
Advances in Engineering Software 114 (2017) 163–191

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Salp Swarm Algorithm: A bio-inspired optimizer for engineering

design problems

Seyedali Mirjalili a , ∗, Amir H. Gandomi b , f , Seyedeh Zahra Mirjalili c , Shahrzad Saremi a ,
Hossam Faris d , Seyed Mohammad Mirjalili e

a Institute for Integrated and Intelligent Systems, Griffith University, Nathan, QLD 4111, Australia
b School of Business, Stevens Institute of Technology, Hoboken, NJ 07030, USA
c School of Electrical Engineering and Computing, University of Newcastle, Callaghan, NSW 2308, Australia
d Business Information Technology Department, King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
e Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, H3G1M8, Canada
f BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 488241, USA

a r t i c l e i n f o

Article history:

Received 25 December 2016

Revised 23 April 2017

Accepted 9 July 2017

Available online 24 July 2017

Keywords:

Particle swarm optimization

Multi-objective optimization

Genetic algorithm

Heuristic algorithm

Algorithm

Benchmark

a b s t r a c t

This work proposes two novel optimization algorithms called Salp Swarm Algorithm (SSA) and Multi-

objective Salp Swarm Algorithm (MSSA) for solving optimization problems with single and multiple ob-

jectives. The main inspiration of SSA and MSSA is the swarming behaviour of salps when navigating and

foraging in oceans. These two algorithms are tested on several mathematical optimization functions to

observe and confirm their effective behaviours in finding the optimal solutions for optimization prob-

lems. The results on the mathematical functions show that the SSA algorithm is able to improve the

initial random solutions effectively and converge towards the optimum. The results of MSSA show that

this algorithm can approximate Pareto optimal solutions with high convergence and coverage. The paper

also considers solving several challenging and computationally expensive engineering design problems

(e.g. airfoil design and marine propeller design) using SSA and MSSA. The results of the real case stud-

ies demonstrate the merits of the algorithms proposed in solving real-world problems with difficult and

unknown search spaces.

© 2017 Elsevier Ltd. All rights reserved.

1

s

r

a

f

t

w

b

s

r

s

e

r

D

f

c

E

t

G

o

t

A

fi

t

p

t

i

a

B

s

h

0

. Introduction

Over the past decade, meta-heuristic techniques have become

urprisingly very popular. This popularity is due to several main

easons: flexibility, gradient-free mechanism, and local optima

voidance of these algorithms. The first two advantages originate

rom the fact that meta-heuristics consider and solve optimiza-

ion problems by only looking at the inputs and outputs. In other

ords, meta-heuristics assume an optimization problem as a black

ox. Therefore, there is no need to calculate derivative of the

earch space. This makes them highly flexible for solving a diverse

ange of problems. Since meta-heuristics belong to the family of

tochastic optimization techniques, they benefit from random op-

rators. This assists them to avoid local solutions when solving

eal problems, which usually have a large number of local optima.

ue to these advantages, the application of meta-heuristics can be

ound in different branches of science and industry.
∗ Corresponding author.

E-mail address: seyedali.mirjalili@griffithuni.edu.au (S. Mirjalili).

URL: http://www.alimirjalili.com/ (S. Mirjalili)

f

h

l

t

ttp://dx.doi.org/10.1016/j.advengsoft.2017.07.002

965-9978/© 2017 Elsevier Ltd. All rights reserved.
Meta-heuristic algorithms are classified into two dominant

lasses: evolutionary [1] and swarm intelligence [2] techniques.

volutionary algorithms mimic the concepts of evolution in na-

ure. The best and most well-regarded algorithm in this class is

enetic Algorithm (GA) [3] . This algorithm simulates the concepts

f Darwinian theory of evolution. In GA, the optimization is ini-

iated with a set of random solutions for a particular problem.

fter evaluating the solutions by the objective function, it modi-

es the variables of solutions based on their fitness value. Since

he best individuals are given higher probability to involve in im-

roving other solutions, the random initial solutions are very likely

o be improved. There are several other evolutionary algorithms

n the literature such as Differential Evolution (DE) [4] , Evolution-

ry Strategy (ES) [5] , and Evolutionary Programming (EP) [6,7] , and

iogeography-Based Optimization (BBO) algorithm [8] as well.

Swarm intelligence techniques mimic the intelligence of

warms, herds, schools, or flocks of creatures in nature. The main

oundation of these algorithms originates from the collective be-

aviour of a group of creatures. For instance, ants are able to col-

ectively guarantee the survival of a colony without having a cen-

ralized control unit. In other word, no one tells ants where and

http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2017.07.002&domain=pdf
mailto:seyedali.mirjalili@griffithuni.edu.au
http://www.alimirjalili.com/
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002

164 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

c

f

o

M

S

h

l

w

c

l

o

s

i

1

C

i

b

l

m

T

t

m

p

fi

m

e

t

p

o

w

r

t

a

g

n

p

A

s

g

s

e

a

b

a

s

t

T

a

p

o

c

l

a

l

t

r

k

t

i
how a source food can be found, but they cooperatively find foods

at even far distances from their nests. The two most popular al-

gorithms in this class are Ant Colony Optimization (ACO) [9] and

Particle Swarm Optimization (PSO) [10] . The ACO algorithm mimics

the social behaviour of ants for finding the shortest path between

the nest and a source food. The PSO algorithm simulates the col-

lective behaviour of birds in navigating and hunting. Other swarm

intelligence techniques in the literature are: Artificial Bee Colony

(ABC) algorithm [11] , Cuckoo Search (CS) algorithm [12] , Firefly Al-

gorithm (FA) [13] , Bat Algorithm (BA) [14] , Grey Wolf Optimizer

(GWO) [15–17] , Dolphin Echolocation (DE) [18] , Whale Optimiza-

tion Algorithm (WOA) [19] , Fruitfly Optimization Algorithm (FOA)

[20] , and Harmony Search [21,22] .

Regardless of the difference between evolutionary and swarm

intelligence techniques, the common is the improvement of one

or a set of solutions during optimization. If an algorithm improves

only one solution, it is called individualist algorithm. If a set of

solutions is improved, it is referred as a collective algorithm. In-

dividualist algorithms are beneficial because of the low number

of required function evaluation and simplicity of the overall op-

timization process. However, the probability of local optima stag-

nation is very high. Collective algorithms are able to avoid local

solutions better and exchange information about the search space.

However, such techniques require more number of function eval-

uations. Some of the individualist algorithms are Tabu Search (TS)

[6,23] , hill climbing [24] , Iterated Local Search (ILS) [25] , and Sim-

ulated Annealing (SA) [26] , Variable Neighborhood Search (VNS)

[27] , and Guided Local Search [28] . The well-known collective al-

gorithms are GA, ACO, PSO, DE, and ES.

Despite the merits of the proposed algorithms in the literature,

it has been proved by the No-Free-Lunch (NFL) [29] that none

of these algorithms are able to solve all optimization problems.

In other words, all meta-heuristics perform similar when solving

all optimization problems. This theorem reveals the importance of

new and specific algorithms in different fields because effective-

ness of an algorithm in solving a set of problems does not guaran-

tee its success in different sets of test problems. This is the motiva-

tion of this paper, in which a new meta-heuristic optimization al-

gorithm is first proposed for solving single-objective problems and

then extended to a multi-objective version. The rest of the paper

is organized as follows.

Section 2 reviews the literature and relevant works.

Section 3 presents the inspiration and mathematical model

proposed. The Salp Swarm Algorithm (SSA) and Multi-objective

Salp Swarm Algorithm (MSSA) are proposed in this section as

well. The qualitative and quantitative results of both algorithms

on a variety of benchmark functions are presented and discussed

in Section 4 . Both SSA and MSSA are employed to solve several

challenging real problems in Section 5 . Finally, Section 6 concludes

the work and suggest several future research directions.

2. Related works

This section reviews the state-of-the-art in the field of stochas-

tic optimization. There are many branches in this field such as

single-objective, multi-objective, constrained, dynamic, surrogate-

assisted, many-objective, and so on. Since the algorithms proposed

solve single- and multi-objective optimization problems, the main

focus of this section is on the challenges and related works in

single- and multi- objective optimization fields.

2.1. Single-objective optimization problems

As its name implies, single-objective optimization deals with

one objective. This means there is only one objective to be min-

imized or maximized. This type of optimization might be subject

to a set of constraints as well. The constraints are divided to two
ategories: equality and inequality. Single-objective optimization is

ormulated as a minimization problem as follows (without the loss

f generality):

inimize : F (� x) = { f 1 (� x) } (2.1)

ub ject to : g i (� x) ≥ 0 , i = 1 , 2 , . . . , m (2.2)

 i (� x) = 0 , i = 1 , 2 , . . . , p (2.3)

 b i ≤ x i ≤ u b i , i = 1 , 2 , . . . , d (2.4)

here d is the number of variables, p is the number of equality

onstraints, m is the number of inequality constrained, lb i is the

ower bound of the i th variable, and ub i indicates the upper bound

f the i th variable.

The set of variables, objectives, range of variables, and con-

traints create a search space/landscape. This search space exists

n a d -dimensional space where d is the number of variables. For

D, 2D, and 3D problems, we can easily draw the search space in a

artesian coordinate system and observe their shapes. However, it

s not possible to draw dimensions greater than 3 because they are

eyond the dimensions that we experience every day. Therefore, a

arge number of variables is the first challenge when solving opti-

ization problems.

The range of variables confides the search space and is varied.

he variables themselves can be continuous or discrete, in which

hey create either a continuous or a discrete search space. In a for-

er case, there is an infinite number of points between each two

oints in the search space. In the latter case, however, there is a

nite set of points between two points. Finding the global opti-

um in a continuous space is different from a discrete one, and

ach of them has their own challenges. Although most of the op-

imization problems come with range of variables, there are some

roblems that do not have a specific range to be considered during

ptimization. An example is the problem of training Neural Net-

orks (NNs) [30] . The connection weights and biases can be any

eal number. Solving such problems also need special considera-

ion. For instance, an optimizer might start with an initial range

nd then expand it during optimization.

The constraints limit the search space even further. They create

aps in the search space because the solutions in those regions are

ot suitable for the problem. For instance, the thickness of a pro-

eller blade cannot go below a certain number due to the fragility.

 set of constraints can even split the search space to different

eparated regions. The solutions that violate the constrained re-

ions are called infeasible solutions. In contrast, the solutions in-

ide the constrained areas are called feasible solutions. In the lit-

rature, there are two terms for the parts of the search space that

re inside and outside the constrained areas: feasible and infeasi-

le regions. A constrained search space has the potential to make

n algorithm ineffective despite its good performance in an uncon-

trained search space. Some of the real problems such as Computa-

ional Fluid Dynamic problems have dominated infeasible regions.

herefore, optimization techniques should be equipped with suit-

ble operators [31] to handle constraints as well.

Another challenge when solving optimization problems is the

resence of local solutions. The search space that the variables,

bjective function, and constraints create may be very simple or

omplicated. In most of the works in the literature, the number of

ocal solutions is considered as the main difficulty for optimization

lgorithms. In a single-objective search space there is one best so-

ution (the so-called global optimum) that returns the best objec-

ive value. However, there are usually many other solutions that

eturn values close the objective value of the global optimum. This

ind of solutions are called local solutions because they are locally

he best solution if we consider the search space in their vicin-

ty, but they are not the best solution globally when considering

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 165

t

e

t

a

A

T

e

m

t

m

w

p

v

r

r

t

v

a

r

a

o

t

t

n

t

d

2

m

s

o

i

M

S

h

l

w

c

b

i

t

t

c

o

e

m

a

D

∀[

a

t

t

m

p

a

l

D

i{

o

t

P

i

a

D

t

P

D

t

∀

s

c

b

i

s

t

p

a

m

i

s

o

j

m

fi

b

b

t

h

o

d

c

e

d

c

S

o

t

a
he entire search space. The presence of local solutions causes the

ntrapment of many optimization algorithms. Local optima stagna-

ion refers to the situation where an optimization algorithm finds

 local solution and mistakenly assumes it as the global optimum.

 real search space usually has a large number of local solutions.

herefore, an optimization algorithm should be able to avoid them

fficiently to determine the global optimum.

The convergence speed is also a difficulty when solving opti-

ization problems. An algorithm that is able to avoid local solu-

ions is not necessarily able to converge towards the global opti-

um. Finding the rough location of the global optimum is done

hen an algorithm avoids local solutions. The next step is to im-

rove the accuracy of the rough solutions obtained. The term con-

ergence in the literature refers to the rate or behaviour of an algo-

ithm towards the global optimum. Of course, a quick convergence

esults in local optima stagnation. By contrast, sudden changes in

he solutions lead to local optima avoidance but reduce the con-

ergence speed towards the global optimum. These two trade-offs

re the main challenges that an algorithm deals with when solving

eal problems. Converge speed is essential in finding an accurate

pproximation of the global optimum.

There are other types of difficulties when solving real single-

bjective search spaces such as: deceptive optimum, isolation of

he optimum, uncertainty, noisy objective function, dynamic objec-

ive function, reliable optimum, and so on. Each of these difficulties

eeds special consideration. These concepts are out of the scope of

his work, so interested readers are referred to the surveys con-

ucted by Boussaid [32] .

.2. Multi-objective optimization problems

As its name implies, multi-objective optimization deals with

ore than one objective. All of the objectives should be optimized

imultaneously to solve multi-objective problems. Multi-objective

ptimization is formulated as follows (without the loss of general-

ty):

inimize : F (� x) = { f 1 (� x) , f 2 (� x) , . . . , f o (� x) } (2.5)

ub ject to : g i (� x) ≥ 0 , i = 1 , 2 , . . . , m (2.6)

 i (� x) = 0 , i = 1 , 2 , . . . , p (2.7)

 b i ≤ x i ≤ u b i , i = 1 , 2 , . . . , n (2.8)

here o is the number of objectives, m is the number of inequality

onstraints, p is the number of equality constraints, lb i is the lower

ound of the i th variable, and ub i indicates the upper bound of the

 th variable.

The nature of such problems prevents us from comparing solu-

ions using the relational operators. This is because there is more

han one criterion to compare solutions. With one objective we can

onfidently say if a solution is better than another using relational

perators, but with more than one objective we need other op-

rator(s). The main operator to compare two solutions considering

ultiple objectives is called Pareto optimal dominance and defined

s follows [33] :

efinition 1. Pareto domination:

Assuming the following two vectors: � x = (x 1 , x 2 , . . . , x k) and

�
 y =

(y 1 , y 2 , . . . , y k) .

Vector x dominates vector y (x ≺ y) if and only if :

 i ∈ { 1 , 2 , . . . , k } ,
[

f i

(→

x

)
≤ f i

(→

y
)]

∧ ∃ i ∈ { 1 , 2 , . . . , o } ,

f i

(→

x

)
< f i

(→

y
)]

(2.9)
s
Inspecting Eq. (2.9) , it may be seen that a solution is better than

nother if it has equal and at least one better value in the objec-

ives. In this case, it is said that a solution dominates the other. If

his does not hold for two solutions, they are called Pareto opti-

al or non-dominated solutions. The answers for a multi-objective

roblem are the non-dominated solutions. The Pareto optimality is

lso important in multi-objective optimization and defined as fol-

ows [34] :

efinition 2. Pareto optimality:

Assuming that � x ∈ X , � x is a Pareto-optimal solution if and only

f:

∃/ →

y ∈ X | →

y ≺→

x

}

(2.10)

For every multi-objective problem, there is a set of Pareto

ptimal solutions, which represents the best trade-offs between

he multiple objectives. In optimization, this solution set is called

areto optimal set. The projection of the Pareto optimal solutions

n the objective space is called Pareto optimal front. These two sets

re defined as follows:

efinition 3. Pareto optimal set:

The Pareto set is a set that includes the Pareto optimal solu-

ions:

 s :=

{ →

x ,
→

y ∈ X | � →

y ≺ →

x

}

(2.11)

efinition 4. Pareto optimal front:

This set is consisted of the objective values for the solutions in

he Pareto solutions set:

 i ∈ { 1 , 2 , ..., o } , P f :=

{

f i

(→

x

)
| →

x ∈ P s

}

(2.12)

With these four definitions, solutions can be easily compared to

olve multi-objective problems. The set of variables, objectives, and

onstraints again create a search landscape. The main difference

etween a multi-objective search space and a single-objective one

s that there are multiple objectives. Therefore, illustration of the

earch space is difficult for problems with more than three objec-

ives. This is why researchers normally consider two search spaces:

arameter space and objective space.

Similarly to single-objective search spaces, the range of vari-

bles determine the boundaries of the search space in each di-

ension and constrains confide them. The effects of equality and

nequality constraints on a multi-objective search space are very

imilar to those in a single-objective search space. For every multi-

bjective problem, there is a set of best trade-offs between ob-

ectives which is called true Pareto optimal front. There are three

ain challenges for a multi-objective optimization technique to

nd a Pareto optimal front: local fronts, convergence, and distri-

ution of solutions (coverage).

Local solutions and slow convergence are the common issues

etween single- and multi-objective optimization fields. Due to

he presence of multiple solutions in the Pareto optimal front,

owever, the distribution of solutions is also important in multi-

bjective optimization. The ultimate goal is to find a uniformly

istributed front to give decision makers a lot of options for de-

ision making. Multi-objective problems have fronts with differ-

nt shapes: concave, convex, linear, separated, etc. Finding a well-

istributed Pareto optimal front for each of these shapes is very

hallenging and should be addressed well in a posteriori methods.

uch methods are discussed in detail in the Section 2.4 .

There are other types of difficulties when solving real multi-

bjective problems: deceptive front, isolation of the front, uncer-

ainty, noisy objective functions, dynamic objective functions reli-

ble fronts, and so on. Each of these difficulties need special con-

ideration. These concepts are out of the scope of this work, so

166 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

o

l

c

I

t

t

w

D

s

t

a

t

i

T

s

T

[

[

t

[

t

[

i

r

c

r

2

p

t

b

t

o

o

t

m

a

P

d

m

n

m

f

o

t

w

b

o

a

t

t

t

b

p

s

t

t

u

r

l
interested readers are referred to the surveys conducted by Zhou

et al. [35] .

2.3. Single-objective optimization algorithms

The optimization algorithms in the literature can be divided

into two main classes: deterministic versus stochastic. Determin-

istic algorithms always find the same solution for a given prob-

lem if they start with the same starting point. The main advantage

of such methods is reliability because they definitely find a solu-

tion in each run. However, local optima stagnation is a drawback

since these algorithms usually do not have randomized behaviours

when solving optimization problems. The second class of optimiza-

tion algorithms, stochastic methods, benefits from stochastic oper-

ators. This results in finding different solutions even if the start-

ing point remains unchanged and consequently makes stochastic

algorithms less reliable compared to the deterministic approaches.

However, the randomized behaviour promotes local optima avoid-

ance, which is the main advantage of stochastic algorithms. The re-

liability of the stochastic methods can be improved by fine tuning

and increasing the number of runs.

