
Computers & Industrial Engineering 166 (2022) 107974

Available online 1 February 2022
0360-8352/Published by Elsevier Ltd.

Recent metaheuristic algorithms with genetic operators for
high-dimensional knapsack instances: A comparative study

Mohamed Abdel-Basset a, Reda Mohamed a, Osama M. Elkomy a, Mohamed Abouhawwash b,c,*

a Faculty of Computers and Informatics, Zagazig University, Shaibet an Nakareyah, Zagazig, 44519 Ash Sharqia Governorate, Egypt
b Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
c Department of Computational Mathematics, Science, and Engineering (CMSE), Michigan State University, East Lansing, MI 48824, USA

A R T I C L E I N F O

Keywords:
0–1 knapsack problem
Transfer function
Genetic operators
Meta-heuristic algorithms

A B S T R A C T

As a new attempt to effectively tackle the high-dimensional 0–1 knapsack (01KP) instances with uncorrelated,
weakly-correlated, and strongly-correlated characteristics, in this paper, five lately-proposed meta-heuristic al-
gorithms: horse herd optimization algorithm (HOA), gradient-based optimizer (GBO), red fox search optimizer
(RFSO), golden eagle optimizer (GEO), and Bonobo optimizer (BO) have been transformed into binary ones by
investigating the various V-shaped and S-shaped transfer functions to be applied to those high-dimensional 01KP
problems, which are discrete ones; these binary variants are named BHOA, BGEO, BBO, BRFSO, and BBO.
Furthermore, some genetic operators such as the one-point crossover operator and mutation operators have been
borrowed to discover more permutations as a trying to avoid stuck into local minima for reaching better out-
comes. These two operators are effectively integrated with those binary variants to propose other ones with
better performance for achieving further improvements for tackling the high-dimensional 01KP instances called
BIHOA, BIGEO, BIGBO, BIBO, and BIRFSO. Those genetic operators and recently-developed meta-heuristic
algorithms-based high dimensional binary techniques have been extensively validated using 21 uncorrelated,
weakly-correlated, and strongly-correlated 01KP instances with high-dimensions ranging between 100 and
10000, and the obtained outcomes were compared even witnessing which algorithm is the best. The experi-
mental findings show the superiority of BIRFSO for the instances with dimensions greater than 500, and its
competitivity for the others.

1. Introduction

Lately, the metaheuristic algorithms either single-based algorithms
or population-based ones have strongly interfered in tackling several
optimization problems divided into combinatorial problems, such as
knapsack problem, DNA fragment assembly problem, feature selection,
task scheduling, and travel salesman problem; and continuous ones such
as parameter estimation of photovoltaic models, and nonlinear equa-
tions systems (Gadekallu et al., 2021; Bhattacharya et al., 2020; Gade-
kallu et al., 2020); some of those recent algorithms are compared in
Table 1. Involving those optimization problems, the knapsack problems
(KP) classified as discrete/combinatorial ones have won a significant
interest by the metaheuristic researchers to find the near-optimal subset
of items that maximize the profit with satisfying the knapsack capacity
for optimally allocating the resources of several domain s(Li, He, Li, &

Guo, 2021). There are several types of the knapsack problems, such as
the multidimensional KP (MKP) (Wang, Zheng, & Wang, 2013), the
quadratic KP (QKP) (Patvardhan, Bansal, & Srivastav, 2016), the dis-
count 0–1 KP (Guldan, 2007), the bounded KP (Pisinger, 1995), and the
set union KP (SUKP) (He, Xie, Wong, & Wang, 2018), which are
considered as the extensions to the classical 0–1 KP (01KP) (Martello,
1990). The main challenge to these problems is finding the near-optimal
subset in a reasonable time due to the NP-hard nature.

Within this work, an extensive investigation study will be conducted
to investigate the performance of some of the newly-proposed meta-
heuristic algorithms for the high dimensional 01KP instances as an
attempt to propose an effective approach having strong performance to
tackle this type of problem. Before explaining the works done for tack-
ling the 0–1KP and why a new strong algorithm is significantly required,
let’s define the 01KP and describe its mathematical model. Each 01KP

* Corresponding author at: Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
E-mail addresses: mohamedbasset@zu.edu.eg (M. Abdel-Basset), redamoh@zu.edu.eg (R. Mohamed), osamaelkomy@zu.edu.eg (O.M. Elkomy), abouhaww@msu.

edu, saleh1284@mans.edu.eg (M. Abouhawwash).

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2022.107974
Received 16 April 2021; Received in revised form 3 August 2021; Accepted 26 January 2022

mailto:mohamedbasset@zu.edu.eg
mailto:redamoh@zu.edu.eg
mailto:osamaelkomy@zu.edu.eg
mailto:abouhaww@msu.edu
mailto:abouhaww@msu.edu
mailto:saleh1284@mans.edu.eg
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2022.107974
https://doi.org/10.1016/j.cie.2022.107974
https://doi.org/10.1016/j.cie.2022.107974
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2022.107974&domain=pdf

Computers & Industrial Engineering 166 (2022) 107974

2

consists of n items, where each one has a profit pi and a weight wi. The
objective of solving this problem is finding a subset of the items with a
summation of the weights less than or equal to the knapsack capacity (c)
and a maximized profit. The mathematical model of the 01KP is
described below:

Maximize
∑n

i=1
xi ∗ pi,

subjectto
∑n

i=1
wi ∗ xi < c

(1)

Several attempts have been done over the last decades to solve this
problem, but don’t fulfill the desired target even now as described next.

In (Li, He, Liu, Guo, & Li, 2020), a new transfer function has been
proposed to convert the continuous values produced by the whale
optimization algorithm (WOA) into 0 and 1 ones for solving the 01KP;
this variant is named a discrete whale optimization algorithm (DWOA).
DWOA was extensively compared with a number of state-of-the-art al-
gorithms using 25 instances with dimensions ranging between 16 and
24, which is so small, and hence, its performance for high-dimensional
datasets is not determined as its main limitation although of its superi-
ority for the small instances in comparison to the others.

The harmony search algorithm (Adamuthe et al., 2020) has been
developed for the 01KP to find the optimal selection of items, which will
maximize the profit. This algorithm was investigated using 43 instances
of small-, and medium-scale; however, its performance for high-scale is

Table 1
Briefly discussion to some newly-proposed metaheuristic algorithms.

Algorithms and Year Contributions

Equilibrium optimizer (EO, 2020) (Faramarzi
et al., 2020)

This algorithm has been recently developed to simulate the generic mass balance equation for a control volume as a new
attempt to propose a metaheuristic algorithm having a different search methodology can find better outcomes compared to
the existing one.
Compared to a satisfying number of the well-established well-known metaheuristic algorithms could come true better
outcomes for a significant number of test functions. However, after observing its methodology it is obvious that this algorithm
will maximize the exploration operator at the starting of the optimization process and fade away gradually with increasing the
current iteration, and at the same time, the exploitation capability start weak and strength with increasing the iteration; this
will reduce the convergence speed and sometimes might not be able to avoid stuck into local optima.

Marine predators algorithm (MPA, 2020)
(Faramarzi et al., 2020)

Inspired by the behaviors of the predators in the ocean during attacking prey, this algorithm has been recently published for
tackling the global optimization problem.
This algorithm has good outcomes compared to some metaheuristic algorithms but suffers from high computational costs
caused by the levy flight. Also, it could not avoid the disadvantages of the equilibrium optimizer mentioned previously.

Slime mould algorithm (SMA, 2020) (Li et al.,
2020)

In this paper, the oscillation mode of slime mould has been mimicked to propose a new stochastic optimizer, namely slime
mould optimizer, having strong features that enable it to adapt itself in the direction of the optimal solution.
Relating the updating process with the fitness value of the previous generation to determine if the current individual needs an
exploration operator or exploitation one, and hence this will improve the convergence speed in addition to avoiding stuck into
local minima.

Gradient-based optimizer (GBO, 2020)
(Ahmadianfar et al., 2020)

Integrating a gradient technique with the behaviors of the metaheuristic algorithms considers a good idea because the
gradient technique might guide the individuals during the optimization process in the direction of the near-optimal solution.
Based on this idea, GBO has been recently developed for tackling the global optimization problems and could fulfill
outstanding outcomes compared to some state-of-the-arts.
The gradient technique significantly suffers from falling into local optima and hence its guidance might not prevent stagnation
into local minima.

Horse herd optimization algorithm (HOA, 2021)
(MiarNaeimi et al., 2021)

A new population-based optimization algorithm known as horse herd optimization algorithm inspired by the horse herd
behaviors, which consist of six important features: grazing (G), hierarchy (H), sociability (S), imitation (I), defense mechanism
(D), and roam (R), has been proposed for tackling high-dimensional optimization problems.

Red fox search optimizer (RFSO, 2021) (Połap and
Woźniak, 2021)

This algorithm was proposed based on mimicking the red fox behaviors for finding food, developing population, and hunting
with running away from hunters. It was assessed using the global optimization problems that are efficiently solved by it in
comparison to some state-of-the-art algorithms.

