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A B S T R A C T   

As a new attempt to effectively tackle the high-dimensional 0–1 knapsack (01KP) instances with uncorrelated, 
weakly-correlated, and strongly-correlated characteristics, in this paper, five lately-proposed meta-heuristic al-
gorithms: horse herd optimization algorithm (HOA), gradient-based optimizer (GBO), red fox search optimizer 
(RFSO), golden eagle optimizer (GEO), and Bonobo optimizer (BO) have been transformed into binary ones by 
investigating the various V-shaped and S-shaped transfer functions to be applied to those high-dimensional 01KP 
problems, which are discrete ones; these binary variants are named BHOA, BGEO, BBO, BRFSO, and BBO. 
Furthermore, some genetic operators such as the one-point crossover operator and mutation operators have been 
borrowed to discover more permutations as a trying to avoid stuck into local minima for reaching better out-
comes. These two operators are effectively integrated with those binary variants to propose other ones with 
better performance for achieving further improvements for tackling the high-dimensional 01KP instances called 
BIHOA, BIGEO, BIGBO, BIBO, and BIRFSO. Those genetic operators and recently-developed meta-heuristic 
algorithms-based high dimensional binary techniques have been extensively validated using 21 uncorrelated, 
weakly-correlated, and strongly-correlated 01KP instances with high-dimensions ranging between 100 and 
10000, and the obtained outcomes were compared even witnessing which algorithm is the best. The experi-
mental findings show the superiority of BIRFSO for the instances with dimensions greater than 500, and its 
competitivity for the others.   

1. Introduction 

Lately, the metaheuristic algorithms either single-based algorithms 
or population-based ones have strongly interfered in tackling several 
optimization problems divided into combinatorial problems, such as 
knapsack problem, DNA fragment assembly problem, feature selection, 
task scheduling, and travel salesman problem; and continuous ones such 
as parameter estimation of photovoltaic models, and nonlinear equa-
tions systems (Gadekallu et al., 2021; Bhattacharya et al., 2020; Gade-
kallu et al., 2020); some of those recent algorithms are compared in 
Table 1. Involving those optimization problems, the knapsack problems 
(KP) classified as discrete/combinatorial ones have won a significant 
interest by the metaheuristic researchers to find the near-optimal subset 
of items that maximize the profit with satisfying the knapsack capacity 
for optimally allocating the resources of several domain s(Li, He, Li, & 

Guo, 2021). There are several types of the knapsack problems, such as 
the multidimensional KP (MKP) (Wang, Zheng, & Wang, 2013), the 
quadratic KP (QKP) (Patvardhan, Bansal, & Srivastav, 2016), the dis-
count 0–1 KP (Guldan, 2007), the bounded KP (Pisinger, 1995), and the 
set union KP (SUKP) (He, Xie, Wong, & Wang, 2018), which are 
considered as the extensions to the classical 0–1 KP (01KP) (Martello, 
1990). The main challenge to these problems is finding the near-optimal 
subset in a reasonable time due to the NP-hard nature. 

Within this work, an extensive investigation study will be conducted 
to investigate the performance of some of the newly-proposed meta-
heuristic algorithms for the high dimensional 01KP instances as an 
attempt to propose an effective approach having strong performance to 
tackle this type of problem. Before explaining the works done for tack-
ling the 0–1KP and why a new strong algorithm is significantly required, 
let’s define the 01KP and describe its mathematical model. Each 01KP 
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consists of n items, where each one has a profit pi and a weight wi. The 
objective of solving this problem is finding a subset of the items with a 
summation of the weights less than or equal to the knapsack capacity (c) 
and a maximized profit. The mathematical model of the 01KP is 
described below: 

Maximize
∑n

i=1
xi ∗ pi,

subjectto
∑n

i=1
wi ∗ xi < c

(1)  

Several attempts have been done over the last decades to solve this 
problem, but don’t fulfill the desired target even now as described next. 

In (Li, He, Liu, Guo, & Li, 2020), a new transfer function has been 
proposed to convert the continuous values produced by the whale 
optimization algorithm (WOA) into 0 and 1 ones for solving the 01KP; 
this variant is named a discrete whale optimization algorithm (DWOA). 
DWOA was extensively compared with a number of state-of-the-art al-
gorithms using 25 instances with dimensions ranging between 16 and 
24, which is so small, and hence, its performance for high-dimensional 
datasets is not determined as its main limitation although of its superi-
ority for the small instances in comparison to the others. 

The harmony search algorithm (Adamuthe et al., 2020) has been 
developed for the 01KP to find the optimal selection of items, which will 
maximize the profit. This algorithm was investigated using 43 instances 
of small-, and medium-scale; however, its performance for high-scale is 

Table 1 
Briefly discussion to some newly-proposed metaheuristic algorithms.  

Algorithms and Year Contributions 

Equilibrium optimizer (EO, 2020) (Faramarzi 
et al., 2020) 

This algorithm has been recently developed to simulate the generic mass balance equation for a control volume as a new 
attempt to propose a metaheuristic algorithm having a different search methodology can find better outcomes compared to 
the existing one.  
Compared to a satisfying number of the well-established well-known metaheuristic algorithms could come true better 
outcomes for a significant number of test functions. However, after observing its methodology it is obvious that this algorithm 
will maximize the exploration operator at the starting of the optimization process and fade away gradually with increasing the 
current iteration, and at the same time, the exploitation capability start weak and strength with increasing the iteration; this 
will reduce the convergence speed and sometimes might not be able to avoid stuck into local optima. 

Marine predators algorithm (MPA, 2020)  
(Faramarzi et al., 2020) 

Inspired by the behaviors of the predators in the ocean during attacking prey, this algorithm has been recently published for 
tackling the global optimization problem.  
This algorithm has good outcomes compared to some metaheuristic algorithms but suffers from high computational costs 
caused by the levy flight. Also, it could not avoid the disadvantages of the equilibrium optimizer mentioned previously. 

Slime mould algorithm (SMA, 2020) (Li et al., 
2020) 

In this paper, the oscillation mode of slime mould has been mimicked to propose a new stochastic optimizer, namely slime 
mould optimizer, having strong features that enable it to adapt itself in the direction of the optimal solution.  
Relating the updating process with the fitness value of the previous generation to determine if the current individual needs an 
exploration operator or exploitation one, and hence this will improve the convergence speed in addition to avoiding stuck into 
local minima. 

Gradient-based optimizer (GBO, 2020)  
(Ahmadianfar et al., 2020) 

Integrating a gradient technique with the behaviors of the metaheuristic algorithms considers a good idea because the 
gradient technique might guide the individuals during the optimization process in the direction of the near-optimal solution. 
Based on this idea, GBO has been recently developed for tackling the global optimization problems and could fulfill 
outstanding outcomes compared to some state-of-the-arts.  
The gradient technique significantly suffers from falling into local optima and hence its guidance might not prevent stagnation 
into local minima. 

Horse herd optimization algorithm (HOA, 2021)  
(MiarNaeimi et al., 2021) 

A new population-based optimization algorithm known as horse herd optimization algorithm inspired by the horse herd 
behaviors, which consist of six important features: grazing (G), hierarchy (H), sociability (S), imitation (I), defense mechanism 
(D), and roam (R), has been proposed for tackling high-dimensional optimization problems. 

Red fox search optimizer (RFSO, 2021) (Połap and 
Woźniak, 2021) 

This algorithm was proposed based on mimicking the red fox behaviors for finding food, developing population, and hunting 
with running away from hunters. It was assessed using the global optimization problems that are efficiently solved by it in 
comparison to some state-of-the-art algorithms. 

Golden eagle optimizer (GEO, 2021) ( 
Mohammadi-Balani et al., 2021) 

Inspired by the intelligent behavior of the golden eagle, a new metaheuristic optimization algorithm called golden eagle 
optimizer (GEO) has been recently proposed for tackling optimization problems. The mathematical model of the GEO is based 
on two steps: (1) attacking the prey to promoting the local search operator (exploitation), and (2) cruising to explore other 
regions for finding better foods (exploration).  
The experimental outcomes revealed the superiority of this algorithm with regard to six other metaheuristic algorithms. 

