Advances in Engineering Software 114 (2017) 163-191

ENGINEERING

SOFTWARE

Advances in Engineering Software N
journal homepage: www.elsevier.com/locate/advengsoft »

Contents lists available at ScienceDirect

Salp Swarm Algorithm: A bio-inspired optimizer for engineering

design problems

® CrossMark

Seyedali Mirjalili**, Amir H. Gandomi®!, Seyedeh Zahra Mirjalili¢, Shahrzad Saremi?,

Hossam Faris¢, Seyed Mohammad Mirjalili®

2 Institute for Integrated and Intelligent Systems, Griffith University, Nathan, QLD 4111, Australia

b School of Business, Stevens Institute of Technology, Hoboken, NJ 07030, USA

¢School of Electrical Engineering and Computing, University of Newcastle, Callaghan, NSW 2308, Australia

d Business Information Technology Department, King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
¢ Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, H3G1M8, Canada

TBEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 488241, USA

ARTICLE INFO ABSTRACT

Article history:

Received 25 December 2016
Revised 23 April 2017
Accepted 9 July 2017
Available online 24 July 2017

Keywords:

Particle swarm optimization
Multi-objective optimization
Genetic algorithm

Heuristic algorithm
Algorithm

This work proposes two novel optimization algorithms called Salp Swarm Algorithm (SSA) and Multi-
objective Salp Swarm Algorithm (MSSA) for solving optimization problems with single and multiple ob-
jectives. The main inspiration of SSA and MSSA is the swarming behaviour of salps when navigating and
foraging in oceans. These two algorithms are tested on several mathematical optimization functions to
observe and confirm their effective behaviours in finding the optimal solutions for optimization prob-
lems. The results on the mathematical functions show that the SSA algorithm is able to improve the
initial random solutions effectively and converge towards the optimum. The results of MSSA show that
this algorithm can approximate Pareto optimal solutions with high convergence and coverage. The paper
also considers solving several challenging and computationally expensive engineering design problems
(e.g. airfoil design and marine propeller design) using SSA and MSSA. The results of the real case stud-
ies demonstrate the merits of the algorithms proposed in solving real-world problems with difficult and

Benchmark
unknown search spaces.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decade, meta-heuristic techniques have become
surprisingly very popular. This popularity is due to several main
reasons: flexibility, gradient-free mechanism, and local optima
avoidance of these algorithms. The first two advantages originate
from the fact that meta-heuristics consider and solve optimiza-
tion problems by only looking at the inputs and outputs. In other
words, meta-heuristics assume an optimization problem as a black
box. Therefore, there is no need to calculate derivative of the
search space. This makes them highly flexible for solving a diverse
range of problems. Since meta-heuristics belong to the family of
stochastic optimization techniques, they benefit from random op-
erators. This assists them to avoid local solutions when solving
real problems, which usually have a large number of local optima.
Due to these advantages, the application of meta-heuristics can be
found in different branches of science and industry.

* Corresponding author.
E-mail address: seyedali.mirjalili@griffithuni.edu.au (S. Mirjalili).
URL: http://www.alimirjalili.com/ (S. Mirjalili)

http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
0965-9978/© 2017 Elsevier Ltd. All rights reserved.

Meta-heuristic algorithms are classified into two dominant
classes: evolutionary [1] and swarm intelligence [2]| techniques.
Evolutionary algorithms mimic the concepts of evolution in na-
ture. The best and most well-regarded algorithm in this class is
Genetic Algorithm (GA) [3]. This algorithm simulates the concepts
of Darwinian theory of evolution. In GA, the optimization is ini-
tiated with a set of random solutions for a particular problem.
After evaluating the solutions by the objective function, it modi-
fies the variables of solutions based on their fitness value. Since
the best individuals are given higher probability to involve in im-
proving other solutions, the random initial solutions are very likely
to be improved. There are several other evolutionary algorithms
in the literature such as Differential Evolution (DE) [4], Evolution-
ary Strategy (ES) [5], and Evolutionary Programming (EP) [6,7], and
Biogeography-Based Optimization (BBO) algorithm [8] as well.

Swarm intelligence techniques mimic the intelligence of
swarms, herds, schools, or flocks of creatures in nature. The main
foundation of these algorithms originates from the collective be-
haviour of a group of creatures. For instance, ants are able to col-
lectively guarantee the survival of a colony without having a cen-
tralized control unit. In other word, no one tells ants where and

http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2017.07.002&domain=pdf
mailto:seyedali.mirjalili@griffithuni.edu.au
http://www.alimirjalili.com/
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002

164 S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

how a source food can be found, but they cooperatively find foods
at even far distances from their nests. The two most popular al-
gorithms in this class are Ant Colony Optimization (ACO) [9] and
Particle Swarm Optimization (PSO) [10]. The ACO algorithm mimics
the social behaviour of ants for finding the shortest path between
the nest and a source food. The PSO algorithm simulates the col-
lective behaviour of birds in navigating and hunting. Other swarm
intelligence techniques in the literature are: Artificial Bee Colony
(ABC) algorithm [11], Cuckoo Search (CS) algorithm [12], Firefly Al-
gorithm (FA) [13], Bat Algorithm (BA) [14], Grey Wolf Optimizer
(GWO) [15-17], Dolphin Echolocation (DE) [18], Whale Optimiza-
tion Algorithm (WOA) [19], Fruitfly Optimization Algorithm (FOA)
[20], and Harmony Search [21,22].

Regardless of the difference between evolutionary and swarm
intelligence techniques, the common is the improvement of one
or a set of solutions during optimization. If an algorithm improves
only one solution, it is called individualist algorithm. If a set of
solutions is improved, it is referred as a collective algorithm. In-
dividualist algorithms are beneficial because of the low number
of required function evaluation and simplicity of the overall op-
timization process. However, the probability of local optima stag-
nation is very high. Collective algorithms are able to avoid local
solutions better and exchange information about the search space.
However, such techniques require more number of function eval-
uations. Some of the individualist algorithms are Tabu Search (TS)
[6,23], hill climbing [24], Iterated Local Search (ILS) [25], and Sim-
ulated Annealing (SA) [26], Variable Neighborhood Search (VNS)
[27], and Guided Local Search [28]. The well-known collective al-
gorithms are GA, ACO, PSO, DE, and ES.

Despite the merits of the proposed algorithms in the literature,
it has been proved by the No-Free-Lunch (NFL) [29] that none
of these algorithms are able to solve all optimization problems.
In other words, all meta-heuristics perform similar when solving
all optimization problems. This theorem reveals the importance of
new and specific algorithms in different fields because effective-
ness of an algorithm in solving a set of problems does not guaran-
tee its success in different sets of test problems. This is the motiva-
tion of this paper, in which a new meta-heuristic optimization al-
gorithm is first proposed for solving single-objective problems and
then extended to a multi-objective version. The rest of the paper
is organized as follows.

Section 2 reviews the literature and relevant works.
Section 3 presents the inspiration and mathematical model
proposed. The Salp Swarm Algorithm (SSA) and Multi-objective
Salp Swarm Algorithm (MSSA) are proposed in this section as
well. The qualitative and quantitative results of both algorithms
on a variety of benchmark functions are presented and discussed
in Section 4. Both SSA and MSSA are employed to solve several
challenging real problems in Section 5. Finally, Section 6 concludes
the work and suggest several future research directions.

2. Related works

This section reviews the state-of-the-art in the field of stochas-
tic optimization. There are many branches in this field such as
single-objective, multi-objective, constrained, dynamic, surrogate-
assisted, many-objective, and so on. Since the algorithms proposed
solve single- and multi-objective optimization problems, the main
focus of this section is on the challenges and related works in
single- and multi- objective optimization fields.

2.1. Single-objective optimization problems

As its name implies, single-objective optimization deals with
one objective. This means there is only one objective to be min-
imized or maximized. This type of optimization might be subject
to a set of constraints as well. The constraints are divided to two

categories: equality and inequality. Single-objective optimization is
formulated as a minimization problem as follows (without the loss
of generality):

Minimize : F(X) = {fi1(X)} (2.1)
Subject to: gi(X) >0, i=1,2,....,m (2.2)
hi(X) =0 i=12....p (2.3)
Ibj <x;<ub;, i=1,2,...,d (2.4)

where d is the number of variables, p is the number of equality
constraints, m is the number of inequality constrained, Ib; is the
lower bound of the ith variable, and ub; indicates the upper bound
of the ith variable.

The set of variables, objectives, range of variables, and con-
straints create a search space/landscape. This search space exists
in a d-dimensional space where d is the number of variables. For
1D, 2D, and 3D problems, we can easily draw the search space in a
Cartesian coordinate system and observe their shapes. However, it
is not possible to draw dimensions greater than 3 because they are
beyond the dimensions that we experience every day. Therefore, a
large number of variables is the first challenge when solving opti-
mization problems.

The range of variables confides the search space and is varied.
The variables themselves can be continuous or discrete, in which
they create either a continuous or a discrete search space. In a for-
mer case, there is an infinite number of points between each two
points in the search space. In the latter case, however, there is a
finite set of points between two points. Finding the global opti-
mum in a continuous space is different from a discrete one, and
each of them has their own challenges. Although most of the op-
timization problems come with range of variables, there are some
problems that do not have a specific range to be considered during
optimization. An example is the problem of training Neural Net-
works (NNs) [30]. The connection weights and biases can be any
real number. Solving such problems also need special considera-
tion. For instance, an optimizer might start with an initial range
and then expand it during optimization.

The constraints limit the search space even further. They create
gaps in the search space because the solutions in those regions are
not suitable for the problem. For instance, the thickness of a pro-
peller blade cannot go below a certain number due to the fragility.
A set of constraints can even split the search space to different
separated regions. The solutions that violate the constrained re-
gions are called infeasible solutions. In contrast, the solutions in-
side the constrained areas are called feasible solutions. In the lit-
erature, there are two terms for the parts of the search space that
are inside and outside the constrained areas: feasible and infeasi-
ble regions. A constrained search space has the potential to make
an algorithm ineffective despite its good performance in an uncon-
strained search space. Some of the real problems such as Computa-
tional Fluid Dynamic problems have dominated infeasible regions.
Therefore, optimization techniques should be equipped with suit-
able operators [31] to handle constraints as well.

Another challenge when solving optimization problems is the
presence of local solutions. The search space that the variables,
objective function, and constraints create may be very simple or
complicated. In most of the works in the literature, the number of
local solutions is considered as the main difficulty for optimization
algorithms. In a single-objective search space there is one best so-
lution (the so-called global optimum) that returns the best objec-
tive value. However, there are usually many other solutions that
return values close the objective value of the global optimum. This
kind of solutions are called local solutions because they are locally
the best solution if we consider the search space in their vicin-
ity, but they are not the best solution globally when considering

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 165

the entire search space. The presence of local solutions causes the
entrapment of many optimization algorithms. Local optima stagna-
tion refers to the situation where an optimization algorithm finds
a local solution and mistakenly assumes it as the global optimum.
A real search space usually has a large number of local solutions.
Therefore, an optimization algorithm should be able to avoid them
efficiently to determine the global optimum.

The convergence speed is also a difficulty when solving opti-
mization problems. An algorithm that is able to avoid local solu-
tions is not necessarily able to converge towards the global opti-
mum. Finding the rough location of the global optimum is done
when an algorithm avoids local solutions. The next step is to im-
prove the accuracy of the rough solutions obtained. The term con-
vergence in the literature refers to the rate or behaviour of an algo-
rithm towards the global optimum. Of course, a quick convergence
results in local optima stagnation. By contrast, sudden changes in
the solutions lead to local optima avoidance but reduce the con-
vergence speed towards the global optimum. These two trade-offs
are the main challenges that an algorithm deals with when solving
real problems. Converge speed is essential in finding an accurate
approximation of the global optimum.

There are other types of difficulties when solving real single-
objective search spaces such as: deceptive optimum, isolation of
the optimum, uncertainty, noisy objective function, dynamic objec-
tive function, reliable optimum, and so on. Each of these difficulties
needs special consideration. These concepts are out of the scope of
this work, so interested readers are referred to the surveys con-
ducted by Boussaid [32].

2.2. Multi-objective optimization problems

As its name implies, multi-objective optimization deals with
more than one objective. All of the objectives should be optimized
simultaneously to solve multi-objective problems. Multi-objective
optimization is formulated as follows (without the loss of general-

ity):

Minimize : F(®) = {fi(®). (). fo(®)) (2.5)
Subject to: gi(X) >0, i=1,2,...,m (2.6)
hx) = 0,i=1,2,....p (2.7)
Ib; <xi<ub;, i=1,2,...,n (2.8)

where o is the number of objectives, m is the number of inequality
constraints, p is the number of equality constraints, Ib; is the lower
bound of the ith variable, and ub; indicates the upper bound of the
ith variable.

The nature of such problems prevents us from comparing solu-
tions using the relational operators. This is because there is more
than one criterion to compare solutions. With one objective we can
confidently say if a solution is better than another using relational
operators, but with more than one objective we need other op-
erator(s). The main operator to compare two solutions considering
multiple objectives is called Pareto optimal dominance and defined
as follows [33]:

Definition 1. Pareto domination:
Assuming the following two vectors: X = (x1,X>, ..

W1, Y20+ Y-
Vector x dominates vector y (x < y) if and only if:

Vie{l,2,... k), [f,(?) gfi(ﬁ)] Adie{l,2,... 0},

() <40)]

., X)) and y =

(2.9)

Inspecting Eq. (2.9), it may be seen that a solution is better than
another if it has equal and at least one better value in the objec-
tives. In this case, it is said that a solution dominates the other. If
this does not hold for two solutions, they are called Pareto opti-
mal or non-dominated solutions. The answers for a multi-objective
problem are the non-dominated solutions. The Pareto optimality is
also important in multi-objective optimization and defined as fol-
lows [34]:

Definition 2. Pareto optimality:
Assuming that ¥ € X, X' is a Pareto-optimal solution if and only
if:
{a yeX| §<¥} (2.10)
For every multi-objective problem, there is a set of Pareto
optimal solutions, which represents the best trade-offs between
the multiple objectives. In optimization, this solution set is called
Pareto optimal set. The projection of the Pareto optimal solutions
in the objective space is called Pareto optimal front. These two sets
are defined as follows:

Definition 3. Pareto optimal set:

The Pareto set is a set that includes the Pareto optimal solu-
tions:
PS::{Q, Jexuﬁﬁ} (2.11)
Definition 4. Pareto optimal front:

This set is consisted of the objective values for the solutions in
the Pareto solutions set:

Vi e{1.2....0). P; 1= {fi(§>| %e Ps}

With these four definitions, solutions can be easily compared to
solve multi-objective problems. The set of variables, objectives, and
constraints again create a search landscape. The main difference
between a multi-objective search space and a single-objective one
is that there are multiple objectives. Therefore, illustration of the
search space is difficult for problems with more than three objec-
tives. This is why researchers normally consider two search spaces:
parameter space and objective space.

Similarly to single-objective search spaces, the range of vari-
ables determine the boundaries of the search space in each di-
mension and constrains confide them. The effects of equality and
inequality constraints on a multi-objective search space are very
similar to those in a single-objective search space. For every multi-
objective problem, there is a set of best trade-offs between ob-
jectives which is called true Pareto optimal front. There are three
main challenges for a multi-objective optimization technique to
find a Pareto optimal front: local fronts, convergence, and distri-
bution of solutions (coverage).

Local solutions and slow convergence are the common issues
between single- and multi-objective optimization fields. Due to
the presence of multiple solutions in the Pareto optimal front,
however, the distribution of solutions is also important in multi-
objective optimization. The ultimate goal is to find a uniformly
distributed front to give decision makers a lot of options for de-
cision making. Multi-objective problems have fronts with differ-
ent shapes: concave, convex, linear, separated, etc. Finding a well-
distributed Pareto optimal front for each of these shapes is very
challenging and should be addressed well in a posteriori methods.
Such methods are discussed in detail in the Section 2.4.

There are other types of difficulties when solving real multi-
objective problems: deceptive front, isolation of the front, uncer-
tainty, noisy objective functions, dynamic objective functions reli-
able fronts, and so on. Each of these difficulties need special con-
sideration. These concepts are out of the scope of this work, so

(2.12)

166 S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

interested readers are referred to the surveys conducted by Zhou
et al. [35].

2.3. Single-objective optimization algorithms

The optimization algorithms in the literature can be divided
into two main classes: deterministic versus stochastic. Determin-
istic algorithms always find the same solution for a given prob-
lem if they start with the same starting point. The main advantage
of such methods is reliability because they definitely find a solu-
tion in each run. However, local optima stagnation is a drawback
since these algorithms usually do not have randomized behaviours
when solving optimization problems. The second class of optimiza-
tion algorithms, stochastic methods, benefits from stochastic oper-
ators. This results in finding different solutions even if the start-
ing point remains unchanged and consequently makes stochastic
algorithms less reliable compared to the deterministic approaches.
However, the randomized behaviour promotes local optima avoid-
ance, which is the main advantage of stochastic algorithms. The re-
liability of the stochastic methods can be improved by fine tuning
and increasing the number of runs.