Stochastic optimization algorithms are divided into two cate-

gories: individualist and collective. In the first family, a stochastic

algorithm starts and perform optimization with a single solution.

This solution is randomly changed and improved for a pre-defined

number of steps or satisfaction of an end criterion. The most well-

regarded algorithms in this family are TS [6,23] , hill climbing [24] ,

ILS [25] , and SA [26] . The advantage of this group is the low com-

putational cost and the need for a low number of function evalua-

tions.

However, collective techniques create multiple random solu-

tions and evolve them during optimization. The collection of solu-

tions usually collaborates to better determine the global optimum

in the search space. The most notable algorithms in this field are:

GA, PSO, ACO, and DE. Multiple solutions decrease the chance of

local optima stagnation, which is the main advantage of collec-

tive algorithms. However, each of the solutions need one func-

tion evaluation and establishing effective collaborations between

the solutions is challenging. Despite these two drawbacks, col-

lective stochastic optimization techniques are very popular these

days. The application of such methods can be found widely in sci-

ence and industry. One of the main reason is the high capability in

avoiding local solutions.

As mentioned above, real search spaces have a significantly

large number of local solutions. Therefore, collection of solutions

and random components both contribute in finding a better solu-

tion for real problems. Another advantage of collective algorithms

is flexibility. Such techniques are able to collaboratively overcome

the challenges in different types of search spaces. There is also no

need for gradient information because stochastic collective algo-

rithms consider a problem as a black box and only monitor the

inputs, outputs, and constraints of the problem. Last but not least,

simplicity is the other advantage because most of the collective al-

gorithms mimic simple rules in swarms, flocks, schools, or packs.

Regardless of the differences between collective stochastic al-

gorithms, they all follow the same procedure to approximate the

global optimum. The optimization first starts by a set of random

solutions, and they are required to combine and change randomly,

rapidly, and abruptly. This causes that the solutions move glob-

ally. This process is called exploration of the search space be-

cause the solutions are gravitated towards different regions of the

search space by sudden changes. The primary goal in the explo-

ration phase is to determine promising areas of the search space

and to avoid local solutions. After enough exploration, the solu-

tions start changing gradually and move locally. This process is

called exploitation where the main goal is to improve the accuracy
f the best solutions obtained in the exploration phase. Although

ocal optima avoidance may occur in the exploitation phase, the

overage of search space is not as broad as the exploration phase.

n this case, the solutions avoid local solutions in the vicinity of

he global optimum.

The above paragraph shows that the exploration and exploita-

ion phases seek conflicting objectives. The question here is as to

hen the best time is to transit from exploration to exploitation.

ue to the stochastic nature of collective algorithms and unknown

hape of the search space, no one is able to answer this ques-

ion. Therefore, most of the algorithms smoothly require the search

gents to move from exploration phase to exploitation using adap-

ive mechanisms [36] .

Due to the advantages of stochastic collective algorithms, there

s an increasing interest in proposing new algorithms in this field.

hey can be divided to four main classes based on inspiration:

warm-inspired, physics-inspired, evolutionary, and human-based.

he most popular swarm inspired algorithms are PSO, ACO, ABC

11] optimization, CS [12] , FA [13] , GWO [15] , and Krill Herd (KH)

37–39] algorithm. The most popular physics-based ones are Gravi-

ational Search Algorithm (GSA) [40] , Charged System Search (CSS)

41] , Central Force Optimization (CFO) [42] , and Ray Optimiza-

ion (RO) [43] . The most popular evolutionary algorithms are BBO

8] , ES [5] , GA, and DE [4] . Finally, the most well-known human-

nspired group are Teaching and Learning Based Optimization algo-

ithms (TLBO) [44] , Seeker Optimization Algorithm (SOA) [45] , Soc-

er League Competition (SLC) algorithm [46] , and Mine Blast Algo-

ithm (MBA) [47] .

.4. Multi-objective optimization algorithms

There are two main approaches for solving multi-objective

roblems: a priori versus a posteriori [48] . In the former method,

he multi-objective problem is converted to a single-objective one

y aggregating the objectives. This is done using a set of weights

hat is usually defined by an expert and dictates the importance

f each objective. After aggregation of the objectives, a single-

bjective optimizer can be employed to find the optimal solu-

ion. The main drawback of this technique is that the Pareto opti-

al set and front can be constructed by re-running the algorithm

nd changing the weights. In addition, the concave regions of the

areto optimal front cannot be determined due to the nature of ad-

itive weights in such methods [49–51] . There are some improve-

ents in the literature for the former issue but all of them still

eed to be run multiple times to find more than one Pareto opti-

al solution [52] .

However, a posteriori approach maintains the multi-objective

ormulation of the problem. The main advantage is that the Pareto

ptimal set can be determined in a single run [53] . Also, any

ype of Pareto optimal front can be approximated and there is no

eight to be defined by experts. With this approach, there would

e many different solutions for decision maker compared to a pri-

ri methods. On the other hand, the main drawback is the need for

ddressing multi-objectives and special mechanisms to determine

he Pareto optimal set and front. This make a posteriori optimiza-

ion more challenging and computationally more expensive. Since

he advantages of a posteriori optimization are more than its draw-

acks compared to a priori methods, the focus of this work is on a

osteriori multi-objective optimization.

Multi-objective optimization techniques in the literature of

tochastic optimization have been equipped with new mechanisms

o find an accurate approximation of the true Pareto optimal solu-

ions and front with a uniform distribution. One of the most pop-

lar algorithms in this field is Multi-Objective Evolutionary Algo-

ithm based on Decomposition (MOEA/D) [54] . This algorithm uti-

izes an aggregation method to create sub-problems from a given

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 167

Fig. 1. (a) Individual salp, (b) swarm of salps (salps chain).

p

m

i

o

e

t

m

e

p

P

s

o

a

o

a

M

p

[

N

[

i

s

l

o

t

t

w

d

2

a

t

t

s

e

w

n

a

w

a

[

i

m

t

i

b

l

t

a

r

s

i

3

3

b

T

p

s

s

fi

t

w

d

i

v

a

f

3

s

t

o

b
roblem. Each sub-problem is a single-objective problem but the

ain difference between MOEA/D and a pure aggregation method

s that sub-problems are optimized by using information from

ther neighbouring sub-problems. In other words MOEA/D uses

volutionary operators to combine and evolve sub-problems over

he course of generations. This algorithm has several improve-

ents and variants that can be found in [35] .

DE-based methods [55,56] have been also popular in the lit-

rature. For designing the multi-objective version of DE, the re-

roduction operators have been modified widely. For instance in

areto-frontier Differential Evolution (PDE) [57,58] the parents are

elected from the set of non-dominated solutions to perform cross

ver. In PSO-based techniques, finding non-dominated solutions

nd updating non-dominated solutions are easy but choosing one

f them as the best solution (gbest or pbest in PSO for instance)

nd storing the most distributed ones are challenging [59,60] .

any works have been done recently in this area. Popular ap-

roaches are: using roulette wheel selection [59,61,62] , niching

63–65] , and sigma method [66] .

Undoubtedly, the most popular multi-objective algorithm is

on-dominated Sorting Genetic Algorithm version 2 (NSGA-II)

67,68] . This algorithm sorts the individuals based on their dom-

nation level. This means that non-dominated solutions are as-

igned rank 1, individuals that are dominated by the rank one so-

utions are assigned rank two, and so on. The selection and cross

ver are then done between the individuals ranked. The lower

he rank number, the higher probability of selection and participa-

ion in generating the new population. NSGA-II was also equipped

ith a new niching operator to maintain high distribution of non-

ominated solutions obtained across all objectives.

.5. Contributions of the work

Despite the merits of the single-objective and multi-objective

lgorithms mentioned above, the NFL theorem says that none of

hem is able to solve all optimization problems [29] . This means

hat there is always possibility that a new-comer algorithm shows

uperior results on the current and/or new problems. In the lit-

rature no work simulates the behaviour of salp swarm in nature

hile salps form the biggest swarms on the planet and efficiently

avigate and forage in the ocean. NFL and the lack of salp-inspired

lgorithm in the literature are the main motivations of the current
ork. It is worth mentioning here that the author has proposed

 number of algorithms including Moth-Flame Optimization (MFO)

69] and GWO [15] recently. The algorithm proposed in this work

s completely different in terms of inspiration, mathematical for-

ulation, and real-world application. The MFO algorithm mimics

he navigation of moths in nature and GWO simulates the hunt-

ng method of grey wolves, whereas the SSA algorithm is proposed

ased on the swarming behaviour of salps for the first time in the

iterature. In addition, the inspiration and mathematical model of

his work completely differ from other publications written by the

uthor in [70–73] . The following section discusses the main inspi-

ation of the work, proposes mathematical models to simulate a

alp swarm, and introduces two optimization algorithms for solv-

ng optimization problems with single of multiple objectives.

. Inspiration, mathematical model, and Salp Swarm Algorithm

.1. Inspiration

Salps belong to the family of Salpidae and have transparent

arrel-shaped body. Their tissues are highly similar to jelly fishes.

hey also move very similar to jelly fish, in which the water is

umped through body as propulsion to move forward [74] . The

hape of a salp is shown in Fig. 1 (a).

The biological researches about this creature is in its early mile-

tones mainly because their living environments are extremely dif-

cult to access, and it is really difficult to keep them in labora-

ory environments. One of the most interesting behaviour of salps,

hich is of interest in the paper, is their swarming behaviour. In

eep oceans, salps often form a swarm called salp chain. This chain

s illustrated in Fig. 1 (b). The main reason of this behaviour is not

ery clear yet, but some researchers believe that this is done for

chieving better locomotion using rapid coordinated changes and

oraging [75] .

.2. Proposed mathematical model for moving salp chains

There is little in the literature to mathematically model the

warming behaviours [76] and population of salps [77] . In addi-

ion, there is no mathematical model of salp swarms for solving

ptimization problems while swarms of bees, ants, and fishes have

een widely modelled and used for solving optimization problems.

168 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

f

a

c

g

h

p

c

i

t

i

s

d

p

a

m

i

s

r

i

e

f

3

c

l

b

g

t

i

t

s

i

I

t

b

T

g

I

b

a

t

t

s

s

b

e

o

s

l

t

p

t

a

s

1 The source code of the SSA algorithm is publicly available at https://au.

mathworks.com/matlabcentral/fileexchange/63745- ssa- - salp- swarm- algorithm and

http://www.alimirjalili.com/Projects.html .
This subsection proposes the first model of salp chains in the liter-

ature for the purpose of solving optimization problems.

To mathematically model the salp chains, the population is first

divided to two groups: leader and followers. The leader is the salp

at the front of the chain, whereas the rest of salps are considered

as followers. As the name of these salps implies, the leader guides

swarm and the followers follow each other (and leader directly of

indirectly).

Similarly to other swarm-based techniques, the position of salps

is defined in an n -dimensional search space where n is the num-

ber of variables of a given problem. Therefore, the position of all

salps are stored in a two-dimensional matrix called x . It is also as-

sumed that there is a food source called F in the search space as

the swarm’s target.

To update the position of the leader the following equation is

proposed:

x 1 j =

{

F j + c 1
((

u b j − l b j
)
c 2 + l b j

)
c 3 ≥ 0

F j − c 1
((

u b j − l b j
)
c 2 + l b j

)
c 3 < 0

(3.1)

where x 1
j

shows the position of the first salp (leader) in the

j th dimension, F j is the position of the food source in the j th

dimension, ub j indicates the upper bound of j th dimension, lb j in-

dicates the lower bound of j th dimension, c 1 , c 2 , and c 3 are random

numbers.

Eq. (3.1) shows that the leader only updates its position with

respect to the food source. The coefficient c 1 is the most important

parameter in SSA because it balances exploration and exploitation

defined as follows:

c 1 = 2 e −(4 l L)
2

(3.2)

where l is the current iteration and L is the maximum number of

iterations.

The parameter c 2 and c 3 are random numbers uniformly gener-

ated in the interval of [0,1]. In fact, they dictate if the next position

in j th dimension should be towards positive infinity or negative in-

finity as well as the step size.

To update the position of the followers, the following equations

is utilized (Newton’s law of motion):

x i j =

1

2

a t 2 + v 0 t (3.3)

were i ≥ 2, x i
j

shows the position of i th follower salp in j th dimen-

sion, t is time, v 0 is the initial speed, and a =

v f inal

v 0
where v =

x −x 0
t .

Because the time in optimization is iteration, the discrepancy

between iterations is equal to 1, and considering v 0 = 0, this equa-

tion can be expressed as follows:

x i j =

1

2

(
x i j + x i −1

j

)
(3.4)

where i ≥ 2 and x i
j

shows the position of i th follower salp in j th

dimension.

With Eqs. (3.1) and (3.4), the salp chains can be simulated.

3.2. Swarm simulation

In order to see the effects of the above mathematical model

proposed, a simulation is done in this subsection. Twenty salps

are randomly placed on a search space with stationary or moving

sources of food. The position of the salp chains and history of each

salp are drawn in Figs. 2–5 . Note that the blue point in the figures

shows the position of food source and the darkest filled circle is

the leading salp. The follower salps are coloured with grey based

on their position in the salp chain with respect to the leader. In-

specting the behaviour of salp chain over nine consecutive itera-

tions in Figs. 2 and 4 , it may be observed that the swarm can be
ormed and moved using the equation proposed effectively right

fter the first iteration. Also, it can be seen that the leading salp

hanges its position around the food source and follower salps

radually follow it over the course of iterations. The same model

as been utilized for both simulations and the merits of the model

roposed in both 2D and 3D spaces are evident in Figs. 2 and 4 . It

an be stated that the model is able to show the same behaviour

n an n -dimensional space.

Figs. 3 and 5 show the position history of salps around a sta-

ionary and mobile food sources in 2D and 3D space after 100

terations. The points searched around the stationary food source

how that the salps effectively move around the search space. The

istribution of points is reasonable and show that the model pro-

osed is able to explore and exploit the space around the station-

ry food source. Also, Figs. 3 and 5 show that the mathematical

odel proposed requires salps in the salp chain to chase a mov-

ng food source. The distribution of the points searched around the

tart point is higher than the end point. This is due to the c 1 pa-

ameter which controls exploration and exploitations. These find-

ngs evidence that the model of salp chain movement is able to

xplore and exploit the space around both stationary and mobile

ood sources.

.3. Single-objective Salp Swarm Algorithm (SSA)

Needless to say, the mathematical model for simulating salp

hains cannot be directly employed to solve optimization prob-

ems. In other words, there is a need to tweak the model a little

it to make it applicable to optimization problems. The ultimate

oal of a single-objective optimizer is to determine the global op-

imum. In the SSA swarm model, follower salps follow the lead-

ng salp. The leading salp also moves towards the food source. If

he food source be replaced by the global optimum, therefore, the

alp chain automatically moves towards it. However, the problem

s that the global optimum of optimization problems is unknown.

n this case, it is assumed that the best solution obtained so-far is

he global optimum and assumed as the food source to be chased

y the salp chain.

The pseudo code of the SSA algorithm is illustrated in Fig. 6 . 1

his figure shows that the SSA algorithm starts approximating the

lobal optimum by initiating multiple salps with random positions.

t then calculates the fitness of each salp, finds the salp with the

est fitness, and assigns the position of the best salp to the vari-

ble F as the source food to be chased by the salp chain. Meantime

he coefficient c 1 is updated using Eq. (3.2) . For each dimension,

he position of leading salp is updated using Eq. (3.1) and the po-

ition of follower salps are updated utilizing Eq. (3.4) . If any of the

alp goes outside the search space, it will be brought back on the

oundaries. All the above steps except initialization are iteratively

xecuted until the satisfaction of an end criterion.

It should be noted that the food source will be updated during

ptimization because the salp chain is very likely to find a better

olution by exploring and exploiting the space around it. The simu-

ations in the Section 3.2 show that the salp chain modelled is able

o chase a moving food source. Therefore, the salp chain has the

otential to move towards the global optimum that changes over

he course of iterations. To see how the proposed salp chain model

nd SSA algorithm are effective in solving optimization problems,

ome remarks are listed as follows:

https://au.mathworks.com/matlabcentral/fileexchange/63745-ssa�salp-swarm-algorithm
http://www.alimirjalili.com/Projects.html

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 169

-10 -5 0 5 10
-10

-5

0

5

10
t = 0

-10 -5 0 5 10
-10

-5

0

5

10
t = 2

-10 -5 0 5 10
-10

-5

0

5

10
t = 4

-10 -5 0 5 10
-10

-5

0

5

10
t=6

-10 -5 0 5 10
-10

-5

0

5

10
t=8

-10 -5 0 5 10
-10

-5

0

5

10
t = 10

-10 -5 0 5 10
-10

-5

0

5

10
t = 12

-10 -5 0 5 10
-10

-5

0

5

10
t = 14

-10 -5 0 5 10
-10

-5

0

5

10
t=16

Fig. 2. Slap chain movement around a stationary source of food in a 2D space.

-20 -10 0 10 20
-20

-10

0

10

20

-20 -10 0 10 20
-20

-10

0

10

20

-5 0 5

-5

0

5

-5 0 5

-5

0

5

Start point End point

Fig. 3. Search history around stationary and mobile food sources in a 2D space after 100 iterations.

• SSA algorithm saves the best solution obtained so far and as-

signs it to the food source variable, so it never get lost even if

the whole population deteriorates.
• SSA algorithm updates the position of the leading salp with re-

spect to the food source only, which is the best solution ob-

tained so far, so the leader always explores and exploits the

space around it.
• SSA algorithm updates the position of follower salps with re-

spect to each other, so they move gradually towards the leading

salp.
• Gradual movements of follower slaps prevent the SSA algorithm

from easily stagnating in local optima.
• Parameter c 1 is decreased adaptively over the course of itera-

tions, so the SSA algorithm first explores the search space and

then exploits it.

170 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

-10
0

10

-10

0

10
-10

0

10

t = 0

-10
0

10

-10

0

10
-10

0

10

t = 2

-10
0

10

-10

0

10
-10

0

10

t = 4

-10
0

10

-10

0

10
-10

0

10

t = 6

-10
0

10

-10

0

10
-10

0

10

t = 8

-10
0

10

-10

0

10
-10

0

10

t=10

-10
0

10

-10

0

10
-10

0

10

t = 12

-10
0

10

-10

0

10
-10

0

10

t = 14

-10
0

10

-10

0

10
-10

0

10

t=16

Fig. 4. Slap chain movement around a stationary source of food in a 3D space.

-20

0

20 -20
0

20

-20

0

20

-20

0
20

-20

0

20
-20

0

20

-2
0

2 -2
0

2

-2

0

2

-2
0

2
-2

0
2

-5
0
5

End point

Start point

Fig. 5. Search history around stationary and mobile food sources in a 3D space after 100 iterations.

t

t

t

i

i

t

t

a

• SSA algorithm has only one main controlling parameter (c 1).
• SSA algorithm is simple and easy to implement.