Bonobo optimizer (BO, 2021) (Das and Pratihar, 
2019) 

A new population-based metaheuristic algorithm, namely BO, has been recently proposed for tackling the parameter 
estimation problem of the photovoltaic models based on mimicking the social behaviors and the developing process of 
bonobos. The bonobos follow a fission–fusion social strategy: the fission stage divides the bonobos into smaller groups to 
explore the search space for searching the food, then, they are again regathered to do some activities together (fusion 
behavior) 

Archimedes optimization algorithm (AOA, 2021)  
(Hashim et al., 2021) 

As an inspiration of physics motivates attention to proposing a new metaheuristic algorithm known Archimedes optimization 
algorithm (AOA) to mimic the Archimedes law. This algorithm is not only simple but also has few control parameters to be 
adjusted before starting the optimization process.  
The experimental outcomes of the AOA could be better than the others’ outcomes used in comparison in terms of the solution 
quality and convergence speed. 

Chaos game optimization (CGO, 2021) (Talatahari 
and Azizi, 2021) 

Inspired by chaos theory, a new metaheuristic algorithm called chaos game optimization has been recently proposed for 
tackling optimization problems.  
This algorithm was evaluated using 239 mathematical test functions and compared with six different metaheuristic 
algorithms which have bad performance in confronts to this algorithm. 

Jellyfish search optimizer (JSO, 2020) (Chou and 
Truong, 2021) 

This algorithm known as artificial Jellyfish Search optimizer (JSO) was inspired by the behavior of jellyfish in the ocean and 
proposed for the first time for tackling global optimization problems. in specific, The behavior of the JSO for finding food in 
the ocean is based on: movements inside the swarm or following the ocean current and switching between these movements 
using a time control mechanism.  
This algorithm was validated on fifty small- and medium-scale test functions, in addition to 25 large-scale ones and some 
engineering optimization problems. then it was extensively compared to some well-known optimization algorithms to show 
that it performs best.  

M. Abdel-Basset et al.                                                                                                                                                                                                                          



Computers & Industrial Engineering 166 (2022) 107974

3

not shown. A population-based simulated annealing algorithm (PSA) 
(Moradi, Kayvanfar, & Rafiee, 2021) has been suggested for the optimal 
identification of the items that maximize the profit by satisfying the 
knapsack capacity. This algorithm was extensively assessed using 
several well-known instances with small-, medium-, and large-scale di-
mensions up to 10000 and compared with a number of the existing 
simulated annealing variants, and some of the other optimizers to see its 
superiority. The experimental findings show the superiority of this al-
gorithm in comparison to the compared ones, but its performance for 
weakly correlated high-dimensional and strongly correlated high- 
dimension instances still needs a significant improvement. 

Furthermore, a new binary variant of the elephant herding optimi-
zation (EHO) algorithm, namely briefly BinEHO, was adapted for tack-
ling the 01KP (Hakli, 2020). This algorithm was validated 25 well- 
known 01KP instances and compared with some of the existing binary 
techniques, such as binary PSO (BPSO) (Ali, Luque, & Alba, 2020), 
modified BPSO (MBPSO) (Bansal & Deep, 2012), binary harmony search 
algorithm (NGHS) (Zou, Gao, Li, & Wu, 2011), discrete global best 
harmony search algorithm (DGHS) (Xiang, An, Li, He, & Zhang, 2014), a 
simplified binary artificial fish swarm algorithm (S-BAFS) (Azad, Rocha, 
& Fernandes, 2014), and improved monkey algorithm (Zhou, Chen, & 
Zhou, 2016). Despite its superiority for solving the small-scale 01KP 
instances, its performance for tackling the instances of high-scale was 
not examined and this made it not preferred for solving the 01KP in-
stances with high-dimensionality. MBPSO (Bansal & Deep, 2012) was 
applied to find the optimal subset of the items for the instances with a 
scale reaching 500 dimensions. Also, some algorithms (Bhattacharjee & 
Sarmah, 2015; Bhattacharjee & Sarmah, 2015) have been assessed using 
well-known instances of small-, and medium-scale up to 75. 

Consequently, most algorithms proposed in the literature have only 
dealt with the small-scaled 01KP instances and their performance for the 
high dimensional problem, which is harder because a huge number of 
the permutations needs to be observed compared to the small-, and 
medium-scaled dimensions, is not defined. Therefore, in this paper, five 
recently-developed metaheuristics optimization algorithms: Horse herd 
optimization algorithm (HOA), Gradient-based optimizer (GBO), Red 
fox search optimizer (RFSO), Golden eagle optimizer (GEO), and Bonobo 
optimizer (BO) have been extensively investigated for tackling the high- 
dimensional 01KP instances. At the outset, because those used algo-
rithms were already proposed for solving the continuous problems, they 
are first converted into discrete algorithms by two well-known transfer 
function families: V-shaped and S-shaped to be applicable for solving 
these discrete problems. Afterward, the five investigated algorithms 
integrated with the best transfer function for each one have been 
extensively compared with each other for solving 21 well-known high- 
dimensional instances having dimensions ranging between 100 and 
10000, and the obtained outcomes were analyzed using various statis-
tical analyzes like the best, average, worst, error percent, and standard 
deviation values, in addition to the convergence speed to see the 
acceptance of each algorithm, and the computational cost for the 
speedup of each algorithm. Finally, the main contributions of this paper 
are listed as: 

1. Investigating the performance of five recently-published meta-heu-
ristic algorithms for tackling the 01KP with various scales, as the first 
time to the best of our knowledge those algorithms are proposed for 
tackling this problem.  

2. Borrowing some genetic operators such as the one-point crossover 
operator and mutation operator to be integrated with those algo-
rithms to discover more permutations for reaching the near-optimal 
solution, especially with the large-scale problem.  

3. Investigated experiments show the effective role of the integrated 
genetic operators for reaching better outcomes with the large-scale 
problems, higher than 500. 

The rest of this research is organized like that: Section 2 overview the 
five recently-developed algorithms, Section 3 describes what we pro-
pose, Section 4 shows the analyses of the outcomes obtained by the 
proposed algorithms, and Section 5 finally briefly presents our conclu-
sion and what will be studied in the future. 

2. Recently-proposed metaheuristics 

In this section, five recently-proposed metaheuristic algorithms will 
be discussed to show their methodology in searching for the near- 
optimal solution for the optimization problems. Only the mathemat-
ical model of the gradient-based optimizer and horse herd optimization 
algorithm will be reviewed in this paper, while the other algorithms are 
only mentioned based on their search methodology. 

2.1. Horse herd optimization algorithm (HOA) 

Based on six important features: grazing (G), hierarchy (H), socia-
bility (S), imitation (I), defense mechanism (D), and roam (R) of horse 
herding behaviors, a new population-based optimization algorithm has 
been proposed for tackling high-dimensional optimization problems 
(MiarNaeimi, Azizyan, & Rashki, 2021). These features are related with 
the horse based on its age. Those six mentioned behaviors are related to 
the age of the horses. Specifically, each horse is updated within the 
optimization process using the following formula with taking into 
consideration the age of each one to determine which feature is from its 
advantages: 

x→t,AGE
i = V→

t,AGE

i + x→(t− 1),AGE
i ,AGE = α, β, γ, δ (2)  

xt,AGE
i is a vector including the current position of the ith horse, the 

current iteration is symbolized as t, and V→
t,AGE
i expresses the velocity of 

the ith horse. Based on the age of each horse, its velocity will be updated 
as described in the following equations: 

V→
t,α
i = G→

t,α
i + D→

t,α
i

V→
t,β

i = G→
t,β

i + H→
t,β

i + S→
t,β

i + D→
t,β

i

V→
t,γ

i = G→
t,γ

i + H→
t,γ

i + S→
t,γ

i + I→
t,γ

i + D→
t,γ

i + R→
t,γ

i

V→
t,δ

i = G→
t,δ

i + I→
t,δ

i + R→
t,δ

i

(3)  

Where α indicates the horses having ages greater than 15, δ distinguishes 
the horses with ages at the interval of 0 and 5, γ stands for the horses 
with ages between 5 and 10, and β refers to the horses whose ages lie at 
the range of 10 and 15. Those four symbols, which indicate various ages 
of the horses, are determined by the HOA based on sorting ascendingly 
the obtained fitness values and the 0.1 horses with the best fitness values 
will represent α, the next 0.2 horses indicate β, γ has the next 0.3 of the 
best horses, while the other hoses will represent δ. 