Golden eagle optimizer (GEO, 2021) (
Mohammadi-Balani et al., 2021)

Inspired by the intelligent behavior of the golden eagle, a new metaheuristic optimization algorithm called golden eagle
optimizer (GEO) has been recently proposed for tackling optimization problems. The mathematical model of the GEO is based
on two steps: (1) attacking the prey to promoting the local search operator (exploitation), and (2) cruising to explore other
regions for finding better foods (exploration).
The experimental outcomes revealed the superiority of this algorithm with regard to six other metaheuristic algorithms.

Bonobo optimizer (BO, 2021) (Das and Pratihar,
2019)

A new population-based metaheuristic algorithm, namely BO, has been recently proposed for tackling the parameter
estimation problem of the photovoltaic models based on mimicking the social behaviors and the developing process of
bonobos. The bonobos follow a fission–fusion social strategy: the fission stage divides the bonobos into smaller groups to
explore the search space for searching the food, then, they are again regathered to do some activities together (fusion
behavior)

Archimedes optimization algorithm (AOA, 2021)
(Hashim et al., 2021)

As an inspiration of physics motivates attention to proposing a new metaheuristic algorithm known Archimedes optimization
algorithm (AOA) to mimic the Archimedes law. This algorithm is not only simple but also has few control parameters to be
adjusted before starting the optimization process.
The experimental outcomes of the AOA could be better than the others’ outcomes used in comparison in terms of the solution
quality and convergence speed.

Chaos game optimization (CGO, 2021) (Talatahari
and Azizi, 2021)

Inspired by chaos theory, a new metaheuristic algorithm called chaos game optimization has been recently proposed for
tackling optimization problems.
This algorithm was evaluated using 239 mathematical test functions and compared with six different metaheuristic
algorithms which have bad performance in confronts to this algorithm.

Jellyfish search optimizer (JSO, 2020) (Chou and
Truong, 2021)

This algorithm known as artificial Jellyfish Search optimizer (JSO) was inspired by the behavior of jellyfish in the ocean and
proposed for the first time for tackling global optimization problems. in specific, The behavior of the JSO for finding food in
the ocean is based on: movements inside the swarm or following the ocean current and switching between these movements
using a time control mechanism.
This algorithm was validated on fifty small- and medium-scale test functions, in addition to 25 large-scale ones and some
engineering optimization problems. then it was extensively compared to some well-known optimization algorithms to show
that it performs best.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

3

not shown. A population-based simulated annealing algorithm (PSA)
(Moradi, Kayvanfar, & Rafiee, 2021) has been suggested for the optimal
identification of the items that maximize the profit by satisfying the
knapsack capacity. This algorithm was extensively assessed using
several well-known instances with small-, medium-, and large-scale di-
mensions up to 10000 and compared with a number of the existing
simulated annealing variants, and some of the other optimizers to see its
superiority. The experimental findings show the superiority of this al-
gorithm in comparison to the compared ones, but its performance for
weakly correlated high-dimensional and strongly correlated high-
dimension instances still needs a significant improvement.

Furthermore, a new binary variant of the elephant herding optimi-
zation (EHO) algorithm, namely briefly BinEHO, was adapted for tack-
ling the 01KP (Hakli, 2020). This algorithm was validated 25 well-
known 01KP instances and compared with some of the existing binary
techniques, such as binary PSO (BPSO) (Ali, Luque, & Alba, 2020),
modified BPSO (MBPSO) (Bansal & Deep, 2012), binary harmony search
algorithm (NGHS) (Zou, Gao, Li, & Wu, 2011), discrete global best
harmony search algorithm (DGHS) (Xiang, An, Li, He, & Zhang, 2014), a
simplified binary artificial fish swarm algorithm (S-BAFS) (Azad, Rocha,
& Fernandes, 2014), and improved monkey algorithm (Zhou, Chen, &
Zhou, 2016). Despite its superiority for solving the small-scale 01KP
instances, its performance for tackling the instances of high-scale was
not examined and this made it not preferred for solving the 01KP in-
stances with high-dimensionality. MBPSO (Bansal & Deep, 2012) was
applied to find the optimal subset of the items for the instances with a
scale reaching 500 dimensions. Also, some algorithms (Bhattacharjee &
Sarmah, 2015; Bhattacharjee & Sarmah, 2015) have been assessed using
well-known instances of small-, and medium-scale up to 75.

Consequently, most algorithms proposed in the literature have only
dealt with the small-scaled 01KP instances and their performance for the
high dimensional problem, which is harder because a huge number of
the permutations needs to be observed compared to the small-, and
medium-scaled dimensions, is not defined. Therefore, in this paper, five
recently-developed metaheuristics optimization algorithms: Horse herd
optimization algorithm (HOA), Gradient-based optimizer (GBO), Red
fox search optimizer (RFSO), Golden eagle optimizer (GEO), and Bonobo
optimizer (BO) have been extensively investigated for tackling the high-
dimensional 01KP instances. At the outset, because those used algo-
rithms were already proposed for solving the continuous problems, they
are first converted into discrete algorithms by two well-known transfer
function families: V-shaped and S-shaped to be applicable for solving
these discrete problems. Afterward, the five investigated algorithms
integrated with the best transfer function for each one have been
extensively compared with each other for solving 21 well-known high-
dimensional instances having dimensions ranging between 100 and
10000, and the obtained outcomes were analyzed using various statis-
tical analyzes like the best, average, worst, error percent, and standard
deviation values, in addition to the convergence speed to see the
acceptance of each algorithm, and the computational cost for the
speedup of each algorithm. Finally, the main contributions of this paper
are listed as:

1. Investigating the performance of five recently-published meta-heu-
ristic algorithms for tackling the 01KP with various scales, as the first
time to the best of our knowledge those algorithms are proposed for
tackling this problem.

2. Borrowing some genetic operators such as the one-point crossover
operator and mutation operator to be integrated with those algo-
rithms to discover more permutations for reaching the near-optimal
solution, especially with the large-scale problem.

3. Investigated experiments show the effective role of the integrated
genetic operators for reaching better outcomes with the large-scale
problems, higher than 500.

The rest of this research is organized like that: Section 2 overview the
five recently-developed algorithms, Section 3 describes what we pro-
pose, Section 4 shows the analyses of the outcomes obtained by the
proposed algorithms, and Section 5 finally briefly presents our conclu-
sion and what will be studied in the future.

2. Recently-proposed metaheuristics

In this section, five recently-proposed metaheuristic algorithms will
be discussed to show their methodology in searching for the near-
optimal solution for the optimization problems. Only the mathemat-
ical model of the gradient-based optimizer and horse herd optimization
algorithm will be reviewed in this paper, while the other algorithms are
only mentioned based on their search methodology.

2.1. Horse herd optimization algorithm (HOA)

Based on six important features: grazing (G), hierarchy (H), socia-
bility (S), imitation (I), defense mechanism (D), and roam (R) of horse
herding behaviors, a new population-based optimization algorithm has
been proposed for tackling high-dimensional optimization problems
(MiarNaeimi, Azizyan, & Rashki, 2021). These features are related with
the horse based on its age. Those six mentioned behaviors are related to
the age of the horses. Specifically, each horse is updated within the
optimization process using the following formula with taking into
consideration the age of each one to determine which feature is from its
advantages:

x→t,AGE
i = V→

t,AGE

i + x→(t− 1),AGE
i ,AGE = α, β, γ, δ (2)

xt,AGE
i is a vector including the current position of the ith horse, the

current iteration is symbolized as t, and V→
t,AGE
i expresses the velocity of

the ith horse. Based on the age of each horse, its velocity will be updated
as described in the following equations:

V→
t,α
i = G→

t,α
i + D→

t,α
i

V→
t,β

i = G→
t,β

i + H→
t,β

i + S→
t,β

i + D→
t,β

i

V→
t,γ

i = G→
t,γ

i + H→
t,γ

i + S→
t,γ

i + I→
t,γ

i + D→
t,γ

i + R→
t,γ

i

V→
t,δ

i = G→
t,δ

i + I→
t,δ

i + R→
t,δ

i

(3)

Where α indicates the horses having ages greater than 15, δ distinguishes
the horses with ages at the interval of 0 and 5, γ stands for the horses
with ages between 5 and 10, and β refers to the horses whose ages lie at
the range of 10 and 15. Those four symbols, which indicate various ages
of the horses, are determined by the HOA based on sorting ascendingly
the obtained fitness values and the 0.1 horses with the best fitness values
will represent α, the next 0.2 horses indicate β, γ has the next 0.3 of the
best horses, while the other hoses will represent δ.

2.1.1. Grazing behavior
The grazing behavior of the horses related to all ages: α, β, γ, δ is

mathematically formulated below:

G→
t,AGE

i = gt(u
̆
+ i

̆
P)[xt− 1

i],AGE = α, β, γ, δ (4)

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

4

gt,AGE
i = gt− 1,AGE

i ∗ wg (5)

Where G→
t,AGE
i is the movement parameter of the ith horse. u

̆
and i

̆

respectively are the inferior and uppermost grazing boundary and rec-
ommended 0.95 and 1.05. P is a random number generated between
0 and 1. g is recommended 1.5 for all ages to represent a coefficient
value.

