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A B S T R A C T

Fox is very popular in various regions of the Globe, where representatives of this kind can be found in Europe,
Asia, North America, and even in some arctic regions. The way this predator lives and hunts is very peculiar.
It is active all year round, traversing the lands in hunting both for different domestic and wild animals. In his
strategy fox is using various tricks to distract prey while creeping what makes him a very efficient predator.
The territorial habits and family relations between young and adult made the fox easily adaptable to various
conditions and therefore helped him to survive in a changing environment.

In this article we propose a mathematical model of red fox habits, searching for food, hunting, and
developing population while escaping from hunters. Described model is based on local and global optimization
method with a reproduction mechanism. The novel model developed for optimization purposes we name the
Red Fox Optimization Algorithm (RFO). The proposed method was subjected to benchmark tests using 22
test functions and 7 classic engineering optimization problems. Experimental results are compared to other
meta-heuristic algorithms to show potential advantages.
1. Introduction

Meta-heuristic approaches turned out to be efficient in various opti-
mization purposes due to high precision, speed of optimization, and low
computational complexity. These algorithms proved value in complex
problem solving, where solution space is not always well described and
the problem demands solving complex mathematical models of life phe-
nomena. Gao et al. (2016) presented the application of these methods in
dynamic routing problem, Davari et al. (2016) discussed the application
of heuristics in the budget planning of medical preventive health with
some constraints and Chamaani et al. (2011) proposed optimization
of time and frequency domain for antennas by the use of heuristic
methods. Medical applications of these algorithms show efficiency
in sequential data processing, which is very useful for various gene
modeling operations (Biswas & Acharyya, 2016). Moreover, protein
structure modeling and assignments can be solved by the application
of devoted derivatives of heuristics as discussed in Brown et al. (2016).
Similarly, medical expertise can be based on results of heuristic meth-
ods. Holm et al. (2016) presented catheter positioning implemented
in prostate brachytherapy, while Ogiela and Krzyworzeka (2016) dis-
cussed the application of the heuristic approach to detection of threats
over mammograms. A devoted version of the heuristic approach gave
excellent results in medical data analysis for classification (Mohapa-
tra et al., 2015) and radiotherapy planning (Kalantzis et al., 2016).
Recently heuristic methods are reported to support text mining in
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real-time applications (Mosa, 2019) and spectral clustering (Janani
& Vijayarani, 2019). Medical applications report these methods in
protein-encoding (Gonzalez-Sanchez et al., 2019). Also in engineering
meta-heuristics were applied in various tasks. Zhang et al. (2019)
proposed robot localization using particle filtering, while Mirghasemi
et al. (2019) applied heuristic methods to reduce noise in images.
An extensive study of these methods concerning latest achievements
and a variety of possible applications and theoretical backgrounds was
presented in Das et al. (2016). The number of possibilities for potential
applications is huge since heuristic methods give good accuracy of
results with ease of implementation.

1.1. Related heuristic methods

Recent years showed that nature is an excellent developer of de-
voted behaviors that optimize actions in situations that cause various
problems to performers. We can see astonishing ways animals hunt,
communicate, breed, or travel in search for food. Similarly, interesting
phenomena from the world of plants and elements of nature inspire
the development of science. These behaviors were recently modeled
in various optimization algorithms, which summary is presented in
Table 1.

Among the state of the art of meta-heuristic algorithms, we have
many well known classic models, like Simulated Annealing (SA) pre-
sented in Van Laarhoven and Aarts (1987), where the concept of
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Table 1
A summary of Nature-Inspired Algorithms, for which behavior of animals or plants was an inspiration for the optimization technique.

Author(s) Method Inspiration from nature Year

Kennedy and Eberhart (1995) Particle Swarm Optimization Flock of fish, birds, etc. 1995
Dorigo and Di Caro (1999) Ant Colony Optimization Ants in a colony 1999
Abbass (2001) Marriage in Honey Bees Optimization Honey bees 2001
Li (2003) Artificial Fish Swarm Algorithm Fish swarm 2003
Martin and Stephen (2006) Termite Algorithm Termites in a colony 2006
Karaboga and Basturk (2007) Artificial Bee Colony Bees in a colony 2007
Pinto et al. (2007) Wasp Swarm Algorithm Wasps 2007
Mucherino and Seref (2007) Monkey Search Monkeys 2007
Lu and Zhou (2008) Bee Collecting Pollen Algorithm Bees 2008
Yang and Deb (2009) Cuckoo Search Algorithm Cuckoos 2009
Shiqin et al. (2009) Dolphin Partner Optimization Dolphins 2009
Yang (2010b) Bat-Inspired Algorithm Bats 2010
Yang (2010a) Firefly Algorithm Fireflies 2010
Oftadeh et al. (2010) Hunting Search Animals hunting 2010
Gandomi and Alavi (2012) Krill Herd Krill 2012
Pan (2012) Fruit Fly Optimization Algorithm Fruit flies 2012
Yang (2012) Flower Pollination Algorithm Flower pollination 2012
Askarzadeh and Rezazadeh (2013) Bird Mating Optimizer Birds 2013
Kaveh and Farhoudi (2013) Dolphin Echolocation Dolphins 2013
Mirjalili et al. (2014) Gray Wolf Optimizer Pack of wolves 2014
Mirjalili (2015b) Moth-Flame Optimization Algorithm Moths 2015
Mirjalili (2015a) Ant Lion Optimizer Ant lions 2015
Yazdani and Jolai (2016) Lion Optimization Algorithm Lions 2016
Mirjalili (2016) Dragon-Fly Algorithm Dragon flies 2016
Mirjalili and Lewis (2016) Whale Optimization Algorithm Whales 2016
Sharma et al. (2016) Ageist Spider Monkey Optimization Algorithm Monkeys 2016
Mirjalili et al. (2017) Salp Swarm Algorithm Salp 2017
Jain et al. (2018) Squirrel Search Algorithm Squirrels 2018
Heidari et al. (2019) Harris Hawks Optimization Hawks 2019
Li et al. (2020) Slime Mould Algorithm Mould 2020
burning iron and other metals was used to develop one of the first
optimization strategies. In Holland (1992) was proposed Genetic Al-
gorithm (GA), in which the evolution of genes was modeled into the
optimization method. Differential Evolution (DE) proposed in Storn
and Price (1997) used a concept of evolving differences in a process
of adaptation to the given conditions. The general idea of nature-
inspired swarm intelligence is to develop a model of communication
and life interactions between individuals of selected animal species as
an optimization strategy. For the state of the art here we can encounter
Particle Swarm Optimization (PSO) presented in Kennedy and Eberhart
(1995), which was one of the first among these algorithms. Ant Colony
Optimization Algorithm (ACO) proposed in Dorigo and Di Caro (1999)
was based on a model of ants searching for food and communicating
between the swarm members where the best locations are. Artificial
Bee Colony Algorithm (ABCA) presented in Karaboga and Basturk
(2007) proposed a model of bees searching for the nectar flowers
to produce honey for their colony. Cuckoo Search Algorithm (CSA)
was proposed in Yang and Deb (2009), where the devoted stochastic
theory was applied to simulate the way cuckoos search for nests of
other birds to toss their eggs. The echolocation abilities of bats were
modeled in the Bat Algorithm (BA) presented in Yang (2010b), where
a devoted model of motion by using echolocation was implemented
into an optimization algorithm. In Firefly Algorithm (FA) presented
in Yang (2010a), communication between fireflies using flashing to
exchange information and make the swarm move toward one direc-
tion was modeled to represent searching for optimal solutions. Flower
Pollination Algorithm (FPA) proposed in Yang (2012), simulates the
motion of pollen with the wind to search the space of solutions for
the optimal point. In recent years were proposed many other nature-
inspired algorithms based on special features or devoted behavior of
animals while hunting, breeding, pairing, or other life activities seen in
nature. Water waves that are braking at shore move in a peculiar way,
which is possible to model into the Water Wave Optimization Algorithm
(WWO) proposed in Zheng (2015). Ant Lion Optimizer (ALO) presented
in Mirjalili (2015a) is based on a model of ant lions hunting ants in sand
traps, while Whale Optimizer (WO) proposed in Mirjalili and Lewis
(2016) maps humpback krill hunting activities. Even the way the flame
2

attracts moths can inspire a method possible to be used in optimization
problems. This approach was presented in Mirjalili (2015b) as Moth-
Flame Optimization Algorithm (MFO). The hunting of dragonflies has
some features that can be interesting for optimization problems what
was discussed as Dragon-Fly Algorithm (DA) in Mirjalili (2016). The
behavior of spider monkey was used to develop mathematical model
of optimization algorithm discussed in Sharma et al. (2016). The latest
algorithms were inspired by Harris Hawks (HHO) in Heidari et al.
(2019), and by Slime Mould (SM) in Li et al. (2020).

All these research show that behaviors from nature can be efficiently
mimicked by the use of mathematical approaches into solutions that
serve as optimization techniques. Presented in this article red fox, as
a predator is always depicted as a cunning and clever animal. Red
fox is present from Europe to America hunting not only wild animals
but also farmed animals like poultry, rabbits, etc. Therefore one of the
most important opponents is human, who hunts for individuals which
threaten farm. In this complex symbiosis, only the best individuals will
have an offspring which will take over hunting territories or start new
herd in a different hunting area. These relations, between predator
and prey, between hunters and foxes, between members of the fox
heard, were mimicked in the proposed model of the novel optimization
algorithm. In the proposed model we assume that the domain for
optimization is similar to lands and forests, in which fox is searching for
possible occasions to hunt. Similarly to optimization problems fox does
not know where to find food. The fox search domain can be roughed
and therefore very difficult to penetrate, so fox needs a specific strategy
to maximize the chance of success. Fox has developed a very efficient
mechanism of hunting, for which we have distinguished two phases.
The first one is implemented as a global search, the other as a local
search. In the model, we propose to adopt travel through the lands and
forests in search of hunting subdomains as a global search. Hunting for
the prey is adopted as a local search for the optimum. Individuals in the
search population exchange information about the domain during the
global search phase (to exchange information where possible hunting
can be beneficial), while during the local search each of them depends
on his search abilities. Therefore we have a fast comparison between
various and remote locations in the domain, but when it comes to
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precision of calculations each individual works separately in surround-
ing. Additionally to these two phases, the proposed model introduces
a mechanism to control population. We propose a mechanism which
simulates leaving the herd and establishing a new one or being killed
fox by hunters. We propose a dynamic control of the population, in
which we select the best individuals (an alpha couple) to reproduce and
replace the weakest one in each iteration. This model helps to prevent
the algorithm from blocking in the subspaces of the local extrema. Each
part of the proposed model represents a different aspect of hunting
and development which through the years helped the fox to succeed
in various and changing conditions.

2. Red Fox Optimization Algorithm (RFO)

The population of red foxes consists both of those leaving on well-
defined territories and those that lead a nomadic life. Each herd is
shearing a single territory under the hierarchy of alpha couple. When
the young grow up, they may leave the herd and set their herd if the
chances to take control over another territory are large. Otherwise, they
remain in the family and one day inherit the hunting area from their
parents (Larivière & Pasitschniak-Arts, 1996). The red fox is an efficient
hunter of small animals, both domestic and wild. The fox takes any
chance for food while traversing through the territory, creeps up to
the prey hiding until he comes close enough to effectively attack. The
conceptual model of fox hunting attitudes is presented in Fig. 1. In our
algorithm exploration of territories in search of food when the fox spots
the prey in the distance was modeled as a global search. In the second
phase, traversing through the habitat to get as close as possible to the
prey before the attack was modeled as a local search.

2.1. Basic premise for the algorithm

In following iterations the population of individuals contains of
a constant number of foxes. Each one of them is represented as a
point 𝑥 =

(

𝑥0, 𝑥1,… , 𝑥𝑛−1
)

of 𝑛 coordinates. To distinguish each fox
𝑥𝑖 in iteration 𝑡, we introduce notation

(

𝑥𝑖𝑗
)𝑡

, where 𝑖 is the number
f the fox in the population and 𝑗 represents coordinate according
o dimensions of the solution space. We assume that foxes move in
olution space using given equations in search of optimum values for
he criterion function.

Let 𝑓 ∈ R𝑛 be the criterion function of 𝑛 variables according to the
olution space dimensions, and let the notation (𝑥)(𝑖) =

[

(𝑥0)(𝑖), (𝑥1)(𝑖),
… , (𝑥𝑛−1)(𝑖)

]

denotes each point in the space ⟨𝑎, 𝑏⟩𝑛 where 𝑎, 𝑏 ∈ R.
Then (𝑥)(𝑖) is the optimal solution if function 𝑓

(

(𝑥)(𝑖)
)

value is a global
minimum or maximum on ⟨𝑎, 𝑏⟩.

2.2. In search for food — global search phase

In a herd, each fox must play a role, important for the survival of all
the family members. If there is no food in the local habitat, or for the
exploration of other territories, members of the herd travel to remote
destinations. The information they get in this exploration they share
with family to help with survival and development.