2.1.1. Grazing behavior 
The grazing behavior of the horses related to all ages: α, β, γ, δ is 

mathematically formulated below: 

G→
t,AGE

i = gt(u
̆
+ i

̆
P)[xt− 1

i ],AGE = α, β, γ, δ (4)  
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gt,AGE
i = gt− 1,AGE

i ∗ wg (5)  

Where G→
t,AGE
i is the movement parameter of the ith horse. u

̆ 
and i

̆ 

respectively are the inferior and uppermost grazing boundary and rec-
ommended 0.95 and 1.05. P is a random number generated between 
0 and 1. g is recommended 1.5 for all ages to represent a coefficient 
value. 

2.1.2. Hierarchy behavior 
This behavior only related to the β and γ horses as studied in (Waring, 

1983; McDonnell et al., 2003) is mathematically described as: 

H→
t,AGE

i = ht,AGE
i [xt− 1

* − xt− 1
i ],AGE = β, γ (6)  

ht,AGE
i = ht− 1,AGE

i ∗ wh (7)  

h is a coefficient value to determine how far the horse will follow the 
most experienced one. 

2.1.3. Sociability behavior 
This social behavior confined only to the β and γ horses is mathe-

matically described as follows: 

S→
t,AGE

i = st,AGE
i [

1
N

∑N

j=1
xt− 1

j − xt− 1
i ],AGE = β, γ (8)  

st,AGE
i = st− 1,AGE

i ∗ ws (9)  

S→
t,AGE
i is computed to determine the tendency of the current horse to the 

herding in the current generation. N indicates the population size. 

2.1.4. Imitation behavior 
This behavior is only confined to the γ horses which try to mimic a 

number pN of the best horses as mathematically elaborated in the 
following equations. 

I→
t,AGE

i = it,AGE
i [

1
pN

∑pN

j=1
xt− 1

j − xt− 1
i ],AGE = γ (10)  

mt,AGE
i = mt− 1,AGE

i ∗ wi (11)  

pN is preferred to represent 10% of the best horses of the current gen-
eration as said in the original research (MiarNaeimi et al., 2021). 

2.1.5. Defense mechanism behavior 
This defense behavior of the horses owned only to α, β, and γ is 

mathematically described as. 

D→
t,AGE

i = − dt,AGE
i [

1
qN

∑qN

j=1
xt− 1

j − xt− 1
i ],AGE = α, β, γ (12)  

dt,AGE
i = dt− 1,AGE

i ∗ wd (13)  

qN indicates the horses with the worst position and recommended 20% 
of the population size. 

2.1.6. Roam behavior 
The mathematical model of this behavior is built as: 

R→
t,AGE

i = rt,AGE
i Pxt− 1

i ,AGE = γ, δ (14)  

rt,AGE
i = rt− 1,AGE

i ∗ wr (15)  

rt− 1,AGE
i is a factor used to represent the random movement. The standard 

HOA is explained in Algorithm 1. 

Algorithm 1. The steps of the standard HOA   

1: Initialize a group of N horses, x→t,AGE
i (i ∈ N).  

2: Initialize the HOA’s parameters. 
3: Compute the objective value of each horse, xi.  
4: t = 0; 
5: while (t < tmax) do  
6: Determines the ages of horses. 
7: Compute the velocity related the age of each horse. 
8: Update the horses. 

9: Evaluate each horse, x→t,AGE
i .  

10: t + +

11: end while 
12: Return xt

*.    

2.2. Gradient-based optimizer (GBO) 

Ahmadianfar (Ahmadianfar, Bozorg-Haddad, & Chu, 2020) devel-
oped a new population-based optimization algorithm known as 
gradient-based optimizer (GBO) based on following a gradient tech-
nique: the newton’s method to guide the solutions through the optimi-
zation process to the valid direction of the near-optimal solution. 
Generally, the GBO algorithm is compounded by the gradient search rule 
and the local escaping operator described thoroughly later. 

2.2.1. Gradient search rule (GSR) 
This rule is used to integrate the gradient-based directions with the 

GBO algorithm for guiding the solutions inside the population to the true 
direction of the desired outcome. To balance between the exploration 
and exploitation operators, a significant factor ρ1, is used to do that as an 
attempt to avoid local minima and accelerate the convergence speed at 
the same time. ρ1 is mathematically modeled as: 

ρ1 = 2 × r × α − α (16)  

α =

⃒
⃒
⃒
⃒β × sin(

3π
2
+ sin(β ×

3π
2
))

⃒
⃒
⃒
⃒ (17)  

β = βmin +(βmax − βmin) × (1 − (
t

tmax
)

3
)

2 (18)  

Where βmin and βmax are respectively two constant-values of 0.2 and 1.2. 
tmax is the maximum function evaluation. Afterward, ρ1 is related with 
the GSR to manage exploration and exploitation operators for achieving 
an equilibrium between them during the whole optimization process as 
described in the following formula: 

GSR = r × ρ1 ×
(2Δx × Xn)

(Xt− 1
w − Xt− 1

* + ∊)
(19)  

∊ is a tiny value between 0 and 0.1 to eliminate the division by zero. Xt− 1
w 

is the worst solution at the current generation, while Xt− 1
* is the best one. 

Δx is formulated as following: 

Δx = r→× |S| (20)  

S =
((Xt− 1

* − Xt− 1
a ) + δ)

2
(21)  

δ = 2 × r2 × (|
(Xt− 1

a + Xt− 1
b + Xt− 1

c + Xt− 1
d )

4
| − Xt− 1

i ) (22)  

Where r2 is a number created randomly at the interval of 0 and 1, a ∕=

b ∕= c ∕= d are randomly-selected indices from the solutions. Then, 
according to the GSR strategy, a new solution could be obtained by the 
following formula: 

X1t
i = Xt− 1

i − GSR (23) 
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To extensively locally search nearby around the current solution, Eq. 23 
is updated by the direction of movement (DM) described as: 

X1t
i = Xt− 1

i − GSR+DM (24)  

DM = r × ρ2 × (Xt− 1
* − Xt− 1

i ) (25)  

ρ2 = 2 × r × α − α (26)  

According to (Ahmadianfar et al., 2020), X1t
i could be reformulated as 

follows: 

X1t
i = xt− 1

i − r × ρ1 ×
2Δx × Xn

(ypt− 1
i − yqt− 1

i + ∊)
+ r × ρ2 × (Xt− 1

* − Xt− 1
i ) (27)  

ypt− 1
i and yqt− 1

i are computed using the following formulas: 

ypt− 1
i = yn +Δx (28)  

yqt− 1
i = yn − Δx (29)  

yn is a vector equal to the average of the current solution vector Xt− 1
i , and 

the zt− 1
i calculated as: 

yi =
Xt− 1)

i

zt− 1
i

|zt− 1
i = xn − r→×

2Δx × xn

(Xt− 1
w − Xt− 1

* + ∊)
(30)  

Also, to enhance the exploitation operator around to promote the best- 
so-far solution for improving the convergence rate, a new vector 
known as X2t

i is generated like Eq. 27 with swapping xt− 1
i by xt− 1

* as 
described mathematically below: 

