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Abstract
This paper proposes a novel swarm intelligence-based metaheuristic called as sea-horse optimizer (SHO), which is inspired by the
movement, predation and breeding behaviors of sea horses in nature. In the first two stages, SHOmimics different movements patterns
and the probabilistic predation mechanism of sea horses, respectively. In detail, the movement modes of a sea horse are divided into
floating spirally affected by the action of marine vortices or drifting along the current waves. For the predation strategy, it simulates the
success or failure of the sea horse for capturing preys with a certain probability. Furthermore, due to the unique characteristic of the
male pregnancy, in the third stage, the proposed algorithm is designed to breed offspring while maintaining the positive information of
themale parent, which is conducive to increase the population diversity. These three intelligent behaviors aremathematically expressed
and constructed to balance the local exploitation and global exploration of SHO. The performance of SHO is evaluated on 23 well-
known functions and CEC2014 benchmark functions compared with six state-of-the-art metaheuristic algorithms. Finally, five real-
world engineering problems are utilized to test the effectiveness of SHO. The experimental results demonstrate that SHO is a high-
performance optimizer and positive adaptability to deal with constraint problems. SHO source code is available from: https://www.
mathworks.com/matlabcentral/fileexchange/115945-sea-horse-optimizer
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1 Introduction

An optimization problem refers to seek the best solution and
achieve the optimal value of its objective function under a
series of constraints. Before the era of heuristic optimization,
the canonical optimization algorithms, such as the gradient
descent method and the Newton-like method, were the most
common methods for solving some mathematical and applied
problems. However, these methods tend to trap into local op-
timum when handling the large-scale, high-dimensional and
nonlinear complex problems, or even have difficult to solve
them under more complex multi-coupling constraints [1].
Fortunately, a variety of metaheuristic algorithms (MAs) have
been created to tackle these challenging issues. In general,

MAs are a community of nature-inspired methods with certain
stochastic operators [2]. Obviously, randomness is the essen-
tial characteristic of MAs [3], which means that the obtained
solutions in each iteration are different with probabilities and
may be scattered anywhere in the search space. Compared
with the traditional optimization techniques, it is not
completely guarantee that every iterative feasible solution be-
comes better, but has a greater capacity to escape local extre-
mum, which is beneficial to explore and obtain the global
optimal solution by multi-agent parallel iterations. Besides,
MAs do not depend on the gradient information of functions
and no strict requirements for their differentiability and con-
vexity. Moreover, MAs are also not sensitive to initial posi-
tions of individuals. As a result, benefit from simple heuristic
mechanisms and implementation procedures, MAs have be-
come a class of effective substitutions for the canonical opti-
mization methods to solve large-scale, high-dimensional, and
multi-objective complex problems. In recent years, MAs have
been successfully applied in feature selection [4], berth allo-
cation [5], multi-objective optimization [6], and many other
fields.

As shown in the first part of Fig. 1, the traditional
metaheuristics use only one search agent for searching in each
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iteration. For example, Simulated Annealing (SA) [7] is in-
spired by the solid annealing principle. Based on the greedy
strategy, it adds stochastic factors to get a new better solution
than the current one with iterations. Tabu Search (TS) [8] uses
the short-term memory to record and select the optimization
process to guide the next search direction. However, these
methods are accessible to get local optimums rather than the
global optimum, because only single point is employed for
searching and mining solutions.

Different from the first-part heuristic methods, most of cur-
rent metaheuristics are employing multi- agents in the popu-
lation to perform parallel iterative searching. Considering the
difference of heuristic mechanisms, they can be roughly di-
vided into other four categories, as shown in Fig. 1. The first
category belongs to evolutionary algorithms (EAs), which is
inspired by evolutionary behaviors in nature [9], such as ge-
netic or mutation. EAs simulate the collective learning in a
group with multiple individuals, and each represents a feasible
solution in the search space. In order to improve fitness values
and develop towards the global optimum, EAs are initiated by
randomly generating a population and further iteratively
evolved by certain evolutionary operators including selection,
mutation, or recombination. In each iteration, due to the ran-
domness of evolutionary operators [10], this kind of
metaheuristics have the strong local extremum avoidance abil-
ity in most cases. And the more popular are Genetic
Algorithm (GA) [11] imitating Darwin’s natural selection the-
ory and the principles of genetics. In addition, EAs also con-
sist of Differential Evolution (DE) [12], Genetic Programming
(GP) [13], and Evolutionary Strategies (ES) [14]. For the sec-
ond category, the swarm-based intelligence algorithms (SIs)
[15] are inspired by intelligent behaviors of biological com-
munities in nature. SIs mainly simulate social behaviors and
information exchanges from plants, animals or other living
creatures. The outstanding feature of SIs utilizes the swarm
intelligence to search cooperatively, which results in finding
the optimal solution in the search space. Frequently, the hunt-
ing, predation and reproduction are common and familiar so-
cial behaviors in animals. Based on these behaviors, many
metaheuristics have been proposed continuously, including
Particle Swarm Optimization (PSO) [16] Grey Wolf

Optimizer (GWO) [17], Ant Lion Optimizer (ALO) [18],
Dragonfly Algorithm (DA) [19], Crow Search Algorithm
(CSA) [20], Squirrel Search Algorithm (SSA) [21], Seagull
Optimization Algorithm (SOA) [22], Harris Hawks
Optimization (HHO) [23], Chimp Optimization Algorithm
(ChOA) [24], Tunicate Swarm Algorithm (TSA) [25],
Marine Predators Algorithm (MPA) [26], Slime Mould
Algorithm (SMA) [27] and Golden Eagle Optimizer (GEO)
[28]. Moreover, some plant-inspired SIs in this category are
also presented, such as Flower Pollination Algorithm (FPA)
[29] from the pollination mechanism of flowering plants, and
Sun Flower Optimization (SFO) [30] motivated by the light
orientation rule of plants. Besides, certain Human-based SIs
have been raised in recent years, for instance, Behavior-based
Optimization Algorithm (HBBO) [31], Forensic-based
Investigation algorithm (FBI) [32], Political Optimizer (PO)
[33], Group Teaching Optimization Algorithm (GTOA) [34].
The third category is Physics-based metaheuristics, which
contains Multi-verse Optimizer (MVO) [35], Artificial
Electric Field Algorithm (AEFA) [36], Henry Gas Solubility
Optimization (HGSO) [37], Archimedes Optimization
Algorithm (AOA) [38] and Equilibrium Optimizer (EO) [39].

In addition, many researchers have recently proposedMAs
based on certain mathematical rules, that is, they take the
mathematical rules or formulas as heuristics. MAs are easier
to make a more logical explanation for their optimization pro-
cess and have strong adaptation to address some complex
optimizing problems. And more and more MAs based on
certain specific mathematical laws are proposed, such as
Sine Cosine Algorithm (SCA) [40] drawing lessons from the
sine and cosine formulas, self-organizing map (EA-SOM)
[41], Gradient-based Optimizer (GBO) [42] and RUNge
Kutta optimizer (RUN) [43].

Although existing metaheuristic algorithms can be utilized
for solving many challenging problems, their flexibility does
not mean that they are cost-free. Wolpert and Macready [44]
introduced the No Free Lunch (NFL) theorem, whose conclu-
sion is that the performance of optimization algorithms is
equivalent for the mutual compensation of all possible func-
tions. In other words, the superiority of an optimization algo-
rithm on a particular set of problems does not necessarily

Meta-heuristic algorithms

Swarm-based algorithms Mathematics-based algorithmsPhysics-based algorithmsEvolutionary algorithms
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Fig. 1 Classification of metaheuristic algorithms
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ensure the same properties on other problems. This is the basis
for the development of optimization theory. Up to now, how
to strike a proper balance between exploration and exploita-
tion for MAs is still a vital problem to be solved. Hence, in this
paper, a new swarm-based intelligence optimization algorithm
is proposed: Sea-horse Optimizer (SHO). SHO mimics the
moving, predating and breeding behaviors of sea horses in
nature. The main contributions of this paper can be shown
as bellows:

& Different movement modes, the probabilistic predation
mechanism and the unique breeding characteristic of sea
horses are constructed and expressed mathematically in
detail.

& The effectiveness of the proposed algorithm is evaluated
on 23 well-known functions and CEC2014 benchmark
functions.

& Statistical analysis, convergence analysis, Wilcoxon test,
and Friedman test are used to evaluate optimization per-
formance of SHO, and the experimental results are com-
pared with six state-of-the-art metaheuristic algorithms.

& The constraint programming of SHO is studied for dealing
with six common engineering design problems.

The remainder of this paper organizes as follows. Section 2
introduces the motivation and mathematical modeling of the
proposed algorithm in detail. Section 3 analyzes the experi-
mental results of SHO compared with six metaheuristics on 53
benchmark functions. In Section 4, SHO is applied in engi-
neering design problems. Finally, Section 5 concludes our
works and prospects for future studies.

2 Sea-horse optimizer (SHO)

This section presents a detailed introduction of the SHO algo-
rithm. Firstly, this paper provides the life of sea horses and
specifies the motivation of the proposed SHO algorithm.
Then, the mathematical modellings are constructed. Finally,
the complexity of the algorithm is analyzed and discussed.

2.1 Sea horse

The sea horse (Fig. 2), scientifically known as hippocampus,
is a general term for several kinds of small fish in warm
waters. Sea horses are widely distributed in the tropical,
subtropical, and temperate shallow waters [45]. There are
about 80 species of sea horses, including some unnamed
species [46].

Sea horse gets its name because its head resembles a hors-
e’s head. The length of a sea horse varies from 2 cm to 30 cm.
For example, the adult size of pygmy sea horse is only about
2 cm, while the adult hippocampus abdominalis can be up to

30 cm in length [47]. The snout of a sea horse likes a tubular.
Its length affects the rotation of the head and is deemed to be
closely related to feeding [48]. Roos et al. [49] investigated
that the sea horse has relatively strong predation ability in the
larval stage. Sea horses mainly prey on zooplankton and small
crustaceans, such as small bran shrimp [50]. When feeding,
the tubular kiss extends to the food, puffing out the cheeks and
opening the mouth to suck the food. The head of a sea horse
generally protrudes from the top, forming a crown. The gills
department is uplifted, and the opercular usually has a radial
crest. There is only one dorsal fin between trunk and tail for
propulsion, and no ventral or caudal fins. Its entire body is
completely surrounded bymembranous bone plates. Sea hors-
es generally live in clean, low-tide waters that are rich in algal
and coral. To rest and escape prey, sea horses change their
color with matching that of surroundings.

The tail of a sea horse has a structure and function that no
other fish has. Studies [51] have shown that this tail’ cross-
sectional area is square, with each layer of bones consisted
of four tightly wound L-shaped bones, which is to protect
the middle spines and improve the grasping capacity of the
tail for wrapping around the attached objects to rest or carry
the body weight upside down. Besides, the sea horse has a
special swimming posture. After releasing the algae at-
tached to its tail, a sea horse stands with its head upright
in the water and relies entirely on its dorsal and pectoral fins
for movement.

Sea horses are the one and only animal on earth that males
give birth to offspring, as shown in Fig. 2b. The male sea
horse has a brood pouch in front or on the side of its abdomen.
During mating, the female sea horse releases ova into the
brood pouch, and the male is responsible for fertilizing those
ova. Meanwhile, the male sea horses keep the fertilized ova in
the brood pouch until they are fully formed and then release
them into the seawater.