Exploration of the surrounding lands we model according to the
fitness of all individuals. In the proposed way we assume that the best
individual has explored the most interesting lands and can share with
a family this information. Therefore first we sort population according
to fitness condition, and for (𝑥𝑏𝑒𝑠𝑡)𝑡 we calculate the square of the
uclidean distance to each individual in the population as

((𝑥𝑖)𝑡, (𝑥𝑏𝑒𝑠𝑡)𝑡) =
√

‖(𝑥𝑖)𝑡 − (𝑥𝑏𝑒𝑠𝑡)𝑡‖, (1)

and we move individuals in the population toward the best one

(𝑥𝑖)𝑡 = (𝑥𝑖)𝑡 + 𝛼sign((𝑥𝑏𝑒𝑠𝑡)𝑡 − (𝑥𝑖)𝑡), (2)
3
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where 𝛼 ∈ (0, 𝑑((𝑥𝑖)𝑡, (𝑥𝑏𝑒𝑠𝑡)𝑡)⟩ is randomly selected scaling hyperparam-
ter set once in iteration for all individuals in the population. If the
itness values for new positions (after move toward the best location)
re better the individuals stay in new positions, otherwise they return
o previous positions. This represents that after exploration family
embers return home and show the others where to hunt. The family
embers go to directions shown by the explores. If there was a chance

or the food they stay for hunting, otherwise return home with ‘‘empty
ands’’. These operations represent proposed global search performed
n each iteration of RFO, which sample presentation is shown in Fig. 2.
dditionally, we assume that in remote lands fox does not know where

o hide or escape, which makes him vulnerable to danger. Therefore we
odel possible killing of the worst fitted individuals in the population

r reward the best individuals by reproduction according to the model
n Section 2.4.

.3. Traversing through the local habitat — local search phase

Red fox traverses its territory in search of potential prey. When a
ossible one is spotted, the fox starts to approach quietly as close as
ossible trying not to be noticed. Therefore he is circling and deceiving
round the prey to convince it that he is not interested in hunting.
owever, when approaching at a close distance he moves as fast as
ossible to attack by surprise.

In RFO we have modeled observation and movement to deceive vic-
ims while hunting into a local search phase. To model a possibility of a
ox being noticed while approaching closer to the prey we implemented
andom value 𝜇 ∈ ⟨0, 1⟩ set once in the iteration for all individuals in
he population, which defines the action of the fox as

Move closer if 𝜇 > 0.75
Stay and disguise if 𝜇 ≤ 0.75

. (3)

f 𝜇 parameter shows to move the population in this iteration we
se a modified Cochleoid equation to visualize the movement of each
ndividual. For this movement fox observation radius is represented
y two parameters: 𝑎 ∈ ⟨0, 0.2⟩ is a scaling parameter set once in
he iteration for all individuals in the population to model randomly
hanging distance from the prey during fox approaching, and 𝜙0 ∈
0, 2𝜋⟩ is selected for all individuals at the beginning of the algorithm
o model fox observation angle. Using them we define vision radius of
he hunting fox

=

⎧

⎪

⎨

⎪

⎩

𝑎
sin(𝜙0)
𝜙0

if 𝜙0 ≠ 0

𝜃 if 𝜙0 = 0
, (4)

where 𝜃 is a random value between 0 and 1 set once at the beginning of
the algorithm which is interpreted as the influence of adverse weather
conditions such as fog, rain, etc. For the population of individuals, we
model movements using the following system of equations for spatial
coordinates
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑥𝑛𝑒𝑤0 = 𝑎𝑟 ⋅ cos(𝜙1) + 𝑥𝑎𝑐𝑡𝑢𝑎𝑙0

𝑥𝑛𝑒𝑤1 = 𝑎𝑟 ⋅ sin(𝜙1) + 𝑎𝑟 ⋅ cos(𝜙2) + 𝑥𝑎𝑐𝑡𝑢𝑎𝑙1

𝑥𝑛𝑒𝑤2 = 𝑎𝑟 ⋅ sin(𝜙1) + 𝑎𝑟 ⋅ sin(𝜙2) + 𝑎𝑟 ⋅ cos(𝜙3) + 𝑥𝑎𝑐𝑡𝑢𝑎𝑙2
...

𝑥𝑛𝑒𝑤𝑛−2 = 𝑎𝑟 ⋅
𝑛−2
∑

𝑘=1
sin(𝜙𝑘) + 𝑎𝑟 ⋅ cos(𝜙𝑛−1) + 𝑥𝑎𝑐𝑡𝑢𝑎𝑙𝑛−2

𝑥𝑛𝑒𝑤𝑛−1 = 𝑎𝑟 ⋅ sin(𝜙1) + 𝑎𝑟 ⋅ sin(𝜙2) +⋯ + 𝑎𝑟 ⋅ sin(𝜙𝑛−1) + 𝑥𝑎𝑐𝑡𝑢𝑎𝑙𝑛−1

, (5)

herein each angular value is randomized for each point according to
1, 𝜙2,…𝜙𝑛−1 ∈ ⟨0, 2𝜋). This model represents the behavior of a fox
fter he notices a victim and tries to approach as close as possible to
ttack and if fails when discovered he tries to approach another one
imilarly. In the proposed RFO algorithm, this attitude is modeled as
local search phase. A sample graph of the modeled circling the prey
hile hunting is shown in Fig. 2.
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Fig. 1. Sample presentation of red fox natural hunting behavior which we modeled into optimization strategy. The fox in his search domain starts to search for locations of small
animals. When he finds possible prey within his reach, the fox starts to move closer without notice. Approaching in the vicinity, he remains imperceptible deceiving the prey until
the final act of hunting, when from the close distance fox attacks the prey.
2.4. Reproduction and leaving the herd

In nature, the red fox must face many dangers. There may be no
food in the local habitat area, therefore it would be necessary to move
elsewhere. Another danger comes from humans, who can hunt down
the fox if damages in a population of domestic animals will be big.
However, in nature, not all foxes die or migrate. Most of them are very
smart and can escape and reproduce, giving new lines to the fox herds.
The model of reproduction and leaving local habitat is presented in
Fig. 3.

To model this behavior in each iteration we select 5% of the
worst individuals in the population according to the value of criterion
function, we used this value as our subjective assumption to simulate
small changes in the herd. Since these are the worst fitted ones, we
assume that these foxes either moved elsewhere or were shot down
by hunters. To make the number of individuals in the population
constant we replace them with new individuals using a model of habitat
territory established by the alpha couple. In each 𝑡 iteration of the RFO
algorithm, we select two best individuals (𝑥(1))𝑡 and (𝑥(2))𝑡 to represent
4

the alpha couple, for whom we calculate center of the habitat

(ℎ𝑎𝑏𝑖𝑡𝑎𝑡(𝑐𝑒𝑛𝑡𝑒𝑟))𝑡 =
(𝑥(1))𝑡 + (𝑥(2))𝑡

2
(6)

and the habitat as the square of the euclidean distance between the
alpha couple

(ℎ𝑎𝑏𝑖𝑡𝑎𝑡(𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟))𝑡 =
√

‖(𝑥(1))𝑡 − (𝑥(2))𝑡‖. (7)

For each iteration we take at random parameter 𝜅 ∈ ⟨0, 1⟩ which defines
replacements in the iteration in accordance with
{

New nomadic individual if 𝜅 ≥ 0.45
Reproduction of the alpha couple if 𝜅 < 0.45

. (8)

In the first case, we assume that new family members leave the habitat
as nomadic foxes and go outside the area in search of food and the
possibility to reproduce in their herd. We select positions at random
within the search space, but outside the habitat. In the second case,
we assume that new individuals come from the alpha couple, therefore
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Fig. 2. (a) RFO global search: Possible following hunting positions of red fox to start circling and deceiving around the prey. During traverse in the habitat, each individual looks
for possible prey and moves toward it. (b) RFO local search: Visualization of red fox circling and deceiving around the prey to hunt it down. The individual tries to approach the
prey as close as possible, however if noticed tries to attack the other one in a similar way.
Fig. 3. (a) RFO reproduction phase 1: In the population, alpha couple that have established the family, set boundaries of the inhabited territory where all members of the family
live and hunt. (b) RFO reproduction phase 2: Alpha couple have the right to reproduce and enlarge the family, while all the others work for prosperity. If some members want
to set their own rules, there comes a time to leave the habitat to search for new place outside family territory.
we reproduce two best individuals (𝑥(1))𝑡 and (𝑥(2))𝑡 combined in a new
individual (𝑥(𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑))𝑡 as

(𝑥(𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑))𝑡 = 𝜅
(𝑥(1))𝑡 + (𝑥(2))𝑡

2
. (9)

We have implemented our optimization algorithm as presented in
Algorithm 1.
5

2.5. Note on the convergence

Let us now present a discussion on the convergence of the proposed
method. To do this we first introduce some definitions to remind some
mathematical aspects of the topology of the solution space.

Definition 1. The sequence of the points (𝑥)(𝑖) =
[

(𝑥0)(𝑖), (𝑥1)(𝑖),… ,
(𝑥 )(𝑖),… , (𝑥 )(𝑖)

]

in iteration 𝑖 of the optimization method resulting
𝑘 𝑛−1
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Algorithm 1 Red Fox Optimization Algorithm
1: Start,
2: Define parameters of the algorithm: fitness function 𝑓 (⋅), size of

search space solution ⟨𝑎, 𝑏⟩, number of iterations 𝑇 , the maxi-
mum size of the population 𝑛, fox observation angle 𝜙0, weather
conditions 𝜃,

3: Generate population consisting of 𝑛 foxes at random within search
space,

4: 𝑡 ∶= 0,
5: while 𝑡 ≤ 𝑇 do
6: Define coefficients for iteration: fox approaching change 𝑎,

scaling parameter 𝛼,
7: for each fox in current population do
8: Sort individuals according to the fitness function,
9: Select (𝑥𝑏𝑒𝑠𝑡)𝑡,

10: Calculate reallocation of individuals according to Eq. (2),
11: if reallocation is better than the previous position then
12: Move the fox,
13: else
14: Return the fox to previous position,
15: end if
16: Choose parameter 𝜇 value to define noticing the hunting fox,
17: if fox is not noticed then
18: Calculate fox observation radius 𝑟 according to Eq. (4),
19: Calculate reallocation according to Eq. (5),
20: else
21: Fox stays at his position to disguise,
22: end if
23: end for
24: Sort population according to the fitness function,
25: Worst foxes leave the heard or get killed by hunters,
26: New foxes are replaced in the population using Eq. (8) as a

nomadic fox outside the habitat or are reproduced from the alpha
couple inside the herd Eq. (9),

27: 𝑡 + +,
28: end while
29: Return the fittest fox (𝑥)𝑏𝑒𝑠𝑡,
30: Stop.

in the solution space 𝐗 = ⟨𝑎, 𝑏⟩𝑛 where 𝑎, 𝑏 ∈ R of the optimization
task will be called convergent to a certain value of (𝑥)(∗) if for each
neighborhood 𝑉∗ there will be an index 𝑛0 that ∀𝑘 > 𝑛0 (𝑥𝑘)(𝑖) ∈ 𝑉∗.
Then the boundary (𝑥)(∗) ∈ (𝑥)(∗) of this sequence in iteration 𝑖 will be
alled an optimum in the sense of optimization task.

efinition 2. The sequence of the points (𝑥)(𝑖) =
[

(𝑥0)(𝑖), (𝑥1)(𝑖),… ,
(𝑥𝑛−1)(𝑖)

]

of the solution space 𝐗 is a Cauchy sequence in the sense of
the metric function ‖ ⋅ ‖ if ∀𝜖 > 0,∃𝑛0 ∈ N that ∀𝑘, 𝑙 > 𝑛0 we have
‖(𝑥𝑘)(𝑖), (𝑥𝑙)(𝑖)‖ < 𝜖.

For the purpose of our research we assume that if in the solution
space 𝐗 for optimization task we can find a Cauchy sequence of points
which in the sense of ‖ ⋅ ‖ function is convergent to some point of this
space and this point is the best in the sense of our optimization task,
we can say that the proposed method is convergent in the sense of
the distance between points in the following iterations of the proposed
method. Let us now define conditions for metric function over the
distance between points.

Definition 3. Let (𝑥)(𝑖) =
[

(𝑥0)(𝑖), (𝑥1)(𝑖),… , (𝑥𝑛−1)(𝑖)
]

be the sequence
of points of the solution space 𝐗. Metric function ‖(𝑥𝑘)(𝑖), (𝑥𝑙)(𝑖)‖ ⟶

[0,+∞) over the distance between points returned from the optimiza-
tion must satisfy conditions:

𝑥)(𝑖)‖ = 0 ⟹ (𝑥 )(𝑖) = 0,
6

(a) ‖( 𝑘 o
(b) ∀𝛼 ∈ 𝑅, ‖𝛼(𝑥)(𝑖)‖ = 𝛼‖(𝑥)(𝑖)‖,
(c) ∀(𝑥)(𝑖), (𝑥)(𝑗) ∈ 𝐗, ‖(𝑥)(𝑖) + (𝑥)(𝑗)‖ ≤ ‖(𝑥)(𝑖)‖ + ‖(𝑥)(𝑗)‖.

All sequences of points (𝑥)(𝑖) =
[

(𝑥0)(𝑖), (𝑥1)(𝑖),… , (𝑥𝑛−1)(𝑖)
]

returned
by the optimization algorithm will be limited by some value (𝑥)(∗),

hich will be the best solution in a given iteration. If for the optimiza-
ion task we define a metric function ‖ ⋅ ‖ in the sense of the distance
etween the best solution in a given iteration and this global optimum
𝑥)(∗) of the fitness function in each iteration 𝑖, the solution space 𝐗 will
e a normed and complete space.

heorem 1. The solution space 𝐗 of to the given optimization problem is
normed and complete space for sequences of solutions in the sense of the

orm ‖(𝑥)(𝑖)‖ = | sup((𝑥)(𝑖), (𝑥)(∗))|.