These remarks make the SSA algorithm theoretically and poten-

tially able to solve single-objective optimization problems with un-

known search spaces. The adaptive mechanism of SSA allows this

algorithm to avoid local solutions and eventually finds an accu-

rate estimation of the best solution obtained during optimization.

Therefore, it can be applied to both unimodal and multi-modal

problems. The above-mentioned advantages potentially allow SSA
o outperform recent algorithms (MFO, GWO, ABC, etc). However,

his cannot be guaranteed for all optimization problems according

o the NFL theorem.

Note that the computational complexity of the SSA algorithm

s of O (t (d ∗n + Cof ∗n)) where t shows the number of iterations, d

s the number of variables (dimension), n is the number of solu-

ions, and Cof indicates the cost of objective function. In Section 4 ,

hese claims are investigated experimentally on both benchmark

nd real-world problems.

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 171

Initialize the salp population xi (i = 1, 2, ..., n) considering ub and lb
while (end condition is not satisfied)
Calculate the fitness of each search agent (salp)
F=the best search agent
Update c1 by Eq. (3.2)

for each salp (xi)
if (i==1)

Update the position of the leading salp by Eq. (3.1)
else

Update the position of the follower salp by Eq. (3.4)
end

end
Amend the salps based on the upper and lower bounds of variables

end
return F

Fig. 6. Pseudo code of the SSA algorithm.

3

p

a

d

n

l

a

n

i

O

s

m

u

t

a

f

I

n

n

t

n

e

a

i

t

s

s

r

s

i

t

h

i

b

m

T

A

n

c

f2

f1
Maximize

ezi
mixa

M

Best candidates for removing from
repository if it becomes full

Fig. 7. Update mechanism of the repository when it is full.

Initialize the salp population xi (i = 1, 2, ..., n) considering ub and lb
while (end criterion is not met)

Calculate the fitness of each search agent (salp)
Determine the non-dominated salps
Update the repository considering the obtained non-dominated salps
if the repository becomes full

Call the repository maintenance procedure to remove one repository resident
Add the non-dominated salp to the repository

end
Choose a source of food from repository: =SelectFood(repository)
Update c1 by Eq. (3.2)
for each salp (xi)

if (i==1)
Update the position of the leading salp by Eq. (3.1)

else
Update the position of the follower salp by Eq. (3.4)

end
end
Amend the salps based on the upper and lower bounds of variables

end
return repository

Fig. 8. Pseudo code of the MSSA algorithm.

(

r

d

h

n

o

b

s

t

f

n

a

n

t

l

t

l

t

F

n

a

S

2 The source code of the MSSA algorithm is publicly available at https://au.

mathworks.com/matlabcentral/fileexchange/63746- mssa- - multi- objective- salp-

swarm-algorithm and http://www.alimirjalili.com/Projects.html .
.4. Multi-objective Salp Swarm Algorithm (MSSA)

As discussed in Section 2 , the solution for a multi-objective

roblem is a set of solutions called the Pareto optimal set. The SSA

lgorithm is able to drive salps towards the food source and up-

ates it over the course of iterations. However, this algorithm is

ot able to solve multi-objective problems mainly due to the fol-

owing two reasons:

• SSA only saves one solution as the best solution, so it can-

not store multiple solutions as the best solutions for a multi-

objective problem.
• SSA updates the food source with the best solution obtained

so far in each iteration, but there is no single best solution for

multi-objective problems.

This first issue is tackled by equipping the SSA algorithm with

 repository of food sources. This repository maintains the best

on-dominated solutions obtained so far during optimization and

s very similar to the archives in Multi-Objective Particle Swarm

ptimization (MOPSO) [78] . The repository has a maximum size to

tore a limited number of non-dominated solutions. During opti-

ization, each salp is compared against all the repository residents

sing the Pareto dominance operators. If a salp dominates a solu-

ion in the repository, they have to be swapped. If a salp dominates

 set of solutions in the repository, they all should be removed

rom the repository and the salp should added in the repository.

f at least one of the repository residents dominates a salp in the

ew population, it should be discarded straight away. If a salp is

on-dominated in comparison with all repository residents, it has

o be added to the archive.

These rules can guarantee that the repository always stores the

on-dominated solutions obtained so far by the algorithm. How-

ver, there is a special case where the repository becomes full and

 salp is non-dominated in comparison with the repository res-

dents. Of course, the easiest way is to randomly delete one of

he solutions in the archive and replace it with the non-dominated

alp. A wiser way is to remove one of the similar non-dominated

olutions in the repository. Since a posteriori multi-objective algo-

ithm should be able to find uniformly distributed Pareto optimal

olutions, the best candidate to remove from the archive is the one

n a populated region. This approach improves the distribution of

he archive residents over the course of iterations.

To find the non-dominated solutions with populated neighbour-

ood, the number of neighbouring solutions with a certain max-

mum distance is counted and assumed. This distance is defined

y �
 d =

−−→

max −−−→

min
repository size

where max and min are two vectors for storing

aximum and minimum values for every objective respectively.

he repository with one solution in each segment is the best case.

fter assigning a rank to each repository resident based on the

umber of neighbouring solutions, a roulette wheel is employed to

hoose one of them. The more number of neighbouring solutions
the larger rank number) for a solution, the higher probability of

emoving it from the repository. An example of this repository up-

ate mechanism is illustrated in Fig. 7 . Note that the neighbour-

ood should be defined for all the solutions, but only four of the

on-dominated solutions are investigated in this figure.

As mentioned above, the second issue when solving multi-

bjective problems using SSA is the selection of the food source

ecause there is more than one best solution in a multi-objective

earch space. Again, the food source can be chosen randomly from

he repository. However, a more appropriate way is to select it

rom a set of non-dominated solutions with the least crowded

eighbourhood. This can be done using the same ranking process

nd roulette wheel selection employed in the repository mainte-

ance operator. The main difference is the probability of choosing

he non-dominated solutions. In the archive maintenance, the so-

utions with higher rank (crowded neighbourhood) are more likely

o be chosen. By contrast, the less populated neighbourhood (the

ower rank number) for a non-dominated solution in the reposi-

ory, the higher probability of being selected as the food source. In

ig. 7 for instance, the non-dominated solutions in the middle with

o neighbouring solution has the highest probability to be chosen

s the food source. After all, the pseudo code of the Multi-objective

alp Swarm Algorithm (MSSA) is shown in Fig. 8 . 2

https://au.mathworks.com/matlabcentral/fileexchange/63746-mssa�multi-objective-salp-swarm-algorithm
http://www.alimirjalili.com/Projects.html

172 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

4

a

a

s

i

a

o

r

S

a

o

p

c

d

w

p

o

s

m

T

i

f

T

v

p

m

a

t

a

t

f

A

r

a

u

W

t

p

fi

t

w

f

S

F

S

s

c

b

w

i

c

m

t

l

e

t

a

p

g
Fig. 8 shows that the MSSA algorithm first initializes the pop-

ulation of salps with respect to upper bounds and lower bourns

of variables. This algorithm then calculates the objective values for

each salps and finds the non-dominated ones. The non-dominated

solutions are added to the archive if the repository is not full. If

the repository is full, the repository maintenance is run to delete

the solutions with crowded neighbourhood. In this step, the so-

lutions are first ranked and then selected using a roulette wheel.

After removing enough number of repository residents, the non-

dominated salps can be added to the repository. After updating

the repository, a food source is selected from the non-dominated

solutions in the repository with the least crowded neighbourhood.

Similarly to the archive maintenance, this is done by ranking the

solutions and employing a roulette wheel. The next step is to up-

date c 1 using Eq. (3.2) and update the position of leading/follower

salps using either Eq. (3.1) or (3.4) . If during updating position pro-

cess a salp goes outside of the boundaries, it will be brought back

on the boundary. Finally, all the above steps except initialization

are repeated until the satisfaction of an end condition.

To see how effective the MSSA algorithm is, some comments

are:

• The non-dominated solutions obtained so far are stored in a

repository, so they never get lost even if the entire population

deteriorates in an iteration.
• The solutions with crowded neighbourhood are discarded ev-

ery time the repository maintenance is called, which results in

improving the coverage of non-dominated solutions across all

objectives.
• A food source is selected from the list of non-dominated solu-

tions with the least number of neighbouring solutions, which

leads the search towards the less crowded regions of the Pareto

optimal front obtained and improves the coverage of solutions

found.
• MSSA inherits the operators of SSA due to the use of a simi-

lar population division (leading and follower salps) and position

updating process.
• MSSA algorithm has only two main controlling parameter (c 1

and archive size).
• MSSA algorithm is simple and easy to implement.

These comments show that the MSSA algorithm is logically able

to find accurate Pareto optimal solutions with high distribution

across all objectives. Note that the computational complexity of

MSSA algorithm is of O (t (d ∗n + Cof ∗n + M

∗n 2)) where M indicates

the number of objectives t shows the number of iterations, d is

the number of variables (dimension), n is the number of solutions,

and Cof indicates the cost of objective function. In the next sec-

tions, these statements are investigated and proved experimentally

on benchmark and real problems.

4. Results

For proving the theoretical claims pointed out in the previous

sections, a variety of experiments are conducted. Firstly, a set of

qualitative metrics is employed to find out if SSA is better than

other similar algorithms. Secondly, the quantitative results are col-

lected to measure how much better the SSA is compared to simi-

lar algorithms. Finally, the MSSA algorithm is compared to similar

algorithms in the literature. Note that several challenging single-

and multi-objective benchmark problems are utilized in this sec-

tion. The following subsections present the experimental set up for

each of the experimental phases, present the results, and discuss

them in detail.
.1. Qualitative results of SSA and discussion

Qualitative results are mostly derived from the different visu-

lization tools. The most common qualitative results in the liter-

ture of single-objective optimization are convergence curves. Re-

earchers usually store the best solution obtained so far in each

teration and draw them as a line to be able to observe how well

n algorithm improves the approximation of the global optimum

ver the course of iterations. In this study, several other qualitative

esults are utilized as well to clearly observe the performance of

SA when solving different problems.

To generate the qualitative results, the first step is to find a suit-

ble test bed. We definitely need a set of test cases to test SSA and

bserve its performance qualitatively. It is always beneficial to em-

loy a set of standard test beds with different characteristics to

hallenge and benchmark different abilities of an algorithm. Stan-

ard test beds are designed to challenge algorithms in a standard

ay and obviously allow us to conveniently and confidently com-

are an algorithm with others. Diversity of test functions allows

bserving and testing the ability of algorithms from different per-

pectives.

The current benchmark functions can be grouped to three

ain families: unimodal, multi-modal, and composite [7,79–81] .

he landscapes of these classes of test problems are illustrated

n Fig. 9 . It may be observed in this figure that unimodal test

unctions have only one optimum and there are no local optima.

hese types of search spaces are appropriate for testing the con-

ergence speed and exploitive behaviour. Multi-modal and com-

osite benchmark functions have more than one optimum, which

ake them suitable for benchmarking the local optima avoidance

nd explorative behaviour of optimization algorithms. Composite

est functions are usually more challenging than multi-modal ones

nd highly similar to real search spaces. In this subsection, eight of

hese test functions are chosen as case studies. The mathematical

ormulations and shapes of the test functions are presented in the

ppendix A and Fig. 10 respectively.

The qualitative results are collected by different qualitative met-

ics. The first qualitative results are search histories of search

gents in SSA over the course of iteration. Search history figures

sually show the position history of all agents during optimization.

ith saving and illustrating the positions history, we can observe

he sampled regions of the search space by an algorithm and the

robable search patterns in the entire swarm. In a search history

gure, we can see if and how an algorithm explores and exploits

he search space as well. However, we cannot see the order in

hich the algorithm performs exploration and exploitation. There-

ore, we need another qualitative metric. The search history of the

SA algorithm when solving all the test functions are illustrated in

ig. 10 .

Inspecting the search histories in Fig. 10 , it is evident that the

SA algorithm samples the most promising regions of the search

pace. This pattern can be observed in unimodal, multimodal, and

omposite test functions. In unimodal test functions the distri-

ution of sampled point is sparse in the non-promising regions,

hile more sampled points can be seen around the search space

n multi-modal and composite benchmark functions. This is be-

ause of the difficulty of the multi-modal and composite bench-

ark functions and shows how well SSA is able to bias the search

owards promising regions of the search space proportional to the

evel of difficulty of the problem.

Also, this behaviour can support the local optima avoidance and

xploration of the SSA algorithm. On the other hand, the distribu-

ion of sampled points is high around the true global optimum on

ll of the test functions. This observation is able to support ex-

loitation and convergence of the SSA algorithm towards to true

lobal optimum. However, there is a need for more experiments

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 173

F1 F9 F13

Fig. 9. An example of unimodal test function, multi-modal test function, and composite test function.

t

a

t

o

a

s

s

c

T

d

d

t

T

t

p

s

t

t

o

p

n

o

a

m

a

b

o

a

a

t

t

t

o

T

a

c

t

p

t

w

v

p

i

i

t

g

t

m

e

f

t

l

b

s

t

f

o

r

c

t

a

v

4

p

t

t

p

f

t

m

i

i

t

e

s

i

t

h

f

d

p

a

a

b

m

a
o observe if the exploration occurs before exploitation and if this

ssists SSA to improve the accuracy of the approximated global op-

imum. Such analyses are covered in the following paragraphs.

The second qualitative results are collected from the trajectory

f search agents. Since showing the trajectory of all search agents

cross all dimensions results in occlusion and difficulty of analy-

is, the trajectory of the first salp in the first dimension is only

tored and illustrated. These results are collected to observe and

onfirm in which order SSA performs exploration and exploitation.

he trajectory curves when solving the benchmark functions are

epicted in Fig. 10 . This figure shows that the first salp faces sud-

en changes in the initial steps of iterations, gradual changes af-

er the initial steps, and monotonous behaviour in the final steps.

his proves that salps move abruptly at the beginning and tend

o fluctuate gradually proportional to the number of iterations. As

er this observation, SSA first requires the salps to go around the

earch space and causes exploration of the search space. Consecu-

ively, SSA exploits the search space by driving the salps towards

he global optimum and encouraging them to move locally instead

f globally.

The search history and trajectory figures show how SSA ex-

lores and exploits the search space. However, such results do

ot show if exploration and exploitation are beneficial in terms

f improving the first random population and finding an accurate

pproximation (improving) of the global optimum, which are the

ain objectives for all optimization algorithms. In order to observe

nd confirm such behaviours, average fitness of all salps and the

est solution found so far (convergence curve) are saved during the

ptimization process and illustrated in Fig. 10 . The curves for the

verage fitness of salps show that there is a descending trend on

ll the test functions. Since all of the test functions are minimiza-

ion problems, these results prove that the SSA is able to improve

he quality of the population proportional to the number of itera-

ions. Another interesting pattern is the deterioration of the fitness

f the population especially in the initial steps of optimization.

his is due to the effect of exploration, in which salps just churn

round the space. However, the average fitness curve smoothly de-

reases proportional to the iteration number, which is because of

he exploitation phase.

Of course the average fitness curves show how well SSA im-

rove the population during optimization, it cannot be stated that

he approximation of the global optimum also increases. This is

here the convergence diagrams are beneficial. Inspecting the con-

ergence curves in Fig. 10 , it is evident that the fitness of the ap-

roximation of the global optimum obtained in each iteration is

mproved by the SSA algorithm over the course of iterations. This

mprovement is not consistent always as can be seen in some of

he figures. This demonstrates that SSA shows different conver-
 f
ence behaviours when solving different problems. For instance,

he convergence curve is very smooth and steady on the umi-

odal test functions, which shows that SSA benefits from high

xploitation and convergence. In multi-modal and composite test

unctions, however, SSA shows no improvements for some itera-

ions. This is because SSA emphasises exploration in such prob-

ems, which sometimes results in sampling non-promising regions

ut boosting local optima avoidance.

The above qualitative results showed that SSA first explores the

earch space and then exploits it. In addition, the results proved

hat SSA can sample different regions of the search space very ef-

ectively by coving promising regions of the search space. It was

bserved that SSA is capable of improving the quality of a set of

andom solutions for a given problem. Finally, the results and dis-

ussion showed that the accuracy of the approximated global op-

imum is increased by SSA, which is the outcome of a proper bal-

nce of exploration/local optima avoidance and exploitation/ con-

ergence.

.2. Quantitative results of SSA and discussion

Although the qualitative results proved high exploration and ex-

loitation of the SSA algorithm, they cannot show how much good

his algorithm is. This section employs two performance indica-

ors to quantify the performance of the SSA algorithm and com-

ares it with other similar algorithms in the literature. The per-

ormance metrics employed are average and standard deviation of

he best solutions obtained found in 30 independent runs. The for-

er performance metric shows how the SSA algorithm performs

n average, whereas the latter one indicates how stable SSA is dur-

ng all the runs. Although these two indicators are able to measure

he overall performance of SSA, they cannot measure and compare

ach of the runs individually.

In order to compare each of the runs and make sure about the

ignificance of the results, therefore, the Wilcoxon rank-sum test

s conducted in this subsection as well. The p -values that are less

han 0.05 could be considered as strong evidence against the null

ypothesis. For the statistical test, the best algorithm in each test

unction is chosen and compared with other algorithms indepen-

ently. For example, if the best algorithm is SSA, the pairwise com-

arison is done between SSA/PSO, SSA/GSA, and so on. The same

pproach is followed throughout the paper.

The same test functions utilized in the previous section as well

s a few more are employed here (19 in total). However, the num-

er of dimensions is increased to 20. This has been done to bench-

ark the performance of SSA in solving challenging problems with

 large number of variables. Note that the details of these test

unctions are available in the Appendix A . To verify the results, the

174 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

-100
0

100

-100

0

100
0

1

2

3

x 104 F1 Search history

-100 0 100
-100

-50

0

50

100

0 100 200
10-20

10-10

100

1010 Convergence curve

0 100 200
10-20

10-10

100

1010 Average fitness of salps

0 100 200
0

0.5

1

1.5

2
c1

0 100 200
-100

-50

0

50
Trajectory

-10
0

10

-10

0

10
0

50

100

150

F2 Search history

-10 0 10
-10

-5

0

5

10

0 100 200
10-10

10-5

100

105 Convergence curve

0 100 200
10-10

10-5

100

105 Average fitness of salps

0 100 200
0

0.5

1

1.5

2
c1

0 100 200
-10

-5

0

5
Trajectory

-100
0

100

-100

0

100
0
2
4
6
8

x 104 F3 Search history

-100 0 100
-100

-50

0

50

100

0 100 200
10-20

10-10

100

1010 Convergence curve

0 100 200
10-20

10-10

100

1010 Average fitness of salps

0 100 200
0

0.5

1

1.5

2
c1

0 100 200
-80

-60

-40

-20

0
Trajectory

-5
0

5

-5

0

5
0

50

100

F9 Search history

-5 0 5
-5

0

5

0 100 200
10-20

10-10

100

1010 Convergence curve

0 100 200
10-10

10-5

100

105 Average fitness of salps

0 100 200
0

0.5

1

1.5

2
c1

0 100 200
-5

-4

-3

-2

-1

0
Trajectory

-20
0

20
-20

0
20

0

10

20

F10 Search history

-20 0 20

-20

0

20

0 100 200
10-10

10-5

100

105 Convergence curve

0 100 200
10-10

10-5

100

105 Average fitness of salps

0 100 200
0

0.5

1

1.5

2
c1

0 100 200
-30

-20

-10

0

10

20
Trajectory

-5
0

5

-5

0

5
0

500

000

500

F15 Search history

-5 0 5
-5

0

5

0 100 200
101

102

103 Convergence curve

0 100 200
101

102

103

104 Average fitness of salps

0 100 200
0

0.5

1

1.5

2
c1

0 100 200
-5

0

5
Trajectory

-5
0

5

-5

0

5
0

000

000

000

F16 Search history

-5 0 5
-5

0

5

0 100 200
10-10

10-5

100

105 Convergence curve

0 100 200
10-10

10-5

100

105 Average fitness of salps

0 100 200
0

0.5

1

1.5

2
c1

0 100 200
-6

-4

-2

0

2

4
Trajectory

-5
0

5

-5

0

5
0

000

000

F17 Search history

-5 0 5
-5

0

5

0 100 200
102

103

104 Convergence curve

0 100 200
102

103

104 Average fitness of salps

0 100 200
0

0.5

1

1.5

2
c1

0 100 200
-2

0

2

4

6
Trajectory

Fig. 10. Qualitative results: search history, trajectory, average fitness, and convergence.