2.2 Inspiration

Predation, movement and breeding behaviors are particularly
critical for the life of the sea horse, which are described below.

& In terms of movement behavior, the sea horse sometimes
curls the tail around a stem (or leaf) of algae. Since the
stems present spiral floating changes around the roots of
algae under the action of marine vortices, the sea horse
carries out spiral movement at this time. At other times,
Brownian motion occurs when the sea horse hangs upside
down from drifting algae or other objects and moves ran-
domly with the waves.

& For predation behavior, sea horses make use of the head’s
particular shape to sneak up on the prey, and then capture
it with up to a 90% chance of success.
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& For breeding behavior, the male and female sea horses
randomly mate to produce new offspring, which contrib-
utes to inheriting certain excellent information from their
fathers and mothers.

In summary, these three behaviors enable sea horses to
adapt to environment and survive better. The proposed SHO
algorithm is mainly inspired by the above-mentioned three
behaviors. Therefore, these behaviors are our motivation to
develop this novel optimizer through mathematical
modellings.

2.3 Sea-horse optimizer

The proposed SHO algorithm consists of three crucial com-
ponents, i.e., movement, predation and breeding. To balance
the exploration and exploitation of SHO, the local and global
search strategies are designed for the social behaviors of
movement and predation, respectively. And the breeding be-
havior is performed with the completion of the first two be-
haviors. Their mathematical modellings would be expressed
and discussed as follows in detail.

2.3.1 Initialization

Similar to other existing metaheuristics, SHO also starts from
the population initialization. Suppose each sea horse repre-
sents a candidate solution in the search space of problems,
the whole population of sea horses (termed by Seahorses )
can be expressed as:

Seahorses ¼
x11 ⋯ xDim1
⋮ ⋱ ⋮
x1pop ⋯ xDimpop

2
4

3
5 ð1Þ

where Dim denotes the dimension of the variable and pop is
the population size.

Each solution is randomly generated between the lower
bound and upper bound of a specify problem, denoted by
LB and UB, respectively. The expression of the ith individual
Xi in search space [LB, UB] is

X i ¼ x1i ;…; xDimi

� �
x ji ¼ rand � UBj−LBj� �þ LBj ð2Þ

where rand denotes the random value in [0, 1]. x ji denotes the
jth dimension in the ith individual. i is a positive integer rang-
ing from 1 to pop and j is a positive integer in the range [1,
Dim]. LBj and UBj imply the lower bound and the upper
bound of the jth variable of the optimized problem.

Taking the minimum optimization problem as an exam-
ple, the individual with the minimum fitness is regarded as
the elite individual, denoted by Xelite. Xelite can be obtained
by Eq. (3).

X elite ¼ argmin f X ið Þð Þ ð3Þ

where f(⋅) represents the objective function value of a given
problem.

2.3.2 The movement behavior of sea horses

For the first behavior, the different movement patterns of
sea horses approximately follow the normal distribution
randn(0, 1). In order to trade off the exploration and ex-
ploitation performance, we take r1 = 0 as the cut-off point,
half for the local mining and the other half for the global
search. So movements can be divided into the following
two cases.

Case 1 The spiral motion of the sea horse with the vortex in the
sea. It mainly realizes the local exploitation of SHO, when the
normal random value r1 is located at the right side of the cut-

Fig. 2 The behaviors of the sea horse
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off point. Sea horses are moving towards the elite Xelite by
following the spiral motion. Especially, the Lévy flight
[52] is employed to simulate the movement step size of
sea horses, which is conducive to the sea horse with the
high probability crossing to other positions in early itera-
tions and avoiding the excessive local exploitation of
SHO. At the same time, this spiral moving mode of the
sea horse changes constantly the rotation angle for
expanding the neighborhoods of current local solutions.
In this case, it can be expressed mathematically to generate
the new position of a sea horse as follows:

X 1
new t þ 1ð Þ ¼ X i tð Þ þ Levy λð Þ X elite tð Þ−X i tð Þð Þ � x� y� zþ X elite tð Þð Þ

ð4Þ

where x = ρ × cos (θ), y = ρ × sin (θ) and z = ρ × θ
denote three-dimensional components of coordinates (x,
y, z) under the spiral movement, respectively, which are
helpful to update the positions of search agents. ρ = u ×
eθv represents the length of the stems defined by the loga-
rithmic spiral constants u and v (Set to u = 0.05 and v =
0.05). θ is the random value between [0, 2π]. Levy(z) is the
Lévy flight distribution function and is calculated by Eq.
(5) [52].

Levy zð Þ ¼ s� w� σ

kj j1λ
ð5Þ

In Eq. (5), λ is the random number between [0, 2]
(Set to λ = 1.5 in this paper). s is a fixed constant of
0.01. w and k are random numbers between [0, 1]. σ is
calculated by using Eq. (6).

σ ¼
Γ 1þ λð Þ � sin

πλ
2

� �

Γ
1þ λ
2

� �
� λ� 2

λ−1
2ð Þ

0
BB@

1
CCA ð6Þ

Case 2 The Brownian motion of the sea horse with the sea
waves. Under the action of drifting, the exploration of
SHO is carried out, when r1 is located at the left side of
the cut-off point. In this case, the search operation is
important for the local extremum avoidance of SHO.
Brownian motion is applied to mimic another moving
length of the sea horse for ensuring its better exploration
in the search space. Its mathematical expression for this
case is

X 1
new t þ 1ð Þ ¼ X i tð Þ þ rand*l*βt* X i tð Þ−βt*X eliteð Þ ð7Þ

where l is the constant coefficient (Set to l = 0.05 in this
paper). βt is the random walk coefficient of Brownian
motion, which is a random value obeying the standard
normal distribution in essence. And it can be given by
using Eq. (8) [53].

βt ¼
1ffiffiffiffiffiffi
2π

p exp −
x2

2

� �
ð8Þ

Totally, these two cases can be formulated to obtain the
new position of the sea horse at iteration t as follows.

X 1
new t þ 1ð Þ ¼
X i tð Þ þ Levy λð Þ X elite tð Þ−X i tð Þð Þ � x� y� zþ X elite tð Þð Þ r1 > 0
X i tð Þ þ rand*l*βt* X i tð Þ−βt*X eliteð Þ r1≤0

	

ð9Þ
where r1 = randn() is a normal random number.

Figure 3 illustrates the position updating diagram of the sea
horse by following two kinds of different movement modes,
i.e., the spiral or Brownian motion, and both are reflected the
moving randomness of the sea horse based on the uncertain
environment in the sea.

2.3.3 The predation behavior of sea horses

There are two outcomes for the sea horse to prey on zooplank-
ton and small crustaceans: success and failure. Considering
that the probability of the sea horse succeed in capturing food
is over 90%, the random number r2 of SHO is designed to
distinguish these two results and set to a critical value with 0.1.
Since the elite, to a certain, indicates the approximate position
of the prey, the predation success emphasizes the exploitation
ability of SHO. If r2 > 0.1, it means that the predation of the
sea horse is successful, that is, the sea horse sneaks up on the
prey (elite), moves faster than the prey and finally captures it.
Otherwise, when the predation fails, the response speed of
both is opposite to that before, which implies the sea horse
trends to explore the search space. The mathematical expres-
sion of this predation behavior is:

X 2
new t þ 1ð Þ ¼
α* X elite−rand*X 1

new tð Þ� �þ 1−αð Þ*X elite if r2 > 0:1
1−αð Þ* X 1

new tð Þ−rand*X elite
� �þ α*X 1

new tð Þ if r2≤0:1

	
ð10Þ

where X 1
new tð Þ denotes the new position of the sea horse after

movement at the iteration t. r2 is the random number between
[0, 1]. α decreases linearly with iterations to adjust the mov-
ing step size of the sea horse for hunting prey, and calculates
by Eq. (11).

α ¼ 1−
t
T


 �2t
T ð11Þ
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where T denotes the maximum number of iterations.
Figure 4 displays the two possible outcomes of the preda-

tion behavior of the sea horse. As shown in Fig. 4, the blue star
position indicates the updated position of the sea horse, and
the approximate position of the prey is marked with the red
dot. It can be seen from Fig. 4a that when the sea horse preys
successfully, the sea horse moves to the elite position. Under
the control of parameter α, it will gradually converge to the
global optimal individual with the iterations increasing. In
Fig. 4b, the global search is performed because the prey can-
not be captured. The parameter 1 − α is applied to the vector
between the current individual and the elite, and α is acted on
the current updated individual. This is designed to allow sea
horses to globally search in the early iterations and avoid over-
exploiting in the later iterations.

2.3.4 The breeding behavior of sea horses

The population is categorized into male and female groups
according to their fitness values. It is worthwhile emphasizing
that, since male sea horses are responsible for breeding, the
SHO algorithm takes half of the individuals with best fitness

values as fathers and the other half as mothers. This division
will facilitate the inheritance of good characteristics between
fathers and mothers for producing the next generation, and
avoid the over-localization of new solutions. The concise
mathematical expression for the role assignment of sea
horses is

fathers ¼ X 2
sort 1 : pop=2ð Þ

mothers ¼ X 2
sort pop=2þ 1 : popð Þ ð12Þ

where X 2
sort denotes all X 2

new in ascending order of fit-
ness values. fathers and mothers indicate from the male
and female populations, respectively.

Males and females are randomly mated to produce new
offspring. To make the proposed SHO algorithm execute eas-
ily, it is assumed that each pair of sea horses only breeds a
child. The expression of the ith offspring is as follows.

X offspring
i ¼ r3X

father
i þ 1−r3ð ÞXmother

i ð13Þ

where r3 is the random number between [0, 1]. i is a positive

integer in the range of [1, pop/2]. X father
i and Xmother

i represent

Fig. 3 Different motion patterns of the sea horse in sea

Fig. 4 Predation process of the sea horse
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randomly selected individuals from the male and female pop-
ulations, respectively.

The breeding process of sea horses is shown in Fig. 5. As
seen from Fig. 5a, each individual is sorted in ascend-
ing order according to their fitness values. Figure 5b
shows approximatively the position of a new generated
offspring. It is randomly created in the line between
parents, which effectively transmits genetic information
between two subpopulations.

2.3.5 The implementation process of SHO

The pseudo-code of the proposed SHO algorithm is
shown in Algorithm 1. The implementation process of
SHO starts the population initialization by creating a set
of random solutions. After the sea horse population is
updated by Eqs. (9) and Eq. (10), Eq. (11) is employed
to breed the offspring. A new population is composed of
the offspring and the previous updated sea horses.
However, the size of this new population is 1.5Pop. To
prevent the population from expanding without limit, each
individual in the new population is estimated. Individuals
are sorted in ascending order from top to bottom accord-
ing to fitness values, and the first pop sea horses are
iteratively selected as the new population for the next
evolutionary process.

2.4 Computational complexity

The complexity is an important indicator to theoretically mea-
sure the optimization performance of algorithms. The time
and space complexity of the proposed algorithm are discussed
below.

The time complexity analysis is as follows.

(i) It takes O(n × Dim) time to initialize the population of
sea horses, where n denotes the population size and Dim
represents the dimension of variables. O(n) is required to
calculate the fitness value of each sea horse.