Proof. Normalization of the space:

(a) ‖(𝑥)(𝑖)‖ = 0 ⟹ | sup((𝑥)(𝑖), (𝑥)(∗))| = 0 ⟹ ∃(𝑥𝑘)(𝑖) = (𝑥)(∗) ⟹

(𝑥)(∗) ∈ (𝑥)(𝑖),
(b) ∀𝛼 ∈ 𝑅, ‖𝛼(𝑥)(𝑖)‖ = | sup(𝛼(𝑥)(𝑖), 𝛼(𝑥)(∗))|= |𝛼 sup((𝑥)(𝑖), (𝑥)(∗))|=

|𝛼| ⋅ | sup((𝑥)(𝑖), (𝑥)(∗))| = |𝛼| ⋅ ‖(𝑥)(𝑖)‖,
(c) ∀(𝑥)(𝑖), (𝑥)(𝑗) ∈ 𝐗, ‖(𝑥)(𝑖) + (𝑥)(𝑗)‖= | sup((𝑥)(𝑖) + (𝑥)(𝑗), (𝑥)(∗))|=

| sup((𝑥)(𝑖), (𝑥)(∗)) + sup((𝑥)(𝑗), (𝑥)(∗))|
≤ | sup((𝑥)(𝑖), (𝑥)(∗))| + | sup((𝑥)(𝑗), (𝑥)(∗))| = ‖(𝑥)(𝑖)‖ + ‖(𝑥)(𝑗)‖.

Completeness of the space:
Let {(𝑥)(𝑖)𝑛 }∞𝑛=0 for (𝑥)(𝑖) ∈ 𝐗 be a sequence of sequences of possible so-

lutions in the solution space 𝐗. Since this space is bounded in the sense
of the norm, ∀𝜖 > 0 ∃𝑛0 ∈ N, that ∀𝑛, 𝑚 > 𝑛0 we have ‖(𝑥)(𝑖)𝑛 , (𝑥)(𝑖)𝑚 ‖ <

⟹ | sup((𝑥)(𝑖)𝑛 , (𝑥)(𝑖)𝑚 ; (𝑥)(∗))| < 𝜖 ⟹ |𝑠𝑢𝑝((𝑥)(𝑖)𝑛 , (𝑥)(∗))| < 𝜖 and
| sup((𝑥)(𝑖)𝑚 , (𝑥)(∗))| < 𝜖 what defines a Cauchy sequence. We can say
that differences between sequences of the sequence {(𝑥)(𝑖)𝑛 }∞𝑛=0 are at
maximum the differences of supremums of these sequences, which
are bounded for the solution space 𝐗 for a bounded optimum prob-
lem. Since we assume that evaluated optimization problems will have
boundaries we can say that each of these sequences will be limited
by a value to which they are convergent in the following iterations
of the algorithm in the sense of ‖(𝑥)(𝑖)‖. So in the solution space
𝐗 the sequence of sequences {(𝑥)(𝑖)𝑛 }∞𝑛=0 is a Cauchy sequence where
lim𝑛→∞(𝑥)(𝑖)𝑛 = (𝑥)(∗). Thus also for each sequence lim𝑛→∞(𝑥)(𝑖) = (𝑥)(∗),
ince 𝑚 ⟶ ∞ we have | sup(𝑥𝑛)(𝑖), (𝑥𝑚)(𝑖); (𝑥)(∗)| < 𝜖. So in general
or the solution space 𝐗 we can say {(𝑥)(𝑖)𝑛 }∞𝑛=0 fulfills ∃𝑛0 ∈ N that
∀𝑛 > 𝑛0 | sup((𝑥𝑛)(𝑖), (𝑥)(∗))| < 𝜖 so for 𝜖 > 0 ‖(𝑥)(𝑖)𝑛 , (𝑥)(∗)‖ < 𝜖 ⟹

sup((𝑥)(𝑖)𝑛 , (𝑥)(∗))| < 𝜖 ⟹ (𝑥)(𝑖)𝑛
𝑛→∞
←←←←←←←←←←←←←←←←←←←←←→ (𝑥)(∗). At the same time each

sequence is limited because | sup((𝑥)(𝑖))| = | sup((𝑥)(𝑖) + (𝑥)(𝑖)𝑛 − (𝑥)(𝑖)𝑛 )|≤
| sup((𝑥)(𝑖) − (𝑥)(𝑖)𝑛 )| + | sup((𝑥)(𝑖)𝑛 )|≤ 𝜖 + max({(𝑥)(𝑖)𝑛 }∞𝑛=0) = 𝜖 + 𝑀 = 𝑀 ′.
Therefore we can say about sequences returned from the proposed
optimization method is bounded in the sense of Cauchy, and about the
solution space 𝐗 to be complete and normed. □

So the sequences of the results shall converge to the optimum
returned as the best result (𝑥)(∗) in each iteration 𝑖. Optimization is
repeated in the following iterations and the best result is improved in
the following iterations, what composes an ordered sequence (𝑥)(∗) of
these values.

2.6. Time complexity

The time complexity of RFO can be analyzed using procedure in
Algorithm 1. Let us mark population size as 𝑛, problem dimension as
𝐷, and the number of iterations as 𝑇 . In each iteration of RFO, all indi-
viduals are sorted what gives 𝑂((𝑛 ×𝐷)2) operations in the worst case.

ere comes conclusion that RFO time complexity can be reduced by
ast sorting algorithm, especially for high dimensional task. Then, the
est fox is selected which is constant because of the sorting population.
hen, reallocation is performed for each fox, so there will be 𝑂(𝑛×𝐷×𝑘)

perations, where 𝑘 is a constant value which depends on satisfying
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condition and replacing values of a given fox. In the next lines, there
is a possible reallocation based on choosing 𝜇 parameter. The worst
ase will be when each fox is reallocated, then time complexity for
alculating observation will be 𝑂(𝑛 × 𝐷) operations, and reallocation
𝑂(𝑛 × 𝐷). In line 24–27, there will be a sorting operation again, so
𝑂((𝑛 ×𝐷)2), and deleting the worst individuals and create new in the

orst case will be 𝑂((𝑛 ×𝐷)2) and it is true when all foxes will be
deleted and recreated again. Line 27 is constant. Omitting the low-order
terms, the computational time can be defined as 𝑂(3 × 𝑇 × 𝑛2 × 𝐷2)
operations in pessimistic case.

2.7. Discussion on differences and similarities to other heuristic approaches

In Table 1, we present many algorithms inspired by natural phe-
nomena models from the last years. There are many different analogies
to the nature, behavior of animals, or physical phenomena. The main
reason for creating so many algorithms is modeling a solution which
can be stable on average results and capable to solve complex prob-
lems from engineering and optimization sciences. It means, that on
a specific number of iterations and the size of the population, the
average values returned by the heuristic algorithm will be similar in
the range of these algorithms and will fit given criterion or fitness
condition. When modeling such algorithms, it is necessary to analyze
two operations: local and global search methods. Based on these two
procedures, we can control convergence and fitness function value in
each iteration to avoid situation when some individuals stuck in local
extrema. For example, in PSO, all particles are moving toward the
best one. In GA there is a reproduction of genotypes based on selected
best one. The result of this will help to reproduce a new individual
somewhere between the parents. In RFO we propose a movement based
on searching solution space between each fox and the best individual
in the iteration. This movement is based on random value with the
sign chosen by calculating the difference between the best and current
fox. This allows to search solution space in a new, easy way. Most
important difference of RFO is modeling the local search method and
adding the mechanism of reproduction and leaving the herd. This is
similar to deleting the worst cases in GA and other heuristic solutions.
However, in RFO we manipulate the worst values by deleting them
and replacing with random new solution, but also create a new one
based on top rated solutions. Despite similarity to other models, the
most important novelty of RFO is the new local/global searching and
the mechanism of reproduction/leaving the herd. On the other hand,
this proposal has potential flaw which is sorting mechanism performed
twice in each iteration. It can influence complexity of RFO in high
dimensional spaces and might be considered a drawback in some cases.
However, as mentioned in Section 2.6, choosing fast sorting algorithm
can much improve RFO. We can also modify RFO by deleting one
sorting operation, for instance on the beginning of each iteration (it
must be noted, that in this case, sorting should be performed once
before the whole algorithm to find the best individual).

3. Benchmark tests

Proposed RFO method was evaluated in benchmark tests using
16 sample test functions in 2D presented in Table 2 and additional
6 functions in 20D to extend our benchmark tests also for a multi-
dimensional domain presented in Table 3. For the benchmark tests we
have chosen various examples, some of them are smooth surfaces of
spherical shapes (i.e. Rotated Hyper-Ellipsoid or Sphere) and the other
is ruffled (i.e. Rastragin, W/Wavy or Yang). Both types are good for
optimization tests since in the first case an algorithm can easily stuck
and for the second type, the algorithm must search among rapidly
changing values.

In benchmark tests, we have compared the proposed RFO to a
set of meta-heuristic algorithms, swarm intelligence algorithms, and
7
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nature-inspired heuristics. For the benchmark test we have taken clas-
sic meta-heuristic approaches like genetic algorithm — GA (Holland,
1992), simulated annealing — SA (Van Laarhoven & Aarts, 1987) and
differential evolution — DE (Storn & Price, 1997). We also compared
RFO to classic swarm intelligence, like particle swarm — PSO (Kennedy
& Eberhart, 1995) which is one of the best heuristics based on the
concept of swarm intelligence. We also compared RFO to ant colony
— AACA (Dorigo & Di Caro, 1999) and bee colony — ABCA (Toksari,
2006). On the other hand, we also compared it to heuristics inspired
by natural phenomena, like water wave — WWO (Zheng, 2015). Addi-
tionally, we have selected heuristics that use a nature-inspired search
concept based on animals, insects, or plants strategies developed in
their origin environments. One of the first and widely reported nature-
inspired heuristics are mimicking habits of the bat — BA (Yang, 2010b),
cuckoo — CSA (Yang & Deb, 2009), and firefly — FA (Yang, 2010a).
Among the latest nature inspired heuristics we have taken method
based on flower pollination — FPA (Yang, 2012), method based on
dragonfly — DA (Mirjalili, 2016), moth — MFO (Mirjalili, 2015b), ant
lion — ALO (Mirjalili, 2015a) and whale — WO (Mirjalili & Lewis,
2016). Each of the algorithms was run 100 times, and all compared
heuristics have 100 individuals in population and 100 iterations. Ta-
bles 4–7 present average of all results among all runs for each one of the
methods together with standard deviation values. The RFO results in
Figs. 4–5 are presented for optimization accuracy and we show the best
result from the last iteration of the algorithm over the function minima
landscape, average optimization trajectory that represents averaged
movement of the individuals in the following iterations, average fitness
in the population, and average adaptation with convergence during the
following iterations. Figs. 6–7 present a comparison of convergence for
the analyzed heuristics in 20D, while Fig. 8 presents a comparison of
standard deviations for these benchmark tests results.

Analyzing charts with results after the last iteration from the best
optimization we can see that for all presented test functions individuals
are located very close to the maximum/minimum. The best of them
almost covers these points. Trajectories presenting average movements
are a little different for spherical and ruffled shapes. However mainly
for all of the test functions, up to 20 iteration we can see the highest
changes in this value. That means the population is located in a
surrounding of the maxima/minima in the first 20 iterations. After 20
iteration individuals are improving the precision of the final result,
where for some of the test function like Sphere, in the last 10 iterations
individuals move even less. Average fitness shows the average differ-
ence between the analytical solution and the results computed by the
tested algorithm. For our tests, we have defined

𝑓𝑖𝑡 =

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
∑

𝑘=0
|𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑖𝑑𝑒𝑎𝑙)|

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
, (10)

where the number of 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 was equal to 100 for all compared
methods, (𝑥𝑘) represents position of the individual 𝑘 for compared
method, and (𝑥𝑖𝑑𝑒𝑎𝑙) represents analytical solution in which test func-
tion 𝑓 (⋅) has maxima/minima. The charts in Figs. 4 and 5 show that up
to 20 iteration there are the most significant changes in the adaptation
of individuals to a given criterion. In the following iterations, RFO is
adjusting the results to the expected value, so the changes are lower.
That shows the high potential of the proposed algorithm. Csendes,
Mishra, and Schumer Stegilitz are functions for which RFO has reached
a very high precision in 2D, while for other the result was not so good.
Convergence coefficient represents convergence to the maxima/minima
defined in analytical way, what we have defined as

𝑐𝑜𝑛𝑣 =
|𝑓 (𝑥𝑏𝑒𝑠𝑡) − 𝑓 (𝑥𝑖𝑑𝑒𝑎𝑙)|

|𝑓𝑖𝑡(𝑡−1)|
, (11)

where (𝑥𝑏𝑒𝑠𝑡) represents the best individual, (𝑥𝑖𝑑𝑒𝑎𝑙) represents analytical
olution in which test function 𝑓 (⋅) has maxima/minima, and 𝑓𝑖𝑡(𝑡−1) is

verage fitness calculated in iteration 𝑡 − 1. Analysis of convergence
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Table 2
Applied classic benchmark test functions used for calculations in 2D.