Stochastic optimization algorithms are divided into two cate-
gories: individualist and collective. In the first family, a stochastic
algorithm starts and perform optimization with a single solution.
This solution is randomly changed and improved for a pre-defined
number of steps or satisfaction of an end criterion. The most well-
regarded algorithms in this family are TS [6,23], hill climbing [24],
ILS [25], and SA [26]. The advantage of this group is the low com-
putational cost and the need for a low number of function evalua-
tions.

However, collective techniques create multiple random solu-
tions and evolve them during optimization. The collection of solu-
tions usually collaborates to better determine the global optimum
in the search space. The most notable algorithms in this field are:
GA, PSO, ACO, and DE. Multiple solutions decrease the chance of
local optima stagnation, which is the main advantage of collec-
tive algorithms. However, each of the solutions need one func-
tion evaluation and establishing effective collaborations between
the solutions is challenging. Despite these two drawbacks, col-
lective stochastic optimization techniques are very popular these
days. The application of such methods can be found widely in sci-
ence and industry. One of the main reason is the high capability in
avoiding local solutions.

As mentioned above, real search spaces have a significantly
large number of local solutions. Therefore, collection of solutions
and random components both contribute in finding a better solu-
tion for real problems. Another advantage of collective algorithms
is flexibility. Such techniques are able to collaboratively overcome
the challenges in different types of search spaces. There is also no
need for gradient information because stochastic collective algo-
rithms consider a problem as a black box and only monitor the
inputs, outputs, and constraints of the problem. Last but not least,
simplicity is the other advantage because most of the collective al-
gorithms mimic simple rules in swarms, flocks, schools, or packs.

Regardless of the differences between collective stochastic al-
gorithms, they all follow the same procedure to approximate the
global optimum. The optimization first starts by a set of random
solutions, and they are required to combine and change randomly,
rapidly, and abruptly. This causes that the solutions move glob-
ally. This process is called exploration of the search space be-
cause the solutions are gravitated towards different regions of the
search space by sudden changes. The primary goal in the explo-
ration phase is to determine promising areas of the search space
and to avoid local solutions. After enough exploration, the solu-
tions start changing gradually and move locally. This process is
called exploitation where the main goal is to improve the accuracy

of the best solutions obtained in the exploration phase. Although
local optima avoidance may occur in the exploitation phase, the
coverage of search space is not as broad as the exploration phase.
In this case, the solutions avoid local solutions in the vicinity of
the global optimum.

The above paragraph shows that the exploration and exploita-
tion phases seek conflicting objectives. The question here is as to
when the best time is to transit from exploration to exploitation.
Due to the stochastic nature of collective algorithms and unknown
shape of the search space, no one is able to answer this ques-
tion. Therefore, most of the algorithms smoothly require the search
agents to move from exploration phase to exploitation using adap-
tive mechanisms [36].

Due to the advantages of stochastic collective algorithms, there
is an increasing interest in proposing new algorithms in this field.
They can be divided to four main classes based on inspiration:
swarm-inspired, physics-inspired, evolutionary, and human-based.
The most popular swarm inspired algorithms are PSO, ACO, ABC
[11] optimization, CS [12], FA [13], GWO [15], and Krill Herd (KH)
[37-39] algorithm. The most popular physics-based ones are Gravi-
tational Search Algorithm (GSA) [40], Charged System Search (CSS)
[41], Central Force Optimization (CFO) [42], and Ray Optimiza-
tion (RO) [43]. The most popular evolutionary algorithms are BBO
[8], ES [5], GA, and DE [4]. Finally, the most well-known human-
inspired group are Teaching and Learning Based Optimization algo-
rithms (TLBO) [44], Seeker Optimization Algorithm (SOA) [45], Soc-
cer League Competition (SLC) algorithm [46], and Mine Blast Algo-
rithm (MBA) [47].

2.4. Multi-objective optimization algorithms

There are two main approaches for solving multi-objective
problems: a priori versus a posteriori [48]. In the former method,
the multi-objective problem is converted to a single-objective one
by aggregating the objectives. This is done using a set of weights
that is usually defined by an expert and dictates the importance
of each objective. After aggregation of the objectives, a single-
objective optimizer can be employed to find the optimal solu-
tion. The main drawback of this technique is that the Pareto opti-
mal set and front can be constructed by re-running the algorithm
and changing the weights. In addition, the concave regions of the
Pareto optimal front cannot be determined due to the nature of ad-
ditive weights in such methods [49-51]. There are some improve-
ments in the literature for the former issue but all of them still
need to be run multiple times to find more than one Pareto opti-
mal solution [52].

However, a posteriori approach maintains the multi-objective
formulation of the problem. The main advantage is that the Pareto
optimal set can be determined in a single run [53]. Also, any
type of Pareto optimal front can be approximated and there is no
weight to be defined by experts. With this approach, there would
be many different solutions for decision maker compared to a pri-
ori methods. On the other hand, the main drawback is the need for
addressing multi-objectives and special mechanisms to determine
the Pareto optimal set and front. This make a posteriori optimiza-
tion more challenging and computationally more expensive. Since
the advantages of a posteriori optimization are more than its draw-
backs compared to a priori methods, the focus of this work is on a
posteriori multi-objective optimization.

Multi-objective optimization techniques in the literature of
stochastic optimization have been equipped with new mechanisms
to find an accurate approximation of the true Pareto optimal solu-
tions and front with a uniform distribution. One of the most pop-
ular algorithms in this field is Multi-Objective Evolutionary Algo-
rithm based on Decomposition (MOEA/D) [54]. This algorithm uti-
lizes an aggregation method to create sub-problems from a given

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 167

Fig. 1. (a) Individual salp, (b) swarm of salps (salps chain).

problem. Each sub-problem is a single-objective problem but the
main difference between MOEA/D and a pure aggregation method
is that sub-problems are optimized by using information from
other neighbouring sub-problems. In other words MOEA/D uses
evolutionary operators to combine and evolve sub-problems over
the course of generations. This algorithm has several improve-
ments and variants that can be found in [35].

DE-based methods [55,56] have been also popular in the lit-
erature. For designing the multi-objective version of DE, the re-
production operators have been modified widely. For instance in
Pareto-frontier Differential Evolution (PDE) [57,58] the parents are
selected from the set of non-dominated solutions to perform cross
over. In PSO-based techniques, finding non-dominated solutions
and updating non-dominated solutions are easy but choosing one
of them as the best solution (gbest or pbest in PSO for instance)
and storing the most distributed ones are challenging [59,60].
Many works have been done recently in this area. Popular ap-
proaches are: using roulette wheel selection [59,61,62], niching
[63-65], and sigma method [66].

Undoubtedly, the most popular multi-objective algorithm is
Non-dominated Sorting Genetic Algorithm version 2 (NSGA-II)
[67,68]. This algorithm sorts the individuals based on their dom-
ination level. This means that non-dominated solutions are as-
signed rank 1, individuals that are dominated by the rank one so-
lutions are assigned rank two, and so on. The selection and cross
over are then done between the individuals ranked. The lower
the rank number, the higher probability of selection and participa-
tion in generating the new population. NSGA-II was also equipped
with a new niching operator to maintain high distribution of non-
dominated solutions obtained across all objectives.

2.5. Contributions of the work

Despite the merits of the single-objective and multi-objective
algorithms mentioned above, the NFL theorem says that none of
them is able to solve all optimization problems [29]. This means
that there is always possibility that a new-comer algorithm shows
superior results on the current and/or new problems. In the lit-
erature no work simulates the behaviour of salp swarm in nature
while salps form the biggest swarms on the planet and efficiently
navigate and forage in the ocean. NFL and the lack of salp-inspired
algorithm in the literature are the main motivations of the current

work. It is worth mentioning here that the author has proposed
a number of algorithms including Moth-Flame Optimization (MFO)
[69] and GWO [15] recently. The algorithm proposed in this work
is completely different in terms of inspiration, mathematical for-
mulation, and real-world application. The MFO algorithm mimics
the navigation of moths in nature and GWO simulates the hunt-
ing method of grey wolves, whereas the SSA algorithm is proposed
based on the swarming behaviour of salps for the first time in the
literature. In addition, the inspiration and mathematical model of
this work completely differ from other publications written by the
author in [70-73]. The following section discusses the main inspi-
ration of the work, proposes mathematical models to simulate a
salp swarm, and introduces two optimization algorithms for solv-
ing optimization problems with single of multiple objectives.

3. Inspiration, mathematical model, and Salp Swarm Algorithm
3.1. Inspiration

Salps belong to the family of Salpidae and have transparent
barrel-shaped body. Their tissues are highly similar to jelly fishes.
They also move very similar to jelly fish, in which the water is
pumped through body as propulsion to move forward [74]. The
shape of a salp is shown in Fig. 1(a).

The biological researches about this creature is in its early mile-
stones mainly because their living environments are extremely dif-
ficult to access, and it is really difficult to keep them in labora-
tory environments. One of the most interesting behaviour of salps,
which is of interest in the paper, is their swarming behaviour. In
deep oceans, salps often form a swarm called salp chain. This chain
is illustrated in Fig. 1(b). The main reason of this behaviour is not
very clear yet, but some researchers believe that this is done for
achieving better locomotion using rapid coordinated changes and
foraging [75].

3.2. Proposed mathematical model for moving salp chains

There is little in the literature to mathematically model the
swarming behaviours [76] and population of salps [77]. In addi-
tion, there is no mathematical model of salp swarms for solving
optimization problems while swarms of bees, ants, and fishes have
been widely modelled and used for solving optimization problems.

168 S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

This subsection proposes the first model of salp chains in the liter-
ature for the purpose of solving optimization problems.

To mathematically model the salp chains, the population is first
divided to two groups: leader and followers. The leader is the salp
at the front of the chain, whereas the rest of salps are considered
as followers. As the name of these salps implies, the leader guides
swarm and the followers follow each other (and leader directly of
indirectly).

Similarly to other swarm-based techniques, the position of salps
is defined in an n-dimensional search space where n is the num-
ber of variables of a given problem. Therefore, the position of all
salps are stored in a two-dimensional matrix called x. It is also as-
sumed that there is a food source called F in the search space as
the swarm’s target.

To update the position of the leader the following equation is
proposed:

_ F] +C1 ((Ubj — lbj)Cz + lb])
7 | = ((ubj — 1bj)ca + 1b))

20 (3.1)
C3<0 .

where x} shows the position of the first salp (leader) in the
jth dimension, F; is the position of the food source in the jth
dimension, ub; indicates the upper bound of jth dimension, Ib; in-
dicates the lower bound of jth dimension, ¢y, ¢;, and c3 are random
numbers.

Eq. (3.1) shows that the leader only updates its position with
respect to the food source. The coefficient c; is the most important
parameter in SSA because it balances exploration and exploitation
defined as follows:
¢ =20 (1)’ (3.2)
where [is the current iteration and L is the maximum number of
iterations.

The parameter ¢, and c3 are random numbers uniformly gener-
ated in the interval of [0,1]. In fact, they dictate if the next position
in jth dimension should be towards positive infinity or negative in-
finity as well as the step size.

To update the position of the followers, the following equations
is utilized (Newton’s law of motion):

o1
X = sat® + vot (3.3)

2
were i > 2, X;‘ shows the position of ith follower salp in jth dimen-
sion, t is time, v, is the initial speed, and a = vflj—g‘” where v = 0.

Because the time in optimization is iteration, the discrepancy
between iterations is equal to 1, and considering vq =0, this equa-
tion can be expressed as follows:

1, :

i 2yl i—1

X =3 (xj+x71) (3.4)
where i > 2 and x; shows the position of ith follower salp in jth
dimension.

With Egs. (3.1) and (3.4), the salp chains can be simulated.

3.2. Swarm simulation

In order to see the effects of the above mathematical model
proposed, a simulation is done in this subsection. Twenty salps
are randomly placed on a search space with stationary or moving
sources of food. The position of the salp chains and history of each
salp are drawn in Figs. 2-5. Note that the blue point in the figures
shows the position of food source and the darkest filled circle is
the leading salp. The follower salps are coloured with grey based
on their position in the salp chain with respect to the leader. In-
specting the behaviour of salp chain over nine consecutive itera-
tions in Figs. 2 and 4, it may be observed that the swarm can be

formed and moved using the equation proposed effectively right
after the first iteration. Also, it can be seen that the leading salp
changes its position around the food source and follower salps
gradually follow it over the course of iterations. The same model
has been utilized for both simulations and the merits of the model
proposed in both 2D and 3D spaces are evident in Figs. 2 and 4. It
can be stated that the model is able to show the same behaviour
in an n-dimensional space.

Figs. 3 and 5 show the position history of salps around a sta-
tionary and mobile food sources in 2D and 3D space after 100
iterations. The points searched around the stationary food source
show that the salps effectively move around the search space. The
distribution of points is reasonable and show that the model pro-
posed is able to explore and exploit the space around the station-
ary food source. Also, Figs. 3 and 5 show that the mathematical
model proposed requires salps in the salp chain to chase a mov-
ing food source. The distribution of the points searched around the
start point is higher than the end point. This is due to the c¢; pa-
rameter which controls exploration and exploitations. These find-
ings evidence that the model of salp chain movement is able to
explore and exploit the space around both stationary and mobile
food sources.

3.3. Single-objective Salp Swarm Algorithm (SSA)

Needless to say, the mathematical model for simulating salp
chains cannot be directly employed to solve optimization prob-
lems. In other words, there is a need to tweak the model a little
bit to make it applicable to optimization problems. The ultimate
goal of a single-objective optimizer is to determine the global op-
timum. In the SSA swarm model, follower salps follow the lead-
ing salp. The leading salp also moves towards the food source. If
the food source be replaced by the global optimum, therefore, the
salp chain automatically moves towards it. However, the problem
is that the global optimum of optimization problems is unknown.
In this case, it is assumed that the best solution obtained so-far is
the global optimum and assumed as the food source to be chased
by the salp chain.

The pseudo code of the SSA algorithm is illustrated in Fig. 6.!
This figure shows that the SSA algorithm starts approximating the
global optimum by initiating multiple salps with random positions.
It then calculates the fitness of each salp, finds the salp with the
best fitness, and assigns the position of the best salp to the vari-
able F as the source food to be chased by the salp chain. Meantime
the coefficient c¢; is updated using Eq. (3.2). For each dimension,
the position of leading salp is updated using Eq. (3.1) and the po-
sition of follower salps are updated utilizing Eq. (3.4). If any of the
salp goes outside the search space, it will be brought back on the
boundaries. All the above steps except initialization are iteratively
executed until the satisfaction of an end criterion.

It should be noted that the food source will be updated during
optimization because the salp chain is very likely to find a better
solution by exploring and exploiting the space around it. The simu-
lations in the Section 3.2 show that the salp chain modelled is able
to chase a moving food source. Therefore, the salp chain has the
potential to move towards the global optimum that changes over
the course of iterations. To see how the proposed salp chain model
and SSA algorithm are effective in solving optimization problems,
some remarks are listed as follows:

T The source code of the SSA algorithm is publicly available at https://au
mathworks.com/matlabcentral/fileexchange/63745-ssa--salp-swarm-algorithm and
http://www.alimirjalili.com/Projects.html.

https://au.mathworks.com/matlabcentral/fileexchange/63745-ssa�salp-swarm-algorithm
http://www.alimirjalili.com/Projects.html

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

169

+=0 t=2 t=4

10 10 10

Q
5 5 5
O.
* *
0 he 0 0
o8
7

-5 -5 -5

-10 -10 -10
-10 -5 0 5 170 -10 -5 0 5 170 -10 -5 0 10

=6 =8 +=10
10 10 10
5 5 5
* *

0 0 % 0

-5 -5 -5

-10 -10 -10
-10 -5 0 5 170 -10 -5 0 5 170 -10 -5 0 170

t=12 t=14 =16
10 10 10
5 5 5
0 0 0 i

-5 -5 -5

-10 -10 -10
-10 -5 0 5 170 -10 -5 0 5 170 -10 -5 0 10

Fig. 2. Slap chain movement around a stationary source of food in a 2D space.
20 20 -
Start point End point

Fig. 3. Search history around stationary and mobile food sources in a 2D space after 100 iterations.

o SSA algorithm saves the best solution obtained so far and as-
signs it to the food source variable, so it never get lost even if

the whole population deteriorates.

e SSA algorithm updates the position of the leading salp with re-
spect to the food source only, which is the best solution ob-
tained so far, so the leader always explores and exploits the

space around it.

e SSA algorithm updates the position of follower salps with re-
spect to each other, so they move gradually towards the leading

salp.

e Gradual movements of follower slaps prevent the SSA algorithm

from easily stagnating in local optima.

« Parameter c; is decreased adaptively over the course of itera-
tions, so the SSA algorithm first explores the search space and

then exploits it.

170 S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

Start point
=200 20

Fig. 5. Search history around stationary and mobile food sources in a 3D space after 100 iterations.

o SSA algorithm has only one main controlling parameter (cy).
o SSA algorithm is simple and easy to implement.

