1821(8.85E-2) 0.0418(8.99E-5)

20 0.3157(0.47E-2) 0.2101(5.57E-3) 0.3390(0.44E-2) 0.1790(0.99E-4) 0.0423(4.90E-2)

at first, but during the process of applying our proposed
algorithm, solutions have achieved Pareto optimal. Further,
Fig. 9c shows that the last population has surrounded Pareto
optimal solutions.

For single objective problems, we have used the same
procedure of the proposed MVA technique while multi-
objective problems, a set of solutions have been generated
in the feasible region. Additionally, applying the procedure
of the MVA on solving singly objective problems set, till the
algorithm reaches the Pareto optimal solutions as shown in
Fig. 9.

Table 8 shows the comparison of best solutions in
obtaining Pareto optimal of DTLZ problems by MVA and
ParEGO which is a method that has used in reference [24].

To evaluate the performance of the proposed algorithm,
Hyper-Volume (HV) is used as a performance metric
in Table 9. HV metric simultaneously measures the
convergence of many-objective optimization problems. In
Table 9, the HV values are normalized between [0,1] by
dividing the HV value of the origin with the corresponding
reference point. Thus, higher value of HV interprets
better performance of the corresponding many-objective
optimization problem. In the simulation, the number of
population is set to 240, the maximum number of iterations

is equal to 100, epsilon value is 0.1, and the number
that each algorithm has been carried out is 30 times.
Table 9 illustrates the performance of the proposed MVA
as compared with the exisitng algorithms for solving test
problems with specific objective numbers.Here, we used
HV as a performance metric to fairly judge the efficiency
of the algorithms. Further, the best mean values of the
corresponding test problem has been shown in bold, based
on the results of HV on DTLZ1-DTLZ5 test problems. It is
worth to highlight that MVA achieves the best performance
as compared with its peer competitors.

4.2 Large size practical problems

To show efficiency of the algorithm for real life problems,
this section presents three kinds of practical problems: large
size of real linear programming problems, transportation
problems and internet of vehicles problems. Then, the
proposed MVA is applied to solve the aforementioned real
life problems.

Some benchmark of linear programming can be found
in NetLib repository such as aggregate function (agg),
Quadratic assignment problem8 (qap8), SC50A, AFIRO.
Table 10 confirms that the MVA can solve large size
problems. Note that the agg, qap8, SC50A, AFIRO are

Table 10 Results of MVA for
more test problems Name Size Optimal Linprog MVA N. Iterations

agg 489 163 −3.5991767287E+07 −3.9217e+16 − 3.599173e+07 15

qap8 913 1632 2.0350000000E+02 −1.6987e+16 2.378e+02 25

SC50A 51 48 −6.4575077059E+01 −6.5313e+20 −6.5890e+01 10

AFIRO 28 32 −4.6475314286E+02 −1.4505e+29 −4.8741e+02 10
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Table 11 Comparison among
MVA and other algorithms for
large size problems

Problem Size North-West Vogel MVA Improvement using MVA

Transportation 1 80 20 132804 30123 21345 0.29
Transportation 2 100 25 177666 26462 25387 0.04
Transportation 3 160 40 185366 85456 60459 0.29
Transportation 4 200 50 297629 26566 20345 0.23
Transportation 5 210 70 322356 27619 24897 0.10
Transportation 6 261 87 245311 152930 120754 0.21

linear programming test problems in the “NETLIB Linear
Programming test set” which is a collection of real-life
linear programming examples.

Finding a suitable feasible solution of transportation
problem is remarkable, so MVA has been applied to some
random transportation problems [19]. The obtained results
have been listed in Table 11.

North-West and Vogel are two famous algorithms are
used in finding feasible solution of transportation problems.
Comparison with Vogel algorithm, the best algorithm, in
Table 11 ascertains the preference of MVA.