Function name Function 𝑓 (⋅) Range 𝑓𝑚𝑖𝑛 Solution 𝑥

Brown 𝑓1(𝑥) =
𝑛−1
∑

𝑖=1
(𝑥2𝑖 )

(𝑥2𝑖+1+1) + (𝑥2𝑖+1)
(𝑥2𝑖 +1)

⟨−1, 4⟩ 0 (0,… , 0)

Csendes 𝑓2(𝑥) =
𝑛
∑

𝑖=1
𝑥6𝑖

(

2 + sin
(

1
𝑥𝑖

))

⟨−1, 1⟩ 0 (0,… , 0)

Griewank 𝑓3(𝑥) =
𝑛
∑

𝑖=1

𝑥2𝑖
4000

−
𝑛

∏

𝑖=1
cos

(

𝑥𝑖
√

(𝑖)

)

⟨−10, 10⟩ 0 (0,. . . ,0)

Powell 𝑓4(𝑥) =
𝑛∕4
∑

𝑖=1
((𝑥4𝑖−3 + 10𝑥4𝑖−2)2 + 5(𝑥4𝑖−1 − 𝑥4𝑖)2 + (𝑥4𝑖−2 − 2𝑥4𝑖−1)4 + 10(𝑥4𝑖−3 − 𝑥4𝑖)4) ⟨−100, 100⟩ 0 (0,. . . ,0)

Powell Sum 𝑓5(𝑥) =
𝑛
∑

𝑖=1
|𝑥𝑖|

𝑖+1
⟨−1, 1⟩ 0 (0,. . . ,0)

Rastragin 𝑓6(𝑥) = 10𝑛 +
𝑛
∑

𝑖=1
[𝑥2𝑖 − 10 cos(2𝜋𝑥𝑖)] ⟨−10, 10⟩ 0 (0,. . . ,0)

Rotated Hyper–Ellipsoid 𝑓7(𝑥) =
𝑛
∑

𝑖=1

𝑖
∑

𝑗=1
𝑥2𝑗 ⟨−100, 100⟩ 0 *(0,. . . ,0)

Mishra no. 11 𝑓8(𝑥) =

[

1
𝑛

𝑛
∑

𝑖=1
|𝑥𝑖| −

(

|𝑥𝑖|
)1∕𝑛

]2

⟨−10, 10⟩ 0 (0,. . . ,0)

Salomon 𝑓9(𝑥) = 1 − cos

( 𝑛
∑

𝑖=1
𝑥2𝑖

)

+ 0.1

√

𝑛
∑

𝑖=1
𝑥2𝑖 ⟨−100, 100⟩ 0 (0,. . . ,0)

Sargan 𝑓10(𝑥) =
𝑛
∑

𝑖=1

(

𝑥2𝑖 + 0.4
∑

𝑗≠𝑖
𝑥𝑖𝑥𝑗

)

⟨−100, 100⟩ 0 (0,. . . ,0)

Schumer Steiglitz 𝑓11(𝑥) =
𝑛
∑

𝑖=1
𝑥4𝑖 ⟨−10, 10⟩ 0 (0,. . . ,0)

Sphere 𝑓12(𝑥) =
𝑛
∑

𝑖=1
𝑥2𝑖 ⟨−10, 10⟩ 0 (0,. . . ,0)

W/Wavy 𝑓13(𝑥) = 1 − 1
𝑛

𝑛
∑

𝑖=1
cos(10𝑥𝑖) exp(−0.5𝑥2𝑖 ) ⟨−𝜋, 𝜋⟩ 0 (0,. . . ,0)

Weierstrass 𝑓14(𝑥) =
𝑛
∑

𝑖=1
([𝑥𝑖 + 0.5])2 ⟨−30, 30⟩ 0 (− 1

2
,… ,− 1

2
)

Yang 𝑓15(𝑥) =

( 𝑛
∑

𝑖=1
|𝑥𝑖|

)

exp

(

−
𝑛
∑

𝑖=1
sin(𝑥2𝑖 )

)

⟨−2𝜋, 2𝜋⟩ 0 (0,. . . ,0)

Zakharov 𝑓16(𝑥) =
𝑛
∑

𝑖=1
𝑥2𝑖 +

(

0.5𝑖𝑥𝑖
)2 +

( 𝑛
∑

𝑗=1
0.5𝑗𝑥𝑗

)4

⟨−10, 10⟩ 0 (0,. . . ,0)
Table 3
Applied classic benchmark test functions used for calculations in 20D.

Function name Function 𝑓 (⋅) Range 𝑓𝑚𝑖𝑛 Solution 𝑥

Dixon-Price 𝑓17(𝑥) = (𝑥1 − 1)2 +
𝑛
∑

𝑖=1
𝑖(2𝑥2𝑖 − 𝑥𝑖−1)2 ⟨−10, 10⟩ 0

(

2−
21−2
21 ,… , 2−

2𝑛−2
2𝑛

)

Rosenbrock 𝑓18(𝑥) =
𝑛−1
∑

𝑖=1

(

100(𝑥𝑖+1 − 𝑥2𝑖 )
2 + (𝑥𝑖 − 1)2

)

⟨−100, 100⟩ 0 (1,. . . ,1)

Schwefel 𝑓19(𝑥) = 418.9829𝑛 −
𝑛
∑

𝑖=1
𝑥𝑖 sin(

√

|𝑥𝑖|) ⟨−500, 500⟩ 0 (420.97,. . . ,420.97)

Shubert 𝑓20(𝑥) =
𝑛
∑

𝑖=1

5
∑

𝑗=1
𝑗 sin((𝑗 + 1)𝑥𝑖) + 𝑗 ⟨−10, 10⟩ −24.06 (5.79,. . . ,5.79)

Sum squares 𝑓21(𝑥) =
𝑛
∑

𝑖=1
𝑖𝑥2𝑖 ⟨−10, 10⟩ 0 (0,. . . ,0)

Salomon 𝑓22(𝑥) = 1 − cos

(

2𝜋

√

𝑛
∑

𝑖=1
𝑥2𝑖

)

+ 0.1
𝑛
∑

𝑖=1
𝑥2𝑖 ⟨−100, 100⟩ 0 (0,. . . ,0)
coefficient in Figs. 4 and 5 also show that first 20 iterations are very
important in RFO, since during these the individuals in the algorithm
concentrate on the surrounding of the maxima/minima. For the next
iterations RFO improves precision. Analyzing charts in Figs. 4 and
5 we see that for Yang and Rastragin functions the results of this
measurement are worse in comparison to other test functions. This can
be caused by the function surface type in which we can notice several
changes among maxima and minima. In comparison, for spherical test
functions, we did not notice this behavior. Analyzing results in Tables 4
and 6 we can see that the results do not differ much between tested
algorithms. On the other hand for each of test functions in 2D from
Table 4 we can find the best result. For 𝑓1 function the best results were
achieved for CSA, DA, PSO and RFO; for 𝑓2 function BA, GA, PSO, FPA
and RFO reached lowest averaged results; for 𝑓3 function CSA, DA, GA,
PSO and RFO were the best; for 𝑓4 function FA, FPA, GA, PSO and RFO;
8

for 𝑓5 function DA outperformed all other methods; for 𝑓6 function FA,
PSO and RFO were the best; for 𝑓7 function BA, GA, PSO were reaching
the lowest values; for 𝑓8 function BA, CSA and MFO were the best; for
𝑓9 function CSA, MFO, PSO and RFO; for 𝑓10 function FA, MFO, RFO;
for 𝑓11 function CSA, FPA were the best; for 𝑓12 function DA, MFO,
GA and RFO; for 𝑓13 function DA, FA, FPA, MFO and RFO reached the
lowest results; for 𝑓14 function FPA, GA, PSO and RFO outperformed
other methods; for 𝑓15 CSA, MFO and WWO; for 𝑓16 function FA, GA,
PSO and RFO were the best. Similarly for test functions in 20D from
Table 6 we can also the best results. For 𝑓17 function MFO, PSO GA,
DE, and RFO were the best; for 𝑓18 function GA, PSO, DE, SA, and
RFO achieved the lowest values; for 𝑓19 function MFO, GA, DE and RFO
outperformed other methods; for 𝑓20 function CSA, DA, MFO, GA and
RFO reached close to the optimum; for 𝑓21 function CSA, MFO, GA,
PSO, AACA, ABCA, and RFO; for 𝑓22 function CSA, PSO and RFO were
the best. In general, RFO was among the best methods for 17 functions

among 22, where for these functions in 20D RFO was among the best
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Fig. 4. Sample benchmark tests results for selected test functions from Table 2. In the following rows results for Csendes, Mishra, PowellSum, Rastragin, Rotated Hyper-Ellipsoid:
we can see a chart presenting the function, positions of the located points after last iteration, optimization trajectory that represents average movement of individuals, average
fitness in the population, and convergence rate in the population.
methods for each of the applied test functions. This examination gave
a result of 77.27% of experiments for the proposed RFO to be among
the best methods. Other algorithms which were among the best: PSO
13 times, GA 12 times, MFO 10 times, and CSA 9 times, what gave
respectively 59%, 54.5%, 45.45%, 40.1%. When it comes to standard
deviation presented in Tables 5 and 7 we see that the situation repeats.
RFO in comparison to other methods for most of the test functions
achieved very low results, which classifies it among the best methods.

3.1. Conclusions from optimization of test functions

Proposed model of red fox living and hunting behaviors gave good
results in benchmark tests using test functions from Table 2 in 2D
and test functions from Table 3 in 20D. Implemented the composi-
tion of global and local search methods with reproduction enabled to
achieve precise results in comparison to other heuristic algorithms. The
proposed meta-heuristic algorithm converges to the maxima/minima
of optimized functions with the following iterations. We can see in
Figs. 4–5 that RFO after each iteration reaches better convergence,
and therefore more individuals in the population are located in the
direct surrounding of maxima/minima. For the proposed RFO this
convergence was visible in all iterations, however, most spectacular
9

improvements are for the first 20 iterations. That means, in these first
20 iterations RFO is efficiently localizing maxima/minima in the search
space while in the following iterations RFO is correcting results of
optimization with each relocation of individuals. In Fig. 6 we can see a
comparison for 2D test functions and in Fig. 7 a comparison for 20D test
functions. We used a radar type chart to present the averaged optimal
solutions concerning ideal value, so when the closer to the center the
value is located the better is the algorithm. Analyzing these charts
we can conclude that there were some test functions that were more
difficult for examined algorithms, but also there were some much easier
for optimization. Functions 𝑓2, 𝑓3, 𝑓14, 𝑓16, 𝑓18 were less problematic,
while functions 𝑓4, 𝑓5, 𝑓8, 𝑓15, 𝑓20 made some problems to achieve lower
results. For most of the test functions RFO, PSO, GA, CSA, and MFO are
the most efficient algorithms. Comparing the results from Fig. 8 we can
see that performance of RFO is similar for most of the algorithms. The
chart presents a comparison of std. deviations for used functions, so we
can compare the algorithms for any significant differences in results.
The results are visible in concentration for BA, CSA, FPA, MFO, RFO
for 2D functions and MFO, RFO, PSO, GA for 20D functions. These
algorithms returned results which std. deviations do not differ much.
There are no visible influences i.e. by random factors or evident trends
in these results. In this comparison, RFO was among the best methods.
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Fig. 5. Sample benchmark tests results for selected test functions from Table 2. In the following rows results for Sargan, Schumer Stegilitz, Sphere, W/Wavy, Yang, Zakharov: we
can see a chart presenting the function, positions of the located points after last iteration, optimization trajectory that represents average movement of individuals, average fitness
in the population, and convergence rate in the population.
To give additional results for the comparison between examined
algorithms we have also calculated statistical tests, which results are
presented in Table 8 for 2D results and Table 9 for 20D results. For the
ANOVA test, we see that in 2D DA, FPA, GA, and AACA and for 20D
ALO reached the highest p-values, which means that for these methods
the ANOVA test discovered similarities in results to the proposed RFO.
From the Friedmann test, we conclude that the results of PSO are the
most related to the results of the proposed RFO. Kruskal–Wallis test
confirmed both ANOVA and Friedmann results presenting results of DA,
FPA, GA, AACA, FA, and PSO as the most related to the results of RFO
in 2D and results of BA, MFO, WWO, GA, SA as the most related to the
results of RFO in 20D. Mann–Whitney test presented results of DA, FPA,
GA, PSO, AACA as most related to the results of RFO in 2D and results
of BA, DA, MFO, WWO, GA, DE, WO as most related to the results of
10
RFO in 20D. We select the most often repeated methods as these which
have the most confirmed similarities in results of optimization to the
results of the proposed RFO. Therefore we conclude that results of RFO
are the most related in 2D to results of DA, FPA, GA, AACA, PSO, and
in 20D to results of MFO, GA, PSO, DA. We can see that results of our
method are related to the results of well-known heuristic algorithms
like PSO, GA, AACA, and the latest nature-inspired algorithms like DA,
FPA, MFO.

4. RFO efficiency in classic engineering optimization problems

Optimization algorithms are commonly used in engineering prob-
lems to position and balance objects’ operation characteristics for
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Table 4
Obtained optimal solutions for applied benchmark test functions in 2D in domain ×10−5, averaged for performed benchmark tests.