(ii) During iterations, calculating the fitness value of each
sea horse is O(Maxiteration × n) time, where
Maxiteration is the maximum number of iterations.

(iii) In SHO, defined the movement behavior, predation be-
havior and breeding behavior of sea horses need
O(Maxiteration × n × Dim) time.

Hence, the total computational time complexity of the pro-
posed SHO algorithm is O(Maxiteration × n × Dim).

For the space complexity, the maximum space is con-
sidered to be occupied during the generation of the off-
spring in the iterations. Therefore, the space complexity
of SHO is O(n × Dim).

3 Experimental results and discussion

This section is the simulation experiment of SHO. To validate
SHO’s performance of local exploitation, local extremum
avoidance and global exploration, the statistical analysis and
convergence analysis were performed on 23 well-known
functions and CEC2014 benchmark functions. Then, the high
dimensional optimization performance of SHO was also ver-
ified. Finally, statistical tests were carried out on these test
functions. Six state-of-the-art metaheuristics, namely GA
[11], DA [19], SCA [40], ChOA [24], TSA [25] and SFO
[30], were compared with our proposed SHO algorithm.

Fig. 5 Breeding process of sea horses
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Table 1 shows the parameter settings of all metaheuristics. All
experiments have been accomplished on MatlabR2018a ver-
sion with the operating system of Windows 10(64-bit) and
Intel(R) Core(TM) I7-9750H CPU (@ 2.60 GHz).

3.1 Benchmark functions

23 well-known functions can be grouped into three categories,
namely unimodal, multimodal and fixed-dimension multi-
modal functions. In detail, the unimodal functions F1 − F7
(in Table 2) have one and only one global optimal value,
which are used to estimate the convergence accuracy and con-
vergence speed. Multimodal functionsF8 − F13 (in Table 3)
with multiple local optimums are appropriate for testing the
local extreme avoidance and the global exploration perfor-
mance. The global exploration ability in low-dimensional
conditions can be tested by fixed-dimension multimodal func-
tions F14 − F23 (in Table 4). Moreover, the proposed SHO
algorithm is further evaluated in the modern universal test
suite CEC2014 benchmark functions, as reported in Table 5.

CEC2014 suite is the general test standard of modern algo-
rithms, which has strong test suitability for all kinds of
metaheuristic algorithms. Because of the dynamic and com-
plexity of these benchmark functions, they are more convinc-
ing to validate the optimization performance of the proposed
SHO. In order to keep the competition fairness and objectivity
of each metaheuristic, all algorithms have been independently
run for 30 times in each experiment. Mean (Mean) and
Standard deviation (Std) results of 30 experiments were em-
ployed as statistical indicators to measure their optimization
performance.

3.2 Qualitative analysis

This experiment was performed on the first two dimensions of
variables in 23 well-known functions, mainly aiming to ob-
serve the behavioral optimization ability of SHO. The popu-
lation size and the maximum number of iterations were set to
30 and 500, respectively. Figure 6 depicts the qualitative mea-
surements of SHO for tackling partial unimodal and multi-
modal functions. The first column describes the topological
structures of test functions in a two-dimensional view of the
first two variables. The last 4 columns are the test indictors,
respectively the search history, the trajectory of 1st sea horse

Table 1 Parameter settings of all algorithms

Algorithm Parameters Value

All
algorithms

Population size 30

Dim 30

SHO r1 0

probability of successr2 0.1

GA Crossover 0.8

Mutation 0.2

SCA [40] Number of elites a 2

DA [19] Base coefficient b [0.1−0]
Neighborhood radius r 0:25−2:25½ �

� ub−lb½ �
Separation coefficient s 2×b

Alignment coefficienta 2×b

Cohesion coefficientc 2×b

Food attraction coefficientf 2

Enemy distraction
coefficiente

b

ChOA [24] r1, r2 Random

m Chaotic

TSA [25] Parameters Pmax 4

Parameters Pmin 1

SFO [30] Pollination rate p 0.05

Mortality rate m 0.1

survival rate s 0.85
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in the first dimension, the average fitness of all sea horses and
convergence curve.

The search history can reflect the position distribution
of all sea horses during the iterative process, where the
red rot represents the global optimal solution obtained by
SHO. It can be evidently detected from the second col-
umn of Fig. 6 that numerous search agents cluster sur-
rounding global optimum in unimodal functions. Yet for
multimodal functions, many search agents scatter mostly
near multiple local optima in the whole search space. For
unimodal functions, it is beneficial to the local re-
exploitation of the proposed SHO algorithm to seek a
higher accuracy. In terms of multimodal functions, the
decentralized form reveals sea horses’ exploration
throughout the whole region and the tradeoff situation
among several local optimal values.

The first dimensional trajectory of 1st sea horse is de-
voted to reflect the primary exploratory behavior of the
search agent. As shown in the third column of Fig. 6, the
curve fluctuates significantly in the initial stage of itera-
tions, while the amplitude of vibration tends to be slow

felt in late iterations. The curve changes guarantee that
SHO turns from global exploration to local exploitation
iterative process by degrees. In unimodal functions, the
duration of the oscillation state is short, which indicates
that SHO converges quickly. However, the difference is
that the oscillation state in multimodal functions usually
lasts for long times, even exceeding 60%–70% of the
iterative process, which reflects the global exploration ca-
pacity of SHO.

The average fitness value represents the average target val-
ue of all sea horses in each iteration. It is mainly used to reflect
the general tendency of population evolution. In the fourth
column of Fig. 6, it can be found intuitively that the entire
population progresses from the initial stage to the last. With
the constant updating of sea horses, the average fitness values
lean to decline. For unimodal functions, the curve drops rap-
idly merely at the beginning of iteration. After the rapid de-
scent, the tangent slope of the curve fluctuation verges on
stable. This embodies that SHO converges to near the optimal
value in early iterations and then strengthens the exploitation
accuracy. In contrast, multimodal functions have steeper curve

Table 2 Unimodal functions

Function name Expression Search space Dim fmin

Sphere F1 xð Þ ¼ ∑n
i¼1x

2
i [−100,100] 30 0

Schwefel 2.22 F2 xð Þ ¼ ∑n
i¼0 xij j þ∏n

i¼0 xij j [−10,10] 30 0

Shifted Schwefel’s Problem 1.2 F3 xð Þ ¼ ∑d
i¼1 ∑i

j¼1x j

 �

2 [−100,100] 30 0

Schwefel 2.21 F4(x)=maxi{|xi|,1≤ i≤n} [−100,100] 30 0

Rosenbrock F5 xð Þ ¼ ∑n−1
i¼1 100 xiþ1−x2i

� ��
2 þ xi−1ð Þ 2� [−30,30] 30 0

Step F6 xð Þ ¼ ∑n
i¼1 xi þ 0:5½ �ð Þ2 [−100,100] 30 0

Quartic F7 xð Þ ¼ ∑n
i¼1ix

4
i þ random 0; 1½ Þ [−1.28,1.28] 30 0

Table 3 Multimodal functions

Function name Expression Search space Dim fmin

Schwefel F8 xð Þ ¼ ∑n
i¼1−xisin

ffiffiffiffiffiffi
xij jp� �

[−500,500] 30 −418.9829×D
Rastrigin F9 xð Þ ¼ ∑n

i¼1 x2i −10cos 2πxi þ 10ð Þ� �
[−5.12,5.12] 30 0

Ackley
F10 xð Þ ¼ −20exp −0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1x
2
i

r !
þ exp

1

n
∑n

i¼1cos 2πxið Þ
� �

þ20þ e

[−32,32] 30 0

Shifted Rotated Griewank’s
without Bounds

F11 xð Þ ¼ 1
4000∑

n
i¼1x

2
i −∏

n
i¼1cos

xiffi
i

p

 �

þ 1 [−600,600] 30 0

Penalized 1

F12 xð Þ ¼ π

n
f10sin πy1ð Þ þ ∑n−1

i¼1 yi−1ð Þ2 1þ 10sin2 πyiþ1

� �� �
þ yn−1ð Þ2g þ ∑n

i¼1u xi; 10; 100; 4ð Þ

yi ¼ 1þ xiþ1
4 u xi; a; k;mð Þ ¼

k xi−að Þm xi > a
0 −a < xi < a

k −xi−að Þm xi < −a

8<
:

[−50,50] 30 0

Penalized 2 F13 xð Þ ¼ 0:1fsin2 3πxið Þ þ ∑n
i¼1 xi−1ð Þ2 1þ sin2 3πxi þ 1ð Þ� �þ

xn−1ð Þ2 1þ sin2 2πxnð Þ� �g þ ∑n
i¼1u xi; 5; 100; 4ð Þ

[−50,50] 30 0
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Table 4 Fixed-dimension Multimodal functions

Function name Expression Search space Dim fmin

Foxholes
F14 xð Þ ¼ 1

500 þ ∑25
j¼1

1
jþ∑2

i¼1
xi−aij
� �
 �−1 [−65.536,

65.536]
2 1

Kowalik
F15 xð Þ ¼ ∑11

i¼1 ai−
x1 b2i þbix2ð Þ
b2i þbix3þx4

� 
2 [−5,5] 4 0.00030

6 Hump Camel Back F16 xð Þ ¼ 4x21−2:1x41 þ 1
3 x

6
1 þ x1x2−4x22 þ 4x42 [−5,5] 2 −1.0316

Branin F17 xð Þ ¼ x2− 5:1
4π2 x

2
1 þ 5

π x1−6
� �2 þ 10 1− 1

8π

� �
cosx1 þ 10 −5; 10½ �

0; 15½ �
2 0.3983

GoldStein Price F18 xð Þ ¼ 1þ x1 þ x2 þ 1ð Þ2 19−14x1 þ 3x21−14x2
� �þ 6x1x2 þ 3x22

h i
� 30þ 2x1−3x2ð Þ2 � 18−32xi þ 12x21 þ 48x2−36x1x2 þ 27x22

� �h i [−2,2] 2 3

Hartman3
F19 xð Þ ¼ −∑4

i¼1ciexp −∑3
i¼1aij x j−pij


 �2� �
[0,1] 3 −3.86

Hartman6
F20 xð Þ ¼ −∑4

i¼1ciexp −∑6
j¼1aij x j−pij


 �2� �
[0,1] 6 −3.32

Shekel5
F21 xð Þ ¼ −∑5

i¼1 X−aið Þ X−aið ÞT þ ci
h i−1 [0,10] 4 −10.1532

Shekel7
F22 xð Þ ¼ −∑7

i¼1 X−aið Þ X−aið ÞT þ ci
h i−1 [0,10] 4 −10.4028

Shekel10
F23 xð Þ ¼ −∑10

i¼1 X−aið Þ X−aið ÞT þ ci
h i−1 [0,10] 4 −10.5363

Table 5 Summaries of CEC-2014 benchmark functions [54]

No. Function Range Optimal value

Unimodal Functions CEC−1 Rotated High Conditioned Elliptic Function [−100,100] 100
CEC−2 Rotated Bent Cigar Function [−100,100] 200
CEC−3 Rotated Discus Function [−100,100] 300