These remarks make the SSA algorithm theoretically and poten-
tially able to solve single-objective optimization problems with un-
known search spaces. The adaptive mechanism of SSA allows this
algorithm to avoid local solutions and eventually finds an accu-
rate estimation of the best solution obtained during optimization.
Therefore, it can be applied to both unimodal and multi-modal
problems. The above-mentioned advantages potentially allow SSA

to outperform recent algorithms (MFO, GWO, ABC, etc). However,
this cannot be guaranteed for all optimization problems according
to the NFL theorem.

Note that the computational complexity of the SSA algorithm
is of O(t(d*n + Cof*n)) where t shows the number of iterations, d
is the number of variables (dimension), n is the number of solu-
tions, and Cof indicates the cost of objective function. In Section 4,
these claims are investigated experimentally on both benchmark
and real-world problems.

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 171

Initialize the salp population x; (i = 1, 2, ..., n) considering ub and Ib
while (end condition is not satisfied)
Calculate the fitness of each search agent (salp)
F=the best search agent
Update c¢; by Eq. (3.2)
Sor each salp (x;)
if (i==1)
Update the position of the leading salp by Eq. (3.1)
else
Update the position of the follower salp by Eq. (3.4)
end
end
Amend the salps based on the upper and lower bounds of variables
end
return F'

Fig. 6. Pseudo code of the SSA algorithm.

3.4. Multi-objective Salp Swarm Algorithm (MSSA)

As discussed in Section 2, the solution for a multi-objective
problem is a set of solutions called the Pareto optimal set. The SSA
algorithm is able to drive salps towards the food source and up-
dates it over the course of iterations. However, this algorithm is
not able to solve multi-objective problems mainly due to the fol-
lowing two reasons:

* SSA only saves one solution as the best solution, so it can-
not store multiple solutions as the best solutions for a multi-
objective problem.

e SSA updates the food source with the best solution obtained
so far in each iteration, but there is no single best solution for
multi-objective problems.

This first issue is tackled by equipping the SSA algorithm with
a repository of food sources. This repository maintains the best
non-dominated solutions obtained so far during optimization and
is very similar to the archives in Multi-Objective Particle Swarm
Optimization (MOPSO) [78]. The repository has a maximum size to
store a limited number of non-dominated solutions. During opti-
mization, each salp is compared against all the repository residents
using the Pareto dominance operators. If a salp dominates a solu-
tion in the repository, they have to be swapped. If a salp dominates
a set of solutions in the repository, they all should be removed
from the repository and the salp should added in the repository.
If at least one of the repository residents dominates a salp in the
new population, it should be discarded straight away. If a salp is
non-dominated in comparison with all repository residents, it has
to be added to the archive.

These rules can guarantee that the repository always stores the
non-dominated solutions obtained so far by the algorithm. How-
ever, there is a special case where the repository becomes full and
a salp is non-dominated in comparison with the repository res-
idents. Of course, the easiest way is to randomly delete one of
the solutions in the archive and replace it with the non-dominated
salp. A wiser way is to remove one of the similar non-dominated
solutions in the repository. Since a posteriori multi-objective algo-
rithm should be able to find uniformly distributed Pareto optimal
solutions, the best candidate to remove from the archive is the one
in a populated region. This approach improves the distribution of
the archive residents over the course of iterations.

To find the non-dominated solutions with populated neighbour-
hood, the number of neighbouring solutions with a certain max-
imum distance ,is counted and assumed. This distance is defined
by d = % where max and min are two vectors for storing
maximum and minimum values for every objective respectively.
The repository with one solution in each segment is the best case.
After assigning a rank to each repository resident based on the
number of neighbouring solutions, a roulette wheel is employed to
choose one of them. The more number of neighbouring solutions

A

@
@ /
Best candidates for removing from
repository if it becomes full

Maximize
-2

/1 >

Maximize

Fig. 7. Update mechanism of the repository when it is full.

Initialize the salp population x; (i = 1, 2, ..., n) considering ub and Ib
while (end criterion is not met)
Calculate the fitness of each search agent (salp)
Determine the non-dominated salps
Update the repository considering the obtained non-dominated salps
if the repository becomes full
Call the repository maintenance procedure to remove one repository resident
Add the non-dominated salp to the repository
end
Choose a source of food from repository: F=SelectFood(repository)
Update c; by Eq. (3.2)
Sor each salp (x;)
if (i==1)
Update the position of the leading salp by Eq. (3.1)
else
Update the position of the follower salp by Eq. (3.4)
end
end
Amend the salps based on the upper and lower bounds of variables
end
return repository

Fig. 8. Pseudo code of the MSSA algorithm.

(the larger rank number) for a solution, the higher probability of
removing it from the repository. An example of this repository up-
date mechanism is illustrated in Fig. 7. Note that the neighbour-
hood should be defined for all the solutions, but only four of the
non-dominated solutions are investigated in this figure.

As mentioned above, the second issue when solving multi-
objective problems using SSA is the selection of the food source
because there is more than one best solution in a multi-objective
search space. Again, the food source can be chosen randomly from
the repository. However, a more appropriate way is to select it
from a set of non-dominated solutions with the least crowded
neighbourhood. This can be done using the same ranking process
and roulette wheel selection employed in the repository mainte-
nance operator. The main difference is the probability of choosing
the non-dominated solutions. In the archive maintenance, the so-
lutions with higher rank (crowded neighbourhood) are more likely
to be chosen. By contrast, the less populated neighbourhood (the
lower rank number) for a non-dominated solution in the reposi-
tory, the higher probability of being selected as the food source. In
Fig. 7 for instance, the non-dominated solutions in the middle with
no neighbouring solution has the highest probability to be chosen
as the food source. After all, the pseudo code of the Multi-objective
Salp Swarm Algorithm (MSSA) is shown in Fig. 8.2

2 The source code of the MSSA algorithm is publicly available at https://au.
mathworks.com/matlabcentral/fileexchange/63746-mssa--multi-objective-salp-
swarm-algorithm and http://www.alimirjalili.com/Projects.html.

https://au.mathworks.com/matlabcentral/fileexchange/63746-mssa�multi-objective-salp-swarm-algorithm
http://www.alimirjalili.com/Projects.html

172 S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

Fig. 8 shows that the MSSA algorithm first initializes the pop-
ulation of salps with respect to upper bounds and lower bourns
of variables. This algorithm then calculates the objective values for
each salps and finds the non-dominated ones. The non-dominated
solutions are added to the archive if the repository is not full. If
the repository is full, the repository maintenance is run to delete
the solutions with crowded neighbourhood. In this step, the so-
lutions are first ranked and then selected using a roulette wheel.
After removing enough number of repository residents, the non-
dominated salps can be added to the repository. After updating
the repository, a food source is selected from the non-dominated
solutions in the repository with the least crowded neighbourhood.
Similarly to the archive maintenance, this is done by ranking the
solutions and employing a roulette wheel. The next step is to up-
date c; using Eq. (3.2) and update the position of leading/follower
salps using either Eq. (3.1) or (3.4). If during updating position pro-
cess a salp goes outside of the boundaries, it will be brought back
on the boundary. Finally, all the above steps except initialization
are repeated until the satisfaction of an end condition.

To see how effective the MSSA algorithm is, some comments
are:

e The non-dominated solutions obtained so far are stored in a
repository, so they never get lost even if the entire population
deteriorates in an iteration.

e The solutions with crowded neighbourhood are discarded ev-
ery time the repository maintenance is called, which results in
improving the coverage of non-dominated solutions across all
objectives.

A food source is selected from the list of non-dominated solu-
tions with the least number of neighbouring solutions, which
leads the search towards the less crowded regions of the Pareto
optimal front obtained and improves the coverage of solutions
found.

o MSSA inherits the operators of SSA due to the use of a simi-
lar population division (leading and follower salps) and position
updating process.

e MSSA algorithm has only two main controlling parameter (c;
and archive size).

o MSSA algorithm is simple and easy to implement.

These comments show that the MSSA algorithm is logically able
to find accurate Pareto optimal solutions with high distribution
across all objectives. Note that the computational complexity of
MSSA algorithm is of O(t(d*n + Cof*n+M*n2)) where M indicates
the number of objectives t shows the number of iterations, d is
the number of variables (dimension), n is the number of solutions,
and Cof indicates the cost of objective function. In the next sec-
tions, these statements are investigated and proved experimentally
on benchmark and real problems.

4. Results

For proving the theoretical claims pointed out in the previous
sections, a variety of experiments are conducted. Firstly, a set of
qualitative metrics is employed to find out if SSA is better than
other similar algorithms. Secondly, the quantitative results are col-
lected to measure how much better the SSA is compared to simi-
lar algorithms. Finally, the MSSA algorithm is compared to similar
algorithms in the literature. Note that several challenging single-
and multi-objective benchmark problems are utilized in this sec-
tion. The following subsections present the experimental set up for
each of the experimental phases, present the results, and discuss
them in detail.

4.1. Qualitative results of SSA and discussion

Qualitative results are mostly derived from the different visu-
alization tools. The most common qualitative results in the liter-
ature of single-objective optimization are convergence curves. Re-
searchers usually store the best solution obtained so far in each
iteration and draw them as a line to be able to observe how well
an algorithm improves the approximation of the global optimum
over the course of iterations. In this study, several other qualitative
results are utilized as well to clearly observe the performance of
SSA when solving different problems.

To generate the qualitative results, the first step is to find a suit-
able test bed. We definitely need a set of test cases to test SSA and
observe its performance qualitatively. It is always beneficial to em-
ploy a set of standard test beds with different characteristics to
challenge and benchmark different abilities of an algorithm. Stan-
dard test beds are designed to challenge algorithms in a standard
way and obviously allow us to conveniently and confidently com-
pare an algorithm with others. Diversity of test functions allows
observing and testing the ability of algorithms from different per-
spectives.

The current benchmark functions can be grouped to three
main families: unimodal, multi-modal, and composite [7,79-81].
The landscapes of these classes of test problems are illustrated
in Fig. 9. It may be observed in this figure that unimodal test
functions have only one optimum and there are no local optima.
These types of search spaces are appropriate for testing the con-
vergence speed and exploitive behaviour. Multi-modal and com-
posite benchmark functions have more than one optimum, which
make them suitable for benchmarking the local optima avoidance
and explorative behaviour of optimization algorithms. Composite
test functions are usually more challenging than multi-modal ones
and highly similar to real search spaces. In this subsection, eight of
these test functions are chosen as case studies. The mathematical
formulations and shapes of the test functions are presented in the
Appendix A and Fig. 10 respectively.

The qualitative results are collected by different qualitative met-
rics. The first qualitative results are search histories of search
agents in SSA over the course of iteration. Search history figures
usually show the position history of all agents during optimization.
With saving and illustrating the positions history, we can observe
the sampled regions of the search space by an algorithm and the
probable search patterns in the entire swarm. In a search history
figure, we can see if and how an algorithm explores and exploits
the search space as well. However, we cannot see the order in
which the algorithm performs exploration and exploitation. There-
fore, we need another qualitative metric. The search history of the
SSA algorithm when solving all the test functions are illustrated in
Fig. 10.

Inspecting the search histories in Fig. 10, it is evident that the
SSA algorithm samples the most promising regions of the search
space. This pattern can be observed in unimodal, multimodal, and
composite test functions. In unimodal test functions the distri-
bution of sampled point is sparse in the non-promising regions,
while more sampled points can be seen around the search space
in multi-modal and composite benchmark functions. This is be-
cause of the difficulty of the multi-modal and composite bench-
mark functions and shows how well SSA is able to bias the search
towards promising regions of the search space proportional to the
level of difficulty of the problem.

Also, this behaviour can support the local optima avoidance and
exploration of the SSA algorithm. On the other hand, the distribu-
tion of sampled points is high around the true global optimum on
all of the test functions. This observation is able to support ex-
ploitation and convergence of the SSA algorithm towards to true
global optimum. However, there is a need for more experiments

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 173

F1 F9

F13

Fig. 9. An example of unimodal test function, multi-modal test function, and composite test function.

to observe if the exploration occurs before exploitation and if this
assists SSA to improve the accuracy of the approximated global op-
timum. Such analyses are covered in the following paragraphs.

The second qualitative results are collected from the trajectory
of search agents. Since showing the trajectory of all search agents
across all dimensions results in occlusion and difficulty of analy-
sis, the trajectory of the first salp in the first dimension is only
stored and illustrated. These results are collected to observe and
confirm in which order SSA performs exploration and exploitation.
The trajectory curves when solving the benchmark functions are
depicted in Fig. 10. This figure shows that the first salp faces sud-
den changes in the initial steps of iterations, gradual changes af-
ter the initial steps, and monotonous behaviour in the final steps.
This proves that salps move abruptly at the beginning and tend
to fluctuate gradually proportional to the number of iterations. As
per this observation, SSA first requires the salps to go around the
search space and causes exploration of the search space. Consecu-
tively, SSA exploits the search space by driving the salps towards
the global optimum and encouraging them to move locally instead
of globally.

The search history and trajectory figures show how SSA ex-
plores and exploits the search space. However, such results do
not show if exploration and exploitation are beneficial in terms
of improving the first random population and finding an accurate
approximation (improving) of the global optimum, which are the
main objectives for all optimization algorithms. In order to observe
and confirm such behaviours, average fitness of all salps and the
best solution found so far (convergence curve) are saved during the
optimization process and illustrated in Fig. 10. The curves for the
average fitness of salps show that there is a descending trend on
all the test functions. Since all of the test functions are minimiza-
tion problems, these results prove that the SSA is able to improve
the quality of the population proportional to the number of itera-
tions. Another interesting pattern is the deterioration of the fitness
of the population especially in the initial steps of optimization.
This is due to the effect of exploration, in which salps just churn
around the space. However, the average fitness curve smoothly de-
creases proportional to the iteration number, which is because of
the exploitation phase.

Of course the average fitness curves show how well SSA im-
prove the population during optimization, it cannot be stated that
the approximation of the global optimum also increases. This is
where the convergence diagrams are beneficial. Inspecting the con-
vergence curves in Fig. 10, it is evident that the fitness of the ap-
proximation of the global optimum obtained in each iteration is
improved by the SSA algorithm over the course of iterations. This
improvement is not consistent always as can be seen in some of
the figures. This demonstrates that SSA shows different conver-

gence behaviours when solving different problems. For instance,
the convergence curve is very smooth and steady on the umi-
modal test functions, which shows that SSA benefits from high
exploitation and convergence. In multi-modal and composite test
functions, however, SSA shows no improvements for some itera-
tions. This is because SSA emphasises exploration in such prob-
lems, which sometimes results in sampling non-promising regions
but boosting local optima avoidance.

The above qualitative results showed that SSA first explores the
search space and then exploits it. In addition, the results proved
that SSA can sample different regions of the search space very ef-
fectively by coving promising regions of the search space. It was
observed that SSA is capable of improving the quality of a set of
random solutions for a given problem. Finally, the results and dis-
cussion showed that the accuracy of the approximated global op-
timum is increased by SSA, which is the outcome of a proper bal-
ance of exploration/local optima avoidance and exploitation/ con-
vergence.

4.2. Quantitative results of SSA and discussion

Although the qualitative results proved high exploration and ex-
ploitation of the SSA algorithm, they cannot show how much good
this algorithm is. This section employs two performance indica-
tors to quantify the performance of the SSA algorithm and com-
pares it with other similar algorithms in the literature. The per-
formance metrics employed are average and standard deviation of
the best solutions obtained found in 30 independent runs. The for-
mer performance metric shows how the SSA algorithm performs
in average, whereas the latter one indicates how stable SSA is dur-
ing all the runs. Although these two indicators are able to measure
the overall performance of SSA, they cannot measure and compare
each of the runs individually.

In order to compare each of the runs and make sure about the
significance of the results, therefore, the Wilcoxon rank-sum test
is conducted in this subsection as well. The p-values that are less
than 0.05 could be considered as strong evidence against the null
hypothesis. For the statistical test, the best algorithm in each test
function is chosen and compared with other algorithms indepen-
dently. For example, if the best algorithm is SSA, the pairwise com-
parison is done between SSA/PSO, SSA/GSA, and so on. The same
approach is followed throughout the paper.