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 175

Table 1

Results of algorithms on the unimodal test functions.

F SSA PSO GSA BA

Ave std ave std ave std ave std

F1 0.0 0 0 0 0.0 0 0 0 0.2148 0.2663 0.0030 0.0224 0.7518 1.0 0 0 0

F2 0.2272 1.0 0 0 0 0.2858 0.0867 0.0 0 0 0 0.0084 1.0 0 0 0 0.4826

F3 0.0 0 0 0 0.0 0 0 0 0.1502 0.1436 0.0289 0.0374 1.0 0 0 0 1.0 0 0 0

F4 0.0 0 0 0 0.6556 0.3443 0.1023 0.1821 0.0981 0.9059 1.0 0 0 0

F5 0.0 0 0 0 0.0 0 0 0 0.0461 0.0706 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0

F6 0.0 0 0 0 0.0 0 0 0 0.7212 0.5303 0.3944 0.2328 1.0 0 0 0 1.0 0 0 0

F7 0.0028 0.0070 0.0817 0.0635 0.0017 0.0058 1.0 0 0 0 1.0 0 0 0

F FPA SMS FA GA

ave std ave std ave std ave std

F1 0.0240 0.0388 1.0 0 0 0 0.3990 0.1407 0.0845 0.3485 0.3714

F2 0.5394 0.3095 0.5152 0.1338 0.3064 0.0 0 0 0 0.4172 0.0764

F3 0.0034 0.0 0 08 0.2049 0.0508 0.0419 0.0079 0.1049 0.0362

F4 0.1571 0.2651 1.0 0 0 0 0.2571 0.2882 0.0 0 0 0 0.6959 0.0174

F5 0.0031 0.0054 0.7049 0.4865 0.0095 0.0053 0.1056 0.0836

F6 0.0153 0.0561 0.7540 0.3097 0.0410 0.0223 0.1892 0.3023

F7 0.0138 0.0140 0.0 0 0 0 0.0 0 0 0 0.0445 0.0274 0.3625 0.1503

Table 2

Results of multimodal benchmark functions.

F SSA PSO GSA BA

ave std ave std ave std ave std

F8 1.0 0 0 0 0.0071 1.0 0 0 0 0.0094 1.0 0 0 0 0.0026 0.0 0 0 0 1.0 0 0 0

F9 0.4254 0.9502 0.3548 0.6283 0.0 0 0 0 0.3290 0.6155 1.0 0 0 0

F10 0.0598 0.5279 0.5917 0.9783 0.0 0 0 0 0.0 0 0 0 0.9443 0.4541

F11 0.0 0 0 0 0.0 0 0 0 0.8481 0.6827 1.0 0 0 0 0.4911 0.9757 1.0 0 0 0

F12 0.0 0 0 0 0.0 0 0 0 0.0714 0.0572 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0

F13 0.0 0 0 0 0.0 0 0 0 0.0962 0.0911 0.0 0 0 0 0.0 0 01 1.0 0 0 0 1.0 0 0 0

F FPA SMS FA GA

ave std ave std ave std ave std

F8 1.0 0 0 0 0.0021 1.0 0 0 0 0.0 0 0 0 1.0 0 0 0 0.0 0 09 1.0 0 0 0 0.0016

F9 0.5894 0.6006 0.9074 0.5564 0.8299 0.1451 1.0 0 0 0 0.0 0 0 0

F10 0.7708 1.0 0 0 0 1.0 0 0 0 0.2696 0.6937 0.4 4 49 0.8864 0.2961

F11 0.0334 0.1125 0.6303 0.8695 0.0492 0.0327 0.1728 0.1934

F12 0.0 0 0 0 0.0 0 0 0 0.2330 0.0275 0.0 0 01 0.0 0 01 0.0297 0.0252

F13 0.0011 0.0074 0.0939 0.0 0 0 0 0.0 0 08 0.0 0 09 0.0335 0.0438

S

r

v

a

e

o

a

a

p

n

c

g

f

t

s

e

t

u

p

d

g

T

f

W

n

r

i

I

m

l

t

h

o

b

i

d

t

e

c

i

f

v

f

q
SA algorithm is compared against a collection of well-known and

ecent algorithms: PSO, GSA, BA, FPA, SMS, FA, and GA. To pro-

ide a fair comparison, the main controlling parameters of these

lgorithms, number of search agents and maximum iteration, are

qual to 30 and 500 respectively. For other controlling parameters

f each algorithm, the values in the latest version (source code)

re used to ensure the best performance. Each of the algorithms

re run 30 times on each of the test functions and the results are

resented in Tables 1–4 . Note that the results of the algorithms are

ormalized in [0,1] using the min-max normalization to be able to

ompare their performances on different test functions.

The results on the unimodal functions show that the SSA al-

orithm outperforms other algorithms in the majority of the test

unctions. The better mean values show that SSA performs better

han others in average, and the standard deviations prove that this

uperiority is stable. The results of the p -values in Table 4 gen-

rated from the Wilcoxon test show that the superiority is statis-

ically significant. Due to the presence of single optimum in the

nimoal in unimodal test functions, they can benchmark only ex-

loitation and convergence of algorithms. Therefore, these results

emonstrate that SSA benefits from high exploitation and conver-

ence speed.

Inspection of the results on the multi-modal test functions in

able 2 , it may be observed that the SSA algorithm again outper-
orms other algorithms on most of the test functions. The results of

ilcoxon statistical test prove that the results are statistically sig-

ificant because most of the p -values are less than 0.05. The better

esults can be seen in both average and standard deviation, which

ndicate how well and robust SSA is when solving such problems.

n contrast to the unimodal test functions, multi-modal ones have

any optima, in which one of them is the global and the rest are

ocal. The results of the SSA algorithm on these case studies prove

hat this algorithm can explore the search space efficiently. This

igh exploration of SSA causes avoiding the many number of local

ptima in a multi-modal search space.

As can be seen in the results of the algorithms on composite

enchmark functions in Table 3 , SSA is able to show very compet-

tive results in these case studies as well. The average and stan-

ard deviation of the best solution obtained during 30 runs testify

hat this algorithm shows superior and steady performance in av-

rage. The p -values also support the better results of SSA on the

omposite test functions and prove how significant this algorithm

s. Composite functions are the combination of many different test

unctions and offer very challenging test beds. This makes them

ery similar to the real search space that SSA algorithm might

ace when solving a practical problem. Solving such problems re-

uires a very well-timed and well-tuned exploration and exploita-

176 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

Table 3

Results of algorithms on the composite test functions.

F SSA PSO GSA BA

Ave std ave std ave std ave std

F14 0.0557 0.8090 0.4179 1.0 0 0 0 0.1160 0.5572 1.0 0 0 0 0.6024

F15 0.0 0 0 0 0.0 0 0 0 0.4081 0.8317 0.1224 0.5715 1.0 0 0 0 1.0 0 0 0

F16 0.1952 0.1527 0.6181 0.5347 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0

F17 0.0 0 0 0 0.0651 0.4694 0.8406 0.1752 0.9897 1.0 0 0 0 0.9450

F18 0.1417 0.5571 0.3566 0.7841 0.0747 0.1599 1.0 0 0 0 1.0 0 0 0

F19 0.0832 0.7059 0.6883 1.0 0 0 0 0.9811 0.0 0 0 0 1.0 0 0 0 0.2160

F FPA SMS FA GA

ave std ave std ave std ave std

F14 0.0 0 0 0 0.0957 0.5304 0.4176 0.4549 0.0 0 0 0 0.5656 0.1349

F15 0.0176 0.0387 0.4554 0.5404 0.5546 0.4342 0.1868 0.0448

F16 0.3158 0.1006 0.7308 0.2338 0.4585 0.1002 0.5721 0.2255

F17 0.0859 0.0 0 0 0 0.6337 0.3146 0.4893 1.0 0 0 0 0.3465 0.0398

F18 0.0 0 0 0 0.0 0 0 0 0.2885 0.4348 0.2397 0.3315 0.1360 0.1966

F19 0.0 0 0 0 0.0860 0.2839 0.8509 0.8001 0.8833 0.0773 0.0430

Table 4

p -Values obtained from the rank-sum test for the results in Table 1 –3 (N/A stands for not applicable).

F SSA PSO GSA BA FPA SMS FA GA

F1 N/A 0.0 0 0183 0.472676 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F2 0.007285 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F3 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0583 0.0 0 0183 0.0 0 0183 0.0 0 0183

F4 N/A 0.0 0 0183 0.014019 0.0 0 0183 0.031209 0.0 0 0183 0.0 0 044 0.0 0 0183

F5 0.850107 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F6 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F7 0.472676 0.0 0 0183 0.677585 0.0 0 0183 0.0 0 0583 N/A 0.0 0 0183 0.0 0 0183

F8 0.0 0 0183 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F9 0.001706 0.005795 N/A 0.0 0 0246 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F10 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F11 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F12 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 044 8.74E-05 0.0 0 0183 0.0 0 0183

F13 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 6.39E-05 0.0 0 0183 0.0 0 0183

F14 0.10411 0.045155 0.790566 0.0 0 0183 N/A 0.0 0 044 0.0 0 044 0.0 0 0183

F15 N/A 0.002202 0.472509 0.0 0 0183 0.212294 0.0 0 0183 0.0 0 0183 0.0 0 0183

F16 0.0 0 0583 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

F17 N/A 0.0 0 0769 0.57075 0.0 0 0183 0.037635 0.0 0 0183 0.0 0 033 0.0 0 0183

F18 0.14046 5 0.002827 0.025748 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183

F19 0.021134 0.005795 0.0 0 0183 0.0 0 0183 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183

m

f

i

a

v

s

t

a

4

a

a

(

b

1

b

s

5

c

b

v

n
tion. Therefore, these results and findings demonstrate that the SSA

algorithm is able to solve very challenging problems as well.

It is worth discussing here that the exploitation of SSA tends

to be better than its exploration. This can be inferred from the

results of this algorithm on unimodal test functions compared to

multi-modal ones. This is due to the swarm-based nature of this

algorithm, in which abrupt changes in the solutions are lower than

evolutionary algorithms with crossover operators. Despite this fact,

the results show that this is not a concern since the explorative

behaviour of SSA is also good due to the position updating mecha-

nism employed. In fact, mere exploration does not guarantee find-

ing the global optimum, and a proper balance of exploration and

exploitation is required.

4.3. Comparison of SSA with Harmony Search (HS) on

CEC-BBOB-2015 test functions

In this subsection, the proposed SSA algorithm is compared to

HS [21,82,83] , PSO, GSA, and FPA. HS has been widely used [84–

86] and applied to a significant number of problems in the litera-

ture. To better compare and challenge the SSA algorithm, a very

recent test suite called CEC-BBOB-2015 [87] including noiseless

[88] and noisy functions [89] is employed. Each algorithm is run

30 times with 30 solutions and 500 number of iterations. The re-

sults are shown in Table 5 and 6 . Note that the results are nor-
alized again to conveniently compare algorithm on different test

unctions.

Table 5 show that the proposed SSA algorithm is able to signif-

cantly outperform other algorithms on the majority of noiseless

nd noisy test functions in the CEC-BBOB-2015 test suite. The p -

alues in Table 6 suggest that the superiority of SSA is statistically

ignificant. These results show that the proposed algorithm is able

o solve highly challenging test functions with and without noise

s well.

.4. Scalability analysis

Since real-world problems often have a large number of vari-

bles, this subsection analyses the scalability of the proposed SSA

lgorithm. One unimodal (F1) and one multi-modal test functions

F10) with a varied number of parameters are employed. The num-

er of parameters are changed from 50 to 200 with the step size of

0. SSA is run 30 times on each test function with different num-

er of variables and the average of best solution obtained are pre-

ented in Fig. 11 . This experiment is done with 200 solutions and

00 iterations.

Fig. 11 shows that the performance of SSA degrades when in-

reasing the number of variables. This is expected since the num-

er of solutions was fixed during this experiment. The main obser-

ation in this figure is that the performance of SSA does not sig-

ificantly degrade when solving problems with a large number of

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 177

Table 5

Results of SSA, HS, PSO, GSA, and FPA on CEC-BBOB-2015 test suite.

Test function SSA HS PSO GSA FPA

ave std ave std ave std ave std ave std

CEC-BBOB-2015-F1 0.0 0 0 0 0.0 0 0 0 0.4122 0.2752 0.4357 0.3727 1.0 0 0 0 1.0 0 0 0 0.2459 0.2740

CEC-BBOB-2015-F2 0.0147 0.0099 0.0954 0.0431 0.1922 0.1603 1.0 0 0 0 1.0 0 0 0 0.0 0 0 0 0.0 0 0 0

CEC-BBOB-2015-F3 0.0 0 0 0 0.0729 0.1776 0.0 0 0 0 0.3985 0.3658 1.0 0 0 0 1.0 0 0 0 0.2490 0.1598

CEC-BBOB-2015-F4 0.0 0 0 0 0.3758 0.2131 0.1996 0.3212 0.4457 1.0 0 0 0 1.0 0 0 0 0.4058 0.0 0 0 0

CEC-BBOB-2015-F5 0.0 0 0 0 0.3471 0.2791 0.0 0 0 0 0.4836 0.8474 1.0 0 0 0 1.0 0 0 0 0.2821 0.3779

CEC-BBOB-2015-F6 0.0 0 0 0 0.0 0 0 0 0.0492 0.1036 0.2471 0.6694 1.0 0 0 0 1.0 0 0 0 0.0013 0.0 0 06

CEC-BBOB-2015-F7 0.0 0 0 0 0.0 0 0 0 0.3713 0.1727 0.2234 0.2677 1.0 0 0 0 1.0 0 0 0 0.0640 0.0838

CEC-BBOB-2015-F8 0.0 0 0 0 0.0 0 0 0 0.5168 0.8007 0.4621 1.0 0 0 0 1.0 0 0 0 0.6090 0.1163 0.1232

CEC-BBOB-2015-F9 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 1.0 0 0 0 0.2347 0.4027 0.4038 0.9961 0.0391 0.0282

CEC-BBOB-2015-F10 0.0136 0.0205 1.0 0 0 0 0.8395 0.2109 0.3116 0.5740 1.0 0 0 0 0.0 0 0 0 0.0 0 0 0

CEC-BBOB-2015-F101 0.0 0 0 0 0.0 0 0 0 0.1917 0.1337 0.2362 0.2997 1.0 0 0 0 1.0 0 0 0 0.1623 0.2302

CEC-BBOB-2015-F102 0.0 0 0 0 0.0 0 0 0 0.2176 0.2725 0.3405 0.5386 1.0 0 0 0 1.0 0 0 0 0.2422 0.5889

CEC-BBOB-2015-F103 0.0 0 0 0 0.0 0 0 0 0.2298 0.1785 0.2440 0.5690 1.0 0 0 0 1.0 0 0 0 0.1887 0.4013

CEC-BBOB-2015-F104 0.0 0 0 0 0.0 0 0 0 0.1029 0.0722 0.1067 0.1153 1.0 0 0 0 1.0 0 0 0 0.0394 0.0489

CEC-BBOB-2015-F105 0.0 0 0 0 0.0 0 0 0 0.0988 0.1634 0.1052 0.3903 1.0 0 0 0 1.0 0 0 0 0.0548 0.1160

CEC-BBOB-2015-F106 0.0 0 0 0 0.0 0 0 0 0.3434 0.2254 0.3032 0.3099 1.0 0 0 0 1.0 0 0 0 0.1295 0.1709

CEC-BBOB-2015-F107 0.0353 0.1371 1.0 0 0 0 1.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.2668 0.3331 0.3639 0.1765

CEC-BBOB-2015-F108 0.0192 0.0360 1.0 0 0 0 1.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0132 0.0416 0.0068 0.0281

CEC-BBOB-2015-F109 0.2047 0.9840 1.0 0 0 0 0.9757 0.0865 1.0 0 0 0 0.1860 0.7203 0.0 0 0 0 0.0 0 0 0

CEC-BBOB-2015-F110 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 0.9979 0.1048 0.2387 0.7144 1.0 0 0 0 0.2670 0.3995

Table 6

p -Values obtained from the rank-sum test for the results in Table 5 (N/A stands for not

applicable).

Test function SSA HS PSO BA FPA

CEC-BBOB-2015-F1 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

CEC-BBOB-2015-F2 0.0 0 0769 0.0 0 0183 0.0 0 0183 0.0 0 0183 1.0 0 0 0 0 0

CEC-BBOB-2015-F3 N/A 0.0 0 0440 0.0 0 0769 0.0 0 0183 0.0 0 0769

CEC-BBOB-2015-F4 N/A 0.002202 0.0 0 0440 0.0 0 0183 0.0 0 0183

CEC-BBOB-2015-F5 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0246

CEC-BBOB-2015-F6 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

CEC-BBOB-2015-F7 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.002827

CEC-BBOB-2015-F8 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

CEC-BBOB-2015-F9 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

CEC-BBOB-2015-F10 0.025748 0.0 0 0183 0.0 0 0183 0.0 0 0183 1.0 0 0 0 0 0

CEC-BBOB-2015-F101 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

CEC-BBOB-2015-F102 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

CEC-BBOB-2015-F103 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

CEC-BBOB-2015-F104 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

CEC-BBOB-2015-F105 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

CEC-BBOB-2015-F106 N/A 0.0 0 0183 0.0 0 0183 0.0 0 0183 0.0 0 0183

CEC-BBOB-2015-F107 0.909722 0.0 0 0183 N/A 0.004586 0.0 0 0183

CEC-BBOB-2015-F108 0.427355 0.0 0 0183 N/A 0.677585 0.909722

CEC-BBOB-2015-F109 0.088973 0.0 0 0583 0.733730 0.104110 N/A

CEC-BBOB-2015-F110 N/A 0.0 0 0440 0.733730 0.0 010 08 0.031209

p

b

f

a

t

r

t

t

s

m

w

t

a

s

s

t

i

r

e

a

s

S

w

t

r

t

r

f

h

e

c

f

h

t

e

o

s
arameters. The results can be improved with increasing the num-

er of solutions.