X2t
i = xt− 1

* − r × ρ1 ×
2Δx × Xn

(ypt− 1
i − yqt− 1

i + ∊)
+ r × ρ2 × (xt− 1

* − xt− 1
i ) (31)  

Finally, The two vectors: X1t
i , and X2t

i generated previously mix with 
another one: X3t

i to generate the next position for the ith solution as 
follows: 

xt
i = ra(rb × X1t

i +(1 − rb) × X2t
i)+ (1 − ra) × X3t

i (32)  

X3t
i = xt− 1

i − ρ1 × (X2t
i − X1t

i) (33)  

2.2.2. Local escaping operator stage 
Besides, a new operator called a local escaping operator (LEO) is 

integrated with the GBO with a probability pr (recommended 0.5) to 
increase its local optima avoidance capability. The mathematical model 
of this operator is as follows:  

f1, and f2 are two randomly-generated numerical values based on the 
uniform distribution at the range of − 1 and 1. u1, u2, and u3 are three 
various randomly assigned numbers using the following equations: 

u1 =

{
2r1 if μ1 < 0.5
1 otherwise (35)  

u2 =

{
r1 if μ1 < 0.5
1 otherwise (36)  

u3 =

{
r1 if μ1 < 0.5
1 otherwise (37)  

Where μ1 and r1 are two random numbers between 0 and 1. xt
k presented 

in Eq. 34 is computed using the following mathematical function: 

xt
k =

{
xr if μ2 < 0.5
xt− 1

p otherwise
(38)  

xt− 1
p is a randomly-selected solution from the population at the current 

generation. xr is a randomly-generated position vector within the search 
space of the optimization problem. μ2 is a numerical value created 
randomly within 0 and 1. The pseudo-code of the GBO is briefly studied 
in Algorithm 2. 

Algorithm 2. The standard GBO   
1: Create an initial population of N solutions, xi(i ∈ N).  
2: Initialize pr and E parameters. 
3: Evaluation and determination of Xt− 1

w and Xt− 1
* .  

4: t = 2; 
5: while do (t < tmax)

6: for each i solutions do 
7: for each j dimensions do 
8: Find a ∕= b ∕= c ∕= d ∕= i from the population.  
9: Update xt

ij according to Eq. 32.  
10: end for 
11: Update xt

i according to Eq. 34.  
12: end for 
13: t + +

14: Extract Xt− 1
w and Xt− 1

* .  
15: end while 
16: Return Xt− 1

* .    

2.3. Red fox search optimizer (RFSO) 

A new meta-heuristic algorithm [24] based on simulating the red fox 
behaviors for finding food, developing population, and hunting with 
running away from hunters has been recently developed for solving the 
mathematical optimization problems; this algorithm was named red fox 
search optimizer (RFSO). The mathematical model of this algorithm is 
given in the original paper (Połap & Woźniak, 2021). 

2.4. Golden eagle optimizer (GEO) 

Based on the intelligent behavior of the golden eagle in adjusting 
their speed at different stages of the spiral trajectory for catching, a new 

swarm-based optimization algorithm called golden eagle optimizer 
(GEO) was proposed for tackling the single-, and multi-objective opti-
mization problems. The mathematical model of the GEO is based on two 
steps: (1) attacking the prey to promoting the local search operator 
(exploitation), and (2) cruising to explore other regions for finding 
better foods (exploration). The mathematical model of each step is 
extensively described in (Mohammadi-Balani, Nayeri, Azar, & 
Taghizadeh-Yazdi, 2021). 

xt− 1
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xt− 1
i + f1(u1xt− 1

* − u2xt
k) + f2ρ1(u3(X2t

i − X1t
i)) +

u2(xt− 1
a − xt− 1

b )

2
r < 0.5 and r1 < pr

xt− 1
* + f1(u1xt− 1

* − u2xt− 1
k ) + f2ρ1(u3(X2t

i − X1t
i)) +

u2(xt− 1
a − xt− 1

b )

2
r⩾0.5 and r1 < pr

(34)   
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2.5. Bonobo optimizer (BO) 

A new population-based metaheuristic algorithm, namely BO, has 
been recently proposed for tackling the parameter estimation problem of 
the photovoltaic models based on mimicking the social behaviors and 
the developing process of bonobos (Das & Pratihar, 2019). The bonobos 
follow a fission–fusion social strategy: the fission stage divides the 
bonobos into smaller groups to explore the search space for searching 
the food, then, they are again regathered to do some activities together 
(fusion behavior). BO follows two different phases to determine the 
mating behavior of the bonobos’ community: the first one is known as 
the positive phase and happens when appearing better solution than the 
current best-so-far one, while the second one is known as the negative 
phase occurs on the contrary. The number of consecutive times, where 
the positive phase happens, is called a positive phase count (PPC); 
meanwhile, the negative phase count (NPC) indicates the number of 
consecutive times where the negative phase is applied. more informa-
tion about BO is found in (Das & Pratihar, 2019). 

3. The proposed algorithms. 

The five meta-heuristic algorithms mentioned earlier have been 
proposed for tackling the continuous optimization problems, which 
make them inapplicable for the 01KP. Therefore, in this section, a binary 
variant of each one of those five algorithms will be explained based on 
four main steps: initialization phase, evaluation, repairing and 
improvement (RI) strategy, and satisfaction conditions, in addition to 
another step used to promote the performance of this algorithm for 
tackling the problem with huge dimensions by borrowing some genetic 
operators: one-point crossover operator and mutation operator to search 
around the obtained solutions to avoid stuck into local minima for 
increasing the search ability of the proposed algorithm. 

3.1. Initialization. 

Since the 01KP is a discrete problem optimally solved by finding the 
subset of items, which maximizes the profit with coming true the 
knapsack capacity constraint, therefore a population of N solutions with 
d dimensions will be created and initialized randomly with 0’s value to 
distinguish the unselected item and 1’s value to indicate the selected as 
described in the following equation: 

xi,j =

{
1 if r > 0.5
0 otherwise (39)  

Where r is a random number generated based on the uniform distribu-
tion between 0 and 1, and xi,j indicates the jth dimension in the ith 

individual. 

3.2. Evaluation and RI strategy. 

After completing the initialization step, the evaluation step will be 
fired to evaluate each solution for determining the quality of each one 
for solving this problem, which could be dealt with as a minimization 
problem by reducing the profit of the unselected items with satisfying 
the knapsack capacity. Generally, the fitness function used to evaluate 
the obtained solutions is expressed as: 

f (x) =
∑d

z=1
wz ∗ xz⩽c (40)  

Where wz is a variable contains the weight value of the zth item, and xz is 
used to indicates if the zth item is selected (including a value of 1) or not 
(including a value of 1). c indicates the knapsack capacity. Some of the 
solutions called infeasible solutions don’t subject to the constraint of the 
knapsack capacity, and hence they could not be selected to represent the 

optimal solution for this problem notwithstanding its small profit. 
Therefore, a fixing strategy has been used by removing repeatedly the 
item with the smallest prz

wz 
even the solutions become feasible. Those 

feasible solutions will be improved using another improvement strategy 
which will add the knapsack to the item repeatedly with the highest prz

wz 

with coming true the knapsack capacity constraints. Those two strate-
gies used to convert the infeasible solution into a feasible one then 
improving it is abbreviately called RIS and described in Algorithm 3. 

Algorithm 3. Repairing and improving (RI) Algorithm   
1: Input: xi.  
2:// Repairing algorithm. 
3: while do (f(xi) > c)

4: Eliminate the item with the lowest 
prz
wz

.  

5: end while 
6:// Improving algorithm. 
7: while do (f(xi)⩽c)

8: Puch the item with the highest 
prz
wz 

in the knapsack.  

9: end while 
10: Return repaired improved xi.    