Simple multimodal
Functions

CEC−4 Shifted and Rotated Rosenbrock’s Function [−100,100] 400

CEC−5 Shifted and Rotated Ackley’s Function [−100,100] 500
CEC−6 Shifted and Rotated Weierstrass Function [−100,100] 600
CEC−7 Shifted and Rotated Griewank’s Function [−100,100] 700
CEC−8 Shifted Rastrigin’s Function [−100,100] 800
CEC−9 Shifted and Rotated Rastrigin’s Function [−100,100] 900
CEC−10 Shifted Schwefel’s Function [−100,100] 1000
CEC−11 Shifted and Rotated Schwefel’s Function [−100,100] 1100
CEC−12 Shifted and Rotated Katsuura Function [−100,100] 1200
CEC−13 Shifted and Rotated HappyCat Function [−100,100] 1300
CEC−14 Shifted and Rotated HGBat Function [−100,100] 1400
CEC−15 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function [−100,100] 1500
CEC−16 Shifted and Rotated Expanded Scaffer’s F6 Function [−100,100] 1600

Hybrid Functions CEC−17 Hybrid Function 1 (N=3) [−100,100] 1700
CEC−18 Hybrid Function 2 (N=3) [−100,100] 1800
CEC−19 Hybrid Function 3 (N=4) [−100,100] 1900
CEC−20 Hybrid Function 4 (N=4) [−100,100] 2000
CEC−21 Hybrid Function 5 (N=5) [−100,100] 2100

Hybrid Functions CEC−22 Hybrid Function 6 (N=5) [−100,100] 2200
Composition Functions CEC−23 Composition Function 1 (N=5) [−100,100] 2300

CEC−24 Composition Function 2 (N=3) [−100,100] 2400
CEC−25 Composition Function 3 (N=3) [−100,100] 2500

Composition Functions CEC−26 Composition Function 4 (N=5) [−100,100] 2600
CEC−27 Composition Function 5 (N=5) [−100,100] 2700
CEC−28 Composition Function 6 (N=5) [−100,100] 2800
CEC−29 Composition Function 7 (N=3) [−100,100] 2900
CEC−30 Composition Function 8 (N=3) [−100,100] 3000
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rates. The amplitude of the curve decreases with the increase
of the number of iterations, which implies the global explora-
tion in the early stage and local exploitation in the later stage
of SHO.

The convergence curve represents the behavior of the
optimal solution obtained by the sea horse so far. In
unimodal functions, the curves drop rapidly after refining
solutions. The curves of most multimodal functions de-
scend step by step. This is due to jumping out close a local

optimal solution and gradually searching to the global op-
timal solution. Meanwhile, the switching time between
global exploration and local exploitation can also be seen
from curves.

3.3 Exploitation analysis

Table 6 shows the statistical results of SHO and other methods
evolving 15,000 (30 × 500) times on unimodal functions.

Fig. 6 Quantitative analysis
results included topological
structure, search history, the
trajectory of 1st sea horse,
average fitness of all sea horses
and convergence curve
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According to Table 6 analysis, SHO achieves best results in
12/14 indicators. For Mean indexes, SHO can outperform
other algorithms on seven unimodal functions. The average
optimization performance of GA, DA and SFO perform poor-
ly on functions F1, F2, F3, F5, and F6. For functions F1, F2,
and F3, SHO has a greater competitive advantage in optimi-
zation accuracy than TSA, which ranked 2. For Std indexes,
SHO is optimal on other functions except functions F5 and
F6. Std indicators for functions F5 and F6, in spite of ChOA is
the best followed by SHO, the accuracy is the same order of
magnitude as ChOA and the difference is not remarkable.
Unimodal test results demonstrate that SHO has the advan-
tages of higher local exploitation capacity, high convergence
accuracy, and strong algorithm stability and robustness.
Meanwhile, these testing results indicate that the long step
search of the spiral motion influenced by vortex and the search
to the elite in the predation stage can ensure the exploitation of
the searching agents for the global optimal.

3.4 Exploration analysis

Table 7 provides the statistical results of 15,000 (30 × 500)
evolutions of each algorithm on multimodal functions.
Multimodal functions have several local optimal values,
which are applied to test the global optimization ability of
the algorithm. Table 7 reveals that SHO performs best in 5/6
of multimodal functions for Mean indicators. For functions F9
and F10, SHO can obtain the global optimal value, while
other algorithms can only search for lower precision (i.e.,
GA and DA). Likewise, SHO has more outstanding explora-
tion capacity than other algorithms on functions F10, F12and
F13. It shows that Brownian motion under the action of
drifting plays an important role in these functions. To some

extent, SHO can jump out of local extreme values and develop
to the global optimal. For function F8, GA ranked first in
average optimization performance, and TSA ranked second.
For functions F9, F10, F11, and F12, the standard deviation
results of SHO are better than other algorithms, especially the
standard deviation results of SHO on functions F9 and F11
can reach 0. In addition, the Std results of ChOA are optimal
on functions F8 and F13.

Table 8 shows the statistical results of all algorithm evolu-
tions for 15,000 (30 × 500) times on fixed-dimension multi-
modal functions. It can be seen from Table 8 that SHO has
superior Mean indicators on functions F15, F16, F17, and
F18. For function F14, ChOA has the best Mean and Std
indicators and DA achieves suboptimal optimization results.
SHO obtains the best average fitness and minimal Std indica-
tor on function F15. Although SCA, DA, SFO, CHOA and
SHO can find global optimal value on function F16, SHO has
better standard deviation result, which proves that SHO is still
competitive. For functions F17 and F18, DA, SFO and SHO
can obtain the global optimal value, as well as the correspond-
ing Std indicators are SFO and SHO minimum respectively.
However, SHO’s optimization performance on functions F19
to F23 are relatively general, but SHO is still better than some
comparison algorithms such as GA, SCA and CHOA. For
function F19, DA’s Mean and Std results are the best and
SFO gets the second-best results. TSA has the best Mean
indicator on function F20. DA is superior to other algorithms
on function F21. For functions F22 and F23, DA and SFO
respectively achieve best Mean indicators.

The results of multimodal functions show that SHO has
good global optimization performance and can effectively
avoid local extremums. Competing with the new or state-of-
the-art metaheuristic methods, SHO still has high convergence

Table 6 Statistical results of unimodal functions

Function GA SCA DA SFO TSA ChOA SHO

F1 Mean 1.4051E+04 1.7454E+01 2.1819E+03 1.3695E+04 2.8824E-21 3.6878E-06 3.8629E-141

Std 4.4683E+03 2.3343E+01 1.3071E+03 2.0724E+03 5.6785E-21 7.0567E-06 8.5767E-141

F2 Mean 4.3992E+06 2.0590E-02 1.6054E+01 2.4321E+06 1.2417E-13 3.8850E-05 6.6299E−78
Std 1.0818E+07 2.7428E-02 7.4873E+00 6.3112E+06 2.0463E-13 4.7678E-05 1.6358E-77

F3 Mean 5.0546E+04 8.7862E+03 1.6027E+04 4.7264E+04 4.2578E-04 7.9198E+01 1.0468E-98

Std 1.0318E+04 5.9603E+03 9.3888E+03 1.3149E+04 1.0864E-03 1.3989E+02 4.2769E-98

F4 Mean 7.0622E+01 3.5448E+01 3.1810E+01 4.5216E+01 3.3187E-01 2.7983E-01 6.8173E-57

Std 4.6237E+00 1.1058E+01 8.1300E+00 3.7794E+00 3.1679E-01 3.1541E-01 1.0938E-56

F5 Mean 1.8670E+07 2.5994E+04 3.6017E+05 1.0083E+06 2.8276E+01 2.8831E+01 2.8130E+01

Std 8.4628E+06 6.2080E+04 3.9105E+05 3.9273E+05 8.5711E-01 2.1915E-01 5.6369E-01

F6 Mean 1.3204E+04 2.0646E+01 2.1348E+03 1.3457E+04 3.7791E+00 3.5997E+00 3.3426E+00

Std 4.8985E+03 2.4649E+01 1.0585E+03 2.1479E+03 6.4087E-01 4.1750E-01 5.0046E-01

F7 Mean 1.0698E+01 1.1626E-01 6.2861E-01 5.4947E-01 1.0674E-02 2.1953E-03 1.1173E-04

Std 5.0069E+00 1.0444E-01 5.5224E-01 2.6805E-01 4.8621E-03 2.0499E-03 8.7439E-05

Bold entries highlight the best results of the algorithm on the function
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accuracy and strong robustness. The results reflect the global
exploration by Brownian motion and the population diversity
of generated offspring.

3.5 Convergence analysis

Convergence analysis can clearly comprehend local exploitation
and global exploration process of the algorithm. Figure 7 shows
the convergence curves of GA, DA, SCA, SFO, TSA, ChOA

and SHO for partial test functions. As can be seen from the
Fig. 7, SHO has the better parallel optimization capacity. The
differences of local exploiting performance between different
algorithms are presented on functions F3, F5 and F7, and
SHO’s optimization ability is the best in these functions. For
the reason that SHO is impacted by the adaptive parameter α
and the way of the spiral motion, which make SHO converge
toward the optimal solution faster than other comparison algo-
rithms, and subsequently re-exploit the optimization precision.

Table 8 Statistical results of fixed-dimension multimodal functions

Function GA SCA DA SFO TSA ChOA SHO

F14 Mean 2.1700E+00 1.7964E+00 1.2623E+00 1.7962E+00 8.4309E+00 1.0977E+00 4.4619E+00

Std 1.3724E+00 9.8476E-01 7.7636E-01 9.4877E-01 5.3333E+00 3.9968E-01 3.9493E+00

F15 Mean 7.9425E-03 1.0169E-03 3.8415E-03 2.1998E-03 1.2720E-02 1.3024E-03 4.0466E-04

Std 5.2326E-03 3.5916E-04 6.7440E-03 2.1135E-03 2.2234E-02 4.6318E-05 2.4564E-04

F16 Mean −9.9737E-01 −1.0316E+00 −1.0316E+00 −1.0316E+00 −1.0285E+00 −1.0316E+00 −1.0316E+00
Std 3.2584E-02 6.5333E-05 7.0772E-07 3.9599E-07 9.6512E-03 1.0504E-05 1.2086E-08

F17 Mean 4.2081E-01 4.0065E-01 3.9789E-01 3.9789E-01 3.9794E-01 3.9891E-01 3.9789E-01

Std 2.6939E-02 2.0337E-03 7.1726E-06 4.4403E-07 4.4015E-05 1.4105E-03 8.9400E-07

F18 Mean 3.7709E+00 3.0001E+00 3.0000E+00 3.0000E+00 1.2005E+01 3.0003E+00 3.0000E+00

Std 9.9571E-01 9.6817E-05 8.8746E-07 3.9408E-05 1.7842E+01 3.5984E-04 1.8208E-08

F19 Mean −3.8440E+00 −3.8542E+00 −3.8626E+00 −3.8625E+00 −3.8621E+00 −3.8549E+00 −3.8583E+00
Std 2.0872E-02 4.0331E-03 6.4762E-04 1.4041E-03 1.7428E-03 1.9266E-03 3.9642E-03

F20 Mean −2.9827E+00 −2.8417E+00 −3.2427E+00 −3.2350E+00 −3.2661E+00 −2.5865E+00 −3.0059E+00
Std 1.4818E-01 4.0763E-01 9.9403E-02 6.8387E-02 6.9168E-02 4.6733E-01 2.7576E-01