In summary, the preceding subsections employed a set of test

unctions with diverse characteristics to confidently benchmark

nd confirm the performance of SSA qualitatively and quantita-

ively. It was observed that the SSA algorithm shows high explo-

ation and local optima avoidance. This originates from the fact

hat the artificial salps in SSA tend to interact with each other, so

hey do not gravitate towards a local solution easily. The salp chain

imulated allows the SSA to explore the search space and gradually

ove towards the global optimum. Another finding of this section

as the superior exploitation of the SSA algorithm. This is due

o the storing the best solution obtained so far in each iteration

nd the tendency of salps towards it. The connections between the

alps also pull the swarm towards the global optimum. The entire

warm converges towards the optimum proportional to the itera-

ion number due to the utilized adaptive mechanism. In addition,

t was observed and confirmed that SSA effectively balances explo-

ation and exploitation. This is again because of the adaptive op-

rator integrated in SSA, in which the early stages of optimization
re dedicated to exploration, whereas the exploitation is empha-

ised in the final iterations.

The results, analysis, and finding of the subsection make the

SA algorithm potentially capable of solving real-world problems

ith unknown search spaces. In a real search space, the location of

he global optimum is unknown. Therefore, the balance of explo-

ation and exploitation highly increases the chance of determining

he global optimum. The superiority of SSA was mainly due to this

eason which originated from the adaptive mechanism. SSA outper-

orms other swarm-based techniques (e.g. PSO, FA , BA , etc.) due to

igher exploration during optimization. Such techniques show less

xploration compared to evolutionary algorithms equipped with

rossover operators. However, the SSA algorithm prevents solutions

rom a rapid convergence towards a local solution. On the other

and, SSA highly promotes exploitation using the c 1 parameter in

he final steps of optimization. This assisted SSA to outperform

volutionary algorithms (e.g. GSA and GA) in terms of the accuracy

f results.

Although the above results show the effectiveness of SSA in

olving a wide range of challenging problems, a number of real

178 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

Fig. 11. Results of SSA on F1 and F10 with a varied number of parameters.

Table 7

Results of the multi-objective algorithms (using IGD) on the ZDT test functions employed.

Algorithm ZDT1 ZDT2

Ave Std. Median Best Worst Ave Std. Median Best Worst

MSSA 0.00286 0.0 0 0841427 0.0025 0.0023 0.0043 0.0037 0.00130958 0.0044 0.0015 0.0047

MOPSO 0.00422 0.003103 0.0037 0.0015 0.0101 0.00156 0.0 0 0174 0.0017 0.0013 0.0017

NSGA-II 0.05988 0.005436 0.0574 0.0546 0.0702 0.13972 0.026263 0.1258 0.1148 0.1834

Algorithm ZDT3 ZDT1 with linear front

Ave Std. Median Best Worst Ave Std. Median Best Worst

MSSA 0.02986 0.0 0 0898888 0.0296 0.0291 0.0314 0.0033 0.0 0 0731437 0.0034 0.0025 0.0041

MOPSO 0.03782 0.006297 0.0362 0.0308 0.0497 0.00922 0.005531 0.0098 0.0012 0.0165

NSGA-II 0.04166 0.008073 0.0403 0.0315 0.0557 0.08274 0.005422 0.0804 0.0773 0.0924

Algorithm ZDT2 with 3 objectives

Ave Std. Median Best Worst

MSSA 0.00786 0.001583667 0.0078 0.0059 0.0098

MOPSO 0.02032 0.001278 0.0203 0.0189 0.0225

NSGA-II 0.0626 0.017888 0.0584 0.0371 0.0847

m

t

i

M

f

(

a

u

f

m

f

l

b

N

b

a

o

i

P

b

t

v

F

e

T

e

s
problems is solved in the next section to demonstrate the perfor-

mance of the SSA algorithm in practice. Note that the real case

studies are constrained. Therefore, it is essential to equip SSA with

a constraint handling mechanism. Since investigation and finding a

suitable constraint handling technique for SSA is outside the scope

of his work, the simplest constraint handling method is employed,

in which a death (barrier) penalty function penalizes the search

agents with a very large objective value in case of violation of any

constraints at any level. This technique will be used in MSSA as

well. This causes ignoring the infeasible search agents automati-

cally by the SSA algorithm.

It is worth mentioning here that SSA is able to solve problems

(including NP hard) with continuous variables only. It should be

equipped with suitable operators to solve binary problems such as

feature selection or clustering. Since this algorithm considers prob-

lems as a black box and according to the NFL theorem, it can be

applied to any type of problem subject to proper formulation and

appropriate modifications.

4.5. Results of MSSA and discussion

4.5.1. ZDT test problems

This subsection investigates the efficacy of the MSSA proposed

in this work experimentally. Similarly to the single-objective opti-

mization, there are different standard teste suites in the literature.

A set of five challenging test functions called ZDT proposed by Zit-

zler et al. [90] is employed here to benchmark the performance of

MSSA. The mathematical models of these benchmark functions are

presented in the Appendix B . It is worth noting here that the first

three benchmark functions are ZDT1 to ZDT 3 functions. Also, the
odified ZDT1 and ZDT2 with linear and three-objective fronts are

aken from [71] to have different test functions.

For results verification, the two most well-regarded algorithms

n the literature of multi-objective optimization are selected:

OPSO and NSGA-II. Due to the difficulty of multi-objective test

unctions compared to single-objective ones, more search agents

60) and a larger maximum iteration (10 0 0) are employed. Each

lgorithm is run 30 times and quantitative results are calculated

sing IGD and presented in Table 7 . Also, the best Pareto optimal

ront obtained are illustrated in Figs. 12–16 . Note that the maxi-

um archive size for both MSSA and MOPSO are set to 100.

Table 7 shows that the MSSA algorithm significantly outper-

orms both MOPSO and NSGA-II on the majority of ZDT test prob-

ems. Inspecting Pareto optimal fronts obtained in Fig. 12 , it may

e seen that MSSA and MOPSO show a better convergence than

SGA-II. The distribution of the solutions is nearly uniform for

oth MSSA and MOPSO algorithms, which shows the high cover-

ge of these algorithms. There is a gap in the middle of the Pareto

ptimal front obtained by the NSGA-II algorithm, which negatively

mpacts the coverage of this algorithm. ZDT1 has a concave-shaped

areto optimal front and is always challenging for aggregation-

ased methods. However, these results show that MSSA is able

o efficiently approximate the true front of this function with a

ery high convergence and coverage. Between MSSA and MOPSO,

ig. 12 shows that the convergence of MSSA is better and the cov-

rage is very competitive.

By contrast, the Pareto optima front of ZDT2 function is convex.

herefore, the convergence and coverage of algorithms on a differ-

nt Pareto optimal front can be benchmarked. The Pareto optimal

olutions obtained in Fig. 13 show that MSSA and MOPSO again

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 179

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
MSSA

f1

f2
True PF
Obtained PF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
MOPSO

f1

f2

True PF
Obtained PF

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
NSGA-II

f1

f2

True PF
Obtained PF

Fig. 12. Best Pareto front determined by MSSA, MOPSO, and NSGA-II on ZDT1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

MSSA

f1

f2

True PF
Obtained PF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
MOPSO

f1

f2
True PF
Obtained PF

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
NSGA-II

f1

f2

True PF
Obtained PF

Fig. 13. Best Pareto front determined by MSSA, MOPSO, and NSGA-II on ZDT2.

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

2

2.5

3
MSSA

f1

f2

True PF
Obtained PF

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

2

2.5

3
MOPSO

f1

f2

True PF
Obtained PF

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

2

2.5

3
NSGA-II

f1

f2
True PF
Obtained PF

Fig. 14. Best Pareto front determined by MSSA, MOPSO, and NSGA-II on ZDT3.

b

o

i

a

H

o

i

w

s

l

g

o

C

t

m

s

A

r

M

t

s

o

a

r

w

l

c

s

t

a

c

e

t

r

H
oth outperform NSGA-II algorithm. The convergence and coverage

f the NSGA-II is very low. It seems that the convergence of MSSA

s better than MOPSO, yet the coverage is slightly lower. There is

 gap in the Pareto optimal front obtained by the MSSA algorithm.

owever, the distribution of solutions is highly uniform in the rest

f the front. The results of MSSA on ZDT1 and ZDT show that MSSA

s able to approximate concave and convex Pareto optimal front

ith a reasonable convergence and coverage.

As may be seen in Fig. 14 , ZDT3 has a Pareto optimal front with

eparated regions. These types of fronts are common in real prob-

ems and very challenging to be determined by optimization al-

orithms. This is because an algorithm might be trapped in one

f the regions and fail to approximate all the separated regions.

omparing the results on ZDT3 and those on the previous ZDT

est functions, a similar pattern can be seen in the Pareto opti-

al fronts obtained, in which NSGA-II shows the worst results. De-

pite the high coverage of this algorithm, the convergence is poor.

lso, Pareto optimal solutions obtained on some of the separated

egions are very far from the true front. Considering the fronts of
SSA and MOPSO, it is evident that MSSA outperforms MOPSO in

erms of convergence and specially coverage. These results demon-

trate that MSSA is able to effectively find all the separated regions

f a Pareto optimal front with high distribution on each region.

As the fourth case study, ZDT1 is equipped with a linear front

nd able to benchmark the coverage of the algorithms clearly. The

esults in Fig. 15 show that again NSGA-II failed to converge to-

ards the true Pareto optimal front. All of the Pareto optimal so-

utions obtained are far from the true front. Similarly to ZDT3, the

overage of NSGA-II is reasonable despite the poor convergence. In-

pecting the fronts of MSSA and MOPSO in Fig. 15 , it can be seen

hat MSSA provides superior results in terms of both convergence

nd coverage. The results of MOPSO are very competitive and of

ourse better than NSGA-II. These results demonstrate that MSSA

fficiently drives salps towards different regions of true Pareto op-

imal front.

The first four case studies have two objectives and the above

esults prove that MSSA is very effective in solving such problems.

owever, some of problems have three objectives. The last case

180 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
MSSA

f1

f2
True PF
Obtained PF

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
MOPSO

f1

f2

True PF
Obtained PF

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
NSGA-II

f1

f2

True PF
Obtained PF

Fig. 15. Best Pareto front determined by MSSA, MOPSO, and NSGA-II on ZDT1 with linear front.

Fig. 16. Best optimal front determined by MSSA, MOPSO, and NSGA-II on ZDT2 with 3 objectives.

l

u

s

o

s

o

l

t

n

f

i

r

r

v

o

r

v

t

h

v

a

t

i

s

d

w

e

p

u

w

l

M

t
study is the extended version of ZDT2 with 3 objectives that pro-

vides a very challenging tri-objective test bed for the algorithms.

Pareto optimal solutions obtained in Fig. 16 show that similarly to

other test functions, NSGA-II presents the worst convergence and

coverage. By contrast, the MSSA algorithm provides the best con-

vergence and coverage. The results of MOPSO show that this algo-

rithm only converge towards one region of the front and the cover-

age is low. These results indicate that the MSSA algorithm is capa-

ble of approximating the true Pareto optimal fronts of tri-objective

optimization problems as well.

4.5.2. CEC2009 test functions

The CEC2009 test suite [91] is considered as one of the most

challenging benchmark sets in the literature and includes highly

biased, rotated, shifted, hybridized, and composite test functions.

The Pareto optimal front of these functions are of different shapes

and continuity. This sub-section applies the MSSA algorithm to

these test problems and compares the results with MOPSO and

MOEA/D. The results are given in Table 8 . Note that to challenge

the MSSA algorithm further, it is compared to MOPSO and MOEA/D

on this test suite.

Inspecting the results of this table, it is evident that MSSA

shows the best results on eight test functions and provide very

competitive results when solving the rest of CEC2009 test func-

tions. These results confirm the performance of the proposed MSSA

algorithm when solving challenging test functions with difficulties

similar to those in the search space of real-world problems.

Taken together, the main advantages of the proposed MSSA al-

gorithm in comparison with MOEA/D and MOPSO are high con-

vergence and coverage. Superior convergence is due to the leading

solution selection, in which one of the best non-dominated solu-

tions always update the position of others. Another advantage is

the high coverage of the MSSA algorithm, which is because of both

archive maintenance mechanism and the selection of leading so-
ution. Since the solutions are always discarded from most pop-

lated segments and leaders are chosen from the least populated

egments of the archive, MSSA improves the diversity and coverage

f solutions across all objectives. Despite these benefits, MSSA is

upposed to be applied to problems with three and maximum four

bjectives. As a Pareto dominance-based algorithm, MSSA becomes

ess effective proportional to the number of objectives. This is due

o the fact that in problems with more than four objectives, a large

umber of solutions are non-dominated, so the archive become

ull quickly. Therefore, the MSSA algorithm is suitable for solv-

ng problems with less than four objectives. In addition, this algo-

ithm is suitable only for problems with continuous variables and

equires legit modifications to be used in problems with binary

ariables.

The results proved that MSSA can be very effective for solving

ptimization problems with multiple objectives. The MSSA algo-

ithm showed high convergence and coverage. The superior con-

ergence of MSSA is due to the updating position of salps around

he best non-dominated solutions obtained so far. The salp chain

as always tendency towards the best solutions. Also, the high con-

ergence originates from the adaptive mechanism which acceler-

tes the movements of salps toward the best non-dominated solu-

ions obtained so far in the repository. The high coverage of MSSA

s because of the repository maintenance and leading solution

election mechanisms. When the repository becomes full, non-

ominated solutions in populated regions are discarded by MSSA,

hich results in improving the distribution of solutions along the

ntire front. The procedure of selecting the leading salps also em-

hasizes coverage because it selects solutions from the least pop-

lated regions to be explored and exploited by the salp chain. It is

orth mentioning here that since the updating mechanism of the

eading and follower salps in MSSA are identical to those of SSA,

SSA inherits high exploration, local solutions avoidance, exploita-

ion, and fast convergence rate from this algorithm. Therefore, the

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 181

Table 8

Statistical results for IGD on UF1 to UF10 in the CEC2009 test suite.

IGD UF1 (bi-objective) UF2 (bi-objective) UF3 (bi-objective)

MSSA MOPSO MOEA/D MSSA MOPSO MOEA/D MSSA MOPSO MOEA/D

Average 0.1024 0.1370 0.1871 0.0576 0.0604 0.1223 0.2628 0.3139 0.2886

Median 0.1026 0.1317 0.1828 0.0580 0.0483 0.1201 0.2424 0.3080 0.2892

STD. Dev. 0.0062 0.0440 0.0507 0.0048 0.0276 0.0107 0.0727 0.0447 0.0159

Worst 0.1093 0.2278 0.2464 0.0657 0.1305 0.1436 0.4005 0.3777 0.3129

Best 0.0897 0.0899 0.1265 0.0479 0.0369 0.1048 0.1711 0.2564 0.2634

IGD UF4 (bi-objective) UF5 (bi-objective) UF6 (bi-objective)

MSSA MOPSO MOEA/D MSSA MOPSO MOEA/D MSSA MOPSO MOEA/D

Average 0.0902 0.1360 0.0681 0.6659 2.2023 1.2914 0.1903 0.6475 0.6881

Median 0.0891 0.1343 0.0684 0.6931 2.1257 1.3376 0.1962 0.5507 0.6984

STD. Dev. 0.0040 0.0073 0.0021 0.0986 0.5530 0.1348 0.0457 0.2661 0.0553

Worst 0.0984 0.1518 0.0703 0.7914 3.0383 1.4674 0.2666 1.2428 0.7401

Best 0.0855 0.1273 0.0646 0.4495 1.4647 1.1230 0.1163 0.3793 0.5523

IGD UF7 (bi-objective) UF8 (tri-objective) UF9 (tri-objective) UF10 (tri-objective)

MSSA MOPSO MOEA/D MSSA MOPSO MSSA MOPSO MSSA MOPSO

Average 0.0690 0.3539 0.4552 0.2743 0.5367 0.4 4 41 0.4885 0.9769 1.6371

Median 0.0686 0.3873 0.4376 0.2655 0.5364 0.4222 0.4145 0.9190 1.5916

STD. Dev. 0.0059 0.2044 0.1898 0.0447 0.1825 0.1084 0.14 4 4 0.2189 0.2987

Worst 0.0796 0.6151 0.6770 0.3794 0.7963 0.6422 0.7221 1.3142 2.1622

Best 0.0610 0.0540 0.0290 0.2249 0.2453 0.2849 0.3335 0.6082 1.2200

Table 9

Comparison results of the three-bar truss design problem.

Algorithm Optimal values for variables Optimal weight

x 1 x 2

SSA 0.788665414258065 0.408275784 4 4 4547 263.8958434

DEDS [93] 0.78867513 0.40824828 263.8958434

PSO-DE [94] 0.7886751 0.4082482 263.8958433

MBA [47] 0.7885650 0.4085597 263.8958522

Ray and Sain [95] 0.795 0.395 264.3

Tsa [96] 0.788 0.408 263.68

CS [92] 0.78867 0.40902 263.9716

M

t

t

t

t

w

5

t

fi

a

l

a

m

l

5

t

s

p

T

Fig. 17. Three-bar truss design problem.

t

a

5

d

p

p

m

SSA algorithm can avoid local fronts and converge towards the

rue Pareto optimal front.

The results, findings, and discussions of this section prove that

he MSSA algorithm is potentially able to solve multi-objective op-

imization problems with unknown search spaces. To experimen-

ally prove this, the next section employs MSSA to solve a real-

orld multi-objective problem.

. Real-world applications

This sections applies the SSA and MSSA algorithms proposed in

his work to several real-world problems. SSA is employed to solve

ve classical engineering design problems and airfoil design for

ero vehicles. MSSA is required to solve a propeller design prob-

em for marine vehicles. The last two problems are computation-

lly expensive and each function evaluation might take up to five

inutes. Also, there are many constraints that should not be vio-

ated by the optimal solution(s) obtained.

.1. Three-bar truss design problem

This classical engineering problem is to design a truss with

hree bars to minimize its weight. This problem has a highly con-

trained search space [47,92] . The structural parameters in this

roblem are shown in Fig. 17 .

The results of SSA when solving this problem are shown in

able 9 . It can be seen that this algorithm is competitive compared
o conventional and stochastic optimization techniques in the liter-

ture.

.2. Welded beam design problem

As shown in Fig. 18 , the objective in this classical problem is to

esign a welded beam with minimum fabrication cost [97] .

This problem is solved by SSA, and the results are com-

ared with several techniques in the literature [98–103] . Table 10

resents the results and shows that SSA finds the minimum opti-

al cost.