Finally, MVA is applied for solving route optimization
problem in IoV scenario as illustrated in [25]. Table 14
shows the higher efficiency has been obtained by deploying

Table 12 Optimization test functions

Functions Equations Figures

F1-Sphere function f (x) = f (x1, ..., xn) = max
i=1,...,n

|xi |

F2-Schwefel 2.22 function f (x) = f (x1, ..., xn) =
n∑

i=1

|xi | +
n∏

i=1

|xi |

F3-Sum squares function f (x) = f (x1, ..., xn) =
n∑

i=1

ix2
i

F4-Schwefel 2.21 function f (x) = f (x1, x2, ..., xn) =
n∑

i=1

x2
i

F5-Rosenbrock function f (x) = f (x1, ..., xn) =
n∑

i=1

x2
i +

(
n∑

i=1

xi + n/4

)

F6-Zakharov function f (x)=f (x1, ..., xn) =−a.exp

⎛
⎝−b

√√√√1

n

n∑
i=1

x2
i

⎞
⎠ − exp

(
1

n

n∑
i=1

cos(cxi)

)
+ a+ exp(1)

F7-Quartic function f (x, y) = sin2(3πx) + (x − 1)2(1 + sin2(3πy)) + (y − 1)2(1 + sin2(2πy))
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Table 13 Optimization test functions

Functions Equations Figures

F8-Schwefel function f (x) = f (x1, ..., xn) =
n∑

i=1

ix4
i + random[0, 1)

F9-Rastrigin function f (x, y) = 10n +
n∑

i=1

(x2
i − 10cos(2πxi))

F10-Ackley function f (x, y) =
n∑

i=1

[b(xi+1 − x2
i )2 + (a − xi)

2]

Function 11 salomon function f (x) = f (x1, ..., xn) = 1 − cos(2π

√√√√ D∑
i=1

x2
i ) + 0.1

√√√√ D∑
i=1

x2
i

F12-Levi N. 13 function f (x) = f (x1, x2, ..., xn) = 418.9829d −
n∑

i=1

xisin(
√|xi |)

Function 13 Alpine N. 1 function f (x) = f (x1, ..., xn) =
∑

i = 1n|xisin(xi) + 0.1xi |

the proposed MVA as compared with the the benchmark
LCA algorithm (Tables 12 and 13).

For each problem initial solutions have been generated
randomly and they are different for both LCA and MVA
algorithms. Table 14 shows improvement of their initial
solutions after five iterations.

5 Comparison with other optimization
algorithms

MVA is used to solve two different test functions:
unimodal and multi-modal. Unimodal test functions have
one global optimum and multi-modal test functions have a

Table 14 Comparison of LCA
and MVA for internet of
vehicles

Problems Size Best Solution LCA Best Solution MVA Improvement by MVA

IoV 1 100 100 775.8550 856.4378 0.17

IoV 2 200 200 9.9319e+03 1.4698e+04 0.49

IoV 3 500 500 5.8147e+04 6.7408e+04 0.17

IoV 4 1000 1000 2.5991e+05 2.9631e+05 0.14

IoV 5 2000 2000 9.8622e+05 1.4790e+06 0.50

IoV 6 5000 5000 6.2266e+06 6.51231e+06 0.05

IoV 7 10000 10000 2.4950e+07 2.8547e+07 0.11
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Table 15 Comparison of MVA and existing metaheuristic methods

F MVA MVO GWO PSO GA

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

F1 1.0589 0.4698 2.08583 0.648651 2319.19 1237.109 3.552364 2.85373 27,187.58 2745.82

F2 5.3647 3.4279 15.92479 44.7459 14.43166 5.923015 8.716272 4.929157 68.6618 6.062311

F3 123.4689 85.7954 453.2002 177.0973 7278.133 2143.116 2380.963 1183.351 48,530.91 8249.75

F4 1.9361 1.3689 3.123005 1.582907 13.09729 11.3469 21.5169 6.71628 62.99326 2.535643

F5 836.279 756.148 1272.13 1479.477 3425,462 3304,309 1132.486 1357.967 65,361,620 29,714,021

F6 1.5824 0.6843 2.29495 0.630813 5009.442 3028.875 86.62074 147.3067 49,574.1 8545.149

F7 0.01478 0.0115 0.051991 0.029606 0.408082 0.119544 0.577434 0.318544 18.72524 4.935256

global optimum as well as multiple local optima. For the
verification of the results, proposed algorithm is compared
with MVO [26], PSO [2], GA [1], GWO [28]. Note that
the number of agents is set to 24, the maximum number
of iterations is equal to 100, epsilon value is ε 0.1, and
the number that each algorithm has been carried out is
20 times. The results of Tables 15 and 16 show that the
proposed algorithm is able to provide very competitive and
efficient results on both the unimodal and multi-modal test
functions. Low standard deviation of MVA is remarkable,
which indicates that the values tend to be close to the mean
of the set of solutions.