2.1.2. Hierarchy behavior
This behavior only related to the β and γ horses as studied in (Waring,

1983; McDonnell et al., 2003) is mathematically described as:

H→
t,AGE

i = ht,AGE
i [xt− 1

* − xt− 1
i],AGE = β, γ (6)

ht,AGE
i = ht− 1,AGE

i ∗ wh (7)

h is a coefficient value to determine how far the horse will follow the
most experienced one.

2.1.3. Sociability behavior
This social behavior confined only to the β and γ horses is mathe-

matically described as follows:

S→
t,AGE

i = st,AGE
i [

1
N

∑N

j=1
xt− 1

j − xt− 1
i],AGE = β, γ (8)

st,AGE
i = st− 1,AGE

i ∗ ws (9)

S→
t,AGE
i is computed to determine the tendency of the current horse to the

herding in the current generation. N indicates the population size.

2.1.4. Imitation behavior
This behavior is only confined to the γ horses which try to mimic a

number pN of the best horses as mathematically elaborated in the
following equations.

I→
t,AGE

i = it,AGE
i [

1
pN

∑pN

j=1
xt− 1

j − xt− 1
i],AGE = γ (10)

mt,AGE
i = mt− 1,AGE

i ∗ wi (11)

pN is preferred to represent 10% of the best horses of the current gen-
eration as said in the original research (MiarNaeimi et al., 2021).

2.1.5. Defense mechanism behavior
This defense behavior of the horses owned only to α, β, and γ is

mathematically described as.

D→
t,AGE

i = − dt,AGE
i [

1
qN

∑qN

j=1
xt− 1

j − xt− 1
i],AGE = α, β, γ (12)

dt,AGE
i = dt− 1,AGE

i ∗ wd (13)

qN indicates the horses with the worst position and recommended 20%
of the population size.

2.1.6. Roam behavior
The mathematical model of this behavior is built as:

R→
t,AGE

i = rt,AGE
i Pxt− 1

i ,AGE = γ, δ (14)

rt,AGE
i = rt− 1,AGE

i ∗ wr (15)

rt− 1,AGE
i is a factor used to represent the random movement. The standard

HOA is explained in Algorithm 1.

Algorithm 1. The steps of the standard HOA

1: Initialize a group of N horses, x→t,AGE
i (i ∈ N).

2: Initialize the HOA’s parameters.
3: Compute the objective value of each horse, xi.
4: t = 0;
5: while (t < tmax) do
6: Determines the ages of horses.
7: Compute the velocity related the age of each horse.
8: Update the horses.

9: Evaluate each horse, x→t,AGE
i .

10: t + +

11: end while
12: Return xt

*.

2.2. Gradient-based optimizer (GBO)

Ahmadianfar (Ahmadianfar, Bozorg-Haddad, & Chu, 2020) devel-
oped a new population-based optimization algorithm known as
gradient-based optimizer (GBO) based on following a gradient tech-
nique: the newton’s method to guide the solutions through the optimi-
zation process to the valid direction of the near-optimal solution.
Generally, the GBO algorithm is compounded by the gradient search rule
and the local escaping operator described thoroughly later.

2.2.1. Gradient search rule (GSR)
This rule is used to integrate the gradient-based directions with the

GBO algorithm for guiding the solutions inside the population to the true
direction of the desired outcome. To balance between the exploration
and exploitation operators, a significant factor ρ1, is used to do that as an
attempt to avoid local minima and accelerate the convergence speed at
the same time. ρ1 is mathematically modeled as:

ρ1 = 2 × r × α − α (16)

α =

⃒
⃒
⃒
⃒β × sin(

3π
2
+ sin(β ×

3π
2
))

⃒
⃒
⃒
⃒ (17)

β = βmin +(βmax − βmin) × (1 − (
t

tmax
)

3
)

2 (18)

Where βmin and βmax are respectively two constant-values of 0.2 and 1.2.
tmax is the maximum function evaluation. Afterward, ρ1 is related with
the GSR to manage exploration and exploitation operators for achieving
an equilibrium between them during the whole optimization process as
described in the following formula:

GSR = r × ρ1 ×
(2Δx × Xn)

(Xt− 1
w − Xt− 1

* + ∊)
(19)

∊ is a tiny value between 0 and 0.1 to eliminate the division by zero. Xt− 1
w

is the worst solution at the current generation, while Xt− 1
* is the best one.

Δx is formulated as following:

Δx = r→× |S| (20)

S =
((Xt− 1

* − Xt− 1
a) + δ)

2
(21)

δ = 2 × r2 × (|
(Xt− 1

a + Xt− 1
b + Xt− 1

c + Xt− 1
d)

4
| − Xt− 1

i) (22)

Where r2 is a number created randomly at the interval of 0 and 1, a ∕=

b ∕= c ∕= d are randomly-selected indices from the solutions. Then,
according to the GSR strategy, a new solution could be obtained by the
following formula:

X1t
i = Xt− 1

i − GSR (23)

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

5

To extensively locally search nearby around the current solution, Eq. 23
is updated by the direction of movement (DM) described as:

X1t
i = Xt− 1

i − GSR+DM (24)

DM = r × ρ2 × (Xt− 1
* − Xt− 1

i) (25)

ρ2 = 2 × r × α − α (26)

According to (Ahmadianfar et al., 2020), X1t
i could be reformulated as

follows:

X1t
i = xt− 1

i − r × ρ1 ×
2Δx × Xn

(ypt− 1
i − yqt− 1

i + ∊)
+ r × ρ2 × (Xt− 1

* − Xt− 1
i) (27)

ypt− 1
i and yqt− 1

i are computed using the following formulas:

ypt− 1
i = yn +Δx (28)

yqt− 1
i = yn − Δx (29)

yn is a vector equal to the average of the current solution vector Xt− 1
i , and

the zt− 1
i calculated as:

yi =
Xt− 1)

i

zt− 1
i

|zt− 1
i = xn − r→×

2Δx × xn

(Xt− 1
w − Xt− 1

* + ∊)
(30)

Also, to enhance the exploitation operator around to promote the best-
so-far solution for improving the convergence rate, a new vector
known as X2t

i is generated like Eq. 27 with swapping xt− 1
i by xt− 1

* as
described mathematically below:

X2t
i = xt− 1

* − r × ρ1 ×
2Δx × Xn

(ypt− 1
i − yqt− 1

i + ∊)
+ r × ρ2 × (xt− 1

* − xt− 1
i) (31)

Finally, The two vectors: X1t
i , and X2t

i generated previously mix with
another one: X3t

i to generate the next position for the ith solution as
follows:

xt
i = ra(rb × X1t

i +(1 − rb) × X2t
i)+ (1 − ra) × X3t

i (32)

X3t
i = xt− 1

i − ρ1 × (X2t
i − X1t

i) (33)

2.2.2. Local escaping operator stage
Besides, a new operator called a local escaping operator (LEO) is

integrated with the GBO with a probability pr (recommended 0.5) to
increase its local optima avoidance capability. The mathematical model
of this operator is as follows:

f1, and f2 are two randomly-generated numerical values based on the
uniform distribution at the range of − 1 and 1. u1, u2, and u3 are three
various randomly assigned numbers using the following equations:

u1 =

{
2r1 if μ1 < 0.5
1 otherwise (35)

u2 =

{
r1 if μ1 < 0.5
1 otherwise (36)

u3 =

{
r1 if μ1 < 0.5
1 otherwise (37)

Where μ1 and r1 are two random numbers between 0 and 1. xt
k presented

in Eq. 34 is computed using the following mathematical function:

xt
k =

{
xr if μ2 < 0.5
xt− 1

p otherwise
(38)

xt− 1
p is a randomly-selected solution from the population at the current

generation. xr is a randomly-generated position vector within the search
space of the optimization problem. μ2 is a numerical value created
randomly within 0 and 1. The pseudo-code of the GBO is briefly studied
in Algorithm 2.

Algorithm 2. The standard GBO
1: Create an initial population of N solutions, xi(i ∈ N).
2: Initialize pr and E parameters.
3: Evaluation and determination of Xt− 1

w and Xt− 1
* .

4: t = 2;
5: while do (t < tmax)

6: for each i solutions do
7: for each j dimensions do
8: Find a ∕= b ∕= c ∕= d ∕= i from the population.
9: Update xt

ij according to Eq. 32.
10: end for
11: Update xt

i according to Eq. 34.
12: end for
13: t + +

14: Extract Xt− 1
w and Xt− 1

* .
15: end while
16: Return Xt− 1

* .

2.3. Red fox search optimizer (RFSO)

A new meta-heuristic algorithm [24] based on simulating the red fox
behaviors for finding food, developing population, and hunting with
running away from hunters has been recently developed for solving the
mathematical optimization problems; this algorithm was named red fox
search optimizer (RFSO). The mathematical model of this algorithm is
given in the original paper (Połap & Woźniak, 2021).