The same test functions utilized in the previous section as well
as a few more are employed here (19 in total). However, the num-
ber of dimensions is increased to 20. This has been done to bench-
mark the performance of SSA in solving challenging problems with
a large number of variables. Note that the details of these test
functions are available in the Appendix A. To verify the results, the

174

-100

-100

F1

-100

-100

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

Search history

Trajectory

Average fitness of salps

Convergence curve

2 50 10" 10"
1.5
0 10 WW 0| e
, M, —
\
-50 10" \“\ 10" AN
0.5
0 -100 107" 107
-100 0 100 0 100 200 0 100 200 0 100 200 0 100 200
cl Trajectory 5 Average fitness of salps 5 Convergence curve
5 10 10
W
0 10’ WWW,% 10
W\N\\ﬂ N
—
-5 10° 10° L_
o
10 107 1071
100 200 100 200 0 100 200 0 100 200
cl Trajectory o Average fitness of salps " Convergence curve
0 10 10
-20 b [,
10 10
40 \
107 107 _\—_
-60
-80 107 107
100 200 0 100 200 0 100 200 0 100 200
cl Trajectory . Average fitness of salps L, Convergence curve
0 100 10
-1
ey
10’ Y 10’
-2
-3 5 .
10° 10" _LL
4
o i &% 5 10" 107°"
0 100 200 0 100 200 0 100 200 0 100 200
Search history cl Trajectory Average fitness of salps B Convergence curve
20 10 10
10
[
10’ ™ w
0 ”‘1\ Y
\ =
-10 B B
10° 107]_kk
-20
30 10" 10"
100 200 100 200 0 100 200 0 100 200
cl Trajectory Average fitness of salps . Convergence curve
5 10 10
N
3
10 W\h ’r LH
[U‘W‘n 2 —
0 1T 10 N
10’
-5 10’ 10’
100 200 0 100 200 0 100 200 0 100 200
Search history cl Trajectory 5 Average fitness of salps 5 Convergence curve
TS 4 10 10
3] , MNV% I
10 \ 10" Y
0 L
) hl
2 } .
10° 107’ 4
4
4
w .
% 107" 10" U
100 200 0 100 200 0 100 200 0 100 200
cl Trajectory , Average fitness of salps 4 Convergence curve
6 10 10
4
s
2 o[Mﬁ 10’
I
0 % \
| I
2 10’ 10°
100 200 0 100 200 0 100 200 0 100 200

Fig. 10. Qualitative results:

search history, trajectory, average fitness, and convergence.

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 175
Table 1
Results of algorithms on the unimodal test functions.
F SSA PSO GSA BA
Ave std ave std ave std ave std
F1 0.0000 0.0000 0.2148 02663 0.0030 0.0224 0.7518 1.0000
F2 02272 10000 0.2858 0.0867 0.0000 0.0084 1.0000 0.4826
F3 00000 0.0000 0.1502 0.1436 0.0289 0.0374 1.0000 10000
F4 00000 0.6556 0.3443 0.1023 0.1821 0.0981 0.9059 10000
F5 0.0000 0.0000 0.0461 0.0706 0.0000 0.0000 10000 1.0000
F6 0.0000 0.0000 0.7212 0.5303 0.3944 0.2328 1.0000 1.0000
F7 00028 0.0070 0.0817 0.0635 0.0017 0.0058 1.0000 1.0000
F FPA SMS FA GA
ave std ave std ave std ave std
F1 0.0240 0.0388 1.0000 0.3990 0.1407 0.0845 03485 0.3714
F2 05394 03095 0.5152 0.1338 03064 0.0000 0.4172 0.0764
F3 0.0034 0.0008 0.2049 0.0508 0.0419 0.0079 0.1049 0.0362
F4 01571 0.2651 1.0000 0.2571 0.2882 0.0000 0.6959 0.0174
F5 0.0031 0.0054 07049 04865 0.0095 0.0053 0.1056 0.0836
F6 0.0153 0.0561 0.7540 0.3097 0.0410 0.0223 0.1892 0.3023
F7 0.0138 0.0140 0.0000 0.0000 0.0445 0.0274 0.3625 0.1503
Table 2
Results of multimodal benchmark functions.
F SSA PSO GSA BA
ave std ave std ave std ave std
F8 1.0000 0.0071 1.0000 0.0094 1.0000 0.0026 0.0000 1.0000
F9 04254 09502 03548 0.6283 0.0000 0.3290 0.6155 1.0000
F10 0.0598 0.5279 0.5917 0.9783 0.0000 0.0000 0.9443 0.4541
F11 0.0000 0.0000 0.8481 0.6827 1.0000 0.4911 0.9757 1.0000
F12 0.0000 0.0000 0.0714 0.0572 0.0000 0.0000 1.0000 1.0000
F13 0.0000 0.0000 0.0962 0.0911 0.0000 0.0001 1.0000 1.0000
F FPA SMS FA GA
ave std ave std ave std ave std
F8 1.0000 0.0021 1.0000 0.0000 1.0000 0.0009 10000 0.0016
F9 05894 0.6006 0.9074 0.5564 0.8299 0.1451 1.0000 0.0000
F10 0.7708 1.0000 1.0000 0.2696 0.6937 04449 0.8864 0.2961
F11 0.0334 0.1125 0.6303 0.8695 0.0492 0.0327 0.1728 0.1934
F12 0.0000 0.0000 02330 0.0275 0.0001 0.0001 0.0297 0.0252
F13 0.0011 0.0074 0.0939 0.0000 0.0008 0.0009 0.0335 0.0438

SSA algorithm is compared against a collection of well-known and
recent algorithms: PSO, GSA, BA, FPA, SMS, FA, and GA. To pro-
vide a fair comparison, the main controlling parameters of these
algorithms, number of search agents and maximum iteration, are
equal to 30 and 500 respectively. For other controlling parameters
of each algorithm, the values in the latest version (source code)
are used to ensure the best performance. Each of the algorithms
are run 30 times on each of the test functions and the results are
presented in Tables 1-4. Note that the results of the algorithms are
normalized in [0,1] using the min-max normalization to be able to
compare their performances on different test functions.

The results on the unimodal functions show that the SSA al-
gorithm outperforms other algorithms in the majority of the test
functions. The better mean values show that SSA performs better
than others in average, and the standard deviations prove that this
superiority is stable. The results of the p-values in Table 4 gen-
erated from the Wilcoxon test show that the superiority is statis-
tically significant. Due to the presence of single optimum in the
unimoal in unimodal test functions, they can benchmark only ex-
ploitation and convergence of algorithms. Therefore, these results
demonstrate that SSA benefits from high exploitation and conver-
gence speed.

Inspection of the results on the multi-modal test functions in
Table 2, it may be observed that the SSA algorithm again outper-

forms other algorithms on most of the test functions. The results of
Wilcoxon statistical test prove that the results are statistically sig-
nificant because most of the p-values are less than 0.05. The better
results can be seen in both average and standard deviation, which
indicate how well and robust SSA is when solving such problems.
In contrast to the unimodal test functions, multi-modal ones have
many optima, in which one of them is the global and the rest are
local. The results of the SSA algorithm on these case studies prove
that this algorithm can explore the search space efficiently. This
high exploration of SSA causes avoiding the many number of local
optima in a multi-modal search space.

As can be seen in the results of the algorithms on composite
benchmark functions in Table 3, SSA is able to show very compet-
itive results in these case studies as well. The average and stan-
dard deviation of the best solution obtained during 30 runs testify
that this algorithm shows superior and steady performance in av-
erage. The p-values also support the better results of SSA on the
composite test functions and prove how significant this algorithm
is. Composite functions are the combination of many different test
functions and offer very challenging test beds. This makes them
very similar to the real search space that SSA algorithm might
face when solving a practical problem. Solving such problems re-
quires a very well-timed and well-tuned exploration and exploita-

176 S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191
Table 3
Results of algorithms on the composite test functions.
F SSA PSO GSA BA
Ave std ave std ave std ave std

F14 0.0557 0.8090 0.4179 1.0000 0.1160 0.5572 1.0000 0.6024

F15 0.0000 0.0000 0.4081 0.8317 0.1224 0.5715 1.0000 1.0000

F16 0.1952 0.1527 0.6181 0.5347 0.0000 0.0000 1.0000 1.0000

F17 0.0000 0.0651 0.4694 0.8406 0.1752 0.9897 1.0000 0.9450

F18 0.1417 0.5571 0.3566 0.7841 0.0747 0.1599 1.0000 1.0000

F19 0.0832 0.7059 0.6883 1.0000 0.9811 0.0000 1.0000 0.2160

F FPA SMS FA GA

ave std ave std ave std ave std

F14 0.0000 0.0957 05304 0.4176 0.4549 0.0000 0.5656 0.1349

F15 0.0176 0.0387 0.4554 0.5404 0.5546 0.4342 0.1868 0.0448

F16 0.3158 0.1006 0.7308 0.2338 0.4585 0.1002 0.5721 0.2255

F17 0.0859 0.0000 0.6337 0.3146 0.4893 1.0000 0.3465 0.0398

F18 0.0000 0.0000 0.2885 0.4348 0.2397 0.3315 0.1360 0.1966

F19 0.0000 0.0860 0.2839 0.8509 0.8001 0.8833 0.0773 0.0430

Table 4
p-Values obtained from the rank-sum test for the results in Table 1-3 (N/A stands for not applicable).

F SSA PSO GSA BA FPA SMS FA GA
F1 N/A 0.000183 0.472676 0.000183 0.000183 0.000183 0.000183 0.000183
F2 0.007285 0.000183 N/A 0.000183 0.000183 0.000183 0.000183 0.000183
F3 N/A 0.000183 0.000183 0.000183 0.000583 0.000183 0.000183 0.000183
F4 N/A 0.000183 0.014019 0.000183 0.031209 0.000183 0.00044 0.000183
F5 0.850107 0.000183 N/A 0.000183 0.000183 0.000183 0.000183 0.000183
F6 N/A 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183
F7 0.472676 0.000183 0.677585 0.000183 0.000583 N/A 0.000183 0.000183
F8 0.000183 0.000183 0.000183 N/A 0.000183 0.000183 0.000183 0.000183
F9 0.001706 0.005795 N/A 0.000246 0.000183 0.000183 0.000183 0.000183
F10 0.000183 0.000183 N/A 0.000183 0.000183 0.000183 0.000183 0.000183
F11 N/A 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183 0.000183
F12 N/A 0.000183 0.000183 0.000183 0.00044 8.74E-05 0.000183 0.000183
F13 N/A 0.000183 0.000183 0.000183 0.000183 6.39E-05 0.000183 0.000183
F14 0.10411 0.045155 0.790566 0.000183 N/A 0.00044 0.00044 0.000183
F15 N/A 0.002202 0.472509 0.000183 0.212294 0.000183 0.000183 0.000183
F16 0.000583 0.000183 N/A 0.000183 0.000183 0.000183 0.000183 0.000183
F17 N/A 0.000769 0.57075 0.000183 0.037635 0.000183 0.00033 0.000183
F18 0.140465 0.002827 0.025748 0.000183 N/A 0.000183 0.000183 0.000183
F19 0.021134 0.005795 0.000183 0.000183 N/A 0.000183 0.000183 0.000183

tion. Therefore, these results and findings demonstrate that the SSA
algorithm is able to solve very challenging problems as well.

It is worth discussing here that the exploitation of SSA tends
to be better than its exploration. This can be inferred from the
results of this algorithm on unimodal test functions compared to
multi-modal ones. This is due to the swarm-based nature of this
algorithm, in which abrupt changes in the solutions are lower than
evolutionary algorithms with crossover operators. Despite this fact,
the results show that this is not a concern since the explorative
behaviour of SSA is also good due to the position updating mecha-
nism employed. In fact, mere exploration does not guarantee find-
ing the global optimum, and a proper balance of exploration and
exploitation is required.

4.3. Comparison of SSA with Harmony Search (HS) on
CEC-BBOB-2015 test functions

In this subsection, the proposed SSA algorithm is compared to
HS [21,82,83], PSO, GSA, and FPA. HS has been widely used [84-
86] and applied to a significant number of problems in the litera-
ture. To better compare and challenge the SSA algorithm, a very
recent test suite called CEC-BBOB-2015 [87] including noiseless
[88] and noisy functions [89] is employed. Each algorithm is run
30 times with 30 solutions and 500 number of iterations. The re-
sults are shown in Table 5 and 6. Note that the results are nor-

malized again to conveniently compare algorithm on different test
functions.

Table 5 show that the proposed SSA algorithm is able to signif-
icantly outperform other algorithms on the majority of noiseless
and noisy test functions in the CEC-BBOB-2015 test suite. The p-
values in Table 6 suggest that the superiority of SSA is statistically
significant. These results show that the proposed algorithm is able
to solve highly challenging test functions with and without noise
as well.

4.4. Scalability analysis

Since real-world problems often have a large number of vari-
ables, this subsection analyses the scalability of the proposed SSA
algorithm. One unimodal (F1) and one multi-modal test functions
(F10) with a varied number of parameters are employed. The num-
ber of parameters are changed from 50 to 200 with the step size of
10. SSA is run 30 times on each test function with different num-
ber of variables and the average of best solution obtained are pre-
sented in Fig. 11. This experiment is done with 200 solutions and
500 iterations.

Fig. 11 shows that the performance of SSA degrades when in-
creasing the number of variables. This is expected since the num-
ber of solutions was fixed during this experiment. The main obser-
vation in this figure is that the performance of SSA does not sig-
nificantly degrade when solving problems with a large number of

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 177

Table 5
Results of SSA, HS, PSO, GSA, and FPA on CEC-BBOB-2015 test suite.
Test function SSA HS PSO GSA FPA
ave std ave std ave std ave std ave std
CEC-BBOB-2015-F1 0.0000 0.0000 0.4122 0.2752 0.4357 0.3727 1.0000 1.0000 02459 0.2740
CEC-BBOB-2015-F2 0.0147 0.0099 0.0954 0.0431 0.1922 0.1603 1.0000 1.0000 0.0000 0.0000
CEC-BBOB-2015-F3 0.0000 0.0729 0.1776 0.0000 03985 0.3658 1.0000 1.0000 0.2490 0.1598
CEC-BBOB-2015-F4 0.0000 0.3758 0.2131 0.1996 0.3212 0.4457 1.0000 1.0000 0.4058 0.0000
CEC-BBOB-2015-F5 0.0000 03471 0.2791 0.0000 0.4836 0.8474 1.0000 1.0000 0.2821 0.3779
CEC-BBOB-2015-F6 0.0000 0.0000 0.0492 0.1036 0.2471 0.6694 1.0000 10000 0.0013 0.0006
CEC-BBOB-2015-F7 0.0000 0.0000 03713 0.1727 02234 0.2677 1.0000 1.0000 0.0640 0.0838
CEC-BBOB-2015-F8 0.0000 0.0000 0.5168 0.8007 0.4621 1.0000 1.0000 0.6090 0.1163 0.1232
CEC-BBOB-2015-F9 0.0000 0.0000 1.0000 10000 0.2347 0.4027 0.4038 0.9961 0.0391 0.0282
CEC-BBOB-2015-F10 0.0136 0.0205 1.0000 0.8395 0.2109 0.3116 0.5740 1.0000 0.0000 0.0000
CEC-BBOB-2015-F101 0.0000 0.0000 0.1917 0.1337 0.2362 0.2997 1.0000 1.0000 0.1623 0.2302
CEC-BBOB-2015-F102 0.0000 0.0000 0.2176 0.2725 0.3405 0.5386 1.0000 1.0000 0.2422 0.5889
CEC-BBOB-2015-F103 0.0000 0.0000 0.2298 0.1785 0.2440 0.5690 1.0000 1.0000 0.1887 0.4013
CEC-BBOB-2015-F104 0.0000 0.0000 0.1029 0.0722 0.1067 0.1153 1.0000 1.0000 0.0394 0.0489
CEC-BBOB-2015-F105 0.0000 0.0000 0.0988 0.1634 0.1052 0.3903 1.0000 1.0000 0.0548 0.1160
CEC-BBOB-2015-F106 ~ 0.0000 0.0000 0.3434 0.2254 0.3032 0.3099 1.0000 1.0000 0.1295 0.1709
CEC-BBOB-2015-F107 0.0353 0.1371 1.0000 1.0000 0.0000 0.0000 0.2668 0.3331 03639 0.1765
CEC-BBOB-2015-F108 0.0192 0.0360 10000 1.0000 0.0000 0.0000 0.0132 0.0416 0.0068 0.0281
CEC-BBOB-2015-F109 0.2047 0.9840 1.0000 0.9757 0.0865 1.0000 0.1860 0.7203 0.0000 0.0000
CEC-BBOB-2015-F110 0.0000 0.0000 10000 0.9979 0.1048 0.2387 0.7144 1.0000 0.2670 0.3995
Table 6
p-Values obtained from the rank-sum test for the results in Table 5 (N/A stands for not
applicable).
Test function SSA HS PSO BA FPA
CEC-BBOB-2015-F1 N/A 0.000183 0.000183 0.000183 0.000183
CEC-BBOB-2015-F2 0.000769 0.000183 0.000183 0.000183 1.000000
CEC-BBOB-2015-F3 N/A 0.000440 0.000769 0.000183 0.000769
CEC-BBOB-2015-F4 N/A 0.002202 0.000440 0.000183 0.000183
CEC-BBOB-2015-F5 N/A 0.000183 0.000183 0.000183 0.000246
CEC-BBOB-2015-F6 N/A 0.000183 0.000183 0.000183 0.000183
CEC-BBOB-2015-F7 N/A 0.000183 0.000183 0.000183 0.002827
CEC-BBOB-2015-F8 N/A 0.000183 0.000183 0.000183 0.000183
CEC-BBOB-2015-F9 N/A 0.000183 0.000183 0.000183 0.000183
CEC-BBOB-2015-F10 0.025748 0.000183 0.000183 0.000183 1.000000
CEC-BBOB-2015-F101 N/A 0.000183 0.000183 0.000183 0.000183
CEC-BBOB-2015-F102 N/A 0.000183 0.000183 0.000183 0.000183
CEC-BBOB-2015-F103 N/A 0.000183 0.000183 0.000183 0.000183
CEC-BBOB-2015-F104 N/A 0.000183 0.000183 0.000183 0.000183
CEC-BBOB-2015-F105 N/A 0.000183 0.000183 0.000183 0.000183
CEC-BBOB-2015-F106 N/A 0.000183 0.000183 0.000183 0.000183
CEC-BBOB-2015-F107 0.909722 0.000183 N/A 0.004586 0.000183
CEC-BBOB-2015-F108 0.427355 0.000183 N/A 0.677585 0.909722
CEC-BBOB-2015-F109 0.088973 0.000583 0.733730 0.104110 N/A
CEC-BBOB-2015-F110 N/A 0.000440 0.733730 0.001008 0.031209

parameters. The results can be improved with increasing the num-
ber of solutions.