F21 Mean −2.1578E+00 −2.4888E+00 −6.7452E+00 −6.0621E+00 −6.6850E+00 −2.7528E+00 −5.9756E+00
Std 8.9209E-01 1.8985E+00 2.6455E+00 3.4991E+00 3.2892E+00 2.0898E+00 3.3566E+00

F22 Mean −2.5108E+00 −3.2342E+00 −7.2770E+00 −6.9284E+00 −6.5270E+00 −3.8763E+00 −6.3229E+00
Std 1.2125E+00 2.0292E+00 3.0871E+00 3.5954E+00 3.6851E+00 1.8815E+00 2.9223E+00

F23 Mean −2.4954E+00 −3.8475E+00 −7.1016E+00 −7.5357E+00 −6.9250E+00 −4.6818E+00 −6.3452E+00
std 8.8861E-01 2.0526E+00 3.1919E+00 3.5948E+00 3.7597E+00 1.2935E+00 2.3590E+00

Bold entries highlight the best results of the algorithm on the function

Table 7 Statistical results of multimodal functions

Function GA SCA DA SFO TSA ChOA SHO

F8 Mean -7.5442E+03 −3.7403E+03 −5.4263E+03 −3.6413E+03 −6.1500E+03 −5.7246E+03 −5.8448E+03
Std 7.5106E+02 2.8028E+02 5.5566E+02 3.5203E+02 5.8402E+02 5.5321E+01 4.6053E+02

F9 Mean 1.7899E+02 3.2522E+01 1.6893E+02 3.3396E+02 1.8346E+02 1.2816E+01 0.0000E+00

Std 3.5110E+01 3.5504E+01 4.0873E+01 2.8430E+01 5.1740E+01 1.1501E+01 0.0000E+00

F10 Mean 1.6555E+01 1.2922E+01 1.0653E+01 1.9350E+01 1.4812E+00 1.9963E+01 4.3225E-15

Std 8.6338E-01 9.3093E+00 1.5009E+00 8.1813E-01 1.6249E+00 9.8274E-04 6.4863E-16

F11 Mean 1.2519E+02 1.0597E+00 2.1235E+01 3.4169E+02 6.7253E-03 3.0769E-02 0.0000E+00

Std 7.5817E+01 5.0028E-01 1.2342E+01 6.2929E+01 8.1576E-03 4.7573E-02 0.0000E+00

F12 Mean 2.8939E+07 6.5470E+04 2.4349E+04 5.6933E+03 7.8642E+00 5.2017E-01 2.4844E-01

Std 3.4110E+07 2.9057E+05 9.3788E+04 1.3911E+04 3.8324E+00 2.2828E-01 1.1026E-01

F13 Mean 7.1859E+07 3.2716E+05 3.4024E+05 5.2061E+05 3.0523E+00 2.7509E+00 2.1616E+00

Std 3.8832E+07 1.7018E+06 9.1433E+05 4.1173E+05 5.9074E-01 1.5493E-01 2.4166E-01

Bold entries highlight the best results of the algorithm on the function
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However, other algorithms are defective in obtaining higher con-
vergence accuracy under the same population size and iteration
numbers. The convergence curves ofmultimodal functions show
the global optimization potential of different algorithms. For
function F10, SHO has the most obvious exploration perfor-
mance. It firstly jumps out of the local optimal value and con-
centrates accurately near global optimums, while other algo-
rithms converge slowly. It should be noted that on function
F11, SHO achieves the global optimal value 0 during iterations.
Since the figure shows an average fitness value in logarithmic
terms, the curve breaks during iterations. For function F12, apart
from the rapid convergence in early iterations, SHO can still be
re-exploited in late iterations. For function F15, SHO shows
outstanding optimization accuracy. Even if other algorithms,
such as DA and SFO, can find the global optimal value, SHO
has the fastest convergence speed on functions F16 and F18.
Convergence curves of SHOonmultimodal functions show that,
sea horses tend to seek optimal solution in the whole search
space through Brownian motion of floating action and offspring
renewal in early iterations, while sea horses exploit precisely
through spiral motion and the successful predation stage in later

iterations. Therefore, convergence analysis proves that the pro-
posed SHO is effective.

3.6 Performance analysis of SHO on CEC2014
benchmark functions

To further verify SHO’s local extremum avoidance, the chal-
lenging CEC2014 benchmark functions are used to test com-
pared with six well-known algorithms. The maximum number
of iterations for all algorithms is set to 1000. CEC2014 bench-
mark functions are composed of basic functions via translation,
rotation, or combination. They are more difficult to search for
optimization in that their functions are fairly dynamic and com-
plex with many local optimal values. Table 9 shows the test
results of SHO and six comparison algorithms. It can be seen
that SHO obtains better average fitness values on 21/30 func-
tions. In terms of unimodal functions, SHO achieves the best
Mean and Std results compared other algorithms on functions
CEC − 1 and CEC − 3, while the Mean and Std results of DA
are the best on functions CEC − 2 and CEC − 4. GA and SFO
are inferior to that of other algorithms on unimodal functions.
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Fig. 7 Convergence analysis of SHO and comparison algorithms
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Table 9 Results of the comparative methods on CEC2014 benchmark functions

Function GA SCA DA SFO TSA ChOA SHO

CEC−1 Mean 7.1541E+08 4.3394E+08 3.2165E+08 1.0933E+09 3.4998E+08 5.9442E+08 3.1313E+08

Std 3.0860E+08 1.1369E+08 1.9252E+08 2.4271E+08 2.2031E+08 1.2287E+08 1.0601E+08

CEC−2 Mean 2.5672E+10 2.6377E+10 6.7457E+09 5.9410E+10 3.1068E+10 4.4232E+10 2.9947E+10

Std 8.2687E+09 4.6549E+09 2.6005E+09 1.1592E+10 9.0278E+09 6.5469E+09 7.1444E+09

CEC−3 Mean 1.3215E+05 6.0581E+04 1.5502E+05 8.6755E+04 5.1628E+04 8.2252E+04 4.8301E+04

Std 4.7604E+04 1.2896E+04 5.3551E+04 1.0711E+04 1.0866E+04 6.6033E+03 8.7387E+03

CEC−4 Mean 4.3739E+03 2.3211E+03 1.3531E+03 1.0374E+04 3.6752E+03 3.4980E+03 2.5911E+03

Std 2.4292E+03 6.0498E+02 4.5493E+02 2.5953E+03 2.6388E+03 1.2225E+03 8.0821E+02

CEC−5 Mean 5.2109E+02 5.2103E+02 5.2102E+02 5.2115E+02 5.2104E+02 5.2104E+02 5.2061E+02

Std 1.0002E-01 6.1044E-02 7.7323E-02 5.1403E-02 5.5924E-02 4.7479E-02 1.2736E-01

CEC−6 Mean 6.3897E+02 6.3708E+02 6.3678E+02 6.4642E+02 6.3170E+02 6.3759E+02 6.2975E+02

Std 2.2263E+00 2.5213E+00 4.0156E+00 4.6314E-01 3.1164E+00 2.0091E+00 2.3985E+00

CEC−7 Mean 9.7441E+02 9.2577E+02 7.6438E+02 1.2889E+03 9.7983E+02 1.1427E+03 9.6235E+02

Std 7.7159E+01 4.5882E+01 2.6599E+01 9.3637E+01 7.1296E+01 7.3975E+01 7.3326E+01

CEC−8 Mean 1.0010E+03 1.0740E+03 1.0932E+03 1.2011E+03 1.0633E+03 1.0605E+03 9.5955E+02

Std 3.7720E+01 2.3386E+01 5.2549E+01 2.8822E+00 3.9181E+01 1.9146E+01 3.1206E+01

CEC−9 Mean 1.2178E+03 1.2057E+03 1.2119E+03 1.3082E+03 1.2295E+03 1.1859E+03 1.1159E+03

Std 5.3832E+01 2.3683E+01 5.4277E+01 9.3803E+00 6.0981E+01 2.5421E+01 2.9693E+01

CEC−10 Mean 5.0373E+03 7.6277E+03 7.1360E+03 8.8227E+03 6.5307E+03 7.5655E+03 4.1719E+03

Std 9.5542E+02 6.4910E+02 7.8063E+02 4.9624E+01 7.8288E+02 9.7607E+02 8.1086E+02

CEC−11 Mean 8.6880E+03 8.7373E+03 7.6124E+03 1.0157E+04 7.1699E+03 8.9184E+03 5.2581E+03

Std 7.0025E+02 2.7731E+02 7.3366E+02 2.3078E+02 7.4788E+02 2.2181E+02 6.6720E+02

CEC−12 Mean 1.2033E+03 1.2031E+03 1.2025E+03 1.2040E+03 1.2029E+03 1.2032E+03 1.2009E+03

Std 6.8459E-01 3.7186E-01 6.1772E-01 5.3978E-01 3.7290E-01 3.2664E-01 2.1770E-01

CEC−13 Mean 1.3042E+03 1.3038E+03 1.3015E+03 1.3074E+03 1.3043E+03 1.3048E+03 1.3043E+03

Std 8.5029E-01 4.6392E-01 8.8730E-01 9.3713E-01 1.0935E+00 6.5608E-01 7.6774E-01

CEC−14 Mean 1.4903E+03 1.4709E+03 1.4226E+03 1.6182E+03 1.4984E+03 1.5404E+03 1.4959E+03

Std 3.2765E+01 1.3540E+01 7.8765E+00 2.7035E+01 3.6347E+01 3.1471E+01 2.2488E+01

CEC−15 Mean 3.2992E+05 1.8263E+04 1.0148E+04 9.0047E+04 2.4395E+04 1.1312E+05 1.9158E+04

Std 3.4331E+05 1.5433E+04 1.2038E+04 3.6836E+04 4.3298E+04 1.0722E+05 1.9308E+04

CEC−16 Mean 1.6135E+03 1.6132E+03 1.6132E+03 1.6137E+03 1.6130E+03 1.6128E+03 1.6121E+03

Std 3.6715E-01 2.6346E-01 3.0512E-01 1.7746E-01 3.1301E-01 2.5890E-01 3.6975E-01

CEC−17 Mean 5.2827E+07 1.3049E+07 1.4146E+07 4.2113E+07 1.3408E+07 3.4397E+07 1.2123E+07

Std 3.0184E+07 6.7566E+06 1.3652E+07 2.0276E+07 1.1967E+07 1.9203E+07 8.7767E+06

CEC−18 Mean 1.3906E+09 3.2679E+08 2.5360E+07 1.2298E+09 5.8538E+08 8.5140E+08 3.8081E+07

Std 6.0486E+08 1.8013E+08 6.2690E+07 6.5911E+08 1.1114E+09 1.1157E+09 4.4161E+07

CEC−19 Mean 2.1875E+03 2.0363E+03 2.0010E+03 2.1648E+03 2.0958E+03 2.1825E+03 2.0272E+03

Std 9.3674E+01 2.7907E+01 7.5359E+01 5.8222E+01 1.1935E+02 1.2790E+02 5.0688E+01

CEC−20 Mean 2.8397E+05 4.6391E+04 1.6293E+05 2.3972E+05 5.2572E+04 1.1282E+05 3.6221E+04