2.4. Golden eagle optimizer (GEO)

Based on the intelligent behavior of the golden eagle in adjusting
their speed at different stages of the spiral trajectory for catching, a new

swarm-based optimization algorithm called golden eagle optimizer
(GEO) was proposed for tackling the single-, and multi-objective opti-
mization problems. The mathematical model of the GEO is based on two
steps: (1) attacking the prey to promoting the local search operator
(exploitation), and (2) cruising to explore other regions for finding
better foods (exploration). The mathematical model of each step is
extensively described in (Mohammadi-Balani, Nayeri, Azar, &
Taghizadeh-Yazdi, 2021).

xt− 1
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xt− 1
i + f1(u1xt− 1

* − u2xt
k) + f2ρ1(u3(X2t

i − X1t
i)) +

u2(xt− 1
a − xt− 1

b)

2
r < 0.5 and r1 < pr

xt− 1
* + f1(u1xt− 1

* − u2xt− 1
k) + f2ρ1(u3(X2t

i − X1t
i)) +

u2(xt− 1
a − xt− 1

b)

2
r⩾0.5 and r1 < pr

(34)

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

6

2.5. Bonobo optimizer (BO)

A new population-based metaheuristic algorithm, namely BO, has
been recently proposed for tackling the parameter estimation problem of
the photovoltaic models based on mimicking the social behaviors and
the developing process of bonobos (Das & Pratihar, 2019). The bonobos
follow a fission–fusion social strategy: the fission stage divides the
bonobos into smaller groups to explore the search space for searching
the food, then, they are again regathered to do some activities together
(fusion behavior). BO follows two different phases to determine the
mating behavior of the bonobos’ community: the first one is known as
the positive phase and happens when appearing better solution than the
current best-so-far one, while the second one is known as the negative
phase occurs on the contrary. The number of consecutive times, where
the positive phase happens, is called a positive phase count (PPC);
meanwhile, the negative phase count (NPC) indicates the number of
consecutive times where the negative phase is applied. more informa-
tion about BO is found in (Das & Pratihar, 2019).

3. The proposed algorithms.

The five meta-heuristic algorithms mentioned earlier have been
proposed for tackling the continuous optimization problems, which
make them inapplicable for the 01KP. Therefore, in this section, a binary
variant of each one of those five algorithms will be explained based on
four main steps: initialization phase, evaluation, repairing and
improvement (RI) strategy, and satisfaction conditions, in addition to
another step used to promote the performance of this algorithm for
tackling the problem with huge dimensions by borrowing some genetic
operators: one-point crossover operator and mutation operator to search
around the obtained solutions to avoid stuck into local minima for
increasing the search ability of the proposed algorithm.

3.1. Initialization.

Since the 01KP is a discrete problem optimally solved by finding the
subset of items, which maximizes the profit with coming true the
knapsack capacity constraint, therefore a population of N solutions with
d dimensions will be created and initialized randomly with 0’s value to
distinguish the unselected item and 1’s value to indicate the selected as
described in the following equation:

xi,j =

{
1 if r > 0.5
0 otherwise (39)

Where r is a random number generated based on the uniform distribu-
tion between 0 and 1, and xi,j indicates the jth dimension in the ith

individual.

3.2. Evaluation and RI strategy.

After completing the initialization step, the evaluation step will be
fired to evaluate each solution for determining the quality of each one
for solving this problem, which could be dealt with as a minimization
problem by reducing the profit of the unselected items with satisfying
the knapsack capacity. Generally, the fitness function used to evaluate
the obtained solutions is expressed as:

f (x) =
∑d

z=1
wz ∗ xz⩽c (40)

Where wz is a variable contains the weight value of the zth item, and xz is
used to indicates if the zth item is selected (including a value of 1) or not
(including a value of 1). c indicates the knapsack capacity. Some of the
solutions called infeasible solutions don’t subject to the constraint of the
knapsack capacity, and hence they could not be selected to represent the

optimal solution for this problem notwithstanding its small profit.
Therefore, a fixing strategy has been used by removing repeatedly the
item with the smallest prz

wz
even the solutions become feasible. Those

feasible solutions will be improved using another improvement strategy
which will add the knapsack to the item repeatedly with the highest prz

wz

with coming true the knapsack capacity constraints. Those two strate-
gies used to convert the infeasible solution into a feasible one then
improving it is abbreviately called RIS and described in Algorithm 3.

Algorithm 3. Repairing and improving (RI) Algorithm
1: Input: xi.
2:// Repairing algorithm.
3: while do (f(xi) > c)

4: Eliminate the item with the lowest
prz
wz

.

5: end while
6:// Improving algorithm.
7: while do (f(xi)⩽c)

8: Puch the item with the highest
prz
wz

in the knapsack.

9: end while
10: Return repaired improved xi.

3.3. Transfer Functions

To make the metaheuristic algorithms released for tackling the
continuous problems applicable to the 01KP with the discrete nature,
eight well-known transfer functions of the V-shaped and S-shaped
families described in Table 2 and depicted in Fig. 1 are here investigated
to normalize the obtained continuous values between 0 and 1 then those
normalized values are converted into 0 and 1 by Eq. 41. For example, the
RFSO produces continuous values during the optimization process,
which need to be converted into binary values to be adequate for
tackling the knapsack problems. To do that, the sigmoid and V-Shaped
transfer functions are used. In our experiments, the sigmoid transfer
functions (S-Shaped) described mathematically in Table 2 and depicted
in Fig. 1 could come true better outcomes with the continuous optimi-
zation algorithms when tackling the KP10 as shown in our papers
(Abdel-Basset, Mohamed, & Mirjalili, 2021; Abdel-Basset, Mohamed,
Chakrabortty, Ryan, & Mirjalili, 2021), so they are used in this research
to see the performance of the five-investigated metaheuristic algorithms
under these functions.

x→bin(x→) =

{
1 if F(x→)⩾rand
0 otherwise (41)

3.4. Genetic operators

The five proposed algorithms will employ the one-point crossover
operator to explore more solutions for reaching better outcomes for the
high-dimensional datasets. Specifically, the one-point crossover is used
to generate the new offsprings from two parents by selecting randomly a
point on the parents and the tails will be swapped between the two
parents to produce two new off-springs as pictured in Fig. 2.

Table 2
S-shaped and V-shaped Transfer Functions.

S-Shaped V-Shaped

1- F(x→) =
1

1 + e− 2 ∗ a 5- F(x→) =

⃒
⃒
⃒
⃒erf(

̅̅̅
π

√

2
a)
⃒
⃒
⃒
⃒

2- F(x→) =
1

1 + e− a
6- F(x→) = |tanh(a)|

3- F(x→) =
1

1 + e
− a
2

7- F(x→) =

⃒
⃒
⃒
⃒

a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + a2

√

⃒
⃒
⃒
⃒

4- F(x→) =
1

1 + e
− a
3

8- F(x→) =

⃒
⃒
⃒
⃒
2
π arctan(

π
2

a)
⃒
⃒
⃒
⃒

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

7

Fig. 1. Depiction of V-shaped and S-shaped transfer functions.

Fig. 2. Depiction of the one-point crossover.

Fig. 3. Flowchart of BIHOA algorithm.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

8

Within our work, one offspring of those will be randomly selected to
be compared with the best local-one of the current solution as a new
attempt to avoid stuck into local minima and help in reaching better
outcomes. In a case, the crossover operator couldn’t alone fulfill better
outcomes because the solutions are already inside a local optimum and
hence a new change needs to be made to alter entirely the selected
offspring. Therefore, the mutation operator was borrowed to flip some
values in this selected offspring according to a mutation probability
(MP) recommended 1/d by several papers.

3.5. The binary improved variant of HOA (BIHOA)

Fig. 3 depicts the steps of the binary HOA integrated with the one-
point crossover and mutation operators. Broadly speaking, at the

outset, N solutions will be initialized randomly with binary values to
determine which items will be selected. Then those initial solutions will
be evaluated using Eq. 41 to determine which solutions could minimize
the profit of the unselected items by satisfying the knapsack capacity
constraint. After that, the optimization process will immediately begin
to update the velocity of each horse according to its age, but this velocity
involves continuous values contradicted with the knapsack problem,
which requires binary values, therefore one of the transfer functions
described in Table 2 will be used to convert the continuous values found
in the velocity vector and save them in the position of the current horse,
which is again evaluated and assigned to the best-local position if it is
better. This process will continue until all the horses are updated with
taking into consideration updating the best-so-far solution if any of the
updated ones are better. After finishing this phase, the one-point

Fig. 4. Flowchart of BIGBO algorithm.

Table 3
Description of the high-dimensional KP01 instances.