3.3. Transfer Functions 

To make the metaheuristic algorithms released for tackling the 
continuous problems applicable to the 01KP with the discrete nature, 
eight well-known transfer functions of the V-shaped and S-shaped 
families described in Table 2 and depicted in Fig. 1 are here investigated 
to normalize the obtained continuous values between 0 and 1 then those 
normalized values are converted into 0 and 1 by Eq. 41. For example, the 
RFSO produces continuous values during the optimization process, 
which need to be converted into binary values to be adequate for 
tackling the knapsack problems. To do that, the sigmoid and V-Shaped 
transfer functions are used. In our experiments, the sigmoid transfer 
functions (S-Shaped) described mathematically in Table 2 and depicted 
in Fig. 1 could come true better outcomes with the continuous optimi-
zation algorithms when tackling the KP10 as shown in our papers 
(Abdel-Basset, Mohamed, & Mirjalili, 2021; Abdel-Basset, Mohamed, 
Chakrabortty, Ryan, & Mirjalili, 2021), so they are used in this research 
to see the performance of the five-investigated metaheuristic algorithms 
under these functions. 

x→bin( x→) =

{
1 if F( x→)⩾rand
0 otherwise (41)  

3.4. Genetic operators 

The five proposed algorithms will employ the one-point crossover 
operator to explore more solutions for reaching better outcomes for the 
high-dimensional datasets. Specifically, the one-point crossover is used 
to generate the new offsprings from two parents by selecting randomly a 
point on the parents and the tails will be swapped between the two 
parents to produce two new off-springs as pictured in Fig. 2. 

Table 2 
S-shaped and V-shaped Transfer Functions.  

S-Shaped V-Shaped 

1- F( x→) =
1

1 + e− 2 ∗ a  5- F( x→) =

⃒
⃒
⃒
⃒erf(

̅̅̅
π

√

2
a)
⃒
⃒
⃒
⃒

2- F( x→) =
1

1 + e− a  
6- F( x→) = |tanh(a)|

3- F( x→) =
1

1 + e
− a
2  

7- F( x→) =

⃒
⃒
⃒
⃒

a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + a2

√

⃒
⃒
⃒
⃒

4- F( x→) =
1

1 + e
− a
3  

8- F( x→) =

⃒
⃒
⃒
⃒
2
π arctan(

π
2

a)
⃒
⃒
⃒
⃒
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Fig. 1. Depiction of V-shaped and S-shaped transfer functions.  

Fig. 2. Depiction of the one-point crossover.  

Fig. 3. Flowchart of BIHOA algorithm.  
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Within our work, one offspring of those will be randomly selected to 
be compared with the best local-one of the current solution as a new 
attempt to avoid stuck into local minima and help in reaching better 
outcomes. In a case, the crossover operator couldn’t alone fulfill better 
outcomes because the solutions are already inside a local optimum and 
hence a new change needs to be made to alter entirely the selected 
offspring. Therefore, the mutation operator was borrowed to flip some 
values in this selected offspring according to a mutation probability 
(MP) recommended 1/d by several papers. 

3.5. The binary improved variant of HOA (BIHOA) 

Fig. 3 depicts the steps of the binary HOA integrated with the one- 
point crossover and mutation operators. Broadly speaking, at the 

outset, N solutions will be initialized randomly with binary values to 
determine which items will be selected. Then those initial solutions will 
be evaluated using Eq. 41 to determine which solutions could minimize 
the profit of the unselected items by satisfying the knapsack capacity 
constraint. After that, the optimization process will immediately begin 
to update the velocity of each horse according to its age, but this velocity 
involves continuous values contradicted with the knapsack problem, 
which requires binary values, therefore one of the transfer functions 
described in Table 2 will be used to convert the continuous values found 
in the velocity vector and save them in the position of the current horse, 
which is again evaluated and assigned to the best-local position if it is 
better. This process will continue until all the horses are updated with 
taking into consideration updating the best-so-far solution if any of the 
updated ones are better. After finishing this phase, the one-point 

Fig. 4. Flowchart of BIGBO algorithm.  

Table 3 
Description of the high-dimensional KP01 instances.  

ID Capacity D Opt ID Capacity D Opt ID Capacity D Opt 

Uncorrelated Weakly-correlated Strongly-correlated 
KP1100  995 100 9147 KP2100  995 100 1514 KP3100  997 100 2397 
KP1200  1008 200 11238 KP2200  1008 200 1634 KP3200  997 200 2697 
KP1500  2543 500 28857 KP2500  2543 500 4566 KP3500  2517 500 7117 
KP11000  5002 1000 54503 KP21000  5002 1000 9052 KP31000  4990 1000 14390 
KP12000  10011 2000 110625 KP22000  10011 2000 18051 KP32000  9819 2000 28919 
KP15000  25016 5000 276457 KP25000  25016 5000 44356 KP35000  24805 5000 72505 
KP110000  49877 10000 563647 KP210000  49877 10000 90204 KP310000  49519 10000 146919  
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crossover operator will be applied on two solutions: one selected 
randomly from the population and the other is the best-so-far solutions 
as an attempt to promote the exploitation capability to accelerate the 
convergence speed in the right direction of the optimal solution, espe-
cially with the high-dimensional problems. This crossover operator will 

generate two offsprings as described earlier, one of them will be selected 
randomly while the other is skipped to reduce the number of function 
evaluations consumed by this operator to give the standard algorithm a 
larger chance for searching for a better solution. Also, this offspring will 
be mutated by flipping its bits that lie within the mutation probability 

Fig. 5. Investigation of various transfer functions with five-observed metaheuristic algorithms.  
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determined previously. Finally, all mentioned before but the initializa-
tion process will be applied even the termination conditions are 
satisfied. 

3.6. The binary improved variant of GBO (BIGBO) 

Fig. 4 explains the steps of the binary GBO improved using the one- 
point crossover and mutation operator to produce another variant, 
namely BIGBO. Likewise for RFSO, GEO, and BO, are converted into 
binary variants, namely BRFSO, BGEO, and BBO using various transfer 
functions described before and integrated with the RI strategy to convert 
the infeasible solutions into feasible ones. Ultimately, those three algo-
rithms were integrated with the one-point crossover and the mutation 
operators in the same way as BIHOA and BIGBO to produce other three 
variants, namely HIGEO, BIBO, and BIRFSO. 

4. Experimental Results. 

The proposed algorithms will be investigated in this section using 
uncorrelated, weakly-correlated, and strongly-correlated high-dimen-
sional 01KP instances widely used in the literature with their charac-
teristics described in Table 3 in terms of the instance ID (ID), the number 
of dimensions (D), the knapsack capacity (Capacity), and the optimal- 
known solution (Opt) (Moradi et al., 2021; Ezugwu, Pillay, Hirasen, 
Sivanarain, & Govender, 2019). The rest of this section is as follows:  

• Section 4.1: shows the parameter settings and the performance 
metrics.  

• Section 4.2: investigates the various transfer functions.  
• Section 4.3: describes the outcomes on uncorrelated high- 

dimensional 01KP instances.  
• Section 4.4: describes the outcomes on weakly-correlated high- 

dimensional 01KP instances.  
• Section 4.5: describes the outcomes on strongly-correlated high- 

dimensional 01KP instances. 

4.1. Performance Metrics and parameter settings 

Each proposed algorithm is executed 25 independent trials on each 
instance out of 21 instances described before using the same environ-
mental conditions, a population size (N) of 30, and a number of function 
evaluations of 200 ∗ D. Then the obtained maximum profits have been 
analyzed for each algorithm using six statistical performance metrics: 
the best, worst, average (Avg), standard deviation (SD), CPU time, and 
the error rate between the average obtained profit and the optimal- 
known one according to Eq. 42. More than that, to show graphically 
the difference between the algorithms, the boxplot was used to compare 
the outcomes obtained by the various observed algorithms. Addition-
ally, the convergence speed was graphically depicted to show the 
accelerate between the algorithms. 

Table 4 
Comparison of the uncorrelated instances.  