182 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

Fig. 18. Design parameters of the welded beam design problem.

Table 10

Comparison results of the welded beam design problem.

Algorithm Optimal values for variables Optimal cost

h l t b

SSA 0.2057 3.4714 9.0366 0.2057 1.72491

GSA 0.182129 3.856979 10.0 0 0 0 0.202376 1.87995

CPSO [104] 0.202369 3.544214 9.048210 0.205723 1.73148

GA [98] 0.1829 4.0483 9.3666 0.2059 1.82420

GA [100] 0.2489 6.1730 8.1789 0.2533 2.43312

Coello [105] 0.208800 3.420500 8.997500 0.2100 1.74831

Coello and Montes [106] 0.205986 3.471328 9.020224 0.206480 1.72822

Siddall [107] 0.24 4 4 6.2189 8.2915 0.24 4 4 2.38154

Ragsdell [103] 0.2455 6.1960 8.2730 0.2455 2.38594

Random [103] 0.4575 4.7313 5.0853 0.6600 4.11856

Simplex [103] 0.2792 5.6256 7.7512 0.2796 2.53073

David [103] 0.2434 6.2552 8.2915 0.24 4 4 2.38411

APPROX [103] 0.24 4 4 6.2189 8.2915 0.24 4 4 2.38154

Fig. 19. I-beam design problem.

Table 11

Comparison results for I-beam design problem.

Algorithm Optimal values for variables Optimum vertical deflection

b h t w t f

SSA 50 80 1.76470587 5.0 0 0 0 0.0066259581

ARSM [108] 37.05 80 1.71 2.31 0.0157

IARSM [108] 48.42 79.99 0.90 2.40 0.131

CS [92] 50 80 0.9 2.321675 0.0130747

SOS [109] 50 80 0.9 2.32179 0.0130741

b

m

t

a

c

5

p

[

p
5.3. I-beam design problem

The I-beam problem deals with designing an I-beam with four

structural parameters to minimize the vertical deflection of the

beam (see Fig. 19).

This problem is solved by SSA in Table 11 . It is evident that SSA

significantly outperforms other techniques when solving this prob-

lem.

5.4. Cantilever beam design problem

Despite the similarity of this problem to the preceding one, the

objective is to minimize the weight of a cantilever beam Cantilever
eam consists of five hollow blocks as shown in Fig. 20 . The opti-

al results obtained by SSA and similar techniques in the litera-

ure are given in Table 12 . It may be seen that the proposed SSA

lgorithm outperforms the majority of techniques and shows very

ompetitive results compared to SOS.

.5. Tension/compression spring design

The last classical engineering problem is to design a com-

ression spring with three parameters as illustrated in Fig. 21

106,111,112] . To perform a fair comparison with literature, a

enalty function is used in a similar manner to [113] . The results in

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 183

Fig. 20. Cantilever beam design problem.

Table 12

Comparison results for cantilever design problem.

Algorithm Optimal values for variables Optimum weight

x 1 x 2 x 3 x 4 x 5

SSA 6.015134526133134 5.309304676055819 4.495006716308508 3.501426286300545 2.152787908005768 1.339956391038955

SOS [109] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

MMA [110] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400

GCA_I [110] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400

GCA_II [110] 6.0100 5.30 0 0 4.4900 3.4900 2.1500 1.3400

CS [92] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

Fig. 21. Schematic of the compression spring.

Table 13

Comparative results for the tension/compression spring design problem.

Algorithm Optimum variables Optimum weight

d D N

SSA 0.051207 0.345215 12.004032 0.0126763

GSA 0.050276 0.323680 13.525410 0.0127022

PSO [104] 0.051728 0.357644 11.244543 0.0126747

ES [114] 0.051989 0.363965 10.890522 0.0126810

GA (Coello) [115] 0.051480 0.351661 11.632201 0.0127048

RO [116] 0.051370 0.349096 11.76279 0.0126788

Improved HS [117] 0.051154 0.349871 12.076432 0.0126706

DE [118] 0.051609 0.354714 11.410831 0.0126702

Mathematical optimization 0.053396 0.399180 9.18540 0 0 0.0127303

Constraint correction 0.050 0 0 0 0.315900 14.250 0 0 0 0.0128334

T

a

5

i

a

m

a

w

i

t

w

Weight

Drag

Lift

Thrust

Fig. 22. Different forces applied to an airplane.

o
able 13 show the merits of proposed SSA in solving this problem

s well.

.6. Two-dimensional airfoil design using SSA

In the airfoil design problem, there are two objectives: minimiz-

ng drag versus maximizing lift. In fact, lift and drag are two forces

pplied to an airplane as can be seen in Fig. 22 . Engines are the

ain sources of propulsion in an aircraft, which provides thrust

s the main force. Depending on the shape of aircraft’s body and

ings, the thrust is converted to both lift and drag. The force lift

s in opposite direction of weight, so it causes flying when greater

han the weigh force. Despite the low density of air, the body and

ing shape of a moving airplane also result is drag.
The shape of a wing plays an essential role in the performance

f an aircraft mostly in terms of lift and drag. A suitable design

184 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

Max camber location

Max camber

Angle of trailing
edgeMax thickness x-x

y

-y

Fig. 23. Cross section of a real wing with a 2D NACA airfoil [121] and B-spline for defining the shape of airfoil.

0 20 40 60 80 100
4

6

8

10

12
x 10-3

Iteration

)y,x(F:gar
D

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1
-0.02

0
0.02
0.04
0.06

Fig. 24. Convergence curve of the SSA on the airfoil design problem, initial airfoil, and optimized airfoil.

n

o

s

a

M
S

w

c

e

n

v

f

F

w

s

s

c

i

s

d

t

S

m
for airfoil can save fuel significantly as well. It cannot be said if

lift or drag forces are better because both of them are desirable in

different phases of fly. The lift force is desirable and drag is unde-

sirable in take-off and ascend. The higher the lift, the faster ascend

and take off. However, the drag force is desirable and lift is un-

desirable when landing or descending. The higher drag, the faster

ascend and landing.

Maximizing lift and minimizing drag are two important objec-

tives in airfoil design. Since the main focus of this section is to

demonstrate the applicability of SSA, one of these objectives is op-

timized. In order to solve this problem with the SSA algorithm,

it has to be formulated as an objective function. Problem formu-

lation includes identifying objective function, structural parame-

ters, and constraints. The main objective is to minimize drag in

this subsection. The freeware XFoil [119] is used for calculating

drag.

A real aircraft wing has many parameters: position of engines,

internal frames, leading flaps, trailing flaps, fuel tanks, leading

edge, trailing edge, and the shape airfoil. For the sake of simplicity,

the shape of airfoil is only optimized in this work. The curvature

of an airfoil can be defined with different methods of which b-

spline [120] is chosen in this work. Fig. 23 shows how this method

utilizes controlling points to define a smooth shape for the air-

foil. The model employed can handle up to 8 points. It is consid-

ered one of the leading points is fixed to have a reference point,

so there are 7 points to be moved in total. As Fig. 23 shows, the

displacements of points are along positive/negative x and y direc-

tions, so the total number of parameters for optimization is equal

to 14.
fi

Airfoil design is a CFD problem and accompanied with a large

umber of constraints. Since investigating these constraints is out

f the scope of the current work, they are not discussion in this

ection. After all, the problem of airfoil design can be formulated

s follows:

inimize : F (� x , �
 y) = C d (� x , �

 y)
ub ject to : −1 ≤ �

 x , � y ≤ 1 , sat is fact ion of CO set
(5.1)

here � x = { x 1 , x 2 , . . . , x 7 } , �
 y = { y 1 , y 2 , . . . , y 7 } , CO includes many

onstraints such as minimum of thickness, maximum of thickness,

tc.

It should be noted here that CFD problems have mostly domi-

ated infeasible regions, which make the death penalty functions

ery inefficient. To be able to solve this problem using SSA, the

ollowing penalty functions has been employed:

 (� x , �
 y) = F (� x , �

 y) + p

3 ∑

i =1

P i (5.2)

here p is a constant and P i is the violation size on the i th con-

traint in the CO set in Eq. (5.1) .

For finding an optimal shape for the airfoil employed in this

ubsection, a salp chain with 30 salps are utilized. The rest of the

ontrolling parameters of SSA is identical to those of the preced-

ng sections except the maximum number of generation, which is

et to 10 0 0. The stopping criterion is to reach either a minimum

rag or maximum number of iterations. The problem is solved four

imes and the best results are illustrated in Fig. 24 . To see how the

SA solves this problem, the initial random design, the final opti-

al design found, and convergence curve are also shown in this

gure.

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 185

Chord length

Max thickness

Drag

Weight

Thrust

Fig. 25. Cross section of a real propeller and a 2D NACA airfoil.

s

e

s

t

t

f

i

a

i

t

s

s

5

p

m

m

o

a

t

D

t

[

a

c

o

s

f

a

c

i

i

a

l

b

p

t

T

u

p

s

t

t

t

i

N

a

i

t

m

M

M

S

w

t

l

a

t

m

p

i

p

i

t

t

f

a

t

t

T

c

t

fi

h

t
Inspecting the results in Fig. 24 , it may be observed that SSA

uccessfully minimizes drag of the airfoil over the course of it-

rations. There are some iterations with no improvement in the

olution. This is due to the extremely difficult search space of

his problem and the many infeasible solutions found during op-

imization. However, it seems that the SSA managed to find in-

easible and better solutions after each non-improving period (for

nstance at the end of nearly iterations 9 and 25). The optimal

irfoil obtained is also very smooth, showing the ability of SSA

n solving this problem. These results highly demonstrate that

he SSA is able to approximate the global optima of real-world

ingle-objective problems with challenging and unknown search

paces.

.7. Marine propeller design using MSSA

The problem investigated in this subsection is another CFD

roblem. In fact, the shape of a marine propeller is optimized. The

ain two objectives in the propeller design problem are: maxi-

izing efficiency and minimizing cavitation [122] . The engine(s)

f a ship rotate a shaft attached to a propeller. The shafts rotate

 propeller, which creates trust for the vehicle. The efficiency is

he amount of engine power that is eventually converted to thrust.

ue the high density of water and frictions involved in the mo-

or, however, thrust without loss of energy cannot be achieved

123] .

In addition to thrust, a propeller creates cavitation [124] . When

 propeller is rotated in water, it swirls water at high speed. Ac-

elerating water and passing through blades reduce the pressure

f water. This results in forming bubbles that collapse and cause

trong local shockwaves. These tiny shockwaves erode the sur-

ace of a propeller and reduce its life span. Cavitation is undesir-

ble and an optimizer is better to find a design with the lowest

avitation.

The shape of a propeller plays a significant role in determin-

ng efficiency and cavitation. A propeller is made of several sim-

lar blades grouped around the shaft. To design a propeller, there

re many structural parameters in a propeller: number of blades,

ength of blade, thickness of shaft, length of shaft, and the shape of

lade. Undoubtedly, the blade’s shape is the most important com-

onents in defining efficiency and cavitation.

There are different approaches for designing a blade. Similarly

o airfoil design in the previous section, b-spline can be employed.
his approach is usually used when a designer does not want to

tilize a standard airfoil. To have a different airfoil design com-

ared to the previous subsection, a standard NACA aoirfoil is cho-

en in this subsection. As may be seen in Fig. 25 , the main struc-

ural parameters in the NACA airfoil employed are the maximum

hickness and chord length. Multiple numbers of this airfoil along

he length of a blade define its final shape. In this work the blade

s divided to 10 cross sections each of which is defined by the

ACA airfoil shown in Fig. 25 .

Blades’ airfoil design is a CFD problem and accompanied with

 large number of constraints. Since investigating these constraints

s out of the scope of the current work, they are not discussed in

his section. After all, the problem of propeller design can be for-

ulated as follows:

aximize : F 1
(
�
 T , �

 C
)

= η
(
�
 T , � C

)
inimize : F 2

(
�
 T , �

 C
)

= V c

(
�
 T , � C

)
ub ject to : thrust = 40 0 0 , sat is fact ion of all const raint s

(5.1a)

here � T is a vector that stores the thickness of all airfoils along

he blade (� T = { T 1 , T 2 , . . . , T 10 }) , � C is a vector that stores the chord

ength of all airfoils along the blade (� C = { C 1 , C 2 , . . . , C 10 }) .
For determining the true Pareto optimal front of this problem,

 salp chain with 200 salps are employed. The salps are allowed

o find the Pareto optima solutions over 300 iterations. The maxi-

um archive size is set to 100 as well. The rest of the controlling

arameters of the MSSA algorithm is identical to previous exper-

ments done with SSA and MSSA. Note that the freeware Open-

rop [125] is utilized for calculating the objectives. The experiment

s performed four times and the best Pareto optimal solution ob-

ained is illustrated in Fig. 26 . In addition to the best Pareto op-

imal front, search history of salp chain and some of the design

ound are illustrated in this figure. Note that the y axis shows neg-

tive cavitation, so best solutions are towards top-right corner of

he figure.

As per the results of Fig. 26 , it may be seen that the Pareto op-

imal solutions obtained are well distributed along both objectives.

he true Pareto optimal front for this question is unknown, so it

annot be said how close these solutions are to the true Pareto op-

imal solutions. However, it is evident that the MSSA managed to

nd solutions with high efficiency and low cavitation. The search

istory also shows how the salp chain gradually moves towards

he Pareto optimal front and spread the solutions across both ob-

186 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

Fig. 26. Pareto optimal front obtained, search history, and some of the designs.

n

c

i

S

u

o

a

w

s

a

s

r

f

t

e

d

o

t

a

r

r

a

p

t

s

s

g

i

a

P

a

o

T

h

r

A

f

Table 14

Unimodal benchmark functions.

Function Dim Range Shift position f min

F 1 (x) =

n ∑

i =1

x 2
i

20 [−100,100] [−30, −30,.., −30] 0

F 2 (x) =

n ∑

i =1

| x i | +

n ∏

i =1

| x i | 20 [−10,10] [−3, −3,.., −3] 0

F 3 (x) =

n ∑

i =1

(
i ∑

j−1

x j)
2 20 [−100,100] [−30, −30,.., −30] 0

F 4 (x) = max
i

{ | x i | , 1 ≤ i ≤ n } 20 [−100,100] [−30, −30,.., −30] 0

F 5 (x) =

n −1 ∑

i =1

[100 (x i +1 − x 2
i
)

2 + (x i − 1)
2
] 20 [−30,30] [−15, −15,.., −15] 0

F 6 (x) =

n ∑

i =1

([x i + 0 . 5]) 2 20 [−100,100] [−750,.., −750] 0

F 7 (x) =

n ∑

i =1

ix 4
i

+ random [0 , 1) 20 [−1.28,1.28] [−0.25,.., −0.25] 0
jectives. These results highly demonstrate that the model of salp

swarm proposed in this work and operators employed for solv-

ing multi-objective problems are very efficient in terms of finding

an accurate approximation and highly distributed Pareto optimal

solutions for challenging multi-objective problems with unknown

search spaces.

6. Conclusion

This paper proposed a novel nature-inspired technique for solv-

ing optimization problems. The swarming behaviour of salps (salp

chain) was the main inspiration of this paper. Two mathematical

model were proposed to update the position of leading and fol-

lower salps. Swarm simulation in 2D and 3D space showed that

the models proposed are able to search around both stationary

and mobile food sources. After swarm simulation, the SSA and

MSSA algorithms were designed. In SSA, the best solutions ob-

tained so far was considered as the main food source to be chased

by the salp chain. An adaptive mechanism was integrated to SSA

to balance exploration and exploitation. For the MSSA algorithm,

a repository was designed and employed to store non-dominated

solutions obtained so far. Solutions were removed from popula-

tion regions in case of a full repository and the food source was

chosen from the non-dominated solutions in the least populated

areas.

In order to prove the efficacy of the algorithms proposed a se-

ries of experiments was conducted. First, several qualitative met-

rics were employed: search history, trajectory, average fitness, and

convergence curve. SSA was applied to a set of benchmark func-

tions. It was observed and can be concluded that SSA is able to ex-

plore the most promising regions of the search space, move salps

abruptly in the initial steps of iterations, move salps gradually in

the final stages of iterations, improve the average fitness of all

salps, and improve that best solution found so far over the course

of optimization.

Also, a set of high-dimensional test functions including uni-

modal, multi-modal, and composite were solved by the SSA algo-

rithm to prove its performance in solving problems with a large
umber of variables and different characteristics. The results were

ompared with a variety of well-known and recent algorithms us-

ng a statistical test. It was observed and may be concluded that

SA is capable of determining the global optima for most of the

nimodal, multi-modal, and composite benchmark functions and

utperform the current optimization techniques in the literature in

 statistically significant manner.

For proving the performance of MSSA algorithm, a set of

ell-known multi-objective test functions was employed. The re-

ults were compared with MOPSO and NSGA-II as the best two

lgorithms proposed so far in the literature. As per the re-

ults and finding, it can be concluded that the MSSA algo-

ithm can approximate the true Pareto optimal front with dif-

erent shapes and difficulties conveniently. It is also concluded

hat the MSSA benefits from a reasonable convergence and cov-

rage that allows this algorithm to find very accurate and highly

istributed approximation of Pareto optimal solutions across all

bjectives.

Although the results on test functions testified the potential of

he SSA and MSSA algorithms in solving real problems, this work

lso considered solving two real problems (arifoil design and ma-

ine propeller design) to prove the effectiveness of these algo-

ithms in practice. It was demonstrated that the SSA and MSSA

re able to find optimal shapes for both problems employed. As

er the results on real-world case studies, it can be concluded

hat SSA and MSSA can solve real-world problems with unknown

earch spaces.

According to the simulations, results, finding, analyses, discus-

ions, and conclusions, it can be stated that the SSA and MSSA al-

orithms have merits among the current optimization algorithms

n the literature and worth applying to different problems.

This work opens several research directions. Solving single-

nd multi-objective problems in different fields is recommended.

roposing binary versions of both SSA and MSSA could be valu-

ble contributions as well. The current work briefly touched

n constrained optimization using the algorithms proposed.

herefore, investigating the impacts of different constrained

andling methods on the performance of SSA and MSSA is

ecommended.

ppendix A. Single-objective test problems utilised in this work

Table 14 , 15 , and 16 show the details of the single-objective test

unctions employed in this work.

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 187

Table 15

Multimodal benchmark functions.