ID Capacity D Opt ID Capacity D Opt ID Capacity D Opt

Uncorrelated Weakly-correlated Strongly-correlated
KP1100 995 100 9147 KP2100 995 100 1514 KP3100 997 100 2397
KP1200 1008 200 11238 KP2200 1008 200 1634 KP3200 997 200 2697
KP1500 2543 500 28857 KP2500 2543 500 4566 KP3500 2517 500 7117
KP11000 5002 1000 54503 KP21000 5002 1000 9052 KP31000 4990 1000 14390
KP12000 10011 2000 110625 KP22000 10011 2000 18051 KP32000 9819 2000 28919
KP15000 25016 5000 276457 KP25000 25016 5000 44356 KP35000 24805 5000 72505
KP110000 49877 10000 563647 KP210000 49877 10000 90204 KP310000 49519 10000 146919

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

9

crossover operator will be applied on two solutions: one selected
randomly from the population and the other is the best-so-far solutions
as an attempt to promote the exploitation capability to accelerate the
convergence speed in the right direction of the optimal solution, espe-
cially with the high-dimensional problems. This crossover operator will

generate two offsprings as described earlier, one of them will be selected
randomly while the other is skipped to reduce the number of function
evaluations consumed by this operator to give the standard algorithm a
larger chance for searching for a better solution. Also, this offspring will
be mutated by flipping its bits that lie within the mutation probability

Fig. 5. Investigation of various transfer functions with five-observed metaheuristic algorithms.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

10

determined previously. Finally, all mentioned before but the initializa-
tion process will be applied even the termination conditions are
satisfied.

3.6. The binary improved variant of GBO (BIGBO)

Fig. 4 explains the steps of the binary GBO improved using the one-
point crossover and mutation operator to produce another variant,
namely BIGBO. Likewise for RFSO, GEO, and BO, are converted into
binary variants, namely BRFSO, BGEO, and BBO using various transfer
functions described before and integrated with the RI strategy to convert
the infeasible solutions into feasible ones. Ultimately, those three algo-
rithms were integrated with the one-point crossover and the mutation
operators in the same way as BIHOA and BIGBO to produce other three
variants, namely HIGEO, BIBO, and BIRFSO.

4. Experimental Results.

The proposed algorithms will be investigated in this section using
uncorrelated, weakly-correlated, and strongly-correlated high-dimen-
sional 01KP instances widely used in the literature with their charac-
teristics described in Table 3 in terms of the instance ID (ID), the number
of dimensions (D), the knapsack capacity (Capacity), and the optimal-
known solution (Opt) (Moradi et al., 2021; Ezugwu, Pillay, Hirasen,
Sivanarain, & Govender, 2019). The rest of this section is as follows:

• Section 4.1: shows the parameter settings and the performance
metrics.

• Section 4.2: investigates the various transfer functions.
• Section 4.3: describes the outcomes on uncorrelated high-

dimensional 01KP instances.
• Section 4.4: describes the outcomes on weakly-correlated high-

dimensional 01KP instances.
• Section 4.5: describes the outcomes on strongly-correlated high-

dimensional 01KP instances.

4.1. Performance Metrics and parameter settings

Each proposed algorithm is executed 25 independent trials on each
instance out of 21 instances described before using the same environ-
mental conditions, a population size (N) of 30, and a number of function
evaluations of 200 ∗ D. Then the obtained maximum profits have been
analyzed for each algorithm using six statistical performance metrics:
the best, worst, average (Avg), standard deviation (SD), CPU time, and
the error rate between the average obtained profit and the optimal-
known one according to Eq. 42. More than that, to show graphically
the difference between the algorithms, the boxplot was used to compare
the outcomes obtained by the various observed algorithms. Addition-
ally, the convergence speed was graphically depicted to show the
accelerate between the algorithms.

Table 4
Comparison of the uncorrelated instances.

Id BIHOA BHOA BIGBO BGBO BIGEO BGEO BIRFSO BRFSO BIBO BBO

KP1100 Worst 8929.000 8940.000 8940.000 8990.000 8900.000 8940.000 8929.000 8929.000 7815.000 8021.000
Avg 9119.440 9119.880 9130.440 9134.440 9101.280 9094.760 9005.560 8989.960 8747.800 8741.320
Best 9147.000 9147.000 9147.000 9147.000 9147.000 9147.000 9147.000 9147.000 9147.000 9147.000
SD 65.346 64.034 57.316 43.471 84.919 78.307 93.251 92.143 255.604 239.699
ER(%) 0.301 0.296 0.181 0.137 0.500 0.571 1.546 1.717 4.364 4.435

KP1200 Worst 11227.000 11227.000 11238.000 11227.000 11238.000 11238.000 11238.000 11227.000 9630.000 10338.000
Avg 11235.800 11237.560 11238.000 11237.120 11238.000 11238.000 11238.000 11237.560 10999.600 10854.360
Best 11238.000 11238.000 11238.000 11238.000 11238.000 11238.000 11238.000 11238.000 11238.000 11227.000
SD 4.491 2.200 0.000 3.046 0.000 0.000 0.000 2.200 421.918 291.277
ER(%) 0.020 0.004 0.000 0.008 0.000 0.000 0.000 0.004 2.121 3.414

KP1500 Worst 28834.000 28834.000 28834.000 28834.000 28834.000 28834.000 28834.000 28834.000 26162.000 26299.000
Avg 28834.000 28834.920 28839.520 28836.760 28836.760 28834.920 28834.000 28834.920 27645.800 27706.840
Best 28834.000 28857.000 28857.000 28857.000 28857.000 28857.000 28834.000 28857.000 28834.000 28732.000
SD 0.000 4.600 10.025 7.628 7.628 4.600 0.000 4.600 717.042 521.223
ER(%) 0.080 0.077 0.061 0.070 0.070 0.077 0.080 0.077 4.197 3.986

KP11000 Worst 54428.000 54421.000 54370.000 54264.000 54074.000 54174.000 54471.000 54412.000 43285.000 49605.000
Avg 54490.400 54492.760 54459.960 54431.280 54374.320 54318.200 54497.480 54492.000 51187.520 51158.600
Best 54503.000 54503.000 54503.000 54503.000 54503.000 54481.000 54503.000 54503.000 54503.000 52267.000
SD 17.767 18.897 44.659 57.280 99.082 86.257 10.252 20.680 2137.998 633.896
ER(%) 0.023 0.019 0.079 0.132 0.236 0.339 0.010 0.020 6.083 6.136

KP12000 Worst 110547.000 110547.000 109759.000 109741.000 109157.000 108871.000 110547.000 110547.000 100006.000 101332.000
Avg 110561.280 110559.440 110443.120 110342.280 110325.680 109614.280 110563.720 110557.480 103291.880 103844.200
Best 110580.000 110593.000 110578.000 110555.000 110578.000 110463.000 110593.000 110578.000 106561.000 106821.000
SD 13.446 14.239 169.571 215.349 361.328 412.042 14.501 11.822 1588.221 1253.167
ER(%) 0.058 0.059 0.164 0.256 0.271 0.914 0.055 0.061 6.629 6.130

KP15000 Worst 276035.000 275577.000 272608.000 272070.000 273258.000 269241.000 276064.000 276087.000 248542.000 251997.000
Avg 276326.280 275988.960 274603.680 274691.360 275624.440 270658.960 276352.000 276340.320 257576.800 256767.800
Best 276427.000 276379.000 276086.000 275981.000 276379.000 272292.000 276399.000 276456.000 275207.000 262301.000
SD 99.317 213.646 974.295 932.261 795.265 898.678 82.376 94.163 5925.570 2424.521
ER(%) 0.047 0.169 0.670 0.639 0.301 2.097 0.038 0.042 6.829 7.122

KP110000 Worst 562085.000 561082.000 555399.000 553338.000 556069.000 544244.000 562155.000 562124.000 503671.000 518746.000
Avg 562870.120 561708.720 558590.880 559183.520 561349.400 547645.800 563320.120 563059.160 520903.560 523119.440
Best 563483.000 562509.000 562673.000 561632.000 563605.000 551777.000 563605.000 563605.000 553393.000 528077.000
SD 363.253 405.885 1770.224 2088.685 2367.066 1875.571 428.449 537.680 12073.405 2583.782
ER(%) 0.138 0.344 0.897 0.792 0.408 2.839 0.058 0.104 7.583 7.190

Bold values indicate the best results.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

11

Fig. 6. Comparison among algorithms on uncorrelated instances.

Fig. 7. Comparison on uncorrelated KP100 instance.

Fig. 8. Comparison on uncorrelated KP200 instance.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

12

Fig. 9. Comparison on uncorrelated KP500 instance.

Fig. 10. Comparison on uncorrelated KP1000 instance.

Fig. 11. Comparison on uncorrelated KP2000 instance.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

13

ER(%) =
Opt − Avg

Opt
∗ 100 (42)

4.2. Experiment 1: Investigation of various transfer functions

To find the transfer function affecting positively on the performance
of each observed algorithm, extensive experiments have been done by
running each algorithm with all transfer functions on the uncorrelated
KP500 instance 30 independent trials and depicting the average best-so-
far fitness values obtained within these runs in Fig. 5 (the ids concate-
nated with the algorithms’ names refer to the transfer function
employed as shown in Table 1), which shows that the best transfer
functions for BIHOA, BIGBO, BIGEO, BIRFSO, and BIBSO respectively
are the ones with the following ids: 7, 1, 1, 6, and 1.