Std 3.2828E+05 2.6562E+04 1.4469E+05 1.8076E+05 6.3617E+04 4.9118E+04 1.5493E+04

CEC−21 Mean 1.8000E+07 3.6383E+06 4.6345E+06 1.4708E+07 7.0577E+06 1.2736E+07 1.7666E+06

Std 1.1718E+07 2.8485E+06 5.8211E+06 1.0700E+07 1.1104E+07 2.0673E+06 2.2875E+06

CEC−22 Mean 3.7917E+03 3.2650E+03 3.3163E+03 4.1374E+03 3.5616E+03 3.1975E+03 2.9631E+03

Std 3.0189E+02 1.6814E+02 2.7814E+02 4.6058E+02 8.6894E+02 1.8833E+02 2.5275E+02

CEC−23 Mean 2.8937E+03 2.7168E+03 2.7191E+03 2.9294E+03 2.7265E+03 2.7618E+03 2.6754E+03

Std 1.2223E+02 2.7187E+01 4.5852E+01 1.2686E+02 9.3238E+01 5.3314E+01 8.4566E+01

CEC−24 Mean 2.7387E+03 2.6091E+03 2.6624E+03 2.6964E+03 2.6058E+03 2.6001E+03 2.6000E+03

Std 2.7368E+01 9.5131E+00 9.6441E+00 1.6537E+01 1.7586E+01 4.8450E-02 1.6553E-04
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For multimodal functionsCEC − 5,CEC − 6,CEC − 8,CEC
− 10,CEC − 11,CEC − 12, andCEC − 15, SHO outperforms
other algorithms with stronger exploration performance.
Moreover, SHO has the minimum Std result on function CEC
− 12. SHO also shows stronger optimization performance on
most of hybrid functions. For example, SHO achieves the best
Mean results on functions CEC − 17, CEC − 20, CEC − 21
and CEC − 22, and has the best Std result on function CEC −
20. Except functions CEC − 26 and CEC − 28, SHO’s Mean
results can obtain the best on the other composition functions,
and its Std values are the minimum on functions CEC − 24 and
CEC − 25. The test results on CEC2014 benchmark functions
further show that SHO is more competitive than other
algorithms.

Figure 8 shows the boxplots for seven algorithms on
CEC2014 benchmark functions. If ‘+’ has appeared outside
the upper limit, it meant that the algorithm has a poor search
accuracy in 30 runs. Otherwise, if ‘+’ was outside the lower
limit, it indicated that the algorithm can be fully explored and
exploited to search for the superior precision value. It can be
seen from the Fig. 8 analysis that SHO displays ‘+’ out of the
upper edge for a total of 3 times (functions CEC − 6, CEC −
10 andCEC − 20), which has the least number of occurrences
compared with other algorithms. The medians of SHO are
lower than that of the other six algorithms. Additionally,
SHO has the smallest differences between upper and lower
limits of functions CEC − 20 and CEC − 25. The boxplots
verifies that SHO has strong robustness and stability. As de-
scribed above, SHO algorithm shows superior optimization
performance on CEC2014 benchmark functions.

3.7 Scalability analysis of SHO

This subsection evaluates the adaptability of SHO in high
dimensional problems. In order to make compares more

concise and effective, two groups of experiments were con-
ducted by selecting representative test functions. The first set
of functions came from F1, F2, F3, F12 and F13 of 23 well-
known functions. They can test the local exploitation accuracy
and global optimization ability of the algorithm, representing
the traditional unimodal test functions. For the first group,
dimensions were set to 10, 30, 50, 100, and 500. The second
experiment was designed for high-dimensional optimization
performance on CEC2014 benchmark functions. In the sec-
ond set, simple multimodal functions CEC − 5, hybrid func-
tionCEC − 22, composition functionsCEC − 24,CEC − 25
and CEC − 27 were selected. Because of the complexity of
composition functions, they are more difficult to search for
optimization in high dimensions. Using these functions eval-
uate the performance of the algorithm to deal with high-
dimensional problems more closely to the difficulty of practi-
cal application problems, which make the scalability analysis
more sufficient. Since the CEC2014 benchmark functions ran
with variable dimensions only 10, 30, 50 and 100, these four
dimensions were tested separately. SHO is compared with the
above six comparison algorithms. Each algorithm was oper-
ated independently for 30 times, and the average fitness value
is taken as the statistical indicator. The population size and
maximum iteration times of group 1 and group 2 were set to
30 × 500 and 30 × 1000, respectively.

Figure 9 shows the change trends of log-average fitness
values for seven algorithms in different dimensions. As can
see from Fig. 9 that y values of all algorithms are in positive
proportion to the increase of x values. This suggests that
higher dimensions lead to problems solving more difficult.
In the first set experiment, SHO is able to maintain the optimal
average fitness value in the high-dimensional case for six
functions, compared with other algorithms. The SHO algo-
rithm is obviously superior to other comparison algorithms
in all dimensions on functions F1, F3, and F4. On function

Table 9 (continued)

Function GA SCA DA SFO TSA ChOA SHO

CEC−25 Mean 2.7741E+03 2.7425E+03 2.7445E+03 2.7361E+03 2.7272E+03 2.7122E+03 2.7000E+03

Std 1.9907E+01 1.0221E+01 1.6483E+01 9.0656E+00 7.4081E+00 1.3367E+01 3.0447E-13

CEC−26 Mean 2.7058E+03 2.7035E+03 2.7320E+03 2.7135E+03 2.7804E+03 2.7912E+03 2.7674E+03

Std 1.6175E+00 4.8931E-01 4.6221E+01 5.7684E+00 5.6244E+01 5.3373E+01 4.6964E+01

CEC−27 Mean 3.8630E+03 3.8524E+03 3.7666E+03 3.9141E+03 3.7974E+03 3.9813E+03 3.5917E+03

Std 1.6684E+02 2.5855E+02 3.9186E+02 2.1930E+02 3.1077E+02 7.7434E+01 3.0922E+02

CEC−28 Mean 6.4218E+03 5.4804E+03 6.6395E+03 8.9325E+03 7.5270E+03 5.7092E+03 5.6777E+03

Std 1.1194E+03 3.5072E+02 1.0632E+03 6.0699E+02 9.8157E+02 2.4924E+02 5.3136E+02

CEC−29 Mean 4.1276E+07 3.0269E+07 8.0442E+07 2.9796E+08 6.3045E+07 5.3284E+07 1.8706E+07

Std 3.9552E+07 1.2792E+07 7.5615E+07 9.0464E+07 4.6862E+07 3.5495E+07 2.2772E+07

CEC−30 Mean 6.9770E+05 5.2659E+05 4.7197E+05 2.0541E+06 5.0654E+05 7.9851E+05 1.6934E+05

Std 4.2663E+05 1.6822E+05 3.7758E+05 1.0868E+06 5.2721E+05 1.8848E+05 1.4944E+05

Bold entries highlight the best results of the algorithm on the function
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F2, the change amplitude of y value is basically the same
when the seven algorithms transition from 10 dimension to
100 dimension. However, from 100 to 500 dimensions, GA
and SFO algorithms change more, while other algorithms are
more stable. The slope of SHO curve changes more stable
than other algorithms, especially on functions F10 and F12
when the dimension transitions from 100 to 500. The first set
of experimental results confirm the dimensional insensitivity
of SHO. Simultaneously, SHO can accurately track the diffi-
culty of problems caused by the increase of dimensions, and
search for better accuracy. In the second set of the experiment,
SHO remains optimal in each dimension of functions CEC −
5, CEC − 12 and CEC − 27. For function CEC − 22, the
variation degree of SHO, DA and SCA have things in com-
mon. Even thoughDA is better than SHOwhen the dimension
is 50, SHO is still optimal in the dimension 100. On function
CEC − 24, SHO and ChOA have similar searching accuracy
in each dimension. For function CEC − 25, seven algorithms
do not change significantly when the dimension rises from 10
to 30, however, as the dimension is larger, SHO can still
outperform other algorithms while keeping the original paral-
lel optimization accuracy. High-dimensional test results show
that SHO is a reliable algorithm that maintains an effective
best-finding situation and adaptability in handling more com-
plex high-dimensional problems.

3.8 Statistical analysis

In order to avoid accidental test results, statistical tests
are performed by using the Wilcoxon rank-sum test sta-
tistical method [55] applying a significance level of 5%.
Further this method is used to evaluate the effectiveness
and superiority of SHO. SHO was used as the control
algorithm, and pairwise comparison was made with the
other six algorithms. If the p value generated by the two
algorithms is less than 5%, it indicates that there is a
significant difference between the two algorithms in sta-
tistical significance. Otherwise, the difference between
the two algorithms is not obvious. Two groups of tests
were conducted. The first group performed mann-
Whitney U test of SHO on the first 13 well-known func-
tions. The second group was a more powerful mann-
Whitney U test on CEC2014 benchmark functions.

Tables 10 and 11 are the summary of test results, where
‘+’ represents significant difference and ‘-’ represents poor
significant difference. In Table 10, SHO conducts 78 (13 ×
6) groups of experiments, among which 74 groups of data
shows significant differences. 157 of 180 (30 × 6) compar-
isons are ‘+’ in Table 11. The results of the two groups
verify that the optimization performance of the SHO

GA SCA DA SFO TSA ChOA SHO

0.5

1

1.5

2

2.5

105 CEC-3

GA SCA DA SFO TSA ChOA SHO

520.4

520.6

520.8

521

521.2

CEC-5

GA SCA DA SFO TSA ChOA SHO
625

630

635

640

645

CEC-6

GA SCA DA SFO TSA ChOA SHO

900

1000

1100

1200

CEC-8

GA SCA DA SFO TSA ChOA SHO

1100

1150

1200

1250

1300

CEC-9

GA SCA DA SFO TSA ChOA SHO

4000
5000
6000
7000
8000

CEC-10

GA SCA DA SFO TSA ChOA SHO
0
2
4
6
8

10

107 CEC-17

GA SCA DA SFO TSA ChOA SHO
0
2
4
6
8

10

105 CEC-20

GA SCA DA SFO TSA ChOA SHO
2700

2725

2750

2775

2800

CEC-25

Fig. 8 Box plot of the proposed SHO and six comparison algorithms on CEC2014 benchmark functions
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algorithm is better than the other six comparison algorithms
in the statistical sense.

In addition, Friedman rank test [56] is a nonparametric
method that uses rank to implement significant differences
for multiple population distributions. Friedman rank tests of
seven algorithms were performed on the most challenging

CEC2014 benchmark functions to compare their comprehen-
sive average performance. Table 12 shows Friedman test
results of seven algorithms. As is shown in Table 12, SHO
ranked the first and is significantly better than the other six
comparison algorithms. Thus, Friedman rank tests demon-
strate that the proposed SHO is effective and stable.
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4 SHO for engineering design problems

In this section, the proposed SHO is applied to solve five real-
world optimization problems, namely tension/compression
spring design problem, reducer design problem, pressure vessel
design problem, cantilever beam design problem, and welded
beam design problem. Meanwhile, SHO is compared with some
famous metaheuristic algorithms to evaluate its constraint pro-
grammability. Since real-world optimization problems have been
constrained by inequalities or equalities, a simple method to deal
with constraints was adopted that was the static penalty function.
In this method, the solution is punished for violating the con-
straints, thus a constrained problem is converted into an uncon-
strained problem. For each real-world optimization problem,
SHOwas independently run for 30 times, as well as the statistical
indicators consisted of maximum value (Worst), minimum value
(Best), mean value (Mean) and standard deviation (Std) of 30
runs. The population size and the maximum number of iterations
were set to 30 and 500.