Id  BIHOA BHOA BIGBO BGBO BIGEO BGEO BIRFSO BRFSO BIBO BBO 

KP1100  Worst 8929.000 8940.000 8940.000 8990.000 8900.000 8940.000 8929.000 8929.000 7815.000 8021.000  
Avg 9119.440 9119.880 9130.440 9134.440 9101.280 9094.760 9005.560 8989.960 8747.800 8741.320  
Best 9147.000 9147.000 9147.000 9147.000 9147.000 9147.000 9147.000 9147.000 9147.000 9147.000  
SD 65.346 64.034 57.316 43.471 84.919 78.307 93.251 92.143 255.604 239.699  
ER(%) 0.301 0.296 0.181 0.137 0.500 0.571 1.546 1.717 4.364 4.435  

KP1200  Worst 11227.000 11227.000 11238.000 11227.000 11238.000 11238.000 11238.000 11227.000 9630.000 10338.000  
Avg 11235.800 11237.560 11238.000 11237.120 11238.000 11238.000 11238.000 11237.560 10999.600 10854.360  
Best 11238.000 11238.000 11238.000 11238.000 11238.000 11238.000 11238.000 11238.000 11238.000 11227.000  
SD 4.491 2.200 0.000 3.046 0.000 0.000 0.000 2.200 421.918 291.277  
ER(%) 0.020 0.004 0.000 0.008 0.000 0.000 0.000 0.004 2.121 3.414  

KP1500  Worst 28834.000 28834.000 28834.000 28834.000 28834.000 28834.000 28834.000 28834.000 26162.000 26299.000  
Avg 28834.000 28834.920 28839.520 28836.760 28836.760 28834.920 28834.000 28834.920 27645.800 27706.840  
Best 28834.000 28857.000 28857.000 28857.000 28857.000 28857.000 28834.000 28857.000 28834.000 28732.000  
SD 0.000 4.600 10.025 7.628 7.628 4.600 0.000 4.600 717.042 521.223  
ER(%) 0.080 0.077 0.061 0.070 0.070 0.077 0.080 0.077 4.197 3.986  

KP11000  Worst 54428.000 54421.000 54370.000 54264.000 54074.000 54174.000 54471.000 54412.000 43285.000 49605.000  
Avg 54490.400 54492.760 54459.960 54431.280 54374.320 54318.200 54497.480 54492.000 51187.520 51158.600  
Best 54503.000 54503.000 54503.000 54503.000 54503.000 54481.000 54503.000 54503.000 54503.000 52267.000  
SD 17.767 18.897 44.659 57.280 99.082 86.257 10.252 20.680 2137.998 633.896  
ER(%) 0.023 0.019 0.079 0.132 0.236 0.339 0.010 0.020 6.083 6.136  

KP12000  Worst 110547.000 110547.000 109759.000 109741.000 109157.000 108871.000 110547.000 110547.000 100006.000 101332.000  
Avg 110561.280 110559.440 110443.120 110342.280 110325.680 109614.280 110563.720 110557.480 103291.880 103844.200  
Best 110580.000 110593.000 110578.000 110555.000 110578.000 110463.000 110593.000 110578.000 106561.000 106821.000  
SD 13.446 14.239 169.571 215.349 361.328 412.042 14.501 11.822 1588.221 1253.167  
ER(%) 0.058 0.059 0.164 0.256 0.271 0.914 0.055 0.061 6.629 6.130  

KP15000  Worst 276035.000 275577.000 272608.000 272070.000 273258.000 269241.000 276064.000 276087.000 248542.000 251997.000  
Avg 276326.280 275988.960 274603.680 274691.360 275624.440 270658.960 276352.000 276340.320 257576.800 256767.800  
Best 276427.000 276379.000 276086.000 275981.000 276379.000 272292.000 276399.000 276456.000 275207.000 262301.000  
SD 99.317 213.646 974.295 932.261 795.265 898.678 82.376 94.163 5925.570 2424.521  
ER(%) 0.047 0.169 0.670 0.639 0.301 2.097 0.038 0.042 6.829 7.122  

KP110000  Worst 562085.000 561082.000 555399.000 553338.000 556069.000 544244.000 562155.000 562124.000 503671.000 518746.000  
Avg 562870.120 561708.720 558590.880 559183.520 561349.400 547645.800 563320.120 563059.160 520903.560 523119.440  
Best 563483.000 562509.000 562673.000 561632.000 563605.000 551777.000 563605.000 563605.000 553393.000 528077.000  
SD 363.253 405.885 1770.224 2088.685 2367.066 1875.571 428.449 537.680 12073.405 2583.782  
ER(%) 0.138 0.344 0.897 0.792 0.408 2.839 0.058 0.104 7.583 7.190 

Bold values indicate the best results. 
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Fig. 6. Comparison among algorithms on uncorrelated instances.  

Fig. 7. Comparison on uncorrelated KP100 instance.  

Fig. 8. Comparison on uncorrelated KP200 instance.  
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Fig. 9. Comparison on uncorrelated KP500 instance.  

Fig. 10. Comparison on uncorrelated KP1000 instance.  

Fig. 11. Comparison on uncorrelated KP2000 instance.  
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ER(%) =
Opt − Avg

Opt
∗ 100 (42)  

4.2. Experiment 1: Investigation of various transfer functions 

To find the transfer function affecting positively on the performance 
of each observed algorithm, extensive experiments have been done by 
running each algorithm with all transfer functions on the uncorrelated 
KP500 instance 30 independent trials and depicting the average best-so- 
far fitness values obtained within these runs in Fig. 5 (the ids concate-
nated with the algorithms’ names refer to the transfer function 
employed as shown in Table 1), which shows that the best transfer 
functions for BIHOA, BIGBO, BIGEO, BIRFSO, and BIBSO respectively 
are the ones with the following ids: 7, 1, 1, 6, and 1. 

4.3. Experiment 2: uncorrelated high dimensional 01KP instances 

After extracting the relevant transfer function for each algorithm 
observed in this paper, it is the turn to compare all those algorithms with 
each other under various statistical analyses to see which of them could 
reach better profits. Therefore, on the uncorrelated instances, each al-
gorithm is executed 25 independent times, and the various statistical 
analyses mentioned before are exposed in Table 4, which illustrates the 
superiority of BIRFSO on the instances with dimensions higher than 500; 
meanwhile, the converged performance for the other instances among 

the algorithms has attended. Broadly speaking, according to Table 4, 
BIGBO, BIGEO, BGEO, and BIRFSO could fulfill the optimal solution of 
KP1200 in all independent runs, while both KP1100 and KP1500 could be 
solved more accurately using BGBO, and BIGBO, respectively. For the 
rest of the instances (higher than 500), BIRFO proves its proficiency for 
reaching better outcomes in comparison to all the others. Furthermore, 
Fig. 6 is presented to show the average of the computational cost 
consumed by each algorithm until implementing all the uncorrelated 
instances, which confirms that BIRFSO could come true reasonable time 
for well solving those instances compared to the others, while BBO needs 
the highest computational cost to tackle those instances. As a result for 
any uncorrelated instance with a number of dimensions higher than 500, 
BIRFSO is a strong alternative to all the existing ones since it could come 
true better outcomes in a reasonable time. 

As a new attempt to appear the performance of the algorithms, 
Figs. 7–13 is below pictured to depict the boxplot of the fitness values, 
and the averaged convergence speed obtained by each algorithm on 
each uncorrelated instance. From those figures, it is notified that the 
performance of the algorithms are approximately converged until the 
KP500 instance; however, for the others, BIRFSO appears superior per-
formance in terms of the final accuracy and the convergence speed. 
More speaking, Fig. 7 presented the boxplot of the outcomes obtained by 
different algorithms for tackling the KP100 instance; this figure is evident 
that BIRFSO is approximately converged with BHOA as shown by the red 
line drawn inside the boxplot figure to determine the average of the 

Fig. 12. Comparison on uncorrelated KP5000 instance.  

Fig. 13. Comparison on uncorrelated KP10000 instance.  
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Table 5 
Comparison on the weakly uncorrelated instance.  