In summary, the preceding subsections employed a set of test
functions with diverse characteristics to confidently benchmark
and confirm the performance of SSA qualitatively and quantita-
tively. It was observed that the SSA algorithm shows high explo-
ration and local optima avoidance. This originates from the fact
that the artificial salps in SSA tend to interact with each other, so
they do not gravitate towards a local solution easily. The salp chain
simulated allows the SSA to explore the search space and gradually
move towards the global optimum. Another finding of this section
was the superior exploitation of the SSA algorithm. This is due
to the storing the best solution obtained so far in each iteration
and the tendency of salps towards it. The connections between the
salps also pull the swarm towards the global optimum. The entire
swarm converges towards the optimum proportional to the itera-
tion number due to the utilized adaptive mechanism. In addition,
it was observed and confirmed that SSA effectively balances explo-
ration and exploitation. This is again because of the adaptive op-
erator integrated in SSA, in which the early stages of optimization

are dedicated to exploration, whereas the exploitation is empha-
sised in the final iterations.

The results, analysis, and finding of the subsection make the
SSA algorithm potentially capable of solving real-world problems
with unknown search spaces. In a real search space, the location of
the global optimum is unknown. Therefore, the balance of explo-
ration and exploitation highly increases the chance of determining
the global optimum. The superiority of SSA was mainly due to this
reason which originated from the adaptive mechanism. SSA outper-
forms other swarm-based techniques (e.g. PSO, FA, BA, etc.) due to
higher exploration during optimization. Such techniques show less
exploration compared to evolutionary algorithms equipped with
crossover operators. However, the SSA algorithm prevents solutions
from a rapid convergence towards a local solution. On the other
hand, SSA highly promotes exploitation using the c¢; parameter in
the final steps of optimization. This assisted SSA to outperform
evolutionary algorithms (e.g. GSA and GA) in terms of the accuracy
of results.

Although the above results show the effectiveness of SSA in
solving a wide range of challenging problems, a number of real

178

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

Average of best solution (30 runs)

108

107

60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of variables (dim)

Average of best solution (30 runs)

L L

L n L L

L L L

n L

60 70

Fig. 11. Results of SSA on F1 and F10 with a varied number of parameters.

80 90 100 110 120 130 140 150 160 170 180 190 200
Number of variables (dim)

Table 7
Results of the multi-objective algorithms (using IGD) on the ZDT test functions employed.
Algorithm ZDT1 ZDT2
Ave Std. Median Best Worst Ave Std. Median Best Worst
MSSA 0.00286 0.000841427 0.0025 0.0023 0.0043 0.0037 0.00130958 0.0044 0.0015 0.0047
MOPSO 0.00422 0.003103 0.0037 0.0015 0.0101 0.00156 0.000174 0.0017 0.0013 0.0017
NSGA-II 0.05988 0.005436 0.0574 0.0546 0.0702 0.13972 0.026263 0.1258 0.1148 0.1834
Algorithm ZDT3 ZDT1 with linear front
Ave Std. Median Best Worst Ave Std. Median Best Worst
MSSA 0.02986 0.000898888 0.0296 0.0291 0.0314 0.0033 0.000731437 0.0034 0.0025 0.0041
MOPSO 0.03782 0.006297 0.0362 0.0308 0.0497 0.00922 0.005531 0.0098 0.0012 0.0165
NSGA-II 0.04166 0.008073 0.0403 0.0315 0.0557 0.08274 0.005422 0.0804 0.0773 0.0924
Algorithm ZDT2 with 3 objectives
Ave Std. Median Best Worst
MSSA 0.00786 0.001583667 0.0078 0.0059 0.0098
MOPSO 0.02032 0.001278 0.0203 0.0189 0.0225
NSGA-II 0.0626 0.017888 0.0584 0.0371 0.0847

problems is solved in the next section to demonstrate the perfor-
mance of the SSA algorithm in practice. Note that the real case
studies are constrained. Therefore, it is essential to equip SSA with
a constraint handling mechanism. Since investigation and finding a
suitable constraint handling technique for SSA is outside the scope
of his work, the simplest constraint handling method is employed,
in which a death (barrier) penalty function penalizes the search
agents with a very large objective value in case of violation of any
constraints at any level. This technique will be used in MSSA as
well. This causes ignoring the infeasible search agents automati-
cally by the SSA algorithm.

It is worth mentioning here that SSA is able to solve problems
(including NP hard) with continuous variables only. It should be
equipped with suitable operators to solve binary problems such as
feature selection or clustering. Since this algorithm considers prob-
lems as a black box and according to the NFL theorem, it can be
applied to any type of problem subject to proper formulation and
appropriate modifications.

4.5. Results of MSSA and discussion

4.5.1. ZDT test problems

This subsection investigates the efficacy of the MSSA proposed
in this work experimentally. Similarly to the single-objective opti-
mization, there are different standard teste suites in the literature.
A set of five challenging test functions called ZDT proposed by Zit-
zler et al. [90] is employed here to benchmark the performance of
MSSA. The mathematical models of these benchmark functions are
presented in the Appendix B. It is worth noting here that the first
three benchmark functions are ZDT1 to ZDT 3 functions. Also, the

modified ZDT1 and ZDT2 with linear and three-objective fronts are
taken from [71] to have different test functions.

For results verification, the two most well-regarded algorithms
in the literature of multi-objective optimization are selected:
MOPSO and NSGA-II. Due to the difficulty of multi-objective test
functions compared to single-objective ones, more search agents
(60) and a larger maximum iteration (1000) are employed. Each
algorithm is run 30 times and quantitative results are calculated
using IGD and presented in Table 7. Also, the best Pareto optimal
front obtained are illustrated in Figs. 12-16. Note that the maxi-
mum archive size for both MSSA and MOPSO are set to 100.

Table 7 shows that the MSSA algorithm significantly outper-
forms both MOPSO and NSGA-II on the majority of ZDT test prob-
lems. Inspecting Pareto optimal fronts obtained in Fig. 12, it may
be seen that MSSA and MOPSO show a better convergence than
NSGA-II. The distribution of the solutions is nearly uniform for
both MSSA and MOPSO algorithms, which shows the high cover-
age of these algorithms. There is a gap in the middle of the Pareto
optimal front obtained by the NSGA-II algorithm, which negatively
impacts the coverage of this algorithm. ZDT1 has a concave-shaped
Pareto optimal front and is always challenging for aggregation-
based methods. However, these results show that MSSA is able
to efficiently approximate the true front of this function with a
very high convergence and coverage. Between MSSA and MOPSO,
Fig. 12 shows that the convergence of MSSA is better and the cov-
erage is very competitive.

By contrast, the Pareto optima front of ZDT2 function is convex.
Therefore, the convergence and coverage of algorithms on a differ-
ent Pareto optimal front can be benchmarked. The Pareto optimal
solutions obtained in Fig. 13 show that MSSA and MOPSO again

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 179

MSSA MOPSO NSGA-II
7
True PF True PF True PF
0.8 ® Obtained PF || 0.8 @ Obtained PF || @ Obtained PF
1.5 1
..\
S 1
» ®

0.5

0 0.2 0.6 0.8 7 0 0.2 0.4 0.6 0.8 1

1 Vi

Fig. 12. Best Pareto front determined by MSSA, MOPSO, and NSGA-II on ZDT1.

MSSA MOPSO NSGA-II
14 2.5 ; : :
12 True PF 12 True PF True PF
' @ Obtained PF ’ ® Obtained PF 2 @ Obtained PF ||
1.5 E
S &
] 4
0.5 1
0 0
0 0.2 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
/1 /1

Fig. 13. Best Pareto front determined by MSSA, MOPSO, and NSGA-II on ZDT2.

MSSA MOPSO NSGA-IT
3 3 3
25 True PF | 25 True PF 1 2 True PF |
® Obtained PF @ Obtained PF @ Obtained PF
2 1 2 1 2 \ 1
1.5 1 1.5 ‘

0 0.2

0.6 0.8 1

71

Fig. 14. Best Pareto front determined by MSSA, MOPSO, and NSGA-II on ZDT3.

both outperform NSGA-II algorithm. The convergence and coverage
of the NSGA-II is very low. It seems that the convergence of MSSA
is better than MOPSO, yet the coverage is slightly lower. There is
a gap in the Pareto optimal front obtained by the MSSA algorithm.
However, the distribution of solutions is highly uniform in the rest
of the front. The results of MSSA on ZDT1 and ZDT show that MSSA
is able to approximate concave and convex Pareto optimal front
with a reasonable convergence and coverage.

As may be seen in Fig. 14, ZDT3 has a Pareto optimal front with
separated regions. These types of fronts are common in real prob-
lems and very challenging to be determined by optimization al-
gorithms. This is because an algorithm might be trapped in one
of the regions and fail to approximate all the separated regions.
Comparing the results on ZDT3 and those on the previous ZDT
test functions, a similar pattern can be seen in the Pareto opti-
mal fronts obtained, in which NSGA-II shows the worst results. De-
spite the high coverage of this algorithm, the convergence is poor.
Also, Pareto optimal solutions obtained on some of the separated
regions are very far from the true front. Considering the fronts of

MSSA and MOPSQO, it is evident that MSSA outperforms MOPSO in
terms of convergence and specially coverage. These results demon-
strate that MSSA is able to effectively find all the separated regions
of a Pareto optimal front with high distribution on each region.

As the fourth case study, ZDT1 is equipped with a linear front
and able to benchmark the coverage of the algorithms clearly. The
results in Fig. 15 show that again NSGA-II failed to converge to-
wards the true Pareto optimal front. All of the Pareto optimal so-
lutions obtained are far from the true front. Similarly to ZDT3, the
coverage of NSGA-II is reasonable despite the poor convergence. In-
specting the fronts of MSSA and MOPSO in Fig. 15, it can be seen
that MSSA provides superior results in terms of both convergence
and coverage. The results of MOPSO are very competitive and of
course better than NSGA-II. These results demonstrate that MSSA
efficiently drives salps towards different regions of true Pareto op-
timal front.

The first four case studies have two objectives and the above
results prove that MSSA is very effective in solving such problems.
However, some of problems have three objectives. The last case

180 S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

MSSA MOPSO NSGA-II
2.5 2.5 ‘ : : - 25 . .
True PF True PF True PF
2 @ Obtained PF || 2 @ Obtained PF || @ Obtained PF ||
1.5 E 1.5 E 1.5 1
. \‘
1
0.5]
0 ‘ . . . ‘ ‘ ‘ ‘ 0 ‘ ‘ . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
71 ¥ii 1

Fig. 15. Best Pareto front determined by MSSA, MOPSO, and NSGA-II on ZDT1 with linear front.

Ay s il

Fig. 16. Best optimal front determined by MSSA, MOPSO, and NSGA-II on ZDT2 with 3 objectives.

study is the extended version of ZDT2 with 3 objectives that pro-
vides a very challenging tri-objective test bed for the algorithms.
Pareto optimal solutions obtained in Fig. 16 show that similarly to
other test functions, NSGA-II presents the worst convergence and
coverage. By contrast, the MSSA algorithm provides the best con-
vergence and coverage. The results of MOPSO show that this algo-
rithm only converge towards one region of the front and the cover-
age is low. These results indicate that the MSSA algorithm is capa-
ble of approximating the true Pareto optimal fronts of tri-objective
optimization problems as well.

4.5.2. CEC2009 test functions

The CEC2009 test suite [91] is considered as one of the most
challenging benchmark sets in the literature and includes highly
biased, rotated, shifted, hybridized, and composite test functions.
The Pareto optimal front of these functions are of different shapes
and continuity. This sub-section applies the MSSA algorithm to
these test problems and compares the results with MOPSO and
MOEA/D. The results are given in Table 8. Note that to challenge
the MSSA algorithm further, it is compared to MOPSO and MOEA/D
on this test suite.

Inspecting the results of this table, it is evident that MSSA
shows the best results on eight test functions and provide very
competitive results when solving the rest of CEC2009 test func-
tions. These results confirm the performance of the proposed MSSA
algorithm when solving challenging test functions with difficulties
similar to those in the search space of real-world problems.

Taken together, the main advantages of the proposed MSSA al-
gorithm in comparison with MOEA/D and MOPSO are high con-
vergence and coverage. Superior convergence is due to the leading
solution selection, in which one of the best non-dominated solu-
tions always update the position of others. Another advantage is
the high coverage of the MSSA algorithm, which is because of both
archive maintenance mechanism and the selection of leading so-

lution. Since the solutions are always discarded from most pop-
ulated segments and leaders are chosen from the least populated
segments of the archive, MSSA improves the diversity and coverage
of solutions across all objectives. Despite these benefits, MSSA is
supposed to be applied to problems with three and maximum four
objectives. As a Pareto dominance-based algorithm, MSSA becomes
less effective proportional to the number of objectives. This is due
to the fact that in problems with more than four objectives, a large
number of solutions are non-dominated, so the archive become
full quickly. Therefore, the MSSA algorithm is suitable for solv-
ing problems with less than four objectives. In addition, this algo-
rithm is suitable only for problems with continuous variables and
requires legit modifications to be used in problems with binary
variables.

The results proved that MSSA can be very effective for solving
optimization problems with multiple objectives. The MSSA algo-
rithm showed high convergence and coverage. The superior con-
vergence of MSSA is due to the updating position of salps around
the best non-dominated solutions obtained so far. The salp chain
has always tendency towards the best solutions. Also, the high con-
vergence originates from the adaptive mechanism which acceler-
ates the movements of salps toward the best non-dominated solu-
tions obtained so far in the repository. The high coverage of MSSA
is because of the repository maintenance and leading solution
selection mechanisms. When the repository becomes full, non-
dominated solutions in populated regions are discarded by MSSA,
which results in improving the distribution of solutions along the
entire front. The procedure of selecting the leading salps also em-
phasizes coverage because it selects solutions from the least pop-
ulated regions to be explored and exploited by the salp chain. It is
worth mentioning here that since the updating mechanism of the
leading and follower salps in MSSA are identical to those of SSA,
MSSA inherits high exploration, local solutions avoidance, exploita-
tion, and fast convergence rate from this algorithm. Therefore, the

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

Table 8

Statistical results for IGD on UF1 to UF10 in the CEC2009 test suite.

IGD UF1 (bi-objective) UF2 (bi-objective) UF3 (bi-objective)
MSSA MOPSO MOEA/D MSSA MOPSO MOEA/D MSSA MOPSO MOEA/D
Average 0.1024 0.1370 0.1871 0.0576 0.0604 0.1223 0.2628 0.3139 0.2886
Median 0.1026 0.1317 0.1828 0.0580 0.0483 0.1201 0.2424 0.3080 0.2892
STD. Dev. 0.0062 0.0440 0.0507 0.0048 0.0276 0.0107 0.0727 0.0447 0.0159
Worst 0.1093 0.2278 0.2464 0.0657 0.1305 0.1436 0.4005 0.3777 0.3129
Best 0.0897 0.0899 0.1265 0.0479 0.0369 0.1048 0.1711 0.2564 0.2634
IGD UF4 (bi-objective) UF5 (bi-objective) UF6 (bi-objective)
MSSA MOPSO MOEA/D MSSA MOPSO MOEA/D MSSA MOPSO MOEA/D
Average 0.0902 0.1360 0.0681 0.6659 2.2023 1.2914 0.1903 0.6475 0.6881
Median 0.0891 0.1343 0.0684 0.6931 21257 1.3376 0.1962 0.5507 0.6984
STD. Dev. 0.0040 0.0073 0.0021 0.0986 0.5530 0.1348 0.0457 0.2661 0.0553
Worst 0.0984 0.1518 0.0703 0.7914 3.0383 1.4674 0.2666 1.2428 0.7401
Best 0.0855 0.1273 0.0646 0.4495 14647 11230 0.1163 0.3793 0.5523
IGD UF7 (bi-objective) UF8 (tri-objective) UF9 (tri-objective) UF10 (tri-objective)
MSSA MOPSO MOEA/D MSSA MOPSO MSSA MOPSO MSSA MOPSO
Average 0.0690 0.3539 0.4552 0.2743 0.5367 0.4441 0.4885 0.9769 1.6371
Median 0.0686 0.3873 0.4376 0.2655 0.5364 04222 04145 0.9190 1.5916
STD. Dev. 0.0059 0.2044 0.1898 0.0447 0.1825 0.1084 0.1444 0.2189 0.2987
Worst 0.0796 0.6151 0.6770 03794 0.7963 0.6422 0.7221 1.3142 21622
Best 0.0610 0.0540 0.0290 02249 0.2453 0.2849 0.3335 0.6082 1.2200
Table 9
Comparison results of the three-bar truss design problem.
Algorithm Optimal values for variables Optimal weight
X1 X2
SSA 0.788665414258065 0.408275784444547 263.8958434
DEDS [93] 0.78867513 0.40824828 263.8958434
PSO-DE [94] 0.7886751 0.4082482 263.8958433
MBA [47] 0.7885650 0.4085597 263.8958522
Ray and Sain [95] 0.795 0.395 264.3
Tsa [96] 0.788 0.408 263.68
CS [92] 0.78867 0.40902 263.9716

MSSA algorithm can avoid local fronts and converge towards the
true Pareto optimal front.