4.3. Experiment 2: uncorrelated high dimensional 01KP instances

After extracting the relevant transfer function for each algorithm
observed in this paper, it is the turn to compare all those algorithms with
each other under various statistical analyses to see which of them could
reach better profits. Therefore, on the uncorrelated instances, each al-
gorithm is executed 25 independent times, and the various statistical
analyses mentioned before are exposed in Table 4, which illustrates the
superiority of BIRFSO on the instances with dimensions higher than 500;
meanwhile, the converged performance for the other instances among

the algorithms has attended. Broadly speaking, according to Table 4,
BIGBO, BIGEO, BGEO, and BIRFSO could fulfill the optimal solution of
KP1200 in all independent runs, while both KP1100 and KP1500 could be
solved more accurately using BGBO, and BIGBO, respectively. For the
rest of the instances (higher than 500), BIRFO proves its proficiency for
reaching better outcomes in comparison to all the others. Furthermore,
Fig. 6 is presented to show the average of the computational cost
consumed by each algorithm until implementing all the uncorrelated
instances, which confirms that BIRFSO could come true reasonable time
for well solving those instances compared to the others, while BBO needs
the highest computational cost to tackle those instances. As a result for
any uncorrelated instance with a number of dimensions higher than 500,
BIRFSO is a strong alternative to all the existing ones since it could come
true better outcomes in a reasonable time.

As a new attempt to appear the performance of the algorithms,
Figs. 7–13 is below pictured to depict the boxplot of the fitness values,
and the averaged convergence speed obtained by each algorithm on
each uncorrelated instance. From those figures, it is notified that the
performance of the algorithms are approximately converged until the
KP500 instance; however, for the others, BIRFSO appears superior per-
formance in terms of the final accuracy and the convergence speed.
More speaking, Fig. 7 presented the boxplot of the outcomes obtained by
different algorithms for tackling the KP100 instance; this figure is evident
that BIRFSO is approximately converged with BHOA as shown by the red
line drawn inside the boxplot figure to determine the average of the

Fig. 12. Comparison on uncorrelated KP5000 instance.

Fig. 13. Comparison on uncorrelated KP10000 instance.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

14

Table 5
Comparison on the weakly uncorrelated instance.

Id BIHOA BHOA BIGBO BGBO BIGEO BGEO BIRFSO BRFSO BIBO BBO

KP1100 Worst 1502.000 1514.000 1502.000 1514.000 1514.000 1514.000 1514.000 1514.000 1363.000 1276.000
Avg 1513.520 1514.000 1513.520 1514.000 1514.000 1514.000 1514.000 1514.000 1486.840 1466.920
Best 1514.000 1514.000 1514.000 1514.000 1514.000 1514.000 1514.000 1514.000 1512.000 1512.000
SD 2.400 0.000 2.400 0.000 0.000 0.000 0.000 0.000 45.978 66.032
ER(%) 0.032 0.000 0.032 0.000 0.000 0.000 0.000 0.000 1.794 3.110

KP1200 Worst 1623.000 1629.000 1627.000 1627.000 1629.000 1634.000 1629.000 1623.000 1348.000 1501.000
Avg 1632.200 1633.800 1632.680 1633.520 1633.760 1634.000 1633.800 1633.560 1597.040 1589.200
Best 1634.000 1634.000 1634.000 1634.000 1634.000 1634.000 1634.000 1634.000 1634.000 1634.000
SD 3.536 1.000 2.340 1.686 1.012 0.000 1.000 2.200 68.498 47.174
ER(%) 0.110 0.012 0.081 0.029 0.015 0.000 0.012 0.027 2.262 2.742

KP1500 Worst 4552.000 4552.000 4552.000 4552.000 4552.000 4552.000 4552.000 4552.000 4218.000 4269.000
Avg 4555.040 4555.680 4555.880 4554.960 4555.720 4555.280 4555.680 4555.360 4412.240 4434.640
Best 4556.000 4556.000 4559.000 4559.000 4557.000 4557.000 4556.000 4556.000 4554.000 4551.000
SD 1.744 1.108 1.333 1.947 1.242 1.696 1.108 1.497 103.893 73.167
ER(%) 0.240 0.226 0.222 0.242 0.225 0.235 0.226 0.233 3.367 2.877

KP11000 Worst 9046.000 9046.000 9046.000 9046.000 9046.000 9036.000 9046.000 9046.000 8544.000 8535.000
Avg 9049.080 9050.320 9048.920 9048.240 9048.040 9046.240 9049.800 9049.640 8822.760 8784.320
Best 9051.000 9051.000 9051.000 9051.000 9051.000 9051.000 9051.000 9051.000 9046.000 8951.000
SD 2.235 1.600 2.290 2.278 2.475 3.382 1.979 2.039 123.404 98.480
ER(%) 0.032 0.019 0.034 0.042 0.044 0.064 0.024 0.026 2.532 2.957

KP12000 Worst 18038.000 18038.000 18001.000 18000.000 17979.000 17946.000 18038.000 18038.000 17140.000 17270.000
Avg 18043.600 18043.960 18033.880 18027.520 18025.760 17989.160 18043.960 18043.800 17505.720 17527.200
Best 18046.000 18047.000 18047.000 18045.000 18046.000 18033.000 18046.000 18046.000 18019.000 17856.000
SD 3.215 3.116 10.982 12.484 20.185 22.451 2.791 2.972 201.672 146.736
ER(%) 0.041 0.039 0.095 0.130 0.140 0.343 0.039 0.040 3.021 2.902

KP15000 Worst 44339.000 44338.000 44116.000 44190.000 44004.000 43917.000 44351.000 44349.000 42527.000 42767.000
Avg 44349.920 44348.800 44276.040 44292.480 44275.880 44065.080 44351.280 44351.160 43063.760 43128.720
Best 44353.000 44354.000 44351.000 44351.000 44353.000 44200.000 44353.000 44353.000 44201.000 43467.000
SD 3.174 4.133 58.943 37.364 108.617 74.404 0.614 0.800 400.049 186.441
ER(%) 0.014 0.016 0.180 0.143 0.181 0.656 0.011 0.011 2.913 2.767

KP110000 Worst 90104.000 90041.000 89404.000 89551.000 89237.000 88939.000 90136.000 90137.000 86344.000 86679.000
Avg 90166.360 90096.240 89812.840 89883.040 89969.760 89196.800 90183.920 90182.000 87536.520 87259.120
Best 90200.000 90143.000 90195.000 90105.000 90201.000 89502.000 90200.000 90200.000 89576.000 87850.000
SD 24.988 25.973 218.455 150.456 275.339 149.303 17.851 20.203 1056.108 356.670
ER(%) 0.042 0.119 0.434 0.356 0.260 1.117 0.022 0.024 2.957 3.265

Bold values indicate the best results.

Fig. 14. Comparison on the weakly-correlated instances.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

15

Fig. 15. Comparison on weakly correlated KP100 instance.

Fig. 16. Comparison on weakly correlated KP200 instance.

Fig. 17. Comparison on weakly correlated KP500 instance.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

16

Fig. 18. Comparison on weakly correlated KP1000 instance.

Fig. 19. Comparison on weakly correlated KP2000 instance.

Fig. 20. Comparison on weakly correlated KP5000 instance.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

17

outcomes. Likewise, for KP200 and KP500, BIRFSO could be significantly
competitive compared to some of the other metaheuristic algorithms. for
the other instances, it proved that it is the best for tackling any uncor-
related instances with dimensions greater than 500.

4.4. Experiment 2: Weakly-correlated high dimensional 01KP instances

In the above section, it was proved that RIFSO could be competitive
for the instance with dimensions up to 500, and superior for the other
instances in a comparison made to see the efficiency of the different
observed algorithms. however, that’s not enough to confirm its

Fig. 21. Comparison on weakly correlated KP10000 instance.

Table 6
Comparison of the strongly correlated instances.

Id BIHOA BHOA BIGBO BGBO BIGEO BGEO BIRFSO BRFSO BIBO BBO

KP1100 Worst 2381.000 2381.000 2390.000 2396.000 2390.000 2390.000 2390.000 2381.000 2203.000 2090.000
Avg 2392.960 2394.440 2395.200 2396.200 2393.920 2394.360 2391.440 2389.880 2348.000 2294.600
Best 2397.000 2397.000 2397.000 2397.000 2397.000 2397.000 2396.000 2396.000 2396.000 2390.000
SD 4.057 3.820 2.345 0.408 3.013 2.782 2.615 2.205 60.614 82.909
ER(%) 0.169 0.107 0.075 0.033 0.128 0.110 0.232 0.297 2.044 4.272

KP1200 Worst 2693.000 2694.000 2695.000 2693.000 2694.000 2693.000 2694.000 2689.000 2501.000 2524.000
Avg 2696.480 2696.640 2696.800 2696.480 2696.800 2696.800 2696.880 2696.560 2656.080 2647.960
Best 2697.000 2697.000 2697.000 2697.000 2697.000 2697.000 2697.000 2697.000 2697.000 2697.000
SD 1.159 0.907 0.500 1.085 0.645 0.816 0.600 1.685 54.951 47.020
ER(%) 0.019 0.013 0.007 0.019 0.007 0.007 0.004 0.016 1.517 1.818