4.1 Tension/compression spring design problem

In this case, it can define goals as minimizing the weight of the
spring. Its specific design is shown in Fig. 10. There are three
decision variables in this problem, which are wire diameter
(d), mean coil diameter (D) and the number of active coils (N).
The mathematical model is as follows.

x!¼ x1; x2; x3½ � ¼ d;D;N½ �
min Z x!


 �
¼ x3 þ 2ð Þx2x12

s:t: g1 x!

 �

¼ 1−
x32x3

71785x41
≤0

g2 x!

 �

¼ 4x22−x1x2
12566 x2x31−x41

� � þ 1

5108x21
≤0

g3 x!

 �

¼ 1−
140:45x1
x22x3

≤0

g4 x!

 �

¼ x1 þ x2
1:5

−1≤0

ð14Þ

In this case, the limits of decision variables are 0.05 ≤ x1 ≤
2.00,0.25 ≤ x2 ≤ 1.30 and 2.00 ≤ x3 ≤ 15 .00. Presently,
metaheuristic algorithms that have been successfully applied this
problem including GA [57], CA [58], CPSO [59], WOA [38],
GEO [28], SCA [60], HS [60], GWO [42], and AOA [38]. The
proposed SHO algorithm is comparedwith these algorithms, and
the optimal results obtained by each algorithm are shown in
Table 13. As can be seen from Table 13, SHO can reach the
minimum optimal value compared with ten algorithms. Table 14
shows the statistical results of all algorithms. Apparently, on the
premise of less evolutions, SHO still has lower Mean and Std
indicators than other algorithms. The results of the two tables
prove that SHO has good applicability in this problem.

4.2 Reducer design problem

Reducer design problem is to design a simple gear box
between the engine and propeller of the aircraft, so as to
facilitate the normal operation of the propeller and engine.
The specific schematic diagram of reducer design problem
is shown in Fig. 11. The objective of this problem finds the
combination that minimizes the total number of reducers,

Table 10 Wilcoxon rank-sum test results for SHO against other algorithms on 13 well-known functions

Function SHO vs. GA SHO vs. SCA SHO vs. DA SHO vs. SFO SHO vs. TSA SHO vs. ChOA

p value win p value win p value win p value win p value win p value win

F1 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +

F2 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +

F3 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +

F4 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +

F5 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 1.86E-01 – 5.46E-09 +

F6 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 2.75E-03 + 6.79E-02 –

F7 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 9.92E-11 +

F8 1.96E-10 + 3.02E-11 + 1.37E-03 + 3.02E-11 + 2.61E-02 + 8.77E-02 –

F9 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 +

F10 1.72E-12 + 1.72E-12 + 1.72E-12 + 1.72E-12 + 1.72E-12 + 1.72E-12 +

F11 1.21E-12 + 1.21E-12 + 1.21E-12 + 1.21E-12 + 2.93E-05 + 1.21E-12 +

F12 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +

F13 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 6.52E-09 – 3.02E-11 +

±. 13/0 13/0 13/0 13/0 11/2 11/2

‘+’ indicates significant difference and ‘-‘indicates poor significant difference.
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which involves constraints such as bending stress of the
gear teeth, surface stress, transverse deflections of the
shafts and stresses in the shafts. There are seven decision
variables to control this problem, namely, face width (x1),
the module of teeth (x2), number of teeth in the pinion (x3),
length of the first shaft between bearings (x4), length of the
second shaft between bearings (x5), diameter of first (x6)
and diameter of the second shafts (x7). The mathematical
expression is as follows.

Table 11 Wilcoxon rank-sum test results for SHO against other algorithms on CEC2014 benchmark functions

Function SHO vs. GA SHO vs. SCA SHO vs. DA SHO vs. SFO SHO vs. TSA SHO vs. ChOA

p value win p value win p value win p value win p value win p value win

CEC−1 1.60E-07 + 1.91E-02 + 4.55E-01 – 3.02E-11 + 7.84E-01 – 2.61E-10 +

CEC−2 4.36E-02 + 2.61E-02 + 3.02E-11 + 9.92E-11 + 4.92E-01 – 8.48E-09 +

CEC−3 3.47E-10 + 2.77E-05 + 4.50E-11 + 3.34E-11 + 2.64E-01 – 3.02E-11 +

CEC−4 8.66E-05 + 2.90E-01 – 1.20E-08 + 4.08E-11 + 1.96E-01 – 1.86E-03 +

CEC−5 3.34E-11 + 3.02E-11 + 3.34E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +

CEC−6 3.34E-11 + 1.61E-10 + 1.70E-08 + 3.02E-11 + 3.34E-03 + 3.69E-11 +

CEC−7 6.52E-01 – 3.39E-02 + 3.69E-11 + 3.69E-11 + 5.20E-01 – 1.29E-09 +

CEC−8 5.61E-05 + 3.02E-11 + 4.08E-11 + 3.02E-11 + 8.15E-11 + 3.69E-11 +

CEC−9 1.21E-10 + 3.34E-11 + 7.77E-09 + 3.02E-11 + 3.50E-09 + 5.07E-10 +

CEC−10 1.37E-03 + 3.02E-11 + 4.50E-11 + 3.02E-11 + 3.16E-10 + 4.08E-11 +

CEC−11 3.02E-11 + 3.02E-11 + 8.99E-11 + 3.02E-11 + 3.16E-10 + 3.02E-11 +

CEC−12 3.02E-11 + 3.02E-11 + 3.69E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +

CEC−13 6.63E-01 – 1.08E-02 + 6.07E-11 + 3.69E-11 + 7.96E-01 – 9.47E-03 +

CEC−14 3.04E-01 – 6.10E-03 + 3.02E-11 + 3.02E-11 + 9.71E-01 – 7.60E-07 +

CEC−15 2.37E-10 + 5.59E-01 – 4.86E-03 + 8.89E-10 + 8.19E-01 – 2.67E-09 +

CEC−16 1.09E-10 + 3.34E-11 + 3.02E-11 + 3.02E-11 + 5.57E-10 + 2.03E-09 +

CEC−17 9.26E-09 + 3.18E-01 – 8.07E-01 – 2.39E-08 + 8.07E-01 – 4.74E-06 +

CEC−18 3.02E-11 + 2.37E-10 + 1.62E-01 – 3.02E-11 + 1.17E-05 + 4.08E-11 +

CEC−19 3.20E-09 + 1.22E-01 – 1.38E-02 + 1.41E-09 + 2.61E-02 + 6.01E-08 +

CEC−20 7.12E-09 + 7.29E-03 + 7.38E-10 + 1.46E-10 + 4.04E-01 – 3.82E-10 +

CEC−21 2.87E-10 + 2.60E-05 + 1.77E-03 + 1.55E-09 + 3.85E-03 + 4.50E-11 +

CEC−22 1.21E-10 + 5.61E-05 + 1.75E-05 + 9.92E-11 + 1.24E-03 + 3.56E-04 +

CEC−23 1.41E-09 + 4.22E-03 + 1.30E-03 + 5.56E-10 + 1.91E-02 + 8.83E-07 +

CEC−24 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 + 3.02E-11 +

CEC−25 1.41E-11 + 1.41E-11 + 1.41E-11 + 1.41E-11 + 1.41E-11 + 1.41E-11 +

CEC−26 2.26E-02 + 7.01E-03 + 7.05E-01 – 2.64E-02 + 1.95E-05 + 2.08E-07 +

CEC−27 5.56E-04 + 4.44E-07 + 2.38E-03 + 9.52E-04 + 1.30E-03 + 3.16E-10 +

CEC−28 4.43E-03 + 1.02E-01 – 1.87E-05 + 3.02E-11 + 8.89E-10 + 6.20E-01 –

CEC−29 4.98E-04 + 1.11E-03 + 1.58E-04 + 3.02E-11 + 1.53E-05 + 5.46E-06 +

CEC−30 7.38E-10 + 1.17E-09 + 8.88E-06 + 4.50E-11 + 4.86E-03 + 1.61E-10 +

± 27/3 25/5 26/4 30/0 20/10 29/1

‘+’ indicates significant difference and ‘-’ indicates poor significant difference.

Table 12 Friedman rank
test results for SHO and
other algorithms on
CEC2014 benchmark
functions

Algorithm Friedman rank test Rank

SCA 3.1333 2

GA 5.1000 6

DA 3.1667 3

TSA 3.9333 4

ChOA 4.5667 5

SFO 6.3667 7

SHO 1.7333 1
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min Z ¼ 0:7854x1x22 3:3333x23 þ 14:9334x3−43:0934
� �

−
1:508x1 x26 þ x27

� �þ 7:4777 x36 þ x37
� �þ 0:7854 x4x26 þ x5x27

� �
s:t:g1 xð Þ ¼ 27

x1x22x3
� � −1≤0

g2 xð Þ ¼ 397:5

x1x22x
2
3

� � −1≤0
g3 xð Þ ¼ 1:93x34

x2x3x46
� � −1≤0

g4 xð Þ ¼ 1:93x35
x2x3x47
� � −1≤0

g5 xð Þ ¼ 1

110x36
� � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x4
x2x3

� �2

þ 16:9� 106

s
−1≤0

g6 xð Þ ¼ 1

85x37
� � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x5
x2x3

� �2

þ 157:5� 106

s
−1≤0

g7 xð Þ ¼ x2x3
40

−1≤0

g8 xð Þ ¼ 5
x2
x1
−1≤0

g9 xð Þ ¼ x1
12x2

−1≤0

g10 xð Þ ¼ 1:5x6 þ 1:9

x4
−1≤0

g11 xð Þ ¼ 1:1x7 þ 1:9

x5
−1≤0

ð15Þ

R a n g e o f d e c i s i o n v a r i a b l e s :
2:6≤x1≤3:6; 0:7≤x2≤0:8; 17≤x3≤28
7:3≤x4≤8:3; 7:3≤x5≤8:3; 2:9≤x6≤3:9; 5:0≤x7≤5:5
The proposed algorithm is compared with SC [61], GA

[38], HS [60], SCA [60], GWO [42], WOA [42], HGSO
[37] and AOA [38] previously applied, and the optimal results
are shown in Table 15. According to Table 15 analysis, SHO
is able to obtain the best solution compared with eight algo-
rithms, which is obviously better than GA, SCA, and HS.
Table 16 shows the statistical results of all algorithms. SHO
can obtain the optimal value for Mean indicator under the
precondition of fewer evolution times, but the shortcoming
is that Std indicator has not reached the expected result.

4.3 Pressure vessel design

The primary objective of pressure vessel design minimizes the
total cost of material forming and welding for cylindrical ves-
sels. Figure 12 shows the design of pressure vessel design and
the representation of parameters at the corresponding locations.
This problem contains four decision variables, namely shell
thickness (Ts), head thickness (Th), entry radius (R), and length
of cylindrical section without considering the head (L). The
mathematical expression is described as follows.

x!¼ x1; x2; x3; x4½ � ¼ Ts; Th;R; L½ �
minz x!