The results, findings, and discussions of this section prove that
the MSSA algorithm is potentially able to solve multi-objective op-
timization problems with unknown search spaces. To experimen-
tally prove this, the next section employs MSSA to solve a real-
world multi-objective problem.

5. Real-world applications

This sections applies the SSA and MSSA algorithms proposed in
this work to several real-world problems. SSA is employed to solve
five classical engineering design problems and airfoil design for
aero vehicles. MSSA is required to solve a propeller design prob-
lem for marine vehicles. The last two problems are computation-
ally expensive and each function evaluation might take up to five
minutes. Also, there are many constraints that should not be vio-
lated by the optimal solution(s) obtained.

5.1. Three-bar truss design problem

This classical engineering problem is to design a truss with
three bars to minimize its weight. This problem has a highly con-
strained search space [47,92]. The structural parameters in this
problem are shown in Fig. 17.

The results of SSA when solving this problem are shown in
Table 9. It can be seen that this algorithm is competitive compared

@ (@),

Al

alS

P AlI=A3

Fig. 17. Three-bar truss design problem.

to conventional and stochastic optimization techniques in the liter-
ature.

5.2. Welded beam design problem

As shown in Fig. 18, the objective in this classical problem is to
design a welded beam with minimum fabrication cost [97].

This problem is solved by SSA, and the results are com-
pared with several techniques in the literature [98-103]. Table 10
presents the results and shows that SSA finds the minimum opti-
mal cost.

182

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

]
[

Fig. 18. Design parameters of the welded beam design problem.

Table 10

Comparison results of the welded beam design problem.
Algorithm Optimal values for variables Optimal cost

h 1 t b
SSA 0.2057 3.4714 9.0366 0.2057 1.72491
GSA 0.182129 3.856979 10.0000 0.202376 1.87995
CPSO [104] 0.202369 3.544214 9.048210 0.205723 1.73148
GA [98] 0.1829 4.0483 9.3666 0.2059 1.82420
GA [100] 0.2489 6.1730 8.1789 0.2533 243312
Coello [105] 0.208800 3.420500 8.997500 0.2100 1.74831
Coello and Montes [106] 0.205986 3.471328 9.020224 0.206480 1.72822
Siddall [107] 0.2444 6.2189 8.2915 0.2444 2.38154
Ragsdell [103] 0.2455 6.1960 8.2730 0.2455 2.38594
Random [103] 0.4575 4.7313 5.0853 0.6600 4.11856
Simplex [103] 0.2792 5.6256 7.7512 0.2796 2.53073
David [103] 0.2434 6.2552 8.2915 0.2444 2.38411
APPROX [103] 0.2444 6.2189 8.2915 0.2444 2.38154
- b k Pl
Q

tw

_1

‘ h

Fig. 19. I-beam design problem.

Table 11
Comparison results for [-beam design problem.

Algorithm Optimal values for variables Optimum vertical deflection
b h tw tr

SSA 50 80 176470587 5.0000 0.0066259581

ARSM [108] 3705 80 1.71 2.31 0.0157

IARSM [108] 4842 7999 0.90 2.40 0.131

CS [92] 50 80 0.9 2321675 0.0130747

SOS [109] 50 80 0.9 2.32179 0.0130741

5.3. I-beam design problem

The [-beam problem deals with designing an I-beam with four
structural parameters to minimize the vertical deflection of the
beam (see Fig. 19).

This problem is solved by SSA in Table 11. It is evident that SSA
significantly outperforms other techniques when solving this prob-
lem.

5.4. Cantilever beam design problem

Despite the similarity of this problem to the preceding one, the
objective is to minimize the weight of a cantilever beam Cantilever

beam consists of five hollow blocks as shown in Fig. 20. The opti-
mal results obtained by SSA and similar techniques in the litera-
ture are given in Table 12. It may be seen that the proposed SSA
algorithm outperforms the majority of techniques and shows very
competitive results compared to SOS.

5.5. Tension/compression spring design

The last classical engineering problem is to design a com-
pression spring with three parameters as illustrated in Fig. 21
[106,111,112]. To perform a fair comparison with literature, a
penalty function is used in a similar manner to [113]. The results in

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 183

constant

Fig. 20. Cantilever beam design problem.

Table 12
Comparison results for cantilever design problem.

Algorithm Optimal values for variables Optimum weight
X1 X2 X3 Xq X5
SSA 6.015134526133134 5.309304676055819 4.495006716308508 3.501426286300545 2.152787908005768 1.339956391038955
SOS [109] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996
MMA [110] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
GCA_I [110] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
GCA_Il [110] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
CS [92] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
~ M~ .
Fig. 21. Schematic of the compression spring.
Table 13
Comparative results for the tension/compression spring design problem.

Algorithm Optimum variables Optimum weight
d D N
SSA 0.051207 0.345215 12.004032 0.0126763
GSA 0.050276 0.323680 13.525410 0.0127022
PSO [104] 0.051728 0.357644 11244543 0.0126747
ES [114] 0.051989 0.363965 10.890522 0.0126810
GA (Coello) [115] 0.051480 0.351661 11.632201 0.0127048
RO [116] 0.051370 0.349096 11.76279 0.0126788
Improved HS [117] 0.051154 0.349871 12.076432 0.0126706
DE [118] 0.051609 0.354714 11410831 0.0126702
Mathematical optimization 0.053396 0.399180 9.1854000 0.0127303
Constraint correction 0.050000 0.315900 14.250000 0.0128334
Table 13 show the merits of proposed SSA in solving this problem
as well.)
Lift
‘ Drag
5.6. Two-dimensional airfoil design using SSA < ‘ -_—
Thrust Su\pS‘Nﬂ S ——
In the airfoil design problem, there are two objectives: minimiz- . B .ss»
ing drag versus maximizing lift. In fact, lift and drag are two forces = —
applied to an airplane as can be seen in Fig. 22. Engines are the Weight

main sources of propulsion in an aircraft, which provides thrust
as the main force. Depending on the shape of aircraft’s body and
wings, the thrust is converted to both lift and drag. The force lift
is in opposite direction of weight, so it causes flying when greater
than the weigh force. Despite the low density of air, the body and
wing shape of a moving airplane also result is drag.

Fig. 22. Different forces applied to an airplane.

The shape of a wing plays an essential role in the performance
of an aircraft mostly in terms of lift and drag. A suitable design

184 S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

—— Max hickness

Max camber location

Fig. 23. Cross section of a real wing with a 2D NACA airfoil [121] and B-spline for defining the shape of airfoil.

x10°

Drag : F(x,)
So

0 20 40 60 80 100

Iteration

0.2
‘KL) ——
S
0.2 : : : :
0 0.2 0.4 0.6 0.8 7

0 0.2 0.4 0.6 0.8 7

Fig. 24. Convergence curve of the SSA on the airfoil design problem, initial airfoil, and optimized airfoil.

for airfoil can save fuel significantly as well. It cannot be said if
lift or drag forces are better because both of them are desirable in
different phases of fly. The lift force is desirable and drag is unde-
sirable in take-off and ascend. The higher the lift, the faster ascend
and take off. However, the drag force is desirable and lift is un-
desirable when landing or descending. The higher drag, the faster
ascend and landing.

Maximizing lift and minimizing drag are two important objec-
tives in airfoil design. Since the main focus of this section is to
demonstrate the applicability of SSA, one of these objectives is op-
timized. In order to solve this problem with the SSA algorithm,
it has to be formulated as an objective function. Problem formu-
lation includes identifying objective function, structural parame-
ters, and constraints. The main objective is to minimize drag in
this subsection. The freeware XFoil [119] is used for calculating
drag.

A real aircraft wing has many parameters: position of engines,
internal frames, leading flaps, trailing flaps, fuel tanks, leading
edge, trailing edge, and the shape airfoil. For the sake of simplicity,
the shape of airfoil is only optimized in this work. The curvature
of an airfoil can be defined with different methods of which b-
spline [120] is chosen in this work. Fig. 23 shows how this method
utilizes controlling points to define a smooth shape for the air-
foil. The model employed can handle up to 8 points. It is consid-
ered one of the leading points is fixed to have a reference point,
so there are 7 points to be moved in total. As Fig. 23 shows, the
displacements of points are along positive/negative x and y direc-
tions, so the total number of parameters for optimization is equal
to 14.

Airfoil design is a CFD problem and accompanied with a large
number of constraints. Since investigating these constraints is out
of the scope of the current work, they are not discussion in this
section. After all, the problem of airfoil design can be formulated
as follows:

Minimize: F(X, y) =Cy(X, ¥)

Subject to: —1<ZX,y<1, satisfaction of CO set 1)

where X = {x1, X2,....%7}, ¥={¥1.¥2.¥7}, CO includes many
constraints such as minimum of thickness, maximum of thickness,
etc.

It should be noted here that CFD problems have mostly domi-
nated infeasible regions, which make the death penalty functions
very inefficient. To be able to solve this problem using SSA, the
following penalty functions has been employed:

3
F y)=F& y)+p) P (5.2)
i=1
where p is a constant and P; is the violation size on the ith con-
straint in the CO set in Eq. (5.1).

For finding an optimal shape for the airfoil employed in this
subsection, a salp chain with 30 salps are utilized. The rest of the
controlling parameters of SSA is identical to those of the preced-
ing sections except the maximum number of generation, which is
set to 1000. The stopping criterion is to reach either a minimum
drag or maximum number of iterations. The problem is solved four
times and the best results are illustrated in Fig. 24. To see how the
SSA solves this problem, the initial random design, the final opti-
mal design found, and convergence curve are also shown in this
figure.

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 185

Mult-0b}

Thrust

Weight

C

—— 1 A

_— DX

-

Chord length

Fig. 25. Cross section of a real propeller and a 2D NACA airfoil.

Inspecting the results in Fig. 24, it may be observed that SSA
successfully minimizes drag of the airfoil over the course of it-
erations. There are some iterations with no improvement in the
solution. This is due to the extremely difficult search space of
this problem and the many infeasible solutions found during op-
timization. However, it seems that the SSA managed to find in-
feasible and better solutions after each non-improving period (for
instance at the end of nearly iterations 9 and 25). The optimal
airfoil obtained is also very smooth, showing the ability of SSA
in solving this problem. These results highly demonstrate that
the SSA is able to approximate the global optima of real-world
single-objective problems with challenging and unknown search
spaces.

5.7. Marine propeller design using MSSA

The problem investigated in this subsection is another CFD
problem. In fact, the shape of a marine propeller is optimized. The
main two objectives in the propeller design problem are: maxi-
mizing efficiency and minimizing cavitation [122]. The engine(s)
of a ship rotate a shaft attached to a propeller. The shafts rotate
a propeller, which creates trust for the vehicle. The efficiency is
the amount of engine power that is eventually converted to thrust.
Due the high density of water and frictions involved in the mo-
tor, however, thrust without loss of energy cannot be achieved
[123].

In addition to thrust, a propeller creates cavitation [124]. When
a propeller is rotated in water, it swirls water at high speed. Ac-
celerating water and passing through blades reduce the pressure
of water. This results in forming bubbles that collapse and cause
strong local shockwaves. These tiny shockwaves erode the sur-
face of a propeller and reduce its life span. Cavitation is undesir-
able and an optimizer is better to find a design with the lowest
cavitation.

The shape of a propeller plays a significant role in determin-
ing efficiency and cavitation. A propeller is made of several sim-
ilar blades grouped around the shaft. To design a propeller, there
are many structural parameters in a propeller: number of blades,
length of blade, thickness of shaft, length of shaft, and the shape of
blade. Undoubtedly, the blade’s shape is the most important com-
ponents in defining efficiency and cavitation.

There are different approaches for designing a blade. Similarly
to airfoil design in the previous section, b-spline can be employed.

This approach is usually used when a designer does not want to
utilize a standard airfoil. To have a different airfoil design com-
pared to the previous subsection, a standard NACA aoirfoil is cho-
sen in this subsection. As may be seen in Fig. 25, the main struc-
tural parameters in the NACA airfoil employed are the maximum
thickness and chord length. Multiple numbers of this airfoil along
the length of a blade define its final shape. In this work the blade
is divided to 10 cross sections each of which is defined by the
NACA airfoil shown in Fig. 25.

Blades’ airfoil design is a CFD problem and accompanied with
a large number of constraints. Since investigating these constraints
is out of the scope of the current work, they are not discussed in
this section. After all, the problem of propeller design can be for-
mulated as follows:

Maximize : F (T, C) = n(T.C)
Minimize : Fz(f, 5) = VC(T, f)
Subject to: thrust = 4000, satisfaction of all constraints

(5.1a)

where T is a vector that stores the thickness of all airfoils along
the blade (T’ = {Ty, Ty, ..., Typ}), C is a vector that stores the chord
length of all airfoils along the blade (C={C;,C, ...,Cio]).

For determining the true Pareto optimal front of this problem,
a salp chain with 200 salps are employed. The salps are allowed
to find the Pareto optima solutions over 300 iterations. The maxi-
mum archive size is set to 100 as well. The rest of the controlling
parameters of the MSSA algorithm is identical to previous exper-
iments done with SSA and MSSA. Note that the freeware Open-
prop [125] is utilized for calculating the objectives. The experiment
is performed four times and the best Pareto optimal solution ob-
tained is illustrated in Fig. 26. In addition to the best Pareto op-
timal front, search history of salp chain and some of the design
found are illustrated in this figure. Note that the y axis shows neg-
ative cavitation, so best solutions are towards top-right corner of
the figure.

As per the results of Fig. 26, it may be seen that the Pareto op-
timal solutions obtained are well distributed along both objectives.
The true Pareto optimal front for this question is unknown, so it
cannot be said how close these solutions are to the true Pareto op-
timal solutions. However, it is evident that the MSSA managed to
find solutions with high efficiency and low cavitation. The search
history also shows how the salp chain gradually moves towards
the Pareto optimal front and spread the solutions across both ob-

186 S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

300 sterations

-253

-25.35

S254 1

—F,(T,C)

-25.45

-25.5

25550 ; : . — . ; s
067 0672 0674 0676 0678 068 0682 0684 0636

F(T,C)

Fig. 26. Pareto optimal front obtained, search history, and some of the designs.

jectives. These results highly demonstrate that the model of salp
swarm proposed in this work and operators employed for solv-
ing multi-objective problems are very efficient in terms of finding
an accurate approximation and highly distributed Pareto optimal
solutions for challenging multi-objective problems with unknown
search spaces.

6. Conclusion

This paper proposed a novel nature-inspired technique for solv-
ing optimization problems. The swarming behaviour of salps (salp
chain) was the main inspiration of this paper. Two mathematical
model were proposed to update the position of leading and fol-
lower salps. Swarm simulation in 2D and 3D space showed that
the models proposed are able to search around both stationary
and mobile food sources. After swarm simulation, the SSA and
MSSA algorithms were designed. In SSA, the best solutions ob-
tained so far was considered as the main food source to be chased
by the salp chain. An adaptive mechanism was integrated to SSA
to balance exploration and exploitation. For the MSSA algorithm,
a repository was designed and employed to store non-dominated
solutions obtained so far. Solutions were removed from popula-
tion regions in case of a full repository and the food source was
chosen from the non-dominated solutions in the least populated
areas.

In order to prove the efficacy of the algorithms proposed a se-
ries of experiments was conducted. First, several qualitative met-
rics were employed: search history, trajectory, average fitness, and
convergence curve. SSA was applied to a set of benchmark func-
tions. It was observed and can be concluded that SSA is able to ex-
plore the most promising regions of the search space, move salps
abruptly in the initial steps of iterations, move salps gradually in
the final stages of iterations, improve the average fitness of all
salps, and improve that best solution found so far over the course
of optimization.

Also, a set of high-dimensional test functions including uni-
modal, multi-modal, and composite were solved by the SSA algo-
rithm to prove its performance in solving problems with a large

number of variables and different characteristics. The results were
compared with a variety of well-known and recent algorithms us-
ing a statistical test. It was observed and may be concluded that
SSA is capable of determining the global optima for most of the
unimodal, multi-modal, and composite benchmark functions and
outperform the current optimization techniques in the literature in
a statistically significant manner.

For proving the performance of MSSA algorithm, a set of
well-known multi-objective test functions was employed. The re-
sults were compared with MOPSO and NSGA-II as the best two
algorithms proposed so far in the literature. As per the re-
sults and finding, it can be concluded that the MSSA algo-
rithm can approximate the true Pareto optimal front with dif-
ferent shapes and difficulties conveniently. It is also concluded
that the MSSA benefits from a reasonable convergence and cov-
erage that allows this algorithm to find very accurate and highly
distributed approximation of Pareto optimal solutions across all
objectives.