Function BA CSA DA FA FPA MFO RFO WWO

𝑓1 0.02236 0.01223 0.01238 0.01829 0.01597 0.01646 0.01209 0.02009
𝑓2 0.00975 0.01999 0.01228 0.01382 0.00948 0.01739 0.01157 0.01727
𝑓3 0.015 0.01166 0.01158 0.01849 0.01272 0.01772 0.011 0.01245
𝑓4 0.01426 0.01604 0.01384 0.01251 0.01223 0.01402 0.01159 0.01646
𝑓5 0.01488 0.01544 0.01152 0.01762 0.0144 0.01354 0.01474 0.01326
𝑓6 0.01504 0.01855 0.01651 0.01221 0.01436 0.01653 0.01374 0.0174
𝑓7 0.01277 0.01378 0.01549 0.01409 0.01977 0.01381 0.01507 0.01324
𝑓8 0.00961 0.00932 0.0137 0.01317 0.01402 0.00766 0.01391 0.01309
𝑓9 0.01496 0.01389 0.01795 0.01845 0.01517 0.01458 0.01417 0.01562
𝑓10 0.0141 0.01429 0.01774 0.00918 0.01374 0.01285 0.01188 0.01402
𝑓11 0.01919 0.01078 0.01335 0.01838 0.00875 0.01998 0.01912 0.01954
𝑓12 0.01273 0.01558 0.0119 0.01418 0.0128 0.00962 0.01299 0.01706
𝑓13 0.01821 0.01708 0.01212 0.01062 0.01372 0.01285 0.0143 0.01862
𝑓14 0.01406 0.01259 0.01281 0.01461 0.00972 0.01331 0.00891 0.00781
𝑓15 0.01484 0.01358 0.01545 0.01679 0.01917 0.01339 0.01429 0.01189
𝑓16 0.01252 0.01488 0.0182 0.01088 0.01404 0.01224 0.01016 0.01598

Function GA DE PSO AACA ABCA SA ALO WO

𝑓1 0.01243 0.01291 0.01125 0.01347 0.01403 0.01452 0.01572 0.01638
𝑓2 0.01103 0.01271 0.01131 0.01315 0.01357 0.01298 0.01733 0.01521
𝑓3 0.01043 0.01122 0.01012 0.01246 0.01274 0.01355 0.01511 0.01495
𝑓4 0.01206 0.01281 0.01154 0.0128 0.01244 0.01411 0.01549 0.01683
𝑓5 0.01410 0.01501 0.01465 0.01566 0.0151 0.01523 0.01411 0.01622
𝑓6 0.01421 0.01521 0.01362 0.01455 0.01503 0.01677 0.01499 0.01721
𝑓7 0.01204 0.01481 0.01223 0.01455 0.01487 0.01615 0.01733 0.01611
𝑓8 0.01432 0.01521 0.01431 0.0146 0.01437 0.01522 0.01551 0.01455
𝑓9 0.01502 0.01572 0.01454 0.01513 0.01503 0.01581 0.01768 0.01722
𝑓10 0.01234 0.01341 0.01201 0.0145 0.01397 0.01294 0.01561 0.01433
𝑓11 0.0192 0.02117 0.01931 0.01877 0.01913 0.02145 0.02211 0.02345
𝑓12 0.01182 0.01234 0.01261 0.01355 0.01362 0.01433 0.01233 0.01576
𝑓13 0.01357 0.01395 0.01322 0.01402 0.01395 0.01621 0.01655 0.01899
𝑓14 0.00935 0.01331 0.00971 0.00987 0.011 0.0113 0.01211 0.01267
𝑓15 0.01457 0.01496 0.01411 0.0153 0.01526 0.01526 0.01452 0.01739
𝑓16 0.01033 0.01135 0.01008 0.01188 0.01198 0.01244 0.01352 0.01501
Table 5
Standard deviation for obtained results for applied benchmark test functions in 2D in domain ×10−5.

Function BA CSA DA FA FPA MFO RFO WWO

𝑓1 0.02482 0.02822 0.03452 0.03892 0.02618 0.02249 0.02391 0.03127
𝑓2 0.31562 0.32417 0.37132 0.31251 0.29137 0.3103 0.32171 0.33179
𝑓3 0.00437 0.00456 0.00435 0.00431 0.00367 0.00352 0.00351 0.00376
𝑓4 0.41207 0.41562 0.43129 0.42944 0.43589 0.40146 0.43017 0.44126
𝑓5 0.45136 0.44517 0.46312 0.43217 0.42621 0.42201 0.43152 0.42623
𝑓6 0.00482 0.00478 0.00483 0.00486 0.00364 0.00352 0.00372 0.00371
𝑓7 0.00449 0.00451 0.00492 0.00441 0.00353 0.00268 0.00298 0.00310
𝑓8 0.48139 0.45478 0.40238 0.44056 0.46707 0.43123 0.40125 0.48015
𝑓9 0.21301 0.24019 0.22812 0.21563 0.22059 0.21067 0.22131 0.22831
𝑓10 0.33299 0.41083 0.33166 0.34817 0.35123 0.32573 0.33071 0.41408
𝑓11 0.34922 0.33458 0.36522 0.35128 0.34017 0.31983 0.31982 0.41072
𝑓12 0.00496 0.00431 0.00474 0.00423 0.00373 0.00313 0.00322 0.00357
𝑓13 0.00473 0.00572 0.00533 0.00481 0.00395 0.00365 0.00317 0.00377
𝑓14 0.47243 0.50731 0.39455 0.43735 0.39450 0.37561 0.36547 0.41092
𝑓15 0.00463 0.00491 0.00514 0.00498 0.00393 0.00352 0.00341 0.00395
𝑓16 0.00498 0.00442 0.00489 0.00435 0.00372 0.00351 0.00344 0.00378

Function GA DE PSO AACA ABCA SA ALO WO

𝑓1 0.02311 0.02914 0.03172 0.02819 0.02782 0.032341 0.03422 0.03432
𝑓2 0.32873 0.33526 0.32344 0.31552 0.31443 0.31424 0.32857 0.33412
𝑓3 0.00402 0.00493 0.00413 0.00392 0.00373 0.00443 0.00483 0.00459
𝑓4 0.41571 0.44135 0.42165 0.42005 0.41334 0.41315 0.45037 0.44416
𝑓5 0.41312 0.45371 0.42113 0.42416 0.41023 0.40924 0.43588 0.42739
𝑓6 0.00418 0.00436 0.00376 0.00369 0.00344 0.00334 0.00458 0.00477
𝑓7 0.00219 0.00411 0.00315 0.00442 0.00371 0.00412 0.00458 0.00413
𝑓8 0.42312 0.41372 0.41529 0.41674 0.42114 0.42153 0.43578 0.44173
𝑓9 0.21002 0.22316 0.22331 0.24215 0.23728 0.23115 0.24311 0.24781
𝑓10 0.33112 0.36112 0.33562 0.34004 0.33352 0.32378 0.34351 0.36125
𝑓11 0.31412 0.32517 0.33376 0.33265 0.33557 0.31558 0.35112 0.34516
𝑓12 0.00256 0.00355 0.00236 0.00433 0.00471 0.00276 0.00342 0.00348
𝑓13 0.00361 0.00352 0.00355 0.00424 0.00377 0.00355 0.00406 0.00427
𝑓14 0.41317 0.3216 0.33261 0.42778 0.42516 0.40051 0.41378 0.42031
𝑓15 0.00351 0.00411 0.00411 0.00424 0.00345 0.00386 0.00427 0.00435
𝑓16 0.00341 0.00532 0.00369 0.00419 0.00412 0.00378 0.00471 0.00452
11
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Table 6
Obtained optimal solutions for applied benchmark test functions in 20D in domain ×10−5 except for 𝑓20, averaged for performed benchmark tests.

Function BA CSA DA FA FPA MFO RFO WWO

𝑓17 0.02342 0.01831 0.02231 0.02419 0.01345 0.00866 0.00929 0.0129
𝑓18 0.00718 0.00461 0.00711 0.00711 0.00636 0.00413 0.00371 0.00517
𝑓19 0.01128 0.01166 0.01031 0.01019 0.01112 0.00925 0.009102 0.01157
𝑓20 −24.0519 −24.0523 −24.0523 −24.05212 −24.0522 −24.05242 −24.05241 −24.05226
𝑓21 0.01051 0.00732 0.00823 0.01033 0.0091 0.00721 0.00754 0.01106
𝑓22 0.01225 0.00685 0.01233 0.01041 0.00924 0.00754 0.00704 0.01091

Function GA DE PSO AACA ABCA SA ALO WO

𝑓17 0.00914 0.00913 0.00811 0.0191 0.00972 0.00929 0.01931 0.01402
𝑓18 0.0013 0.00379 0.00312 0.0051 0.00421 0.00291 0.007014 0.00624
𝑓19 0.00841 0.00921 0.00951 0.0101 0.01202 0.01047 0.01119 0.01602
𝑓20 −24.05261 −24.05191 −24.05191 −24.0521 −24.0518 −24.05172 −24.05193 −24.0522
𝑓21 0.00759 0.00902 0.00709 0.00712 0.00729 0.01082 0.01021 0.01257
𝑓22 0.00779 0.01041 0.00671 0.01019 0.00839 0.01431 0.01349 0.01471
Table 7
Standard deviation for obtained results for applied benchmark test functions in 20D in domain ×10−5 except for 𝑓20.

Function BA CSA DA FA FPA MFO RFO WWO

𝑓17 0.01312 0.01498 0.02317 0.04113 0.03518 0.00108 0.00193 0.03274
𝑓18 0.00218 0.00142 0.03621 0.03831 0.02418 0.00181 0.00287 0.03216
𝑓19 0.01576 0.01887 0.03451 0.02318 0.03661 0.00126 0.00116 0.03413
𝑓20 0.03198 0.01287 0.04197 0.05128 0.05128 0.00288 0.00246 0.04158
𝑓21 0.02186 0.00277 0.00233 0.02817 0.02319 0.00319 0.00278 0.02318
𝑓22 0.01971 0.00228 0.03574 0.03447 0.03118 0.00328 0.00299 0.02218

Function GA DE PSO AACA ABCA SA ALO WO

𝑓17 0.00116 0.00351 0.00101 0.01012 0.01021 0.02319 0.02245 0.03314
𝑓18 0.00101 0.00419 0.00210 0.01131 0.01310 0.00311 0.02311 0.03415
𝑓19 0.00110 0.02336 0.00121 0.01245 0.00921 0.02316 0.02231 0.02812
𝑓20 0.03182 0.02181 0.03281 0.02973 0.03121 0.05314 0.03217 0.05346
𝑓21 0.00129 0.02133 0.00248 0.00103 0.00224 0.02615 0.03181 0.02112
𝑓22 0.00131 0.01911 0.00111 0.01013 0.00178 0.01141 0.02314 0.02671
Table 8
Results for statistical tests comparison of the 2D results for the significance level 0.05.

ANOVA BA CSA DA FA FPA MFO RFO WWO

F-ratio 0.13084 0.58499 0.00087 0.66849 0.03078 0.49447 − 0.51571
p-value 0.71879 0.447265 0.976635 0.416709 0.861301 0.484573 − 0.475377

GA DE PSO AACA ABCA SA ALO WO

F-ratio 0.02913 0.50707 0.12202 0.05674 0.07957 0.81557 1.15382 1.54777
p-value 0.865045 0.479081 0.728041 0.812516 0.778824 0.369974 0.286913 0.218148

Friedman BA CSA DA FA FPA MFO RFO WWO

𝜒2
𝑟 -ratio 1.125 1.125 1.125 1.125 2 1.125 − 0.5

p-value 0.28884 0.28884 0.28884 0.28885 0.1573 0.28885 − 0.4795

GA DE PSO AACA ABCA SA ALO WO

𝜒2
𝑟 -ratio 1.125 4.5 0.125 0.5 3.125 8 4.5 8

p-value 0.28885 0.03389 0.72367 0.4795 0.0771 0.00468 0.03389 0.00468

Kruskal–Wallis BA CSA DA FA FPA MFO RFO WWO

H-ratio 0.1623 0.4068 0.0218 0.349 0.0379 0.2603 − 0.4689
p-value 0.68708 0.52361 0.88258 0.55466 0.84563 0.60989 − 0.49348

GA DE PSO AACA ABCA SA ALO WO

H-ratio 0.0305 0.349 0 0.0055 0.2146 0.8093 1.3334 1.8029
p-value 0.86143 0.55466 1 0.94113 0.64319 0.36832 0.2482 0.17936

Mann–Whitney BA CSA DA FA FPA MFO RFO WWO

Z-ratio −0.3961 −0.63108 −0.14099 −0.58408 −0.18798 −0.50352 − −0.67807
U-ratio 482 464.5 501 468 497.5 474 − 461
p-value 0.68916 0.5287 0.88866 0.56192 0.8493 0.61708 − 0.4965

GA DE PSO AACA ABCA SA ALO WO

Z-ratio 0.16784 −0.58408 0.00671 −0.06714 −0.45652 −0.89291 −1.14802 −1.336
U-ratio 499 468 512 506.5 477.5 445 426 412
p-value 0.86502 0.56192 0.99202 0.9442 0.64552 0.37346 0.25014 0.18024
minimal work cost. Therefore in this section, we present optimiza-
tion results for some classical examples, where RFO was compared
to other meta-heuristics and golden standard results from analytical
methods.
12
4.1. Three bar truss problem

In this optimization, we consider a steel construction that is acting
with loadings according to the scheme presented in Fig. 9. In the model,
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Fig. 6. Comparison of the benchmark tests results for test functions in 2D in domain ×10−5 from Table 4, where in the first row we see results for functions 𝑓1-𝑓4, in the second
row for functions 𝑓5-𝑓8, in the third row for functions 𝑓9-𝑓12 and in the last row for functions 𝑓13-𝑓16.
we assume that construction topology consists of elongated elements

that are composed in the shape of a triangle to hold the loadings.