Id  BIHOA BHOA BIGBO BGBO BIGEO BGEO BIRFSO BRFSO BIBO BBO 

KP1100  Worst 1502.000 1514.000 1502.000 1514.000 1514.000 1514.000 1514.000 1514.000 1363.000 1276.000  
Avg 1513.520 1514.000 1513.520 1514.000 1514.000 1514.000 1514.000 1514.000 1486.840 1466.920  
Best 1514.000 1514.000 1514.000 1514.000 1514.000 1514.000 1514.000 1514.000 1512.000 1512.000  
SD 2.400 0.000 2.400 0.000 0.000 0.000 0.000 0.000 45.978 66.032  
ER(%) 0.032 0.000 0.032 0.000 0.000 0.000 0.000 0.000 1.794 3.110  

KP1200  Worst 1623.000 1629.000 1627.000 1627.000 1629.000 1634.000 1629.000 1623.000 1348.000 1501.000  
Avg 1632.200 1633.800 1632.680 1633.520 1633.760 1634.000 1633.800 1633.560 1597.040 1589.200  
Best 1634.000 1634.000 1634.000 1634.000 1634.000 1634.000 1634.000 1634.000 1634.000 1634.000  
SD 3.536 1.000 2.340 1.686 1.012 0.000 1.000 2.200 68.498 47.174  
ER(%) 0.110 0.012 0.081 0.029 0.015 0.000 0.012 0.027 2.262 2.742  

KP1500  Worst 4552.000 4552.000 4552.000 4552.000 4552.000 4552.000 4552.000 4552.000 4218.000 4269.000  
Avg 4555.040 4555.680 4555.880 4554.960 4555.720 4555.280 4555.680 4555.360 4412.240 4434.640  
Best 4556.000 4556.000 4559.000 4559.000 4557.000 4557.000 4556.000 4556.000 4554.000 4551.000  
SD 1.744 1.108 1.333 1.947 1.242 1.696 1.108 1.497 103.893 73.167  
ER(%) 0.240 0.226 0.222 0.242 0.225 0.235 0.226 0.233 3.367 2.877  

KP11000  Worst 9046.000 9046.000 9046.000 9046.000 9046.000 9036.000 9046.000 9046.000 8544.000 8535.000  
Avg 9049.080 9050.320 9048.920 9048.240 9048.040 9046.240 9049.800 9049.640 8822.760 8784.320  
Best 9051.000 9051.000 9051.000 9051.000 9051.000 9051.000 9051.000 9051.000 9046.000 8951.000  
SD 2.235 1.600 2.290 2.278 2.475 3.382 1.979 2.039 123.404 98.480  
ER(%) 0.032 0.019 0.034 0.042 0.044 0.064 0.024 0.026 2.532 2.957  

KP12000  Worst 18038.000 18038.000 18001.000 18000.000 17979.000 17946.000 18038.000 18038.000 17140.000 17270.000  
Avg 18043.600 18043.960 18033.880 18027.520 18025.760 17989.160 18043.960 18043.800 17505.720 17527.200  
Best 18046.000 18047.000 18047.000 18045.000 18046.000 18033.000 18046.000 18046.000 18019.000 17856.000  
SD 3.215 3.116 10.982 12.484 20.185 22.451 2.791 2.972 201.672 146.736  
ER(%) 0.041 0.039 0.095 0.130 0.140 0.343 0.039 0.040 3.021 2.902  

KP15000  Worst 44339.000 44338.000 44116.000 44190.000 44004.000 43917.000 44351.000 44349.000 42527.000 42767.000  
Avg 44349.920 44348.800 44276.040 44292.480 44275.880 44065.080 44351.280 44351.160 43063.760 43128.720  
Best 44353.000 44354.000 44351.000 44351.000 44353.000 44200.000 44353.000 44353.000 44201.000 43467.000  
SD 3.174 4.133 58.943 37.364 108.617 74.404 0.614 0.800 400.049 186.441  
ER(%) 0.014 0.016 0.180 0.143 0.181 0.656 0.011 0.011 2.913 2.767  

KP110000  Worst 90104.000 90041.000 89404.000 89551.000 89237.000 88939.000 90136.000 90137.000 86344.000 86679.000  
Avg 90166.360 90096.240 89812.840 89883.040 89969.760 89196.800 90183.920 90182.000 87536.520 87259.120  
Best 90200.000 90143.000 90195.000 90105.000 90201.000 89502.000 90200.000 90200.000 89576.000 87850.000  
SD 24.988 25.973 218.455 150.456 275.339 149.303 17.851 20.203 1056.108 356.670  
ER(%) 0.042 0.119 0.434 0.356 0.260 1.117 0.022 0.024 2.957 3.265 

Bold values indicate the best results. 

Fig. 14. Comparison on the weakly-correlated instances.  
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Fig. 15. Comparison on weakly correlated KP100 instance.  

Fig. 16. Comparison on weakly correlated KP200 instance.  

Fig. 17. Comparison on weakly correlated KP500 instance.  
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Fig. 18. Comparison on weakly correlated KP1000 instance.  

Fig. 19. Comparison on weakly correlated KP2000 instance.  

Fig. 20. Comparison on weakly correlated KP5000 instance.  
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outcomes. Likewise, for KP200 and KP500, BIRFSO could be significantly 
competitive compared to some of the other metaheuristic algorithms. for 
the other instances, it proved that it is the best for tackling any uncor-
related instances with dimensions greater than 500. 

4.4. Experiment 2: Weakly-correlated high dimensional 01KP instances 

In the above section, it was proved that RIFSO could be competitive 
for the instance with dimensions up to 500, and superior for the other 
instances in a comparison made to see the efficiency of the different 
observed algorithms. however, that’s not enough to confirm its 

Fig. 21. Comparison on weakly correlated KP10000 instance.  

Table 6 
Comparison of the strongly correlated instances.  

Id  BIHOA BHOA BIGBO BGBO BIGEO BGEO BIRFSO BRFSO BIBO BBO 

KP1100  Worst 2381.000 2381.000 2390.000 2396.000 2390.000 2390.000 2390.000 2381.000 2203.000 2090.000  
Avg 2392.960 2394.440 2395.200 2396.200 2393.920 2394.360 2391.440 2389.880 2348.000 2294.600  
Best 2397.000 2397.000 2397.000 2397.000 2397.000 2397.000 2396.000 2396.000 2396.000 2390.000  
SD 4.057 3.820 2.345 0.408 3.013 2.782 2.615 2.205 60.614 82.909  
ER(%) 0.169 0.107 0.075 0.033 0.128 0.110 0.232 0.297 2.044 4.272  

KP1200  Worst 2693.000 2694.000 2695.000 2693.000 2694.000 2693.000 2694.000 2689.000 2501.000 2524.000  
Avg 2696.480 2696.640 2696.800 2696.480 2696.800 2696.800 2696.880 2696.560 2656.080 2647.960  
Best 2697.000 2697.000 2697.000 2697.000 2697.000 2697.000 2697.000 2697.000 2697.000 2697.000  
SD 1.159 0.907 0.500 1.085 0.645 0.816 0.600 1.685 54.951 47.020  
ER(%) 0.019 0.013 0.007 0.019 0.007 0.007 0.004 0.016 1.517 1.818  

KP1500  Worst 7114.000 7114.000 7112.000 7110.000 7113.000 7109.000 7113.000 7115.000 6616.000 6711.000  
Avg 7115.800 7115.720 7116.120 7115.640 7116.000 7115.600 7115.880 7116.360 6892.840 6875.320  
Best 7117.000 7117.000 7117.000 7117.000 7117.000 7117.000 7117.000 7117.000 7117.000 7016.000  
SD 0.957 0.980 1.269 1.997 1.155 1.780 1.054 0.810 147.798 86.012  
ER(%) 0.017 0.018 0.012 0.019 0.014 0.020 0.016 0.009 3.150 3.396  