Although the results on test functions testified the potential of
the SSA and MSSA algorithms in solving real problems, this work
also considered solving two real problems (arifoil design and ma-
rine propeller design) to prove the effectiveness of these algo-
rithms in practice. It was demonstrated that the SSA and MSSA
are able to find optimal shapes for both problems employed. As
per the results on real-world case studies, it can be concluded
that SSA and MSSA can solve real-world problems with unknown
search spaces.

According to the simulations, results, finding, analyses, discus-
sions, and conclusions, it can be stated that the SSA and MSSA al-
gorithms have merits among the current optimization algorithms
in the literature and worth applying to different problems.

This work opens several research directions. Solving single-
and multi-objective problems in different fields is recommended.
Proposing binary versions of both SSA and MSSA could be valu-
able contributions as well. The current work briefly touched
on constrained optimization using the algorithms proposed.
Therefore, investigating the impacts of different constrained
handling methods on the performance of SSA and MSSA is
recommended.

Appendix A. Single-objective test problems utilised in this work

Table 14, 15, and 16 show the details of the single-objective test
functions employed in this work.

Table 14
Unimodal benchmark functions.

Function Dim Range Shift position fiin

F(x) = _ilx,? 20 [-100,100] [-30,-30,.,—30] O
i

Ex) = é [xi] +If[1 ;] 20 [-1010] [-3,-3,.-3] O

Bx) = i (i x;)? 20 [-100,100] [-30,-30,.,—30] O

Ei(x) :E};Zﬂl% 1<i<n) 20 [-100,100] [-30,—30,.,—30] 0

F(x) = "_i:[loo(x,-+1 -’ +(x-17%120 [-3030] [-15-15,,—15] O
iz

Fs (%) :_fl([x,»+0.5])2 20 [-100,100] [-750,.,—~750] O
i

F(x) = i]ix;’+ranclom[0,1) 20 [-1.28128] [-0.25,.,—0.25] 0
i

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 187
Table 15
Multimodal benchmark functions.
Function Dim Range Shift position fimin
n
R =Y —xisin<,/|x,»|> 20 [-500500] [-300,,-300] —-418.9829 x 5
i=1
n
Fy(%) = _[x} — 10cos (27 x;) + 10] 20 [-512512] [-2,-2,,-2] 0
i=1
n n
Fo(x) = —209xp<—0.2 [1yx ' - exp(% > cos(27rx,»)) +20+e 20 [-32,32] 0
i-1 i=1
n n
Fit () = 950 %7 — 1 COS<%) +1 20 [-600600] [-400,.-400] O
i=1 i=1
n-1 n
Fo(x) =% {1Osin(ny1) + > i— 1)*[1 + 10sin? Ty)]+ On — 1)2} + Y u(x;, 10,100, 4)
i=1 i1
yi=1+%1 20 [-50,50] [~30,—30,.,~30]
k(xi—a)™ x; > a
u(xj,a,k,m)y=40 —a <x;<a 0
k(-x; —a)™ x; < —a
n n
Fi3(x) =0.1 {sin2 Bxy) + 3 (% — 1?1 +sin2 Bx; + 1] + (% — 1)%[1 + sin? (2nxn)]} + > u(x;,5100,4) 20 [-50,50] [-100,.,—100] 0
i= iz
Table 16
Composite benchmark functions.
Function Dim Range fyp
Fi4 (CF1):
fif2f3.-.., fio =Sphere Function 10 [-55] O
[6‘1,62,63 ,,,,, 6]0]:[1,1,],,1]
[A1,A2,A3...,A10] =[5/100, 5/100, 5/100, .., 5/100]
Fis (CF2):
fi, fonfa iy f10 = Griewank’s Function
[61,62,63,....610] =[1,1,1,...1] 10 [-55] O
[A1.22.A3..... A10]=[5/100, 5/100, 5/100, .., 5/100]
Fis (CF3):
fi. fa. 5.1, fio = Griewank’s Function
[61,62,63,...,610] =[1,1,1,..,1] 10 [-55] ©
[AMA2Azee, Aol=[1,1,1, ., 1]
fiz (CF4):
f1, f» = Ackley’sFunction
f3, fa = Rastrigin’s Function
fsfs = Weierstrass Function 10 [-5,5] 0
f7, fs = Griewank’s Function
fo.f10 = Sphere Function
[61,62,63,..., 610] =[1,1,1,..,1]
[A1.A2,03,..., A0l =[5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100, 5/100, 5/100]
fis (CF5):
f1, f» = Rastrigin’s Function
f3.fa=Weierstrass Function 10 [-55] O
fs, fo = Griewank’s Function
f7, fs = Ackley’sFunction
fofio =Sphere Function
[61,62,63, ..., 610l =[1,1,1,..,1]
[A1.A2,43,..., 0] =[1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]
fi9 (CF6):
f1, f» = Rastrigin’s Function 10 [-5,5] 0

f3.fa =Weierstrass Function

fs, fo = Griewank’s Function

f7. fs = Ackley’sFunction

fofio = Sphere Function

[61,65.63.....61] =[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
A1z 25000 Ap] =[01%1/5, 0.2¢1/5, 0.3*5/0.5, 0.4*5/0.5, 0.5*5/100,
0.6* 5/100, 0.7+5/32, 0.8* 5/32, 0.9*5/100, 1*5/100]

188

Appendix B. Multi-objective test problems utilised in this work

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

h(fi(x).gx)) =1- /L

ZDT1: O0<x<1,1<i<30
Minimise : f1(X) =x; (B.1) ZDT2:
Minimise : f; (x) = x;
Minimise : f,(x) = g(x) x h(fi(x).8(x)) (B2) Minimise: fo(x) =g(x) x h(f1(x).8(x))

Where Gx)=1+

N : = N_1Zx"

9
Where: G(x)=1+ N1 > X (B.3)

i—2 h(fi(x).gx)) =1- \/%

Table 17

O0<x;<1, 1<i<30

Bi-objective test problems (CEC2009).

Name

Mathematical formulation

UF1

UF2

UF3

UF4

UF5

UF6

UF7

fi=xi+ 4 Z [—sin6mx; + Z)P, fo=1-Va+ {4 Z [x; — sin(6x; +)2

{)Ulsoddand2 <j<n}, jz_{lllzsevenandZ <j< n}
fl*xl+ I ZYJ s f2—1*f+ Uz\ Z.VJ
jeh Jjeh
:{j[jisoddandz <j<n}, h={liisevenand2 < j < n}
_ —[0.3x2 cos(24mx; + 47) 4 0.6x;] cos(6mx; +) if je)y
Yi= x —[o0. 3x2cos(2471x1 + 4J”)+06x1]sm(67'rx1 + f” Yifjeh

€h Jjeh

fl_x1+U|(4Zyl—2]'[cos<2(iy[J)+2>
fzz\/ﬁ+ﬁ(42y§—2]‘[cos<%)+2)

jeh
3(j-2
Jiand |, are the same as those of UFl Vi =X; —x?s(l O+
fi=xi+ w Y hp), o=1-x+ U;\ > h(yy
jeh ek .
J1 and J are the same as those of UF1, y; =x; —sin (671x1 + f”) j=2,3,...,n, h(t) =l

1+e2lf

fi =x+ (35 +€)lsin@Nmx)| + ¢4 zh(y) fi=1-x+ (% +e)\sm(2Nnx1)\+ & Zh(y)

J1 amd J, are identical to those of UFl, €>0, yj=x;—sin (671)(1 + j;’) j=23,..., n
h(t)=2t2 —cos (4mt)+1

fi=x +max{0,2(ﬁ +e)sin(2Nnx1)} A (4 Zyj -271 cos(zfyff >+1)>

Jjeh

,j=2,3,....n

fo=1-x+max{0,2(% +¢) sin(2Nnx])}Ul (4 PG —2]];[cog(”?[])+1)>
2
J1 amd J, are identical to those of UF1, € >0, y; = x] — sin(6rx; + J,’f), j=2,3,..., n
f1=%+ﬁ2;ej\ﬁ- fz=1—f/ﬁ+ﬁ2jghy}2-)
J1amd], areidentical tothoseof UF1,€ > 0,y; = x; — sin(6x; + &), j=2,3,..., n

Table 18

Tri-objective test problems (CEC2009).

Name

Mathematical formulation

UF8

UF9

UF10

fi = €0s(0.5%,77) €05 (0.5%,7) + (2 X (x; — 2%y sin (27, +)7
Jeh
fo = c0s(0.5x%;7r) sin(0.5x,77) + ﬁ 3 (xj — 2% sin (27w x; + jT”)z)
Jjeh
f5 =sin(0.5%7) + 2 ¥ (x; — 2% sin (2% + iy
jeh
={jI3 <j < n, andj—1is a multiplication of 3}, J, ={j|3 <j < n, andj— 2 is a multiplication of 3},
J5={jI3 <j < n, andjis a multiplication of 3},
fi =0.5[max{0, (1+€)(1 - 42x — D)} + 20 + Z T (%) — 2% sin (27x1 + %)2)
jh
fo=0.5[max{0, (1+€)(1 —42x — D)} + 20 + F T (% — 2% sin (27x; + %)2)
ik
. i 2
fi=1-x+ ﬁ%(xj — 2xy sin (27 x; + 2)7)
€ls

={jI3 <j < n, andj—1is a multiplication of 3}, J,={j|3 <j < n, andj— 2 is a multiplication of 3},
J={l3<j<n, andjisa multiplication of3}, e=0.1
f1 = cos(0.5x;77) cos(0.5x,7) + U I Z[4yJ —cos(8my;) +1]

fo = c0s(0.5x177) sin(0.5x,77) + U ‘ Z[4y —cos(8my;) +1]
f3 =sin(0.5x;77) + U I 2[4)’] - cos(Sny]) +1]

={j3<j=<n, and]—l is a multiplication of 3}, J, ={j|3 < j < n, andj- 2 is a multiplication of 3},
]3 ={jI3 <j < n, andjis a multiplication of 3},

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 189

ZDT3:
Minimise : fj(x) = x; (B.9)
Minimise : f5(x) = g(x) x h(fi(x),g(x)) (B.10)

9 N

Where: Gx)=1+ %9 gxi (B.11)
h(fi(x).800) =1- J2& — (4&) sin(107fi) (g1
0<x;<1, 1<i<30

ZDT1 with linear PF:
Minimise : f1(x) = x1 (B.13)
Minimise : fo(x) = g(x) x h(fi(x),g(x)) (B.14)

9 N

Where: G(x)=1+ N1 gxi (B.15)
h(fi(x), gx) =1- /4% (B.16)
O0<x;<1, 1<i<30

ZDT2 with three objectives:
Minimise : f;(x) =x (B.17)
Minimise : f>(x) = x; (B.18)

Minimise : f3(x) =g(x) x h(fi1(x).g()) x h(f2(x).&(x))

(B.19)
9 N
Where: G(x)=1+ N1 ;xi (B.20)
(1 0.800) =1 - (48)° (B.21)

O0<x;<1, 1<i<30

The details of CEC2009 multi-objective test problems are given
in Table 17 and 18.

References

[1] Béck T. Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford university press; 1996.

[2] Blum C, Li X. Swarm intelligence in optimization. Springer; 2008.

[3] Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach
Learn 1988;3:95-9.

[4] Storn R, Price K. Differential evolution-a simple and efficient heuristic for
global optimization over continuous spaces.] Global Optim 1997;11:341-59.

[5] Rechenberg I. Evolution strategy: optimization of technical systems by means
of biological evolution, 104. Stuttgart: Fromman-Holzboog; 1973.

[6] Fogel LJ, Owens AJ, Walsh M]. Artificial intelligence through simulated evolu-
tion; 1966.

[7] Yao X, Liu Y, Lin G. Evolutionary programming made faster. Evol Comput IEEE
Trans 1999;3:82-102.

[8] Simon D. Biogeography-based optimization. Evol Comput IEEE Trans
2008;12:702-13.

[9] Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies.
In: Proceedings of the first European conference on artificial life; 1991.
p. 134-42.

[10] Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In:
Proceedings of the sixth international symposium on micro machine and hu-
man science; 1995. p. 39-43.

[11] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm.] Global Optim
2007;39:459-71.

[12] Yang X-S, Deb S. Cuckoo search via Lévy flights. In: Nature & biologically in-
spired computing, 2009. NaBIC 2009. world congress on; 2009. p. 210-14.

[13] Yang XS. Firefly algorithm. Eng Optim 2010:221-30.

[14] Yang X-S. A new metaheuristic bat-inspired algorithm. In: Nature inspired co-
operative strategies for optimization (NICSO 2010). Springer; 2010. p. 65-74.

[15] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw
2014;69:46-61.

[16] Kumar V, Chhabra JK, Kumar D. Grey wolf algorithm-based clustering tech-
nique. | Intell Syst 2017;26:153-68.

[17] Aswani R, Ghrera S, Chandra S. A novel approach to outlier detection using
modified grey wolf optimization and k-nearest neighbors algorithm. Indian]
Sci Technol 2016;9.

[18] Kaveh A, Farhoudi N. A new optimization method: dolphin echolocation. Adv
Eng Software 2013;59:53-70.

[19] Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Software
2016;95:51-67.

[20] Pan W-T. A new fruit fly optimization algorithm: taking the financial distress
model as an example. Knowl Based Syst 2012;26:69-74.

[21] Geem ZW, Kim JH, Loganathan G. A new heuristic optimization algorithm:
harmony search. Simulation 2001;76:60-8.

[22] Kumar V, Chhabra JK, Kumar D. A hybrid approach for data clustering us-
ing expectation-maximization and parameter adaptive harmony search algo-
rithm. In: Proceedings of 2015 International Conference on Future Computa-
tional Technologies; 2015. p. 61-7.

[23] Glover F. Tabu search-part I. ORSA J Comput 1989;1:190-206.

[24] Davis L. Bit-climbing, representational bias, and test suite design. In: ICGA;
1991. p. 18-23.

[25] Lourengo HR, Martin OC, Stutzle T. Iterated local search; 2001. arXiv preprint
math/0102188.

[26] Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simmulated annealing.
Science 1983;220:671-80.

[27] Caporossi G, Hansen P, Mladenovi¢ N. Variable neighborhood search. In:
Metaheuristics. Springer; 2016. p. 77-98.

[28] Alsheddy A, Voudouris C, Tsang EP, Alhindi A. Guided local search. In: Hand-
book of heuristics. Springer; 2016. p. 1-37.

[29] Wolpert DH, Macready WG. No free lunch theorems for optimization. Evol
Comput IEEE Trans 1997;1:67-82.

[30] Yao X. A review of evolutionary artificial neural networks. Int J Intell Syst
1993;8:539-67.

[31] Coello Coello CA. Constraint-handling using an evolutionary multiobjective
optimization technique. Civil Eng Syst 2000;17:319-46.

[32] Boussaid I, Lepagnot], Siarry P. A survey on optimization metaheuristics. Inf
Sci 7/10/ 2013;237:82-117.

[33] Coello CAC. Evolutionary multi-objective optimization: some current research
trends and topics that remain to be explored. Front Comput Sci China
2009;3:18-30.

[34] Ngatchou P, Zarei A, El-Sharkawi M. Pareto multi objective optimization. In:
Intelligent Systems Application to Power Systems, 2005. Proceedings of the
13th International Conference on; 2005. p. 84-91.

[35] Zhou A, Qu B-Y, Li H, Zhao S-Z, Suganthan PN, Zhang Q. Multiobjective evo-
lutionary algorithms: a survey of the state of the art. Swarm Evol Comput
2011;1:32-49.

[36] Tan KC, Chiam SC, Mamun A, Goh CK. Balancing exploration and exploitation
with adaptive variation for evolutionary multi-objective optimization. Eur]
Oper Res 2009;197:701-13.

[37] Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H. Chaotic krill herd algo-
rithm. Inf Sci 2014;274:17-34.

[38] Gandomi AH, Alavi AH. Krill herd: a new bio-inspired optimization algorithm.
Commun Nonlinear Sci Numer Simul 2012;17:4831-45.

[39] Wang G-G, Gandomi AH, Alavi AH. Stud krill herd algorithm. Neurocomputing
2014;128:363-70.

[40] Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algo-
rithm. Inf Sci 2009;179:2232-48.

[41] Kaveh A, Talatahari S. A novel heuristic optimization method: charged system
search. Acta Mech 2010;213:267-89 /09/01 2010.

[42] Formato RA. Central force optimization: a new nature inspired computa-
tional framework for multidimensional search and optimization. In: Nature
inspired cooperative strategies for optimization (NICSO 2007). Springer; 2008.
p. 221-38.

[43] Kaveh A, Khayatazad M. A new meta-heuristic method: ray optimization.
Comput Struct 2012;112-113:283-94.

[44] Rao RV, Savsani V], Vakharia D. Teaching-learning-based optimization: a
novel method for constrained mechanical design optimization problems.
Comput Aided Des 2011;43:303-15.