Function Dim Range Shift position f min

F 8 (x) =

n ∑

i =1

−x i sin

(√ | x i |
)

20 [−50 0,50 0] [−300,.., −300] −418.9829 × 5

F 9 (x) =

n ∑

i =1

[x 2
i

− 10 cos (2 πx i) + 10] 20 [−5.12,5.12] [−2, −2,.., −2] 0

F 10 (x) = −20 exp

(
−0 . 2

√

1
n

n ∑

i =1

x 2
i

)
− exp

(
1
n

n ∑

i =1

cos (2 πx i)

)
+ 20 + e 20 [−32,32] 0

F 11 (x) =

1
40 0 0

n ∑

i =1

x 2
i

−
n ∏

i =1

cos

(
x i √

i

)
+ 1 20 [−60 0,60 0] [−400,.., −400] 0

F 12 (x) =

π
n

{
10 sin (πy 1) +

n −1 ∑

i =1

(y i − 1)
2
[1 + 10 si n 2 (πy i +1)] + (y n − 1)

2

}
+

n ∑

i =1

u (x i , 10 , 100 , 4)

y i = 1 +

x i +1
4

20 [−50,50] [−30, −30,.., −30]

u (x i , a, k, m) =

⎧ ⎨

⎩

k (x i − a)
m

x i > a

0 − a < x i < a

k (−x i − a)
m

x i < −a

0

F 13 (x) = 0 . 1

{
si n 2 (3 πx 1) +

n ∑

i =1

(x i − 1)
2
[1 + si n 2 (3 πx i + 1)] + (x n − 1)

2
[1 + si n 2 (2 πx n)]

}
+

n ∑

i =1

u (x i , 5100 , 4) 20 [−50,50] [−100,.., −100] 0

Table 16

Composite benchmark functions.

Function Dim Range f min

F 14 (CF1):

f 1 , f 2 , f 3 ,…, f 10 = Sphere Function 10 [−5,5] 0

[б 1 , б 2 , б 3 , . . . , б 10] = [1 , 1 , 1 , .., 1]

[λ1 , λ2 , λ3 …, λ10] = [5/100, 5/100, 5/100, .., 5/100]

F 15 (CF2):

f 1 , f 2 , f 3 , . . . , f 10 = Griewank ’ s F unction

[б 1 , б 2 , б 3 , . . . , б 10] = [1 , 1 , 1 , .., 1] 10 [−5,5] 0

[λ1 , λ2 , λ3 ,…, λ10] = [5/100, 5/100, 5/100, .., 5/100]

F 16 (CF3):

f 1 , f 2 , f 3 , . . . , f 10 = Griewank ’ s F unction

[б 1 , б 2 , б 3 , . . . , б 10] = [1 , 1 , 1 , .., 1] 10 [−5,5] 0

[λ1 , λ2 , λ3 ,…, λ10] = [1, 1, 1, .., 1]

f 17 (CF4):

f 1 , f 2 = Ackley ’ sFunction

f 3 , f 4 = Rastrigin ’ s Function

f 5 , f 6 = Weierstrass Function 10 [−5,5] 0

f 7 , f 8 = Griewank ’ s Function

f 9 , f 10 = Sphere Function

[б 1 , б 2 , б 3 , . . . , б 10] = [1 , 1 , 1 , .., 1]

[λ1 , λ2 , λ3 ,…, λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/10 0, 5/10 0, 5/10 0]

f 18 (CF5):

f 1 , f 2 = Rastrigin ’ s Function

f 3 , f 4 = Weierstrass Function 10 [−5,5] 0

f 5 , f 6 = Griewank ’ s Function

f 7 , f 8 = Ackley ’ sFunction

f 9 , f 10 = Sphere Function

[б 1 , б 2 , б 3 , . . . , б 10] = [1 , 1 , 1 , .., 1]

[λ1 , λ2 , λ3 ,…, λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]

f 19 (CF6):

f 1 , f 2 = Rastrigin ’ s Function 10 [−5,5] 0

f 3 , f 4 = Weierstrass Function

f 5 , f 6 = Griewank ’ s Function

f 7 , f 8 = Ackley ’ sFunction

f 9 , f 10 = Sphere Function

[б 1 , б 2 , б 3 , . . . , б 10] = [0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1]

[λ1 , λ2 , λ3 ,…, λ10] = [0.1 ∗1/5, 0.2 ∗1/5, 0.3 ∗5/0.5, 0.4 ∗5/0.5, 0.5 ∗5/100,

0.6 ∗ 5/100, 0.7 ∗5/32, 0.8 ∗ 5/32, 0.9 ∗5/100, 1 ∗5/100]

188 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

h

0

M

M

W

h

Appendix B. Multi-objective test problems utilised in this work

ZDT1:

Minimise : f 1 (x) = x 1 (B.1)

Minimise : f 2 (x) = g (x) × h (f 1 (x) , g (x)) (B.2)

Where : G (x) = 1 +

9

N − 1

N ∑

i =2

x i (B.3)
0

Table 17

Bi-objective test problems (CEC2009).

Name Mathematical formulation

UF1 f 1 = x 1 +

2
| J 1 |

∑

j∈ J 1
[x j − sin (6 πx 1 +

jπ
n

)] 2 , f 2 = 1

J 1 = { j | j is odd and 2 ≤ j ≤ n }, J 2 = { j | j is even an

UF2 f 1 = x 1 +

2
| J 1 |

∑

j∈ J 1
y j

2 , f 2 = 1 − √

x +

2
| J 2 |

∑

j∈ J 2
y j

2

J 1 = { j | j is odd and 2 ≤ j ≤ n }, J 2 = { j | j is even an

y j =

{
x j − [0 . 3 x 2 1 cos (24 πx 1 +

4 jπ
n

) + 0 . 6 x 1] cos

x j − [0 . 3 x 2 1 cos (24 πx 1 +

4 jπ
n

) + 0 . 6 x 1] sin

UF3 f 1 = x 1 +

2
| J 1 |

(
4

∑

j∈ J 1
y 2

j
− 2

∏

j∈ J 1
cos

(
20 y j π√

j

)
+ 2

)

f 2 =

√

x 1 +

2
| J 2 |

(
4

∑

j∈ J 1
y 2

j
− 2

∏

j∈ J 2
cos

(
20 y j π√

j

)
+ 2

)
J 1 and J 2 are the same as those of UF 1 , y j = x j

UF4 f 1 = x 1 +

2
| J 1 |

∑

j∈ J 1
h (y j) , f 2 = 1 − x 2 +

2
| J 2 |

∑

j∈ J 2
h (y

J 1 and J 2 are the same as those of UF 1 , y j = x j

UF5 f 1 = x 1 +

(
1

2 N
+ ε

)| sin (2 Nπx 1) | +

2
| J 1 |

∑

j∈ J 1
h (y i) ,

J 1 amd J 2 are identical to those of UF 1 , ε > 0 ,

h (t) = 2 t 2 − cos (4 π t) + 1

UF6 f 1 = x 1 + max
{

0 , 2(1
2 N

+ ε) sin (2 Nπx 1)
}

+

2
| J 1 |

f 2 = 1 − x 1 + max
{

0 , 2
(

1
2 N

+ ε
)

sin (2 Nπx 1)
}

2
| J 2

J 1 amd J 2 are identical to those of UF 1 , ε > 0 ,

UF7 f 1 =

5
√

x 1 +

2
| J 1 |

∑

j∈ J 1 y
2
j
, f 2 = 1 − 5

√

x 1 +

2
| J 2 |

∑

j∈
J 1 amd J 2 are identical tothose of UF 1 , ε > 0 , y j =

Table 18

Tri-objective test problems (CEC2009).

Name Mathematical formulation

UF8 f 1 = cos (0 . 5 x 1 π) cos (0 . 5 x 2 π) +

2
| J 1 |

∑

j∈ J 1
(x j − 2 x 2

f 2 = cos (0 . 5 x 1 π) sin (0 . 5 x 2 π) +

2
| J 2 |

∑

j∈ J 2
(x j − 2 x 2 s

f 3 = sin (0 . 5 x 1 π) +

2
| J 3 |

∑

j∈ J 3
(x j − 2 x 2 sin (2 πx 1 +

j

J 1 = { j |3 ≤ j ≤ n , and j − 1 is a multiplication of 3}

J 3 = { j |3 ≤ j ≤ n , and j is a multiplication of 3},

UF9 f 1 = 0 . 5[max { 0 , (1 + ε)(1 − 4 (2 x 1 − 1)
2
) } + 2 x 1

f 2 = 0 . 5[max { 0 , (1 + ε)(1 − 4 (2 x 1 − 1)
2
) } + 2 x 1

f 3 = 1 − x 2 +

2
| J 3 |

∑

j∈ J 3
(x j − 2 x 2 sin (2 πx 1 +

jπ
n

)
2
)

J 1 = { j |3 ≤ j ≤ n , and j − 1 is a multiplication of 3}

J 3 = { j |3 ≤ j ≤ n , and j is a multiplication of 3}, ε

UF10 f 1 = cos (0 . 5 x 1 π) cos (0 . 5 x 2 π) +

2
| J 1 |

∑

j∈ J 1
[4 y 2

j
− cos

f 2 = cos (0 . 5 x 1 π) sin (0 . 5 x 2 π) +

2
| J 2 |

∑

j∈ J 1
[4 y 2

j
− cos

f 3 = sin (0 . 5 x 1 π) +

2
| J 3 |

∑

j∈ J 1
[4 y 2

j
− cos (8 πy j) + 1]

J 1 = { j |3 ≤ j ≤ n , and j − 1 is a multiplication of 3}

J 3 = { j |3 ≤ j ≤ n , and j is a multiplication of 3},
 (f 1 (x) , g (x)) = 1 −
√

f 1 (x)
g (x)

 ≤ x i ≤ 1 , 1 ≤ i ≤ 30

(B.4)

ZDT2:

inimise : f 1 (x) = x 1 (B.5)

inimise : f 2 (x) = g (x) × h (f 1 (x) , g (x)) (B.6)

here : G (x) = 1 +

9

N − 1

N ∑

i =2

x i (B.7)

 (f 1 (x) , g (x)) = 1 −
√

f 1 (x)
g (x)

 ≤ x i ≤ 1 , 1 ≤ i ≤ 30

(B.8)
 − √

x +

2
| J 2 |

∑

j∈ J 2
[x j − sin (6 πx 1 +

jπ
n

)] 2

d 2 ≤ j ≤ n }

d 2 ≤ j ≤ n }

 (6 πx 1 +

jπ
n

) i f j ∈ J 1
 (6 πx 1 +

jπ
n

) i f j ∈ J 2

− x
0 . 5(1 . 0+ 3(j−2)

n −2)

1
, j = 2 , 3 , . . . , n

 j)

− sin
(
6 πx 1 +

jπ
n

)
, j = 2 , 3 , . . . , n, h (t) =

| t|
1+ e 2 | t|

f 1 = 1 − x 1 + (1
2 N

+ ε) | sin (2 Nπx 1) | +

2
| J 2 |

∑

j∈ J 2
h (y i)

y j = x j − sin
(
6 πx 1 +

jπ
n

)
, j = 2 , 3 , . . . , n

(
4

∑

j∈ J 1
y 2

j
− 2

∏

j∈ J 1
cos

(
20 y j π√

j

)
+ 1

))

|

(
4

∑

j∈ J 2
y 2

j
− 2

∏

j∈ J 2
cos

(
20 y j π√

j

)
+ 1

))
y j = x j − sin (6 πx 1 +

jπ
n

) , j = 2 , 3 , . . . , n

 J 2
y 2

j

 x j − sin (6 πx 1 +

jπ
n

) , j = 2 , 3 , . . . , n

sin (2 πx 1 +

jπ
n

)
2
)

in (2 πx 1 +

jπ
n

)
2
)

π
n

)
2
)

, J 2 = { j |3 ≤ j ≤ n , and j − 2 is a multiplication of 3},

] x 2 +

2
| J 1 |

∑

j∈ J 1
(x j − 2 x 2 sin (2 πx 1 +

jπ
n

)
2
)

] x 2 +

2
| J 2 |

∑

j∈ J 2
(x j − 2 x 2 sin (2 πx 1 +

jπ
n

)
2
)

, J 2 = { j |3 ≤ j ≤ n , and j − 2 is a multiplication of 3},

= 0.1

 (8 πy j) + 1]

 (8 πy j) + 1]

, J 2 = { j |3 ≤ j ≤ n , and j − 2 is a multiplication of 3},

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 189

M

M

W

h

0

M

M

W

h

0

M

M

M

W

h

0

i

R

ZDT3:

inimise : f 1 (x) = x 1 (B.9)

inimise : f 2 (x) = g (x) × h (f 1 (x) , g (x)) (B.10)

here : G (x) = 1 +

9

29

N ∑

i =2

x i (B.11)

 (f 1 (x) , g (x)) = 1 −
√

f 1 (x)
g (x)

−
(

f 1 (x)
g (x)

)
sin (10 π f 1 (x))

 ≤ x i ≤ 1 , 1 ≤ i ≤ 30

(B.12)

ZDT1 with linear PF:

inimise : f 1 (x) = x 1 (B.13)

inimise : f 2 (x) = g (x) × h (f 1 (x) , g (x)) (B.14)

here : G (x) = 1 +

9

N − 1

N ∑

i =2

x i (B.15)

 (f 1 (x) , g (x)) = 1 −
√

f 1 (x)
g (x)

 ≤ x i ≤ 1 , 1 ≤ i ≤ 30

(B.16)

ZDT2 with three objectives:

inimise : f 1 (x) = x 1 (B.17)

inimise : f 2 (x) = x 2 (B.18)

inimise : f 3 (x) = g (x) × h (f 1 (x) , g (x)) × h (f 2 (x) , g (x))

(B.19)

here : G (x) = 1 +

9

N − 1

N ∑

i =3

x i (B.20)

 (f 1 (x) , g (x)) = 1 −
(

f 1 (x)
g (x)

)2

 ≤ x i ≤ 1 , 1 ≤ i ≤ 30

(B.21)

The details of CEC2009 multi-objective test problems are given

n Table 17 and 18 .

eferences

[1] Bäck T . Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms. Oxford university press; 1996 .

[2] Blum C , Li X . Swarm intelligence in optimization. Springer; 2008 .
[3] Goldberg DE , Holland JH . Genetic algorithms and machine learning. Mach

Learn 1988;3:95–9 .
[4] Storn R , Price K . Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces. J Global Optim 1997;11:341–59 .
[5] Rechenberg I . Evolution strategy: optimization of technical systems by means

of biological evolution, 104. Stuttgart: Fromman-Holzboog; 1973 .

[6] Fogel LJ , Owens AJ , Walsh MJ . Artificial intelligence through simulated evolu-
tion; 1966 .

[7] Yao X , Liu Y , Lin G . Evolutionary programming made faster. Evol Comput IEEE
Trans 1999;3:82–102 .

[8] Simon D . Biogeography-based optimization. Evol Comput IEEE Trans
2008;12:702–13 .

[9] Colorni A , Dorigo M , Maniezzo V . Distributed optimization by ant colonies.

In: Proceedings of the first European conference on artificial life; 1991.
p. 134–42 .

[10] Eberhart RC , Kennedy J . A new optimizer using particle swarm theory. In:
Proceedings of the sixth international symposium on micro machine and hu-

man science; 1995. p. 39–43 .
[11] Karaboga D , Basturk B . A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. J Global Optim

2007;39:459–71 .
[12] Yang X-S , Deb S . Cuckoo search via Lévy flights. In: Nature & biologically in-

spired computing, 2009. NaBIC 2009. world congress on; 2009. p. 210–14 .
[13] Yang XS . Firefly algorithm. Eng Optim 2010:221–30 .

[14] Yang X-S . A new metaheuristic bat-inspired algorithm. In: Nature inspired co-
operative strategies for optimization (NICSO 2010). Springer; 2010. p. 65–74 .

[15] Mirjalili S , Mirjalili SM , Lewis A . Grey wolf optimizer. Adv Eng Softw

2014;69:46–61 .
[16] Kumar V , Chhabra JK , Kumar D . Grey wolf algorithm-based clustering tech-

nique. J Intell Syst 2017;26:153–68 .
[17] Aswani R , Ghrera S , Chandra S . A novel approach to outlier detection using

modified grey wolf optimization and k-nearest neighbors algorithm. Indian J
Sci Technol 2016;9 .

[18] Kaveh A , Farhoudi N . A new optimization method: dolphin echolocation. Adv

Eng Software 2013;59:53–70 .
[19] Mirjalili S , Lewis A . The whale optimization algorithm. Adv Eng Software

2016;95:51–67 .
[20] Pan W-T . A new fruit fly optimization algorithm: taking the financial distress

model as an example. Knowl Based Syst 2012;26:69–74 .
[21] Geem ZW , Kim JH , Loganathan G . A new heuristic optimization algorithm:

harmony search. Simulation 2001;76:60–8 .

[22] Kumar V , Chhabra JK , Kumar D . A hybrid approach for data clustering us-
ing expectation-maximization and parameter adaptive harmony search algo-

rithm. In: Proceedings of 2015 International Conference on Future Computa-
tional Technologies; 2015. p. 61–7 .

[23] Glover F . Tabu search-part I. ORSA J Comput 1989;1:190–206 .
[24] Davis L . Bit-climbing, representational bias, and test suite design. In: ICGA;

1991. p. 18–23 .

[25] Lourenço HR , Martin OC , Stutzle T . Iterated local search; 2001. arXiv preprint
math/0102188 .

[26] Kirkpatrick S , Gelatt CD , Vecchi MP . Optimization by simmulated annealing.
Science 1983;220:671–80 .

[27] Caporossi G , Hansen P , Mladenovi ́c N . Variable neighborhood search. In:
Metaheuristics. Springer; 2016. p. 77–98 .

[28] Alsheddy A , Voudouris C , Tsang EP , Alhindi A . Guided local search. In: Hand-

book of heuristics. Springer; 2016. p. 1–37 .
[29] Wolpert DH , Macready WG . No free lunch theorems for optimization. Evol

Comput IEEE Trans 1997;1:67–82 .
[30] Yao X . A review of evolutionary artificial neural networks. Int J Intell Syst

1993;8:539–67 .
[31] Coello Coello CA . Constraint-handling using an evolutionary multiobjective

optimization technique. Civil Eng Syst 20 0 0;17:319–46 .

[32] Boussaïd I , Lepagnot J , Siarry P . A survey on optimization metaheuristics. Inf
Sci 7/10/ 2013;237:82–117 .

[33] Coello CAC . Evolutionary multi-objective optimization: some current research
trends and topics that remain to be explored. Front Comput Sci China

2009;3:18–30 .
[34] Ngatchou P , Zarei A , El-Sharkawi M . Pareto multi objective optimization. In:

Intelligent Systems Application to Power Systems, 2005. Proceedings of the
13th International Conference on; 2005. p. 84–91 .

[35] Zhou A , Qu B-Y , Li H , Zhao S-Z , Suganthan PN , Zhang Q . Multiobjective evo-

lutionary algorithms: a survey of the state of the art. Swarm Evol Comput
2011;1:32–49 .

[36] Tan KC , Chiam SC , Mamun A , Goh CK . Balancing exploration and exploitation
with adaptive variation for evolutionary multi-objective optimization. Eur J

Oper Res 2009;197:701–13 .
[37] Wang G-G , Guo L , Gandomi AH , Hao G-S , Wang H . Chaotic krill herd algo-

rithm. Inf Sci 2014;274:17–34 .

[38] Gandomi AH , Alavi AH . Krill herd: a new bio-inspired optimization algorithm.
Commun Nonlinear Sci Numer Simul 2012;17:4831–45 .