KP11000  Worst 14387.000 14388.000 14290.000 14286.000 14284.000 14284.000 14386.000 14386.000 13394.000 13587.000  
Avg 14389.560 14389.720 14380.040 14381.960 14366.120 14344.760 14389.715 14389.600 13801.720 13822.120  
Best 14390.000 14390.000 14390.000 14390.000 14390.000 14390.000 14390.000 14390.000 14290.000 14187.000  
SD 0.870 0.597 27.259 20.274 40.069 47.171 0.891 0.913 253.038 162.283  
ER(%) 0.003 0.002 0.069 0.056 0.166 0.314 0.002 0.003 4.088 3.946  

KP12000  Worst 28915.000 28917.000 28805.000 28808.000 28708.000 28617.000 28916.000 28914.000 26643.000 27412.000  
Avg 28918.000 28918.400 28894.320 28895.760 28897.640 28733.040 28918.480 28917.920 27756.800 27725.200  
Best 28919.000 28919.000 28919.000 28918.000 28919.000 28813.000 28919.000 28919.000 28818.000 28314.000  
SD 1.190 0.816 41.619 32.711 50.377 60.859 0.872 1.412 442.974 243.652  
ER(%) 0.003 0.002 0.085 0.080 0.074 0.643 0.002 0.004 4.019 4.128  

KP15000  Worst 72405.000 72392.000 71784.000 72000.000 71393.000 71004.000 72486.000 72400.000 67714.000 67805.000  
Avg 72492.920 72437.080 72224.440 72229.760 72292.560 71460.600 72500.200 72484.760 69005.200 69033.760  
Best 72505.000 72505.000 72500.000 72503.000 72502.000 71704.000 72505.000 72505.000 71893.000 69689.000  
SD 26.831 49.245 150.719 134.701 268.739 182.883 4.924 33.130 995.803 425.771  
ER(%) 0.017 0.094 0.387 0.380 0.293 1.440 0.007 0.028 4.827 4.788  

KP110000  Worst 146589.000 146413.000 144910.000 145416.000 144907.000 143619.000 146618.000 146606.000 137428.000 138394.000  
Avg 146767.360 146525.600 146118.960 146001.080 146349.720 144048.560 146851.720 146781.200 139687.400 139670.520  
Best 146915.000 146718.000 146596.000 146704.000 146918.000 144413.000 146918.000 146888.000 144311.000 140760.000  
SD 72.804 86.892 484.516 325.232 544.334 212.322 85.113 108.532 1699.460 534.527  
ER(%) 0.103 0.268 0.545 0.625 0.387 1.954 0.046 0.094 4.922 4.934 

Bold values indicate the best results. 
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Fig. 22. Comparison of the strongly-correlated instances.  

Fig. 23. Comparison on strongly correlated KP100 instance.  

Fig. 24. Comparison on strongly correlated KP200 instance.  
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Fig. 25. Comparison on strongly correlated KP500 instance.  

Fig. 26. Comparison on strongly correlated KP1000 instance.  

Fig. 27. Comparison on strongly correlated KP2000 instance.  
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superiority, therefore another benchmark with 7 weakly correlated in-
stances is addressed in this section to see the sensitivity of the algo-
rithms. Table 5 is presented to exhibit the results of analyzing the best 
profits obtained within 25 independent runs by each algorithm on the 
weakly-correlated instance. As a result of observing this table, the su-
periority of BIRFSO is confirmed on the instances with dimensions 
greater than 1000, and the competitivity among the algorithms for the 
other instances. Generally speaking, in Table 5, it is noticeable that 
BHOA, BGBO, BIGEO, BIRFSO, and BRFSO could reach the optimal 
outcome for KP2100 in all runs performed independently, and KP2200 
was optimally solved using also BGEO. However, unfortunately, for the 
other instances, the algorithms could not reach the desired outcomes, 
but some of them were so near, for instance, BIGBO could reach an 
average of 4555 for KP2500 which is so near to its optimal outcome: 
4559. Also, it is observable from the same table that BIRFSO could be 
superior to the other compared ones when the number of dimensions 
exceeds 1000. In addition, Fig. 14 shows the effectiveness of BIRFSO in 
achieving a reasonable consumption time compared with the high ac-
curacy of the obtained outcomes. 

Figs. 15–21 are below used to show the effectiveness of the algo-
rithms in terms of the boxplot of the fitness values and the averaged 
convergence speed, which show that the performance of BIRFSO is 
almost converged for KP100,KP200, and KP500 instances, and superior on 
the other instances. 

4.5. Experiment 3: Strongly-correlated high dimensional 01KP instances. 

Table 6 is below presented to display the analysis of the outcomes 
obtained by the algorithms on the strongly correlated 01KP instances. 
Based on the outcomes presented in this table, BIRFSO can be the best 
for the instances having dimensions higher than 1000, while its per-
formance on the others is significantly competitive with the other al-
gorithms; BGBO, as the best one on the KP1100 instance, could fulfill an 
average value of 2396 for KP1100 while BIRFSO fulfilled an average of 
2391; BIRFSO could be the best for KP1200 with an average of 2696.880, 
while the second-best one had an average value of 2696.800; BRFSO 
could be the best for KP1500 with an average of 7116.360, while BIGBO 
as the second-best one had an average value of 7116.120; BHOA could 
be the best for KP11000 with an average of 14389.720, while the second- 
best one: BIRFSO had an average value of 14389.715; for the rest in-
stances, BIRFSO could be superior to the others. About the computa-
tional cost required by each algorithm until finishing the optimization 
process on all the strongly correlated instances, Fig. 22 is presented to 
show that BIRFSO can occupy the fifth rank after BIGBO, BIGEO, BGBO, 
and GEO which have poor performance compared to BIRFSO and hence 
BIRFSO can accomplish better outcomes in a reasonable computational 
time. 

Figs. 23–29 which involves the boxplot and the convergence speed 
curve for the fitness values are presented to show which algorithm is 
faster and better. Inspecting these figures shows that BIRFSO can be the 

Fig. 28. Comparison on strongly correlated KP5000 instance.  

Fig. 29. Comparison on strongly correlated KP10000 instance.  
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best in terms of the convergence curve and the fitness value on KP200,

KP2000,KP5000, and KP10000. For the other instances, BGBO can come true 
better convergence and average fitness value on KP100 instance, while 
BRFSO and BHOA can be the best on KP500 and KP1000, respectively. 

5. Conclusion and future work 

Recently, several meta-heuristic optimization algorithms have been 
proposed for tackling the optimization problems, such as horse herd 
optimization algorithm (HOA), gradient-based optimizer (GBO), 
Bonobo optimizer (BO), golden eagle optimizer (GEO), and red fox 
search optimizer (RFSO); however, their performance for the discrete 
optimization problems such as the classical 0–1 knapsack problem have 
not been addressed. Therefore, those five algorithms are transformed 
into binary variants using various transfer functions to be able to solve 
the knapsack problem. The knapsack problem is a discrete problem to 
find the optimal selection of items that will maximize the profit by 
satisfying the knapsack capacity constraints. Unfortunately, some ob-
tained solutions are infeasible because they could not satisfy the knap-
sack capacity constraint. So, the fixing and improvement strategy to 
convert those infeasible solutions into feasible ones, then improve them. 
Finally, to further improve the performance of those algorithms for 
tackling especially the high dimensional 01KP instances, the one-point 
crossover and mutation operators are effectively hybridized to explore 
other solutions intractable by those algorithms alone. Finally, those 
various variants have been validated using 21 widely-used uncorrelated, 
weakly-correlated, and strongly-correlated 01KP instances with several 
dimensions up to 10000, and compared with each other using various 
performance measures to show which one is more superior. 

Our future work involves observing the performance of this algo-
rithm for other kinds of the knapsack problems such as multidimen-
sional knapsack, discount 0–1 knapsack, and the set union knapsack, 
and the quadratic knapsack problems. 
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