Elements 𝑥1 and 𝑥3 are of the same length since these are sides of the

triangle, while element 𝑥2 is a central element placed in the middle of

this construction. To the top of the triangle, we can attach loadings that

cause the existence of stress constraints 𝑔1, 𝑔2, and 𝑔3 that guarantee

bounding and functionality. The optimization of these construction

variables is a continuous mathematical problem and cross-sectional

design physical problem. To solve the problem we must optimize a total

weight of this construction

𝑓𝑤(𝑥) = 𝑙(2
√

2𝑥1 + 𝑥2) (12)

calculating lengths of elements for minimal weight of the structure,

where we assume 𝑥 , 𝑥 ∈ ⟨0, 1⟩, for which stress constraints are
13

1 2
modeled using the following equations

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑔1(𝑥) =

√

2𝑥1 + 𝑥2
√

2𝑥21 + 2𝑥1𝑥2
𝑃 − 𝜎 ≤ 0

𝑔2(𝑥) =
𝑥2

√

2𝑥21 + 2𝑥1𝑥2
𝑃 − 𝜎 ≤ 0

𝑔3(𝑥) =
1

√

2𝑥2 + 𝑥1
𝑃 − 𝜎 ≤ 0

, (13)

where other construction parameters are 𝑙 = 100 cm, 𝑃 = 2 kN∕cm2,
and 𝜎 = 2 kN∕cm2. Optimization results from different meta-heuristic
algorithms are presented in Table 14.

4.2. Welded beam design problem

In this optimization we consider a construction composed of two
components — beam and weld presented in Fig. 9. Model variables
represent dimensions of welded part, which during optimization shall
be optimized to minimize the cost of the weld and material of the beam,
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Fig. 7. Comparison of the benchmark tests results for test functions in 20D in domain ×10−5 from Table 6, where in the first row we see results for functions 𝑓17-𝑓20 and in the
last row for functions 𝑓21-𝑓22.
Fig. 8. Benchmark tests results for test functions in 2D in domain ×10−5 from Table 5 on the left and middle, while for test functions in 20D from Table 7 on the right.
Table 9
Results for statistical tests comparison of the 20D results for the significance level 0.05.

ANOVA BA CSA DA FA FPA MFO RFO WWO

F-ratio 0.99631 1.3665 1.09048 0.25828 1.56846 0.5485 − 0.5059
p-value 0.329058 0.254925 0.307705 0.616361 0.223581 0.466762 − 0.484393

GA DE PSO AACA ABCA SA ALO WO

F-ratio 0.59395 0.49428 0.58815 2.15775 1.56519 0.41876 0.00173 1.02899
p-value 0.449094 0.489399 0.451289 0.156008 0.224049 0.524253 0.96716 0.321423

Friedman BA CSA DA FA FPA MFO RFO WWO

𝜒2
𝑟 -ratio 0.3333 0.3333 0.3333 0.3333 0 0 − 0

p-value 0.5637 0.5638 0.5639 0.564 1 1 − 1

GA DE PSO AACA ABCA SA ALO WO

𝜒2
𝑟 -ratio 0 0 3 1.3333 0 0.0833 0.3333 0.3333

p-value 1 1 0.08326 0.24821 1 0.77283 0.5637 0.5638

Kruskal–Wallis BA CSA DA FA FPA MFO RFO WWO

H-ratio 0.0033 0.0833 0 0.0533 0.0833 0.0075 − 0.0033
p-value 0.95396 0.77283 1 0.81736 0.77283 0.93099 − 0.95396

GA DE PSO AACA ABCA SA ALO WO

H-ratio 0.0033 0 0.0533 0.4033 0.03 0.0075 0.1633 0
p-value 0.95396 1 0.81736 0.52537 0.86249 0.93099 0.68611 1

Mann–Whitney BA CSA DA FA FPA MFO RFO WWO

Z-ratio −0.02887 0.25981 0.02887 −0.20207 0.25981 0.05774 − 0.02887
U-ratio 71 67 72 68 67 70.5 − 71
p-value 0.97606 0.79486 0.97606 0.84148 0.79486 0.95216 − 0.97606

GA DE PSO AACA ABCA SA ALO WO

Z-ratio 0.02887 0.02887 0.20207 0.60622 0.14434 −0.05774 −0.37528 0.02887
U-ratio 71 72 68 61 69 70.5 65 72
p-value 0.97606 0.97606 0.84148 0.54186 0.88866 0.95216 0.70394 0.97606
14
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Fig. 9. Classic engineering optimization problems: (a) Scheme of tree bar truss model used to solve optimal design problem, (b) Scheme of welded beam model used to solve
optimal design problem.
Fig. 10. Classic engineering optimization problems: (a) Scheme of compression spring model used to solve optimal design problem, (b) Scheme of cantilever beam model used to
solve optimal design problem, (c) Scheme of multiplate clutch break to solve optimal design problem.
Fig. 11. Classic engineering optimization problems: (a) Scheme of pressure vessel used to solve optimal design problem, (b) Scheme of gear train problem model used to solve
optimal design problem.
however during optimization we must avoid deflection of the beam. To
solve this optimization problem we must find optimum to optimize a
total weight of this construction

𝑓𝑣(𝑥) = 1.10471𝑥21𝑥2 + 0.04811𝑥3𝑥4(14 + 𝑥2), (14)

where 𝑥1, 𝑥4 ∈ ⟨0.1, 2⟩ and 𝑥2, 𝑥3 ∈ ⟨0.1, 10⟩ and 𝑥1,… , 𝑥4 are physical
quantities of the weld like height, length, etc.

Additionally to the model of welded beam design, model func-
tions 𝑑 –𝑑 should be considered for the optimization procedure as
15

1 7
constrained conditions

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

𝑑1(�⃗�) = 𝜏(�⃗�) − 𝜏𝑚𝑎𝑥 ≤ 0
𝑑2(�⃗�) = 𝜎(�⃗�) − 𝜎𝑚𝑎𝑥 ≤ 0
𝑑3(�⃗�) = 𝑥1 − 𝑥4 ≤ 0
𝑑4(�⃗�) = 1.10471𝑥21 + 0.04811𝑥3𝑥4(14 + 𝑥2) − 5 ≤ 0
𝑑5(�⃗�) = 0.125 − 𝑥1 ≤ 0
𝑑6(�⃗�) = 𝛿(�⃗�) − 𝛿𝑚𝑎𝑥 ≤ 0
𝑑7(�⃗�) = 𝑃 − 𝑃𝑐 (�⃗�) ≤ 0

, (15)
⎩
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which coefficients we model according to equations
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𝜏(�⃗�) =
√

𝜏21 + 2𝜏1𝜏2
𝑥2
2𝑅

+ 𝜏22

𝜏1 =
𝑃

√

2𝑥1𝑥2
, 𝜏2 =

𝑀𝑅
𝐽

𝑅 =

√

𝑥22
4
+
(

𝑥1+𝑥3
2

)2
,𝑀 = 𝑃

(

𝐿 + 𝑥2
2

)

, 𝐽 = 2
(

√

2𝑥1𝑥2

(

𝑥22
4
+
(

𝑥1+𝑥2
2

)2
))

𝜎(�⃗�) = 6𝑃𝐿
𝑥4𝑥23

, 𝛿(�⃗�) = 6𝑃𝐿3

𝐸𝑥23𝑥4

𝑃𝑐 (�⃗�) =

4.013𝐸

√

(

𝑥23𝑥
6
4

36

)

𝐿2

⎛

⎜

⎜

⎜

⎝

1 −
𝑥3
√

𝐸
4𝐺

2𝐿

⎞

⎟

⎟

⎟

⎠

.

(16)

In performed optimization we have used model parameters values:
𝑃 = 6000 [lb], 𝐿 = 14 [in.], 𝐸 = 30 × 106 [psi], 𝐺 = 12 × 106 [psi],
𝜏𝑚𝑎𝑥 = 13600 [psi], 𝜎𝑚𝑎𝑥 = 30000 [psi] and 𝛾𝑚𝑎𝑥 = 0.25 [in.] The golden
standard analytical results from the literature are presented in Table 10
while the obtained results from different meta-heuristic algorithms are
presented in Table 15.

4.3. Compression spring problem

In this optimization, we consider a spring construction that is acting
with tension/compression from the load according to the scheme pre-
sented in Fig. 10. The objective is to minimize spring volume weight
that reacts with tension/compression caused by the load. Assumed
design variables represent number of active spring coils 𝑥1, winding
iameter 𝑥2, and wire diameter 𝑥3. To solve the optimization problem
e must optimize a volume of the spring defined according to

𝑣(𝑥) = (𝑥3 + 2)𝑥2𝑥21, (17)

calculating lengths of elements for minimal volume of the spring, where
we assume 𝑥1 ∈ ⟨0.05, 2⟩, 𝑥2 ∈ ⟨0.25, 1.3⟩, 𝑥3 ∈ ⟨2, 15⟩, for which stress
constraints are modeled using the following equations

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑔1(𝑥) = 1 −
𝑥32𝑥3

71785𝑥41
≤ 0

𝑔2(𝑥) =
4𝑥22 − 𝑥1𝑥2

12566(𝑥2𝑥21 − 𝑥41)
− 1

5108𝑥21
≤ 0

𝑔3(𝑥) = 1 −
140.45𝑥1
𝑥22𝑥3

≤ 0

𝑔4(𝑥) =
𝑥1 + 𝑥2
1.5

− 1 ≤ 0

(18)

he golden standard analytical results from the literature are pre-
ented in Table 11 and obtained results from different meta-heuristic
lgorithms are presented in Table 16.

.4. Cantilever beam design problem

In this optimization, we consider a cantilever construction that is
omposed of 5 compartments presented in Fig. 10. The objective is to
inimize the weight of all the sections, assumed that design variables

epresent the width and height dimensions of each compartment. To
olve the optimization problem we must optimize total weight defined
ccording to

𝑤(𝑐) = 0.6224
5
∑

𝑖=1
𝑥𝑖, (19)

where 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 ∈ ⟨0.01, 100⟩ and the limit state function is defined
as

𝑔(𝑐) = 61
3
+ 27

3
+ 19

3
+ 7

3
+ 1

3
− 1 ≤ 0. (20)
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𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 ⎩
The golden standard analytical results from the literature are pre-
sented in Table 12 and obtained results from different meta-heuristic
algorithms are presented in Table 17.

4.5. Pressure vessel design problem

In this optimization we consider a gas storage container in a shape
of compressed air tank with hemispherical cylinders at both ends as
shown in Fig. 11. This kind of container can be used for liquid gas
that must be keep under pressure to maintain the gas properties. In
general this object must be optimized in construction weight to keep
the maximum pressure of 1000 [psi] for the minimum volume of 750
ft3], what we model as

1(�⃗�) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥23𝑥2 + 3.1661𝑥4𝑥21 + 19.84𝑥3𝑥21 (21)

here 𝑥1 is coating thickness of cylinder, 𝑥2 is coating thickness of
emispherical cover, 𝑥3 is radius of the cylinder without the shell, 𝑥4

is length of the cylinder, and 𝑥1, 𝑥2 ∈ ⟨0, 99⟩ and 𝑥3, 𝑥4 ∈ ⟨10, 200⟩.
dditionally we assume conditions 𝑐1–𝑐4 for the dimensions of the
ylinder

𝑐1(�⃗�) = −𝑥1 + 0.0193𝑥3 ≤ 0
𝑐2(�⃗�) = 0.00954𝑥3 − 𝑥3 ≤ 0
𝑐3(�⃗�) = 129600 − 4

3𝜋𝑥
3
3 − 𝜋𝑥23𝑥4 ≤ 0

𝑐4(�⃗�) = 𝑥2 − 240 ≤ 0

. (22)

he golden standard analytical results from the literature are pre-
ented in Table 13 and obtained results from different meta-heuristic
lgorithms are presented in Table 18.

.6. Gear train problem

In this optimization we consider a construction of mechanical sys-
em in which four gear wheels are run, see Fig. 11. Calculations are
one to optimize the cost of work by minimizing the gear ratio modeled
y

𝑤(�⃗�) =
(

1
6.931

−
𝑥2𝑥3
𝑥1𝑥4

)2
, (23)

variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ ⟨12, 60⟩ are dimensions of the following gears
in the system in Fig. 11. Obtained results from different meta-heuristic
algorithms are presented in Table 19.