6 Convergence behavior of MVA

In MVA, each solution of population will be exploded in
space, so it needs a large space to improve the obtained
solutions. Therefore, problems with large feasible region,
the algorithm improves population very fast and gets
appropriate solution. Thus, MVA is completely efficient in

solving unconstrained and unbounded types of problems.
Also, it proposes suitable solutions for constrained problems
with large feasible region. However, MVA is not very
efficient in solving problems with small feasible region.
In this case, if MVA is starting from infeasible solutions,
better results can be found. For example, by changing initial
population in Example 5 much better result will be found
according to Table 17 and Fig. 10:

Figure 10a shows initial population by only one feasible
solution. In Fig. 10b just the feasible solution of the previous
population will be exploded (green point).

In this paper, we introduced generic optimization
problems and solutions with the help of developed MVA.
However, when we consider a typical CPS system, we need
to consider the domain specific parameters while optimizing
the overall performance. For instance, low latency is
required in almost all CPS systems such as transportation
CPS and energy CPS, information should be propagated
in fraction of second (10 ms to 500 ms depending on the
types of messages in the systems) [34, 35]. Energy CPS
does not have to deal with mobility that much since most

Table 16 Comparison of MVA and existing metaheuristic methods

F MVA MVO GWO PSO GA

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

F8 −8932 526.78 −11, 720 937.1975 −10, 739 1162.793 −6727 1352.882 −10, 698 602.3045

F9 13.6397 8.4825 118.046 39.34364 89.13475 37.95765 99.83202 24.62872 273.2519 29.55218

F10 1.6479 0.8579 4.074904 5.501546 9.452571 3.467608 4.295044 1.308386 18.59657 0.351737

F11 0.0258 0.0085 0.938733 0.059535 22.51942 26.68168 624.3092 105.3874 353.3655 77.26729

F12 0.7462 0.1036 2.459953 0.791886 3,200,008 6,746,208 13.38384 8.969122 2.21e+08 1.1e+08

F13 0.1578 0.00146 2.459953 0.086407 7,815,082 16,475,640 21.11298 12.83179 4.49e+08 2.26e+08
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Table 17 Comparison of MVA and exact methods by changing initial
population

Examples OS Iteration Objective function (x,y)

Example 5 −12 2 −11.55 (3.85,0.00)

of the energy assets are fixed. However, for transportation
CPS, most of the CPS nodes are mobile [36, 37]. While
optimizing, we need to consider mobility on top of other
parameters such as delay and high throughput. So, future
research can focus on generic optimization that can be fine-
tuned to a domain specific problem such as optimization
problem with mobility constraint can be relaxed when we
consider speed or velocity of the node equal to 0. Further
research could focus on time-varying sampling patterns,
sensor scheduling, real-time control, feedback scheduling,
task and motion planning and resource sharing for different
CPS systems.

7 Conclusion

In this paper, we developed a novel meta-heuristic algorithm
named MVA, which is inspired from a scientific theory
of multiverse. MVA is a naive optimizer, which optimizes
most kinds of optimization programming problems. The
proposed algorithm is applicable for unconstrained and
constrained with small and large feasible regions. In
particular, several types of complex Engineering problems,
including problems in CPS, can be solved by our proposed
MVA because of its fast convergence and lower appropriate
complexity. In this paper, extensive simulations have been
carried out to get numerical results which show the
feasibility of our proposed MVA. We observed that the
MVS outperforms the existing well known meta heuristic
algorithms, especially for large size real problems.

Fig. 10 Example 6 by infeasible initial population
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