[45] Dai C, Zhu Y, Chen W. Seeker optimization algorithm. In: Computational in-
telligence and security. Springer; 2007. p. 167-76.

[46] Moosavian N, Kasaee Roodsari B. Soccer league competition algorithm: a
novel meta-heuristic algorithm for optimal design of water distribution net-
works. Swarm Evol Comput 2014;17:14-24.

[47] Sadollah A, Bahreininejad A, Eskandar H, Hamdi M. Mine blast algorithm:
a new population based algorithm for solving constrained engineering op-
timization problems. Appl Soft Comput 2013;13:2592-612.

http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0021
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0022
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0022
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0027
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0028
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0028
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0028
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0029
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0029
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0030
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0030
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0031
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0032
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0032
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0035
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0041
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0041
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0042
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0042
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0042
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0043
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0043
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0043
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0043
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0044
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0045
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0045
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0045
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0046
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0046
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0046
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0046
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0046

190 S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191

[48] Branke], KauBler T, Schmeck H. Guidance in evolutionary multi-objective op-
timization. Adv Eng Software 2001;32:499-507.

[49] Das I, Dennis JE. Normal-boundary intersection: a new method for generating
the Pareto surface in nonlinear multicriteria optimization problems. SIAM]
Optim 1998;8:631-57.

[50] Kim 1Y, De Weck O. Adaptive weighted-sum method for bi-objective opti-
mization: pareto front generation. Struct Multidiscip Optim 2005;29:149-58.

[51] Messac A, Mattson CA. Generating well-distributed sets of Pareto points for
engineering design using physical programming. Optim Eng 2002;3:431-50.

[52] Parsopoulos KE, Vrahatis MN. Particle swarm optimization method in multi-
objective problems. In: Proceedings of the 2002 ACM symposium on Applied
computing; 2002. p. 603-7.

[53] Deb K. Advances in evolutionary multi-objective optimization. In: Search
based software engineering. Springer; 2012. p. 1-26.

[54] Zhang Q, Li H. MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. Evol Comput IEEE Trans 2007;11:712-31.

[55] Mezura-Montes E, Reyes-Sierra M, Coello CAC. Multi-objective optimization
using differential evolution: a survey of the state-of-the-art. In: Advances in
differential evolution. Springer; 2008. p. 173-96.

[56] Kumar V, Chhabra JK, Kumar D. Differential search algorithm for multiobjec-
tive problems. Procedia Comput Sci 2015;48:22-8.

[57] Sarker R, Abbass HA. Differential evolution for solving multiobjective opti-
mization problems. Asia Pac] Oper Res 2004;21:225-40.

[58] Abbass H, Sarker R, Newton C. PDE: a Pareto-frontier differential evolution
approach for multi-objective optimization problems. In: Evolutionary Com-
putation, 2001. Proceedings of the 2001 Congress on; 2001. p. 971-8.

[59] Coello CAC, Lechuga MS. MOPSO: a proposal for multiple objective particle
swarm optimization. In: Evolutionary Computation, 2002. CEC'02. Proceed-
ings of the 2002 Congress on; 2002. p. 1051-6.

[60] Knowles JD, Corne DW. Approximating the nondominated front using the
Pareto archived evolution strategy. Evol Comput 2000;8:149-72.

[61] Liu D, Tan KC, Huang S, Goh CK, Ho WK. On solving multiobjective bin pack-
ing problems using evolutionary particle swarm optimization. Eur] Oper Res
2008;190:357-82.

[62] Santana RA, Pontes MR, Bastos-Filho CJ. A multiple objective particle swarm
optimization approach using crowding distance and roulette wheel. In: In-
telligent Systems Design and Applications, 2009. ISDA’09. Ninth International
Conference on; 2009. p. 237-42.

[63] Tripathi PK, Bandyopadhyay S, Pal SK. Multi-objective particle swarm op-
timization with time variant inertia and acceleration coefficients. Inf Sci
2007;177:5033-49.

[64] Raquel CR, Naval PC Jr. An effective use of crowding distance in multiobjec-
tive particle swarm optimization. In: Proceedings of the 7th Annual confer-
ence on Genetic and Evolutionary Computation; 2005. p. 257-64.

[65] Sierra MR, Coello CAC. Improving PSO-based multi-objective optimization
using crowding, mutation ande-dominance. In: Evolutionary Multi-Criterion
Optimization; 2005. p. 505-19.

[66] Mostaghim S, Teich]. Strategies for finding good local guides in multi-ob-
jective particle swarm optimization (MOPSO). In: Swarm Intelligence Sympo-
sium, 2003. SIS'03. Proceedings of the 2003. IEEE; 2003. p. 26-33.

[67] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective ge-
netic algorithm: NSGA-II. Evol Comput IEEE Trans 2002;6:182-97.

[68] Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-IL In: Interna-
tional Conference on Parallel Problem Solving From Nature. Springer; 2000.
p. 849-58.

[69] Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired
heuristic paradigm. Knowl Based Syst 2015;89:228-49.

[70] Mirjalili S. The ant lion optimizer. Adv Eng Softw 2015;83:80-98.

[71] Mirjalili S. Dragonfly algorithm: a new meta-heuristic optimization technique
for solving single-objective, discrete, and multi-objective problems. Neural
Comput Appl 2015:1-21.

[72] Mirjalili S, Mirjalili S, Hatamlou A. Multi-verse optimizer: a nature-inspired
algorithm for global optimization. Neural Comput Appl 2015:1-19 /03/17
2015.

[73] Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems.
Knowl Based Syst 2016.

[74] Madin L. Aspects of jet propulsion in salps. Can] Zool 1990;68:765-77.

[75] Anderson PA, Bone Q. Communication between individuals in salp chains II.
physiology. Proc R Soc Lond B 1980;210:559-74.

[76] Andersen V, Nival P. A model of the population dynamics of salps in coastal
waters of the Ligurian Sea.] Plankton Res 1986;8:1091-110.

[77] Henschke N, Smith JA, Everett JD, Suthers IM. Population drivers of a Thalia
democratica swarm: insights from population modelling.] Plankton Res 2015
p. fbv024.

[78] Coello CAC, Pulido GT, Lechuga MS. Handling multiple objectives with particle
swarm optimization. Evol Comput IEEE Trans 2004;8:256-79.

[79] Digalakis J, Margaritis K. On benchmarking functions for genetic algorithms.
Int] Comput Math 2001;77:481-506.

[80] M. Molga and C. Smutnicki, “Test functions for optimization needs,” 2005.

[81] Yang X-S. Test problems in optimization; 2010. arXiv preprint
arXiv:1008.0549.

[82] Kumar V, Chhabra JK, Kumar D. Effect of harmony search parameters’ varia-
tion in clustering. Procedia Technol 2012;6:265-74.

[83] Kumar V, Chhabra JK, Kumar D. Automatic data clustering using parameter
adaptive harmony search algorithm and its application to image segmenta-
tion.] Intell Syst 2016;25:595-610.

[84] Kumar V, Chhabra JK, Kumar D. Parameter adaptive harmony search algo-
rithm for unimodal and multimodal optimization problems. J Comput Sci
2014;5:144-55.

[85] Kumar V, Chhabra JK, Kumar D. Variance-based harmony search algorithm for
unimodal and multimodal optimization problems with application to cluster-
ing. Cybern Syst 2014;45:486-511.

[86] Kumar V, Chhabra JK, Kumar D. Clustering using modified harmony search
algorithm. Int] Comput Intell Stud 2 2014;3:113-33.

[87] N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockhoff, "COCO: a
platform for comparing continuous optimizers in a black-box setting," arXiv
preprint arXiv:1603.08785, 2016.

[88] Hansen N, Auger A, Finck S, Ros R. Real-parameter black-box optimization
benchmarking 2010: experimental setup. INRIA; 2010.

[89] Finck S, Hansen N, Ros R, Auger A. Real-parameter black-box optimization
benchmarking 2010: presentation of the noisy functions. Research Center
PPE; 2010. Technical Report 2009/21.

[90] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol Comput 2000;8:173-95.

[91] Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S. Multiobjective op-
timization test instances for the CEC 2009 special session and competition.
Multiobjective optimization test instances for the CEC 2009 special session
and competition, 264. University of Essex, Colchester, UK and Nanyang tech-
nological University, Singapore; 2008. Special session on performance assess-
ment of multi-objective optimization algorithms, technical report.

[92] Gandomi AH, Yang X-S, Alavi AH. Cuckoo search algorithm: a meta-
heuristic approach to solve structural optimization problems. Eng Comput
2013;29:17-35.

[93] Zhang M, Luo W, Wang X. Differential evolution with dynamic stochastic se-
lection for constrained optimization. Inf Sci 2008;178:3043-74.

[94] Liu H, Cai Z, Wang Y. Hybridizing particle swarm optimization with differen-
tial evolution for constrained numerical and engineering optimization. Appl
Soft Comput 2010;10:629-40.

[95] Ray T, Saini P. Engineering design optimization using a swarm with an intel-
ligent information sharing among individuals. Eng Optim 2001;33:735-48.

[96] Tsai J-F. Global optimization of nonlinear fractional programming problems in
engineering design. Eng Optim 2005;37:399-409.

[97] Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H. Chaotic Krill Herd algo-
rithm. Inf Sci 2014.

[98] Carlos A, COELLO C. Constraint-handling using an evolutionary multiobjective
optimization technique. Civil Eng Syst 2000;17:319-46.

[99] Deb K. Optimal design of a welded beam via genetic algorithms. AIAA]
1991;29:2013-15.

[100] Deb K. An efficient constraint handling method for genetic algorithms. Com-
put Method Appl Mech Eng 2000;186:311-38.

[101] Krohling RA, dos Santos Coelho L. Coevolutionary particle swarm optimiza-
tion using Gaussian distribution for solving constrained optimization prob-
lems. Syst Man Cybern Part B IEEE Trans 2006;36:1407-16.

[102] Lee KS, Geem ZW. A new meta-heuristic algorithm for continuous engineer-
ing optimization: harmony search theory and practice. Comput Methods Appl
Mech Eng 2005;194:3902-33.

[103] Ragsdell K, Phillips D. Optimal design of a class of welded structures using
geometric programming. ASME] Eng Ind 1976;98:1021-5.

[104] He Q, Wang L. An effective co-evolutionary particle swarm optimiza-
tion for constrained engineering design problems. Eng Appl Artif Intell
2007;20:89-99.

[105] Coello Coello CA. Theoretical and numerical constraint-handling techniques
used with evolutionary algorithms: a survey of the state of the art. Comput
Method Appl Mech Eng 2002;191:1245-87.

[106] Coello Coello CA, Mezura Montes E. Constraint-handling in genetic algo-
rithms through the use of dominance-based tournament selection. Adv Eng
Inf 2002;16:193-203.

[107] Siddall JN. Analytical decision-making in engineering design. Englewood
Cliffs, NJ: Prentice-Hall; 1972.

[108] Wang GG. Adaptive response surface method using inherited latin hypercube
design points.] Mech Des 2003;125:210-20.

[109] Cheng M-Y, Prayogo D. Symbiotic organisms search: a new metaheuristic op-
timization algorithm. Comput Struct 2014;139:98-112.

[110] Chickermane H, Gea H. Structural optimization using a new local approxima-
tion method. Int] Numer Methods Eng 1996;39:829-46.

[111] Arora JS. Introduction to optimum design. Academic Press; 2004.

[112] Belegundu AD. Study of mathematical programming methods for structural
optimization. Diss Abstr Int Part B 1983;43:1983.

[113] Yang XS. Nature-inspired metaheuristic algorithms. Luniver Press; 2011.

[114] Mezura-Montes E, Coello CAC. An empirical study about the usefulness of
evolution strategies to solve constrained optimization problems. Int | Gen
Syst 2008;37:443-73.

[115] Coello Coello CA. Use of a self-adaptive penalty approach for engineering op-
timization problems. Comput Ind 2000;41:113-27.

[116] Kaveh A, Khayatazad M. A new meta-heuristic method: ray optimization.
Comput Struct 2012;112:283-94.

http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0047
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0047
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0047
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0047
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0048
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0048
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0048
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0049
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0049
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0049
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0050
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0050
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0050
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0051
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0051
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0051
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0052
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0052
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0053
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0053
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0053
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0054
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0055
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0055
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0055
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0055
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0056
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0056
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0056
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0057
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0057
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0057
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0057
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0058
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0058
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0058
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0059
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0059
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0059
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0060
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0061
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0062
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0062
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0062
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0062
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0063
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0063
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0063
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0064
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0064
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0064
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0066
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0066
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0066
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0066
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0066
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0065a
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0067
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0067
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0068
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0068
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0069
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0069
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0070
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0070
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0070
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0070
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0071
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0071
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0072
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0072
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0073
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0073
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0073
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0074
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0074
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0074
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0075
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0075
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0075
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0075
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0075
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0076
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0076
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0076
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0076
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0077
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0077
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0077
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0078
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0078
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0079
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0079
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0079
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0079
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0080
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0080
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0080
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0080
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0081
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0081
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0081
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0081
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0082
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0082
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0082
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0082
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0083
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0083
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0083
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0083
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0084
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0084
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0084
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0084
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0084
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0085
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0085
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0085
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0085
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0085
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0086
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0086
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0086
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0086
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0087
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0088
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0088
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0088
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0088
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0089
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0089
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0089
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0089
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0090
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0090
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0090
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0090
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0091
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0091
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0091
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0092
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0092
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0093
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0094
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0094
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0094
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0095
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0095
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0096
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0096
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0097
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0097
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0097
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0098
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0098
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0098
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0099
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0099
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0099
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0100
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0100
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0100
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0101
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0101
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0102
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0102
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0102
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0103
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0103
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0104
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0104
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0105
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0105
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0105
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0106
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0106
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0106
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0107
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0107
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0108
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0108
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0109
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0109
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0110
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0110
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0110
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0111
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0111
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0112
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0112
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0112

S. Mirjalili et al./Advances in Engineering Software 114 (2017) 163-191 191

[117] Mahdavi M, Fesanghary M, Damangir E. An improved harmony search
algorithm for solving optimization problems. Appl Math Comput
2007;188:1567-79.

[118] Li L, Huang Z, Liu F, Wu Q. A heuristic particle swarm optimizer for optimiza-
tion of pin connected structures. Comput Struct 2007;85:340-9.

[119] Drela M. XFOIL: An analysis and design system for low Reynolds number air-
foils. In: Low Reynolds number aerodynamics. Springer; 1989. p. 1-12.

[120] Sederberg TW, Parry SR. Free-form deformation of solid geometric models.
In: ACM SIGGRAPH computer graphics; 1986. p. 151-60.

[121] B.M. Pinkebtom, "The characteristics of; f 8; related airfoil sections from tests
in the variable-density wind tunnel,” 1933.

[122] Mirjalili S, Lewis A, Mirjalili SAM. Multi-objective optimisation of marine pro-
pellers. Procedia Comput Sci 2015;51:2247-56.

[123] Carlton J. Marine propellers and propulsion. Butterworth-Heinemann; 2012.

[124] Zeng Z-b, Kuiper G. Blade section design of marine propellers with maximum
cavitation inception speed.] Hydrodyn Ser. B 2012;24:65-75.

[125] Epps B, Chalfant], Kimball R, Techet A, Flood K, Chryssostomidis C. Open-
Prop: an open-source parametric design and analysis tool for propellers. In:
Proceedings of the 2009 Grand Challenges in Modeling & Simulation Confer-
ence; 2009. p. 104-11.

http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0113
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0113
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0113
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0113
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0114
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0114
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0114
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0114
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0114
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0115
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0115
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0116
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0116
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0116
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0117
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0117
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0117
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0117
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0118
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0118
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0119
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0119
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0119
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120
http://refhub.elsevier.com/S0965-9978(16)30773-6/sbref0120

	Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
	1 Introduction
	2 Related works
	2.1 Single-objective optimization problems
	2.2 Multi-objective optimization problems
	2.3 Single-objective optimization algorithms
	2.4 Multi-objective optimization algorithms
	2.5 Contributions of the work

	3 Inspiration, mathematical model, and Salp Swarm Algorithm
	3.1 Inspiration
	3.2 Proposed mathematical model for moving salp chains
	3.2 Swarm simulation
	3.3 Single-objective Salp Swarm Algorithm (SSA)
	3.4 Multi-objective Salp Swarm Algorithm (MSSA)

	4 Results
	4.1 Qualitative results of SSA and discussion
	4.2 Quantitative results of SSA and discussion
	4.3 Comparison of SSA with Harmony Search (HS) on CEC-BBOB-2015 test functions
	4.4 Scalability analysis
	4.5 Results of MSSA and discussion
	4.5.1 ZDT test problems
	4.5.2 CEC2009 test functions

	5 Real-world applications
	5.1 Three-bar truss design problem
	5.2 Welded beam design problem
	5.3 I-beam design problem
	5.4 Cantilever beam design problem
	5.5 Tension/compression spring design
	5.6 Two-dimensional airfoil design using SSA
	5.7 Marine propeller design using MSSA

	6 Conclusion
	 Appendix A. Single-objective test problems utilised in this work
	 Appendix B. Multi-objective test problems utilised in this work
	 References