KP1500 Worst 7114.000 7114.000 7112.000 7110.000 7113.000 7109.000 7113.000 7115.000 6616.000 6711.000
Avg 7115.800 7115.720 7116.120 7115.640 7116.000 7115.600 7115.880 7116.360 6892.840 6875.320
Best 7117.000 7117.000 7117.000 7117.000 7117.000 7117.000 7117.000 7117.000 7117.000 7016.000
SD 0.957 0.980 1.269 1.997 1.155 1.780 1.054 0.810 147.798 86.012
ER(%) 0.017 0.018 0.012 0.019 0.014 0.020 0.016 0.009 3.150 3.396

KP11000 Worst 14387.000 14388.000 14290.000 14286.000 14284.000 14284.000 14386.000 14386.000 13394.000 13587.000
Avg 14389.560 14389.720 14380.040 14381.960 14366.120 14344.760 14389.715 14389.600 13801.720 13822.120
Best 14390.000 14390.000 14390.000 14390.000 14390.000 14390.000 14390.000 14390.000 14290.000 14187.000
SD 0.870 0.597 27.259 20.274 40.069 47.171 0.891 0.913 253.038 162.283
ER(%) 0.003 0.002 0.069 0.056 0.166 0.314 0.002 0.003 4.088 3.946

KP12000 Worst 28915.000 28917.000 28805.000 28808.000 28708.000 28617.000 28916.000 28914.000 26643.000 27412.000
Avg 28918.000 28918.400 28894.320 28895.760 28897.640 28733.040 28918.480 28917.920 27756.800 27725.200
Best 28919.000 28919.000 28919.000 28918.000 28919.000 28813.000 28919.000 28919.000 28818.000 28314.000
SD 1.190 0.816 41.619 32.711 50.377 60.859 0.872 1.412 442.974 243.652
ER(%) 0.003 0.002 0.085 0.080 0.074 0.643 0.002 0.004 4.019 4.128

KP15000 Worst 72405.000 72392.000 71784.000 72000.000 71393.000 71004.000 72486.000 72400.000 67714.000 67805.000
Avg 72492.920 72437.080 72224.440 72229.760 72292.560 71460.600 72500.200 72484.760 69005.200 69033.760
Best 72505.000 72505.000 72500.000 72503.000 72502.000 71704.000 72505.000 72505.000 71893.000 69689.000
SD 26.831 49.245 150.719 134.701 268.739 182.883 4.924 33.130 995.803 425.771
ER(%) 0.017 0.094 0.387 0.380 0.293 1.440 0.007 0.028 4.827 4.788

KP110000 Worst 146589.000 146413.000 144910.000 145416.000 144907.000 143619.000 146618.000 146606.000 137428.000 138394.000
Avg 146767.360 146525.600 146118.960 146001.080 146349.720 144048.560 146851.720 146781.200 139687.400 139670.520
Best 146915.000 146718.000 146596.000 146704.000 146918.000 144413.000 146918.000 146888.000 144311.000 140760.000
SD 72.804 86.892 484.516 325.232 544.334 212.322 85.113 108.532 1699.460 534.527
ER(%) 0.103 0.268 0.545 0.625 0.387 1.954 0.046 0.094 4.922 4.934

Bold values indicate the best results.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

18

Fig. 22. Comparison of the strongly-correlated instances.

Fig. 23. Comparison on strongly correlated KP100 instance.

Fig. 24. Comparison on strongly correlated KP200 instance.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

19

Fig. 25. Comparison on strongly correlated KP500 instance.

Fig. 26. Comparison on strongly correlated KP1000 instance.

Fig. 27. Comparison on strongly correlated KP2000 instance.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

20

superiority, therefore another benchmark with 7 weakly correlated in-
stances is addressed in this section to see the sensitivity of the algo-
rithms. Table 5 is presented to exhibit the results of analyzing the best
profits obtained within 25 independent runs by each algorithm on the
weakly-correlated instance. As a result of observing this table, the su-
periority of BIRFSO is confirmed on the instances with dimensions
greater than 1000, and the competitivity among the algorithms for the
other instances. Generally speaking, in Table 5, it is noticeable that
BHOA, BGBO, BIGEO, BIRFSO, and BRFSO could reach the optimal
outcome for KP2100 in all runs performed independently, and KP2200
was optimally solved using also BGEO. However, unfortunately, for the
other instances, the algorithms could not reach the desired outcomes,
but some of them were so near, for instance, BIGBO could reach an
average of 4555 for KP2500 which is so near to its optimal outcome:
4559. Also, it is observable from the same table that BIRFSO could be
superior to the other compared ones when the number of dimensions
exceeds 1000. In addition, Fig. 14 shows the effectiveness of BIRFSO in
achieving a reasonable consumption time compared with the high ac-
curacy of the obtained outcomes.

Figs. 15–21 are below used to show the effectiveness of the algo-
rithms in terms of the boxplot of the fitness values and the averaged
convergence speed, which show that the performance of BIRFSO is
almost converged for KP100,KP200, and KP500 instances, and superior on
the other instances.

4.5. Experiment 3: Strongly-correlated high dimensional 01KP instances.

Table 6 is below presented to display the analysis of the outcomes
obtained by the algorithms on the strongly correlated 01KP instances.
Based on the outcomes presented in this table, BIRFSO can be the best
for the instances having dimensions higher than 1000, while its per-
formance on the others is significantly competitive with the other al-
gorithms; BGBO, as the best one on the KP1100 instance, could fulfill an
average value of 2396 for KP1100 while BIRFSO fulfilled an average of
2391; BIRFSO could be the best for KP1200 with an average of 2696.880,
while the second-best one had an average value of 2696.800; BRFSO
could be the best for KP1500 with an average of 7116.360, while BIGBO
as the second-best one had an average value of 7116.120; BHOA could
be the best for KP11000 with an average of 14389.720, while the second-
best one: BIRFSO had an average value of 14389.715; for the rest in-
stances, BIRFSO could be superior to the others. About the computa-
tional cost required by each algorithm until finishing the optimization
process on all the strongly correlated instances, Fig. 22 is presented to
show that BIRFSO can occupy the fifth rank after BIGBO, BIGEO, BGBO,
and GEO which have poor performance compared to BIRFSO and hence
BIRFSO can accomplish better outcomes in a reasonable computational
time.

Figs. 23–29 which involves the boxplot and the convergence speed
curve for the fitness values are presented to show which algorithm is
faster and better. Inspecting these figures shows that BIRFSO can be the

Fig. 28. Comparison on strongly correlated KP5000 instance.

Fig. 29. Comparison on strongly correlated KP10000 instance.

M. Abdel-Basset et al.

Computers & Industrial Engineering 166 (2022) 107974

21

best in terms of the convergence curve and the fitness value on KP200,

KP2000,KP5000, and KP10000. For the other instances, BGBO can come true
better convergence and average fitness value on KP100 instance, while
BRFSO and BHOA can be the best on KP500 and KP1000, respectively.

5. Conclusion and future work

Recently, several meta-heuristic optimization algorithms have been
proposed for tackling the optimization problems, such as horse herd
optimization algorithm (HOA), gradient-based optimizer (GBO),
Bonobo optimizer (BO), golden eagle optimizer (GEO), and red fox
search optimizer (RFSO); however, their performance for the discrete
optimization problems such as the classical 0–1 knapsack problem have
not been addressed. Therefore, those five algorithms are transformed
into binary variants using various transfer functions to be able to solve
the knapsack problem. The knapsack problem is a discrete problem to
find the optimal selection of items that will maximize the profit by
satisfying the knapsack capacity constraints. Unfortunately, some ob-
tained solutions are infeasible because they could not satisfy the knap-
sack capacity constraint. So, the fixing and improvement strategy to
convert those infeasible solutions into feasible ones, then improve them.
Finally, to further improve the performance of those algorithms for
tackling especially the high dimensional 01KP instances, the one-point
crossover and mutation operators are effectively hybridized to explore
other solutions intractable by those algorithms alone. Finally, those
various variants have been validated using 21 widely-used uncorrelated,
weakly-correlated, and strongly-correlated 01KP instances with several
dimensions up to 10000, and compared with each other using various
performance measures to show which one is more superior.

Our future work involves observing the performance of this algo-
rithm for other kinds of the knapsack problems such as multidimen-
sional knapsack, discount 0–1 knapsack, and the set union knapsack,
and the quadratic knapsack problems.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Abdel-Basset, M., Mohamed, R., Chakrabortty, R. K., Ryan, M., & Mirjalili, S. (2021).
New binary marine predators optimization algorithms for 0–1 knapsack problems.
Computers & Industrial Engineering, 151, 106949.

Abdel-Basset, M., Mohamed, R., & Mirjalili, S. (2021). A binary equilibrium optimization
algorithm for 0–1 knapsack problems. Computers & Industrial Engineering, 151,
106946.

Adamuthe, A. C. Sale, V. N. & Mane, S. U. (2020). ”Solving single and multi-objective 01
knapsack problem using harmony search algorithm,” Journal of Scientific Research,
vol. 64, no. 1, 2020.

Ahmadianfar, I., Bozorg-Haddad, O., & Chu, X. (2020). Gradient-based optimizer: A new
metaheuristic optimization algorithm. Information Sciences, 540, 131–159.