[39] Wang G-G , Gandomi AH , Alavi AH . Stud krill herd algorithm. Neurocomputing
2014;128:363–70 .

[40] Rashedi E , Nezamabadi-Pour H , Saryazdi S . GSA: a gravitational search algo-
rithm. Inf Sci 2009;179:2232–48 .

[41] Kaveh A , Talatahari S . A novel heuristic optimization method: charged system

search. Acta Mech 2010;213:267–89 /09/01 2010 .
[42] Formato RA . Central force optimization: a new nature inspired computa-

tional framework for multidimensional search and optimization. In: Nature
inspired cooperative strategies for optimization (NICSO 2007). Springer; 2008.

p. 221–38 .
[43] Kaveh A , Khayatazad M . A new meta-heuristic method: ray optimization.

Comput Struct 2012;112–113:283–94 .

[44] Rao RV , Savsani VJ , Vakharia D . Teaching–learning-based optimization: a
novel method for constrained mechanical design optimization problems.

Comput Aided Des 2011;43:303–15 .
[45] Dai C , Zhu Y , Chen W . Seeker optimization algorithm. In: Computational in-

telligence and security. Springer; 2007. p. 167–76 .
[46] Moosavian N , Kasaee Roodsari B . Soccer league competition algorithm: a

novel meta-heuristic algorithm for optimal design of water distribution net-

works. Swarm Evol Comput 2014;17:14–24 .
[47] Sadollah A , Bahreininejad A , Eskandar H , Hamdi M . Mine blast algorithm:

a new population based algorithm for solving constrained engineering op-
timization problems. Appl Soft Comput 2013;13:2592–612 .

http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0022
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0022
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0028
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0028
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0028
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0029
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0029
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0030
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0030
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0032
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0032
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0041
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0041
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0042
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0042
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0042
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0043
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0043
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0043
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0043
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0045
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0045
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0045
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0046
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0046
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0046
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0046
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0046

190 S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191

[

[48] Branke J , Kaußler T , Schmeck H . Guidance in evolutionary multi-objective op-
timization. Adv Eng Software 2001;32:499–507 .

[49] Das I , Dennis JE . Normal-boundary intersection: a new method for generating
the Pareto surface in nonlinear multicriteria optimization problems. SIAM J

Optim 1998;8:631–57 .
[50] Kim IY , De Weck O . Adaptive weighted-sum method for bi-objective opti-

mization: pareto front generation. Struct Multidiscip Optim 2005;29:149–58 .
[51] Messac A , Mattson CA . Generating well-distributed sets of Pareto points for

engineering design using physical programming. Optim Eng 2002;3:431–50 .

[52] Parsopoulos KE , Vrahatis MN . Particle swarm optimization method in multi-
objective problems. In: Proceedings of the 2002 ACM symposium on Applied

computing; 2002. p. 603–7 .
[53] Deb K . Advances in evolutionary multi-objective optimization. In: Search

based software engineering. Springer; 2012. p. 1–26 .
[54] Zhang Q , Li H . MOEA/D: a multiobjective evolutionary algorithm based on

decomposition. Evol Comput IEEE Trans 2007;11:712–31 .

[55] Mezura-Montes E , Reyes-Sierra M , Coello CAC . Multi-objective optimization
using differential evolution: a survey of the state-of-the-art. In: Advances in

differential evolution. Springer; 2008. p. 173–96 .
[56] Kumar V , Chhabra JK , Kumar D . Differential search algorithm for multiobjec-

tive problems. Procedia Comput Sci 2015;48:22–8 .
[57] Sarker R , Abbass HA . Differential evolution for solving multiobjective opti-

mization problems. Asia Pac J Oper Res 2004;21:225–40 .

[58] Abbass H , Sarker R , Newton C . PDE: a Pareto-frontier differential evolution
approach for multi-objective optimization problems. In: Evolutionary Com-

putation, 2001. Proceedings of the 2001 Congress on; 2001. p. 971–8 .
[59] Coello CAC , Lechuga MS . MOPSO: a proposal for multiple objective particle

swarm optimization. In: Evolutionary Computation, 2002. CEC’02. Proceed-
ings of the 2002 Congress on; 2002. p. 1051–6 .

[60] Knowles JD , Corne DW . Approximating the nondominated front using the

Pareto archived evolution strategy. Evol Comput 20 0 0;8:149–72 .
[61] Liu D , Tan KC , Huang S , Goh CK , Ho WK . On solving multiobjective bin pack-

ing problems using evolutionary particle swarm optimization. Eur J Oper Res
2008;190:357–82 .

[62] Santana RA , Pontes MR , Bastos-Filho CJ . A multiple objective particle swarm
optimization approach using crowding distance and roulette wheel. In: In-

telligent Systems Design and Applications, 2009. ISDA’09. Ninth International

Conference on; 2009. p. 237–42 .
[63] Tripathi PK , Bandyopadhyay S , Pal SK . Multi-objective particle swarm op-

timization with time variant inertia and acceleration coefficients. Inf Sci
2007;177:5033–49 .

[64] Raquel CR , Naval PC Jr . An effective use of crowding distance in multiobjec-
tive particle swarm optimization. In: Proceedings of the 7th Annual confer-

ence on Genetic and Evolutionary Computation; 2005. p. 257–64 .

[65] Sierra MR , Coello CAC . Improving PSO-based multi-objective optimization
using crowding, mutation and ∈ -dominance. In: Evolutionary Multi-Criterion

Optimization; 2005. p. 505–19 .
[66] Mostaghim S , Teich J . Strategies for finding good local guides in multi-ob-

jective particle swarm optimization (MOPSO). In: Swarm Intelligence Sympo-
sium, 2003. SIS’03. Proceedings of the 2003. IEEE; 2003. p. 26–33 .

[67] Deb K , Pratap A , Agarwal S , Meyarivan T . A fast and elitist multiobjective ge-
netic algorithm: NSGA-II. Evol Comput IEEE Trans 2002;6:182–97 .

[68] Deb K , Agrawal S , Pratap A , Meyarivan T . A fast elitist non-dominated sort-

ing genetic algorithm for multi-objective optimization: NSGA-II. In: Interna-
tional Conference on Parallel Problem Solving From Nature. Springer; 20 0 0.

p. 849–58 .
[69] Mirjalili S . Moth-flame optimization algorithm: a novel nature-inspired

heuristic paradigm. Knowl Based Syst 2015;89:228–49 .
[70] Mirjalili S . The ant lion optimizer. Adv Eng Softw 2015;83:80–98 .

[71] Mirjalili S . Dragonfly algorithm: a new meta-heuristic optimization technique

for solving single-objective, discrete, and multi-objective problems. Neural
Comput Appl 2015:1–21 .

[72] Mirjalili S , Mirjalili S , Hatamlou A . Multi-verse optimizer: a nature-inspired
algorithm for global optimization. Neural Comput Appl 2015:1–19 /03/17

2015 .
[73] Mirjalili S . SCA: a sine cosine algorithm for solving optimization problems.

Knowl Based Syst 2016 .

[74] Madin L . Aspects of jet propulsion in salps. Can J Zool 1990;68:765–77 .
[75] Anderson PA , Bone Q . Communication between individuals in salp chains II.

physiology. Proc R Soc Lond B 1980;210:559–74 .
[76] Andersen V , Nival P . A model of the population dynamics of salps in coastal

waters of the Ligurian Sea. J Plankton Res 1986;8:1091–110 .
[77] Henschke N , Smith JA , Everett JD , Suthers IM . Population drivers of a Thalia

democratica swarm: insights from population modelling. J Plankton Res 2015

p. fbv024 .
[78] Coello CAC , Pulido GT , Lechuga MS . Handling multiple objectives with particle

swarm optimization. Evol Comput IEEE Trans 2004;8:256–79 .
[79] Digalakis J , Margaritis K . On benchmarking functions for genetic algorithms.

Int J Comput Math 2001;77:481–506 .
[80] M. Molga and C. Smutnicki, “Test functions for optimization needs,” 2005.

[81] Yang X-S . Test problems in optimization; 2010. arXiv preprint

arXiv:1008.0549 .
[82] Kumar V , Chhabra JK , Kumar D . Effect of harmony search parameters’ varia-

tion in clustering. Procedia Technol 2012;6:265–74 .
[83] Kumar V , Chhabra JK , Kumar D . Automatic data clustering using parameter
adaptive harmony search algorithm and its application to image segmenta-

tion. J Intell Syst 2016;25:595–610 .
[84] Kumar V , Chhabra JK , Kumar D . Parameter adaptive harmony search algo-

rithm for unimodal and multimodal optimization problems. J Comput Sci
2014;5:144–55 .

[85] Kumar V , Chhabra JK , Kumar D . Variance-based harmony search algorithm for
unimodal and multimodal optimization problems with application to cluster-

ing. Cybern Syst 2014;45:486–511 .

[86] Kumar V , Chhabra JK , Kumar D . Clustering using modified harmony search
algorithm. Int J Comput Intell Stud 2 2014;3:113–33 .

[87] N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockhoff, "COCO: a
platform for comparing continuous optimizers in a black-box setting," arXiv

preprint arXiv:1603.08785, 2016.
[88] Hansen N , Auger A , Finck S , Ros R . Real-parameter black-box optimization

benchmarking 2010: experimental setup. INRIA; 2010 .

[89] Finck S , Hansen N , Ros R , Auger A . Real-parameter black-box optimization
benchmarking 2010: presentation of the noisy functions. Research Center

PPE; 2010. Technical Report 2009/21 .
[90] Zitzler E , Deb K , Thiele L . Comparison of multiobjective evolutionary algo-

rithms: empirical results. Evol Comput 20 0 0;8:173–95 .
[91] Zhang Q , Zhou A , Zhao S , Suganthan PN , Liu W , Tiwari S . Multiobjective op-

timization test instances for the CEC 2009 special session and competition.

Multiobjective optimization test instances for the CEC 2009 special session
and competition, 264. University of Essex, Colchester, UK and Nanyang tech-

nological University, Singapore; 2008. Special session on performance assess-
ment of multi-objective optimization algorithms, technical report .

[92] Gandomi AH , Yang X-S , Alavi AH . Cuckoo search algorithm: a meta-
heuristic approach to solve structural optimization problems. Eng Comput

2013;29:17–35 .

[93] Zhang M , Luo W , Wang X . Differential evolution with dynamic stochastic se-
lection for constrained optimization. Inf Sci 2008;178:3043–74 .

[94] Liu H , Cai Z , Wang Y . Hybridizing particle swarm optimization with differen-
tial evolution for constrained numerical and engineering optimization. Appl

Soft Comput 2010;10:629–40 .
[95] Ray T , Saini P . Engineering design optimization using a swarm with an intel-

ligent information sharing among individuals. Eng Optim 2001;33:735–48 .

[96] Tsai J-F . Global optimization of nonlinear fractional programming problems in
engineering design. Eng Optim 2005;37:399–409 .

[97] Wang G-G , Guo L , Gandomi AH , Hao G-S , Wang H . Chaotic Krill Herd algo-
rithm. Inf Sci 2014 .

[98] Carlos A , COELLO C . Constraint-handling using an evolutionary multiobjective
optimization technique. Civil Eng Syst 20 0 0;17:319–46 .

[99] Deb K . Optimal design of a welded beam via genetic algorithms. AIAA J

1991;29:2013–15 .
100] Deb K . An efficient constraint handling method for genetic algorithms. Com-

put Method Appl Mech Eng 20 0 0;186:311–38 .
[101] Krohling RA , dos Santos Coelho L . Coevolutionary particle swarm optimiza-

tion using Gaussian distribution for solving constrained optimization prob-
lems. Syst Man Cybern Part B IEEE Trans 2006;36:1407–16 .

[102] Lee KS , Geem ZW . A new meta-heuristic algorithm for continuous engineer-
ing optimization: harmony search theory and practice. Comput Methods Appl

Mech Eng 2005;194:3902–33 .

[103] Ragsdell K , Phillips D . Optimal design of a class of welded structures using
geometric programming. ASME J Eng Ind 1976;98:1021–5 .

[104] He Q , Wang L . An effective co-evolutionary particle swarm optimiza-
tion for constrained engineering design problems. Eng Appl Artif Intell

2007;20:89–99 .
[105] Coello Coello CA . Theoretical and numerical constraint-handling techniques

used with evolutionary algorithms: a survey of the state of the art. Comput

Method Appl Mech Eng 2002;191:1245–87 .
[106] Coello Coello CA , Mezura Montes E . Constraint-handling in genetic algo-

rithms through the use of dominance-based tournament selection. Adv Eng
Inf 2002;16:193–203 .

[107] Siddall JN . Analytical decision-making in engineering design. Englewood
Cliffs, NJ: Prentice-Hall; 1972 .

[108] Wang GG . Adaptive response surface method using inherited latin hypercube

design points. J Mech Des 2003;125:210–20 .
[109] Cheng M-Y , Prayogo D . Symbiotic organisms search: a new metaheuristic op-

timization algorithm. Comput Struct 2014;139:98–112 .
[110] Chickermane H , Gea H . Structural optimization using a new local approxima-

tion method. Int J Numer Methods Eng 1996;39:829–46 .
[111] Arora JS . Introduction to optimum design. Academic Press; 2004 .

[112] Belegundu AD . Study of mathematical programming methods for structural

optimization. Diss Abstr Int Part B 1983;43:1983 .
[113] Yang XS . Nature-inspired metaheuristic algorithms. Luniver Press; 2011 .

[114] Mezura-Montes E , Coello CAC . An empirical study about the usefulness of
evolution strategies to solve constrained optimization problems. Int J Gen

Syst 2008;37:443–73 .
[115] Coello Coello CA . Use of a self-adaptive penalty approach for engineering op-

timization problems. Comput Ind 20 0 0;41:113–27 .

[116] Kaveh A , Khayatazad M . A new meta-heuristic method: ray optimization.
Comput Struct 2012;112:283–94 .

http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0047
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0047
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0047
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0047
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0048
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0048
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0048
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0049
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0049
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0049
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0050
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0050
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0050
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0051
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0051
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0051
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0052
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0052
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0053
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0053
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0053
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0055
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0055
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0055
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0055
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0056
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0056
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0056
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0057
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0057
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0057
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0057
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0058
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0058
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0058
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0059
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0059
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0059
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0062
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0062
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0062
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0062
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0063
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0063
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0063
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0064
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0064
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0064
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0066
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0066
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0066
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0066
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0066
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0067
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0067
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0068
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0068
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0069
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0069
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0070
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0070
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0070
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0070
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0071
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0071
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0072
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0072
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0073
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0073
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0073
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0074
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0074
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0074
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0075
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0075
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0075
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0075
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0075
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0076
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0076
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0076
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0076
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0077
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0077
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0077
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0078
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0078
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0079
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0079
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0079
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0079
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0080
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0080
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0080
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0080
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0081
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0081
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0081
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0081
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0082
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0082
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0082
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0082
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0083
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0083
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0083
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0083
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0084
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0084
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0084
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0084
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0084
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0085
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0085
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0085
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0085
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0085
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0086
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0086
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0086
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0086
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0088
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0088
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0088
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0088
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0089
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0089
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0089
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0089
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0090
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0090
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0090
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0090
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0091
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0091
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0091
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0092
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0092
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0094
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0094
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0094
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0095
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0095
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0096
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0096
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0097
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0097
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0097
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0098
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0098
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0098
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0099
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0099
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0099
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0100
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0100
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0100
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0101
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0101
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0102
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0102
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0102
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0103
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0103
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0104
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0104
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0105
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0105
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0105
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0106
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0106
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0106
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0107
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0107
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0108
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0108
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0109
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0109
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0110
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0110
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0110
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0111
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0111
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0112
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0112
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0112

S. Mirjalili et al. / Advances in Engineering Software 114 (2017) 163–191 191

[

[

[
[

[

[117] Mahdavi M , Fesanghary M , Damangir E . An improved harmony search
algorithm for solving optimization problems. Appl Math Comput

2007;188:1567–79 .
[118] Li L , Huang Z , Liu F , Wu Q . A heuristic particle swarm optimizer for optimiza-

tion of pin connected structures. Comput Struct 2007;85:340–9 .
[119] Drela M . XFOIL: An analysis and design system for low Reynolds number air-

foils. In: Low Reynolds number aerodynamics. Springer; 1989. p. 1–12 .
120] Sederberg TW , Parry SR . Free-form deformation of solid geometric models.

In: ACM SIGGRAPH computer graphics; 1986. p. 151–60 .

[121] B.M. Pinkebtom, "The characteristics of; f 8; related airfoil sections from tests
in the variable-density wind tunnel," 1933.
122] Mirjalili S , Lewis A , Mirjalili SAM . Multi-objective optimisation of marine pro-
pellers. Procedia Comput Sci 2015;51:2247–56 .

123] Carlton J . Marine propellers and propulsion. Butterworth-Heinemann; 2012 .
124] Zeng Z-b , Kuiper G . Blade section design of marine propellers with maximum

cavitation inception speed. J Hydrodyn Ser. B 2012;24:65–75 .
125] Epps B , Chalfant J , Kimball R , Techet A , Flood K , Chryssostomidis C . Open-

Prop: an open-source parametric design and analysis tool for propellers. In:
Proceedings of the 2009 Grand Challenges in Modeling & Simulation Confer-

ence; 2009. p. 104–11 .

http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0113
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0113
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0113
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0113
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0114
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0114
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0114
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0114
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0114
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0115
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0115
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0116
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0116
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0116
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0117
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0117
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0117
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0117
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0118
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0118
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0119
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0119
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0119
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120

	Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
	1 Introduction
	2 Related works
	2.1 Single-objective optimization problems
	2.2 Multi-objective optimization problems
	2.3 Single-objective optimization algorithms
	2.4 Multi-objective optimization algorithms
	2.5 Contributions of the work

	3 Inspiration, mathematical model, and Salp Swarm Algorithm
	3.1 Inspiration
	3.2 Proposed mathematical model for moving salp chains
	3.2 Swarm simulation
	3.3 Single-objective Salp Swarm Algorithm (SSA)
	3.4 Multi-objective Salp Swarm Algorithm (MSSA)

	4 Results
	4.1 Qualitative results of SSA and discussion
	4.2 Quantitative results of SSA and discussion
	4.3 Comparison of SSA with Harmony Search (HS) on CEC-BBOB-2015 test functions
	4.4 Scalability analysis
	4.5 Results of MSSA and discussion
	4.5.1 ZDT test problems
	4.5.2 CEC2009 test functions

	5 Real-world applications
	5.1 Three-bar truss design problem
	5.2 Welded beam design problem
	5.3 I-beam design problem
	5.4 Cantilever beam design problem
	5.5 Tension/compression spring design
	5.6 Two-dimensional airfoil design using SSA
	5.7 Marine propeller design using MSSA

	6 Conclusion
	 Appendix A. Single-objective test problems utilised in this work
	 Appendix B. Multi-objective test problems utilised in this work
	 References