4.7. Multi-plate disc clutch brake

In this optimization, we consider finding the lowest possible weight
for a multi-plate disc clutch brake (Heidari et al., 2019; Savsani &
Savsani, 2016), depending on five different variables. Applied optimiza-
tion model is presented in Fig. 10. The variables are the actuating force
𝐹 , the outer 𝑟𝑖, inner radius 𝑟𝑜, the number of friction surfaces 𝑍, and
the thickness of the brake discs marked as 𝑡. The problem is defined as
a function 𝑓𝑚𝑝(⋅) dependent on eight conditions modeled for geometry
and operating requirements. It is defined as

𝑓𝑚𝑝(𝑥) = 𝜋(𝑟2𝑜 − 𝑟2𝑖 )𝑡(𝑍 + 1)𝜌, (24)

ith the following constraints

𝑔1(𝑥) = 𝑟0 − 𝑟𝑖 − 𝛥𝑟 ≥ 0
𝑔2(𝑥) = 𝑙𝑚𝑎𝑥 − (𝑍 + 1)(𝑡 + 𝛿) ≥ 0
𝑔3(𝑥) = 𝑃𝑚𝑎𝑥 − 𝑃𝑟𝑧 ≥ 0
𝑔4(𝑥) = 𝑃𝑚𝑎𝑥𝑣𝑠𝑟,𝑚𝑎𝑥 − 𝑃𝑟𝑧𝑣𝑠𝑟 ≥ 0
𝑔5(𝑥) = 𝑣𝑠𝑟,𝑚𝑎𝑥 − 𝑣𝑠𝑟 ≥ 0
𝑔6(𝑥) = 𝑇𝑚𝑎𝑥 − 𝑇 ≥ 0
𝑔7(𝑥) = 𝑀ℎ − 𝑠𝑀𝑠 ≥ 0
𝑔8(𝑥) = 𝑇 ≥ 0

, (25)
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Table 10
Literature gold standard results from classic/analytical approaches in solving welded beam optimization problem.

Method 𝑥1 𝑥2 𝑥3 𝑥4 Optimum

Siddall (1972) Siddall 0.2444 6.2189 8.2915 0.2444 2.38154
Ragsdell and Phillips (1976) Ragsdell 0.2455 6.1960 8.2730 0.2455 2.38594
Ragsdell and Phillips (1976) Random 0.4575 4.7313 5.0853 0.6600 4.11856
Ragsdell and Phillips (1976) Simplex 0.2792 5.6256 7.7512 0.2796 2.53073
Ragsdell and Phillips (1976) David 0.2434 6.2552 8.2915 0.2444 2.38411
Ragsdell and Phillips (1976) Approx 0.2444 6.2189 8.2915 0.2444 2.38154
Table 11
Literature gold standard results from classic/analytical approaches in solving compression spring optimization problem.

Method 𝑥1 𝑥2 𝑥3 Optimum

Arora (2004) Constraint correction 14.25 0.3159 0.05 0.0128334
Belegundu (1983) Mathematical optimization 9.1854 0.39918 0.053396 0.0127303
Table 12
Literature gold standard results from classic/analytical approaches in solving cantilever beam design optimization problem.

Method 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 Optimum

Chickermane and Gea (1996) Generalized Convex Approximation 6.01 5.3 4.49 3.49 2.15 13.3442
Chickermane and Gea (1996) Moving Asymptotes 6.01 5.3 4.49 3.49 2.15 13.3442
Table 13
Literature gold standard results from classic/analytical approaches in solving pressure vessel optimization problem.

Method 𝑥1 𝑥2 𝑥3 𝑥4 Optimum

Kannan and Kramer (1994) Lagrange multiplier 1.125 0.625 58.291 43.69 7198.0428
Sandgren (1990) Branch-bound 1.125 0.625 47.7 117.701 8129.1036
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where 𝑀ℎ = 0.66𝜇𝐹𝑍
𝑟3𝑜−𝑟

2
𝑖

𝑟2𝑜−𝑟3𝑖
, 𝑃𝑟𝑧 = 𝐹

𝜋(𝑟2𝑜−𝑟2𝑖 )
, 𝑣𝑠𝑟 =

2𝜋𝑛(𝑟3𝑜−𝑟
3
𝑖 )

90(𝑟2𝑜−𝑟2𝑖 )
, 𝑇 =

𝐼𝑧
∏

𝑛
30(𝑀ℎ+𝑀𝑓 )

𝛥𝑟 = 20 [mm], 𝐼𝑧 = 55 [kgmm2], 𝑃𝑚𝑎𝑥 = 1 [MPa], 𝐹𝑚𝑎𝑥 =
000 [N], 𝑇𝑚𝑎𝑥 = 15 [s], 𝜇 = 0.5, 𝑠 = 1.5, 𝑀𝑠 = 40 [Nm], 𝑀𝑓 = 3 [Nm],
= 250 [rpm], 𝑣𝑠𝑟,𝑚𝑎𝑥 = 10 [m∕s], 𝑙𝑚𝑎𝑥 = 30 [mm], 𝑟𝑖,𝑚𝑖𝑛 = 60, 𝑟𝑖,𝑚𝑎𝑥 = 80,
𝑜,𝑚𝑎𝑥 = 110, 𝑡𝑚𝑖𝑛 = 1.5, 𝑡𝑚𝑎𝑥 = 3, 𝐹𝑚𝑖𝑛 = 600, 𝐹𝑚𝑎𝑥 = 1000, 𝑍𝑚𝑖𝑛 = 2,
𝑚𝑎𝑥 = 9. Obtained results are presented in Table 20.

.8. Conclusions from the optimization of engineering problems

Results of optimization for technical problems are presented in Ta-
les 14–20. For the tree bar truss problem GA achieved the lowest value
f the cost function, after were FPA, RFO, and AACA. For the welded
eam problem CSA reached the lowest value of the cost function after
ere DA, MFO, and PSO. If we compare optimization results from
able 15 to literature results from Table 10 we can see that examined
euristics returned results most closely similar to Siddall, Ragsdell,
nd David methods. For the compression spring problem, PSO and
FO returned the lowest value of the cost function, after were CSA,
FO, AACA, ALO, SA, DA, FPA which all returned values very similar.
omparing results from Table 16 to the literature results from Table 11
e see that for most of the examined heuristics results are very similar

o these from Mathematical optimization and Constraint correction.
ainly the results differ on one model variable, however this difference

s not so big. Moreover, the cost function value is very similar between
iterature standards and examined heuristics.

For the cantilever beam design problem the lowest value of cost
unction was found by RFO, after were FPA, MFO, CSA. However, in
his experiment, all the heuristics returned very similar results so we
annot easily define the best algorithm. If we compare them to the lit-
rature standards from Table 12 we can see that all heuristics returned
esults very similar to presented Generalized Convex Approximation
nd Moving Asymptotes. For the pressure vessel problem, the lowest
alue of cost function was found by RFO, after were CSA, PSO, and
A. Comparing optimization results from Table 18 to the literature

tandards from Table 13 we see that all heuristics reached lower cost
unction values than presented Lagrange multiplier and branch-bound
ethods. For the gear train problem, the best result was returned by
17

m

SO after were MFO, WWO, AACA, ABCA, and SA. In Table 20, the
verage results for the multi-plate clutch brake problem are presented.
he best results were achieved by RFO, and WO — the difference
etween them was just 0.00101 which is very small. It must be noted
hat in general, the obtained result for all heuristic is very different.
A, MFO, WWO has reached a results which differ significantly from
he best ones.

In these experiments proposed RFO was 5 times among the best
ethods, where our algorithm was the best 3 times. Among other

xamined heuristics MFO and CSA were the best since both 4 times
eturned the results with very good cost function value, and CSA won
he competition for the welded beam problem. Classical heuristics PSO
nd AACA were 3 times among the best algorithms, where PSO was the
est for gear train problem. So in general we cannot say the proposed
FO was clearly the best algorithm among examined heuristics. On the
ther hand, RFO succeeds in a similar number of experiments as well
nown classical algorithms PSO and AACA, which is a very good result.

. Discussion on results and comparisons

From benchmark tests, we can draw conclusions. We have seen that
he proposed RFO was efficient both for test functions and engineering
roblems. From the results, we cannot say that our method was the
est in every competition. On the other hand from the analysis of the
esults, we can say that our method was many times among the best,
oreover RFO has won in many cases.

In RFO we have proposed a composition of global search phase and
ocal search phase based on the fox hunting model. The first one was
ntroduced to efficiently search in entire model space, while the second
ne was defined to increase the precision of calculations. Similar two-
hase models were introduced in MFO, CSA, and DA. These heuristics
lso achieved very good results in benchmark tests. In RFO the in-
ormation was exchanged between individuals what made it converge
o the optimum fast in the initial phase of the algorithm. This was
isible for test functions, where we presented charts of convergence and
rajectories of optimization. Trajectory represents an average move-

ent of individuals in the population during the following iterations
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Table 14
Optimal construction variables for the three-bar truss problem.

BA CSA DA FA FPA MFO RFO WWO

𝑥1 0.76255 0.8207 0.77312 0.78489 0.72599 0.76525 0.75356 0.82511
𝑥2 0.69453 0.5215 0.76265 0.66347 0.62842 0.58935 0.55373 0.52519
𝑓𝑤(𝑥) 285.13471 284.27901 294.93635 288.34741 268.18298 275.38038 268.51195 285.89535
𝑔1(𝑥) −0.11546 −0.13976 −0.16648 −0.14561 −0.00326 −0.06773 −0.02220 −0.15022
𝑔2(𝑥) −1.26175 −1.42328 −1.24659 −1.30625 −1.24187 −1.31873 −1.32373 −1.42586
𝑔3(𝑥) −0.85371 −0.71647 −0.91989 −0.83935 −0.76138 −0.74899 −0.69846 −0.72436

GA DE PSO AACA ABCA SA ALO WO

𝑥1 0.74313 0.79234 0.73351 0.75332 0.73891 0.81023 0.79458 0.83211
𝑥2 0.56021 0.57312 0.62198 0.55892 0.78415 0.63428 0.63208 0.63219
𝑓𝑤(𝑥) 266.20990 281.41959 269.66595 268.96307 287.41030 292.59565 287.94916 298.57524
𝑔1(𝑥) −0.00303 −0.11402 −0.01677 −0.02477 −0.10549 −0.18004 −0.14922 −0.21891
𝑔2(𝑥) −1.30564 −1.36180 −1.25660 −1.32031 −1.18782 −1.35152 −1.33372 −1.37755
𝑔3(𝑥) −0.69739 −0.75222 −0.76016 −0.70445 −0.91767 −0.82851 −0.81549 −0.84135
Table 15
The obtained optimal solution for the welded beam problem.

BA CSA DA FA FPA MFO RFO WWO

𝑥1 0.21834 0.19312 0.20485 0.23141 0.20158 0.21015 0.21846 0.22214
𝑥2 4.01215 3.85691 3.84712 4.04761 3.91024 3.49261 3.51024 3.67812
𝑥3 8.97261 8.89429 8.94681 8.84958 8.56842 8.98423 8.87254 8.84965
𝑥4 0.23257 0.21453 0.21431 0.24053 0.22641 0.21964 0.22491 0.23489
𝑓𝑣(𝑥) 2.01960 1.79813 1.82466 2.08763 1.84712 1.83105 1.86612 1.96842
𝑑1(𝑥) −75.7536 −89.0708 −83.8156 −71.4389 −86.0950 −88.3606 −85.1728 −80.6412
𝑑2(𝑥) −269.177 −296.975 −293.799 −267.556 −303.202 −284.287 −284.659 −273.976
𝑑3(𝑥) −0.01423 −0.02141 −0.00946 −0.00912 −0.02483 −0.00949 −0.00645 −0.01275
𝑑4(𝑥) −3.13902 −3.31956 −3.30732 −3.09265 −3.28350 −3.29054 −3.26621 −3.17756
𝑑5(𝑥) −0.09334 −0.06812 −0.07985 −0.10641 −0.07658 −0.08515 −0.09346 −0.09714
𝑑6(𝑥) −0.00175 −0.00194 −0.00191 −0.00174 −0.00198 −0.00185 −0.00185 −0.00178
𝑑7(𝑥) −2627.537 −732.350 −737.922 −3456.995 −1717.598 −1273.296 −1745.002 −2807.270

GA DE PSO AACA ABCA SA ALO WO

𝑥1 0.22958 0.23485 0.22485 0.22416 0.23152 0.22845 0.23551 0.23486
𝑥2 3.51231 3.59865 3.48015 3.51512 3.52481 3.51842 3.51482 3.52146
𝑥3 8.71948 8.72145 8.59438 8.71412 8.72145 8.65014 8.63148 8.62147
𝑥4 0.23102 0.24812 0.22846 0.23151 0.23958 0.23846 0.24512 0.24016
𝑓𝑣(𝑥) 1.90165 2.05143 1.84559 1.89509 1.97040 1.94132 1.99817 1.95994
𝑑1(𝑥) −81.7246 −78.2460 −84.7883 −83.7013 −80.7788 −82.3764 −80.0349 −80.1843
𝑑2(𝑥) −286.945 −267.049 −298.669 −286.690 −276.568 −282.467 −275.982 −282.336
𝑑3(𝑥) −0.00144 −0.01327 −0.00361 −0.00735 −0.00806 −0.01001 −0.00961 −0.0053
𝑑4(𝑥) −3.24462 −3.10690 −3.29292 −3.24451 −3.17910 −3.20386 −3.15591 −3.19369
𝑑5(𝑥) −0.10458 −0.10985 −0.09985 −0.09916 −0.10652 −0.10345 −0.11051 −0.10986
𝑑6(𝑥) −0.00187 −0.00174 −0.00195 −0.00187 −0.00180 −0.00184 −0.00180 −0.00184
𝑑7(𝑥) −2296.283 −4279.837 −1945.469 −2345.728 −3254.492 −3074.872 −3842.262 −3249.516
Table 16
Optimal construction variables for the compression spring problem.