Ali, A. B., Luque, G., & Alba, E. (2020). An efficient discrete pso coupled with a fast local
search heuristic for the dna fragment assembly problem. Information Sciences, 512,
880–908.

Azad, M. A. K., Rocha, A. M. A. & Fernandes, E.M. (2014). ”A simplified binary artificial
fish swarm algorithm for 0–1 quadratic knapsack problems.” Journal of
Computational and Applied mathematics, vol. 259 (pp. 897–904).

Bansal, J. C., & Deep, K. (2012). A modified binary particle swarm optimization for
knapsack problems. Applied Mathematics and Computation, 218(22), 11042–11061.

Bhattacharjee, K. K., & Sarmah, S. P. (2015). A binary cuckoo search algorithm for
knapsack problems. In 2015 International Conference on Industrial Engineering and
Operations Management (IEOM) (pp. 1–5). IEEE.

Bhattacharjee, K. K., & Sarmah, S. P. (2015). A binary firefly algorithm for knapsack
problems. In 2015 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM) (pp. 73–77). IEEE.

Bhattacharya, S., Maddikunta, P. K. R., Kaluri, R., Singh, S., Gadekallu, T. R., Alazab, M.,
Tariq, U., et al. (2020). A novel pca-firefly based xgboost classification model for
intrusion detection in networks using gpu. Electronics, 9(2), 219.

Chou, J.-S., & Truong, D.-N. (2021). A novel metaheuristic optimizer inspired by
behavior of jellyfish in ocean. Applied Mathematics and Computation, 389, 125535.

Das, A. K., & Pratihar, D. K. (2019). A new bonobo optimizer (bo) for real-parameter
optimization. In 2019 IEEE Region 10 Symposium (TENSYMP) (pp. 108–113). IEEE.

Ezugwu, A. E., Pillay, V., Hirasen, D., Sivanarain, K., & Govender, M. (2019).
A comparative study of meta-heuristic optimization algorithms for 0–1 knapsack
problem: Some initial results. IEEE Access, 7, 43979–44001.

Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine predators
algorithm: A nature-inspired metaheuristic. Expert Systems with Applications, 152,
113377.

Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium
optimizer: A novel optimization algorithm. Knowledge-Based Systems, 191, 105190.

Gadekallu, T. R., Alazab, M., Kaluri, R., Maddikunta, P. K. R., Bhattacharya, S.,
Lakshmanna, K., & Parimala, M. (2021). Hand gesture classification using a novel
cnn-crow search algorithm. Complex & Intelligent Systems, 1–14.

Gadekallu, T. R., Rajput, D. S., Reddy, M. P. K., Lakshmanna, K., Bhattacharya, S.,
Singh, S., Jolfaei, A., & Alazab, M. (2020). A novel pca–whale optimization-based
deep neural network model for classification of tomato plant diseases using gpu.
Journal of Real-Time Image Processing, 1–14.

Guldan, B. (2007). Heuristic and exact algorithms for discounted knapsack problems.
Germany: University of Erlangen-Nürnberg.

Hakli, H. (2020). Bineho: a new binary variant based on elephant herding optimization
algorithm. Neural Computing and Applications, 32(22), 16971–16991.

Hashim, F. A., Hussain, K., Houssein, E. H., Mabrouk, M. S., & Al-Atabany, W. (2021).
Archimedes optimization algorithm: a new metaheuristic algorithm for solving
optimization problems. Applied Intelligence, 51(3), 1531–1551.

He, Y., Xie, H., Wong, T.-L., & Wang, X. (2018). A novel binary artificial bee colony
algorithm for the set-union knapsack problem. Future Generation Computer Systems,
78, 77–86.

Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A
new method for stochastic optimization. Future Generation Computer Systems, 111,
300–323.

Li, Z., He, Y., Li, Y., & Guo, X. (2021). A hybrid grey wolf optimizer for solving the
product knapsack problem. International Journal of Machine Learning and Cybernetics,
12(1), 201–222.

Li, Y., He, Y., Liu, X., Guo, X., & Li, Z. (2020). A novel discrete whale optimization
algorithm for solving knapsack problems. Applied Intelligence, 50, 3350–3366.

Martello, S. (1990). ”Knapsack problems: algorithms and computer implementations,”
Wiley-Interscience series in discrete mathematics and optimization.

McDonnell, S., et al. (2003). Practical field guide to horse behavior: the equid ethogram. The
Blood-Horse Inc.

MiarNaeimi, F., Azizyan, G., & Rashki, M. (2021). Horse herd optimization algorithm: A
nature-inspired algorithm for high-dimensional optimization problems. Knowledge-
Based Systems, 213, 106711.

Mohammadi-Balani, A., Nayeri, M. D., Azar, A., & Taghizadeh-Yazdi, M. (2021). Golden
eagle optimizer: A nature-inspired metaheuristic algorithm. Computers & Industrial
Engineering, 152, 107050.

Moradi, N., Kayvanfar, V., & Rafiee, M. (2021). An efficient population-based simulated
annealing algorithm for 0–1 knapsack problem. Engineering with Computers, 1–20.

Patvardhan, C., Bansal, S., & Srivastav, A. (2016). Parallel improved quantum inspired
evolutionary algorithm to solve large size quadratic knapsack problems. Swarm and
Evolutionary Computation, 26, 175–190.

Pisinger, D. (1995). A minimal algorithm for the bounded knapsack problem. In
International Conference on Integer Programming and Combinatorial Optimization (pp.
95–109). Springer.

Połap, D., & Woźniak, M. (2021). Red fox optimization algorithm. Expert Systems with
Applications, 166, 114107.

Talatahari, S., & Azizi, M. (2021). Chaos game optimization: a novel metaheuristic
algorithm. Artificial Intelligence Review, 54(2), 917–1004.

Wang, L., Zheng, X.-L., & Wang, S.-Y. (2013). A novel binary fruit fly optimization
algorithm for solving the multidimensional knapsack problem. Knowledge-Based
Systems, 48, 17–23.

Waring, G. (1983). ”The behavioral traits and adaptations of domestic and wild horses,
including ponies,” Horse behavor.

Xiang, W.-L., An, M.-Q., Li, Y.-Z., He, R.-C., & Zhang, J.-F. (2014). A novel discrete
global-best harmony search algorithm for solving 0–1 knapsack problems. Discrete
Dynamics in Nature and Society, 2014.

Zhou, Y., Chen, X., & Zhou, G. (2016). An improved monkey algorithm for a 0–1
knapsack problem. Applied Soft Computing, 38, 817–830.

Zou, D., Gao, L., Li, S., & Wu, J. (2011). Solving 0–1 knapsack problem by a novel global
harmony search algorithm. Applied Soft Computing, 11(2), 1556–1564.

M. Abdel-Basset et al.

http://refhub.elsevier.com/S0360-8352(22)00044-4/h0005
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0005
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0005
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0010
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0010
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0010
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0020
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0020
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0025
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0025
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0025
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0035
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0035
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0040
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0040
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0040
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0045
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0045
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0045
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0050
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0050
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0050
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0055
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0055
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0060
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0060
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0065
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0065
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0065
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0070
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0070
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0070
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0075
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0075
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0080
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0080
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0080
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0085
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0085
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0085
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0085
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0090
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0090
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0095
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0095
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0100
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0100
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0100
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0105
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0105
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0105
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0110
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0110
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0110
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0115
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0115
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0115
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0120
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0120
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0130
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0130
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0135
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0135
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0135
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0140
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0140
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0140
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0145
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0145
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0150
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0150
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0150
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0155
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0155
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0155
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0160
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0160
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0165
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0165
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0170
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0170
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0170
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0180
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0180
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0180
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0185
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0185
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0190
http://refhub.elsevier.com/S0360-8352(22)00044-4/h0190

	Recent metaheuristic algorithms with genetic operators for high-dimensional knapsack instances: A comparative study
	1 Introduction
	2 Recently-proposed metaheuristics
	2.1 Horse herd optimization algorithm (HOA)
	2.1.1 Grazing behavior
	2.1.2 Hierarchy behavior
	2.1.3 Sociability behavior
	2.1.4 Imitation behavior
	2.1.5 Defense mechanism behavior
	2.1.6 Roam behavior

	2.2 Gradient-based optimizer (GBO)
	2.2.1 Gradient search rule (GSR)
	2.2.2 Local escaping operator stage

	2.3 Red fox search optimizer (RFSO)
	2.4 Golden eagle optimizer (GEO)
	2.5 Bonobo optimizer (BO)

	3 The proposed algorithms.
	3.1 Initialization.
	3.2 Evaluation and RI strategy.
	3.3 Transfer Functions
	3.4 Genetic operators
	3.5 The binary improved variant of HOA (BIHOA)
	3.6 The binary improved variant of GBO (BIGBO)

	4 Experimental Results.
	4.1 Performance Metrics and parameter settings
	4.2 Experiment 1: Investigation of various transfer functions
	4.3 Experiment 2: uncorrelated high dimensional 01KP instances
	4.4 Experiment 2: Weakly-correlated high dimensional 01KP instances
	4.5 Experiment 3: Strongly-correlated high dimensional 01KP instances.

	5 Conclusion and future work
	Declaration of Competing Interest
	References