BA CSA DA FA FPA MFO RFO WWO

𝑥1 0.05841 0.05143 0.05201 0.05424 0.05211 0.05224 0.05189 0.05257
𝑥2 0.41846 0.35412 0.36242 0.39212 0.37125 0.36951 0.36142 0.36994
𝑥3 12.01451 11.91451 12.01431 11.88131 11.81432 10.78154 11.58436 11.37447
𝑓𝑣(𝑥) 0.02000 0.01303 0.01373 0.01601 0.01392 0.01288 0.01321 0.01367
𝑔1(𝑥) −0.05362 −0.05348 −0.08881 −0.15294 −0.14206 −0.01744 −0.05084 −0.05036
𝑔2(𝑥) −0.01939 −0.03263 −0.03094 −0.02527 −0.02979 −0.02985 −0.03120 −0.02943
𝑔3(𝑥) −2.89937 −3.83460 −3.62898 −3.17002 −3.49470 −3.98415 −3.81624 −3.74314
𝑔4(𝑥) −0.68208 −0.72963 −0.72371 −0.70242 −0.71776 −0.71883 −0.72446 −0.71832

GA DE PSO AACA ABCA SA ALO WO

𝑥1 0.05312 0.05211 0.05071 0.05214 0.05121 0.05243 0.05203 0.05241
𝑥2 0.36912 0.368421 0.35924 0.35854 0.35924 0.36121 0.36124 0.36221
𝑥3 11.72141 11.69421 11.62233 11.63542 11.71252 11.6161 11.70211 11.69425
𝑓𝑣(𝑥) 0.01429 0.01370 0.01258 0.01329 0.01291 0.01351 0.01339 0.01362
𝑔1(𝑥) −0.03137 −0.10480 −0.13511 −0.01082 −0.09989 −0.00922 −0.04858 −0.02603
𝑔2(𝑥) −0.02892 −0.03012 −0.03292 −0.03124 −0.03229 −0.03059 −0.03106 −0.03050
𝑔3(𝑥) −3.67159 −3.61087 −3.74845 −3.89593 −3.75835 −3.85871 −3.78541 −3.79780
𝑔4(𝑥) −0.71850 −0.71964 −0.7267 −0.72621 −0.72636 −0.72424 −0.72448 −0.72358
of the algorithm, while average fitness and convergence rates in the
population were defined in (10) and (11) respectively. These measures
showed how RFO works in the search space to find optimal solutions.
In the first 20–30 iterations changes in values were significant, while
18
after these RFO localized most of the individuals in the surrounding of
the optimum and started to work on the precision of the final results.
An additional advantage was in the proposed mechanism of selection,
where we modeled herd behaviors of foxes to simulate the selection
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Table 17
Optimal construction variables for the cantilever beam problem.

BA CSA DA FA FPA MFO RFO WWO

𝑐1 6.01214 5.97145 6.01451 6.00422 6.00612 6.01815 6.00845 6.01421
𝑐2 5.39452 5.35642 5.39652 5.31245 5.31022 5.30334 5.30485 5.41214
𝑐3 4.44581 4.48254 4.49542 4.52142 4.49214 4.49323 4.49215 4.51243
𝑐4 3.51212 3.49214 3.49543 3.51213 3.49143 3.49683 3.49842 3.51024
𝑐5 2.21112 2.16421 2.21421 2.16412 2.15421 2.15227 2.14463 2.15843
𝑓𝑤(𝑐) 13.42872 13.36091 13.45385 13.39052 13.35304 13.35908 13.34954 13.44847
𝑔1(𝑐) −0.07700 −0.06386 −0.08266 −0.07230 −0.06403 −0.06566 −0.06345 −0.08120

GA DE PSO AACA ABCA SA ALO WO

𝑐1 6.01123 6.01245 6.00945 6.00846 6.01245 6.01253 6.00845 6.01452
𝑐2 5.45246 5.46215 5.45632 5.46012 5.46214 5.45962 5.45184 5.46215
𝑐3 4.48142 4.49012 4.49102 4.49521 4.512 4.4951 4.49852 4.49721
𝑐4 3.49654 3.51426 3.49215 3.49562 3.49021 3.49516 3.49423 4.48956
𝑐5 2.15483 2.16421 2.15481 2.16011 2.15026 2.15241 2.15426 2.15483
𝑓𝑤(𝑐) 13.44164 13.47072 13.44617 13.45598 13.46068 13.45306 13.44838 14.07761
𝑔1(𝑐) −0.07780 −0.08384 −0.07863 −0.08065 −0.08158 −0.08002 −0.07934 −0.16775
Table 18
Optimal construction variables for the pressure vessel design problem.

BA CSA DA FA FPA MFO RFO WWO

𝑥1 0.91245 0.82145 0.81782 0.84651 0.82451 0.82541 0.81425 0.84621
𝑥2 0.45685 0.44254 0.45231 0.51213 0.44891 0.51231 0.44521 0.46012
𝑥3 42.21142 42.31223 42.21492 42.25413 42.32151 42.31024 42.20231 42.32612
𝑥4 176.45821 176.54262 177.31542 176.56234 176.64852 176.61243 176.62145 176.63212
𝑓𝑤(𝑐) 6839.8955 6171.5471 6179.0417 6557.8214 6217.216 6422.4895 6113.3195 6405.018
𝑐1(𝑐) −0.09776 −0.00482 −0.00307 −0.03100 −0.00770 −0.00882 0.000254 −0.02931
𝑐2(𝑐) −41.80872 −41.90857 −41.81218 −41.85102 −41.91776 −41.90660 −41.79969 −41.92232
𝑐4(𝑐) −63.54179 −63.45738 −62.68458 −63.43766 −63.35148 −63.38757 −63.37855 −63.36788

GA DE PSO AACA ABCA SA ALO WO

𝑥1 0.82154 0.85301 0.81685 0.82645 0.82451 0.81612 0.85148 0.84263
𝑥2 0.44322 0.45321 0.44642 0.45016 0.44261 0.44115 0.45652 0.52103
𝑥3 42.452 42.32104 42.29842 42.62151 42.56213 42.10029 42.36521 42.35121
𝑥4 176.62315 176.62531 176.65314 176.54813 176.45982 176.7288 176.61026 176.60592
𝑓𝑤(𝑐) 6200.0828 6429.7482 6152.2335 6284.0087 6233.7566 6098.67 6436.9571 6577.9336
𝑐1(𝑐) −0.00221 −0.03621 −0.00049 −0.00385 −0.00306 −0.00358 −0.03383 −0.02525
𝑐2(𝑐) −42.04700 −41.91729 −41.89489 −42.2149 −42.15608 −41.69865 −41.96104 −41.94717
𝑐4(𝑐) −63.37685 −63.37469 −63.34686 −63.45187 −63.54018 −63.2712 −63.38974 −63.39408
Table 19
Optimal variables for the gear train design problem.

BA CSA DA FA FPA MFO RFO WWO

𝑥1 57.53212 55.46532 51.65482 51.98541 54.36485 48.32162 52.1581 57.26512
𝑥2 19.75461 16.23612 17.65231 25.65891 23.65232 18.62531 23.01251 23.56412
𝑥3 19.32561 22.31521 22.63215 14.65912 18.65231 20.4121 16.1401 15.65423
𝑥4 44.65231 45.92531 51.02643 46.95641 56.12413 56.14523 47.2105 46.25481
𝑓𝑤(𝑥) 0.085784 0.08209 0.08752 0.08902 0.08344 0.08088 0.08709 0.080396

GA DE PSO AACA ABCA SA ALO WO

𝑥1 53.24152 56.51231 51.24132 52.12413 52.14268 53.32151 53.45621 52.12412
𝑥2 23.1423 25.32142 21.1421 21.10214 22.01452 22.1012 22.32104 23.14621
𝑥3 16.32512 17.21423 14.56213 16.21413 16.54123 16.01241 16.54813 16.54123
𝑥4 48.54123 45.21351 46.21452 47.01245 46.1254 47.51241 47.15542 46.4812
𝑓𝑤(𝑥) 0.08436 0.09914 0.07523 0.0806 0.08742 0.08063 0.08457 0.09138
of individuals. Similarities between results of RFO and other heuristics
were confirmed by the statistical test. The test has identified results of
PSO, MFO, GA, AACA, CSA, and DA as most related to RFO results.

In general, we can say that the proposed RFO was efficient in
optimization tasks. The results confirmed the high potential of the
proposed algorithm. Although there are still some aspects which we
want to concentrate on in future research. All heuristics in large depend
on the initial population. Since for most of the algorithms we randomly
select them in the search space this is a weak point of every method.
The randomness of the initial selection can help in better results
but on the other hand, can also make the optimization less efficient.
Therefore proposition of a technique for pre-selection of the individuals
for the initial population can help to increase precision and faster the
convergence to the optimum. The other aspect of future research can be
19
the parallelization of calculations. A division of tasks between multiple
cores can help with the better search in the model space.

6. Final remarks

In this article we present a nature-inspired model of hunting and
developing the population of a well-known animal — red fox. This
mammal has adapted to various environmental conditions where he
was able to benefit and develop in many destinations. We propose a
model of the features that made the fox an efficient hunter. We called
the developed optimization method a Red Fox Optimization Algorithm
(RFO).

Presented novel meta-heuristic algorithm models behavior of red
fox into optimization technique. In the proposed algorithm we have
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Table 20
Optimal construction variables for the multi-plate disc clutch brake problem.

BA CSA DA FA FPA MFO RFO WWO

𝑟𝑖 70 78 79 65 68 66 72 66
𝑟𝑜 90 100 100 91 91 93 93 93
𝐹 810 909 820 861 980 669 762 602
𝑍 3 2 2 2 2 2 2 2
𝑡 1 1 1 1 1 1 1 1
𝑓𝑚𝑝(𝑥) 0.31345 0.28773 0.2762 0.29802 0.2687 0.31543 0.25359 0.31543
𝑔1(𝑥) 0 2 1 6 3 7 1 7
𝑔2(𝑥) 20 22.5 22.5 22.5 22.5 22.5 22.5 22.5
𝑔3(𝑥) 0.91939 0.92607 0.93053 0.9324 0.91466 0.95037 0.92996 0.95534
𝑔4(𝑥) 9830.37109 9826.96428 9836.5515 9860.74163 9821.22546 9895.76691 9847.99318 9906.2058
𝑔5(𝑥) 7895.76389 7659.30836 7647.33891 7940.10185 7905.24039 7899.75472 7829.59394 7899.75471
𝑔6(𝑥) 14 14 14 14 14 14 14 14
𝑔7(𝑥) 96669.1875 80439.81438 72929.43687 67042.035 77608.88302 53099.74982 62512.392 47775.82868
𝑔8(𝑥) 0.01488 0.01788 0.01972 0.021445 0.01853 0.02071 0.023 0.03008

GA DE PSO AACA ABCA SA ALO WO

𝑟𝑖 74 67 76 77 70 72 77 72
𝑟𝑜 96 91 97 98 92 94 100 93
𝐹 775 727 986 936 741 696 606 772
𝑍 2 2 2 2 2 2 2 2
𝑡 1 1 1 1 1 1 1 1
𝑓𝑚𝑝(𝑥) 0.2748 0.27862 0.26694 0.27002 0.26187 0.26833 0.29912 0.2546
𝑔1(𝑥) 2 4 1 1 2 2 3 1
𝑔2(𝑥) 22.5 22.5 22.5 22.5 22.5 22.5 22.5
𝑔3(𝑥) 0.93401 0.934010.93894 0.91357 0.91888 0.93378 0.9393 0.95259 0.92904
𝑔4(𝑥) 9852.4003 9872.81399 9803.40419 9813.39429 9858.79635 9867.41006 9889.59949 9845.99834
𝑔5(𝑥) 7763.41699 7916.9346 7725.46628 7699.42667 7867.47051 7815.45114 7671.21594 7829.59394
𝑔6(𝑥) 14 14 14 14 14 14 14 14
𝑔7(𝑥) 65520.31765 57235.9743 83790.82844 81410.1888 59726.07556 57465.1547 53333.53017 63333.552
𝑔8(𝑥) 0.021944 0.02517 0.16961 0.17664 0.02507 0.02501 0.02696 0.22701
A
A

B

G

G

modeled global search simulating the way red fox is searching for prey
over the land and local search simulating the way red fox is disguising
prey while hunting. Moreover, we have also modeled reproduction and
leaving the herd.

Results of experimental benchmark tests have shown that the pro-
posed RFO algorithm can precisely find maxima/minima of test func-
tions. It is also efficient in considered optimization problems. Statistics
of benchmark tests have shown fast convergence. RFO locates most
of the individuals in the direct surrounding of the optimum after a
short time, which gives RFO a good advantage to improve the final
precision of results. Moreover, the proposed local search mechanism
reduces computational complexity but also prevents the algorithm from
being stacked during optimization.
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