 �
¼ 0:6224x1x3x4 þ 1:7781x2x23þ
3:1661x21x4 þ 19:84x21x3

s:t:g1 x!

 �

¼ −x1 þ 0:0193x3≤0

g2 x!

 �

¼ −x2 þ 0:00954x3≤0

g3 x!

 �

¼ −πx23x4−
4

3
πx33 þ 1296000≤0

g4 x!

 �

¼ x4−240≤0
0≤x1≤990≤x2≤9910≤x3≤20010≤x4≤200

ð16Þ

d

L

D
P P

Fig. 10 Tension/compression
spring design problem

Table 13 Optimal results of different algorithms for tension/
compression spring design problem

Algorithms d D N Optimal value

GA [57] 0.051480 0.351661 11.632201 0.01270478

CA [58] 0.050000 0.317395 14.031795 0.012721

CPSO [59] 0.051728 0.357644 11.244543 0.012674

WOA [38] 0.0514 0.3513 11.6284 0.012695

GEO [28] 0.0518499 0.3605987 11.065069 0.0126658

SCA [60] 0.050780 0.334779 12.72269 0.012709667

HS [60] 0.05025 0.316351 15.23960 0.012776352

GWO [42] 0.0514 0.3503 11.6764 0.012669

AOA [38] 0.0508 0.3348 11.7020 0.012681

SHO 0.05194 0.36289 10.9358 0.01266644

Bold entries highlight the best result of the algorithm on this problem
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Table 14 Statistical results of different algorithms for tension/compression spring design problem

Algorithms Best Mean Worst Std Eval

GA [57] 0.012704 0.012769 0.012822 3.93E-05 /

CA [58] 0.012721 0.013568 0.0151156 8.4E-04 50,000

CPSO [59] 0.012674 0.012730 0.012924 5.19E-05 200,000

WOA [38] 0.012683 0.014709 0.017211 2.30E-03 30,000

GEO [28] / / / / /

SCA [60] 0.012709667 0.012839637 0.012998448 7.8E-05 30,000

HS [60] 0.012776352 0.013069872 0.015214230 0.000375 30,000

GWO [42] 0.012669 0.013037 / 1.254E-03 20,000

AOA [38] 0.012681 0.013369 0.015625 7.44E-04 30,000

SHO 0.01266644 0.01282720 0.014428 3.5556E-04 15,000

‘/’ indicates that no corresponding work has been done in the literature.

4x

7x

2x

3x

6x

1x5x

Fig. 11 Speed reducer design
problem

Table 15 Optimal results of different algorithms for speed reducer design problem

Algorithms x1 x2 x3 x4 x5 x6 x7 Optimal value

SC [61] 3.50000 0.70000 17 7.327602 7.715321 3.350267 5.286655 2994.744241

GA [38] 3.5592 0.7133 19.659 7.9365 8.0197 3.6719 5.3276 3730

HS [60] 3.520124 0.7 17 8.37 7.8 3.366970 5.288719 3029.002

SCA [60] 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563

GWO [42] 3.5000 0.70 17.00 7.38 7.81 3.3504 5.2867 2998.0976

WOA [42] 3.5000 0.70 17.00 8.03 7.91 3.3600 5.2850 3006.8794

HGSO [37] 3.4970 0.7100 17.020 7.6700 7.8100 3.3600 5.2850 2997.10

AOA [38] 3.50384 0.7 17 7.3 7.72933 3.35649 5.2867 2997.9157

SHO 3.5000 0.7000 17 7.3000 7.7163 3.3502 5.2867 2994.504

Bold entries highlight the best result of the algorithm on this problem
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Table 17 displays the optimal results of SHO and compar-
ison algorithms such as CPSO [59], SMA [27], GWO [60],
WOA [38], HHO [23], AEO [62], SCA [60], MPA [26], EO
[39], AOA [38], and AO [63] for solving this problem. It can
be detected from the Table 17 that the proposed SHO algo-
rithm is superior to elven algorithms. It is noted that the com-
parison results are more obvious for MFO, WOA, and CPSO.
In addition, it is comparable to new algorithms MPA, AOA,
and AO. Table 18 shows the statistical results of these algo-
rithms. SHO achieves the best Mean indicator. This result
indicates that SHO can replace some traditional algorithms
to solve this problem well after improving the number of
evolutions.

4.4 Cantilever beam design problem

The purpose of this problem is to discover the optimal weight of
the cantilever arm with setting an upper limit on the vertical
displacement of the free end. Figure 13 exhibits a concrete illus-
tration of a cantilever beam. The cantilever beam consists of five

elements, each of which is a hollow section with a constant
thickness. There are five decision variables and one constraint
in the case. The mathematical expression is as follows.

minZ xð Þ ¼ 0:0624� x1 þ x2 þ x3 þ x4 þ x5ð Þ
s:t: g xð Þ ¼ 61

x31
þ 37

x32
þ 19

x33
þ 7

x34
þ 1

x35
−1≤0

0:01≤x1; x2; x3; x4; x5≤100

ð17Þ

Table 19 lists the optimal results of SHO,MA [64], GCA_I
[64], GCA_II [64], and MFO [65]. SHO outperforms four
comparison algorithms. Table 20 shows the statistical results
of these algorithms.

4.5 Welded beam design

The design cost of welding beam is minimized under the
constraint of weld shear stress (τ), bending stress (σ) in
the beam, buckling load (Pc) on the rod and deflection

Table 16 Statistical results of
different algorithms for speed
reducer design

Algorithms Best Mean Worst Std Eval

SC [61] 2994.7442410 3009.9647360 3001.7582640 4 54,456

GA [38] 3730 8140 17,300 4.15E+03 30,000

HS [60] 3029.002 3295.329 3619.465 5.70235E+01 30,000

SCA [60] 3030.563 3065.917 3104.779 1.80742E+01 30,000

GWO [42] 2998.0976 3003.0686 / 3.1431E+00 20,000

WOA [42] 3006.8794 3032.2744 / 2.6815E+01 20,000

HGSO [37] 2997.1 2996.4 2996.9 4.39E-05 30,000

AOA [38] 3000 3000 3000 1.22E-12 30,000

SHO 2994.504 2998.257 3025.619 5.941579E+
00

15,000

L

R

Ts

R

Th

Fig. 12 Pressure vessel design
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Table 17 Optimal results of
different algorithms for pressure
vessel design

Algorithms Ts Th R L Optimal value

CPSO [59] 0.812500 0.437500 42.091266 176.746500 6061.0777

SMA [27] 0.7931 0.3932 40.6711 196.2178 5994.1857

GWO [60] 0.779035 0.384660 40.327793 199.65029 5889.3689

WOA [38] 0.9730 0.6512 50.6804 93.0377 7.11E+03

HHO [23] 0.9833 0.4758 49.9297 98.9036 6.39E+03

AEO [62] 0.8374205 0.413937 43.389597 161.268592 5994.50695

SCA [60] 0.817577 0.417932 41.74939 183.57270 6137.3724

MPA [26] 0.8125 0.4375 42.098445 176.636607 6059.7144

EO [39] 0.8125 0.4375 42.0984456 176.6365958 6059.7143

AOA [38] 0.8303737 0.4162057 42.75127 169.3454 6048.7844

AO [63] 1.0540 0.182806 59.6219 38.8050 5949.2258

SHO 0.7782 0.3847 40.3223 199.9623 5885.4926

Bold entries highlight the best result of the algorithm on this problem

Table 18 Statistical results of
different algorithms for pressure
vessel design

Algorithms Best Mean Worst Std Eval

CPSO [59] 6061.0777 6147.1332 6363.8041 8.645E+01 240,000

SMA [27] 5994.1857 / / / /

GWO [60] 5889.3689 5891.5247 5894.6238 1.3910E+01 30,000

WOA [38] 7.11E+03 1.05E+04 1.35E+04 3.23E+03 30,000

HHO [23] 6.39E+03 6.61E+03 6.89E+03 2.54E+02 30,000

AEO [62] 59,945.0695 6136.3019 6820.8007 1.612901E+
02

30,000

SCA [60] 6137.3724 6326.7606 6512.3541 1.26609E+02 30,000

MPA [26] 6059.7144 6102.8271 6410.0929 1.0661E+02 25,000

EO [39] 6059.7143 6668.114 7544.4925 5.6624E+02 15,000

AOA [38] 5.90E+03 6.52E+03 6.60E+03 4.31E+02 30,000

AO [63] 5949.2258 / / / 25,000

SHO 5885.4926 6335.809 7319.365 5.868E+02 15,000

Bold entries highlight the best result of the algorithm on this problem

5 4 3 2 1

Fig. 13 Cantilever beam design
problem
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of the beam end (δ). There are four variables that deter-
mine this problem, namely welding thickness (h), length
of bar attachment (l), bar height (t) and bar thickness (b)
(Fig. 14).

x!¼ x1; x2; x3; x4½ � ¼ h; l; t; b½ �
minZ x!


 �
¼ 1:10471x21x2 þ 0:04811x3x4 14:0þ x2ð Þ
s:t:g1 x!


 �
¼ τ x!


 �
−13600≤0

g2 x!

 �

¼ σ x!

 �

−30000≤0

g3 x!

 �

¼ δ x!

 �

−0:25≤0

g4 x!

 �

¼ x1−x4≤0

g5 x!

 �

¼ P−Pc x!

 �

≤0

g6 x!

 �

¼ 0:125−x1≤0

ð18Þ

g7 x!� � ¼ 1:10471x21 þ 0:04811x3x4 14:0þ x2ð Þ −5:0≤0
0.1 ≤ x1 ≤ 20.1 ≤ x2 ≤ 100.1 ≤ x3 ≤ 100.1 ≤ x4 ≤ 2

where τ x!� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ 0ð Þ2 þ 2τ 0τ 0 0 x2

2R þ τ 0 0ð Þ2
q

; τ
0 ¼ 6000ffiffi

2
p

x1
x2,

τ
0 0 ¼ MR

J
;M ¼ 6000 14þ x2

2


 �
;R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
þ x1 þ x3

2


 �2r

J ¼ 2
ffiffiffi
2

p
x1x2

xx2
4
þ x1 þ x3

2


 �2� 
	 �
;σ x!

 �

¼ 504000

x4x23

δ x!

 �

¼ 65856000

30� 106
� �

x23x4

Pc x!

 �

¼
4:013 30� 106

� � ffiffiffiffiffiffiffiffiffi
x23x

6
4

36

r
196

1−
x3
28

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30� 106

4 12� 106
� �

s !

Table 21 shows the optimal solutions of SHO, HHO
[23], CPSO [59], GWO [60], SCA [60], WOA [38],
GEO [28] and MVO [60] algorithms for tackling this
problem. Among the eight algorithms, SHO has the bet-
ter design cost, which confirms that SHO has higher
optimization ability. The statistical results of these algo-
rithms are given in Table 22. It can be seen that SHO
has better Mean and Std indicators. Hence, these results
prove that SHO can achieve ideal results with other
algorithms at a lower computational cost.

Table 19 Optimal results of
different algorithms for cantilever
beam design problem

Algorithms x1 x2 x3 x4 x5 Optimal value

MMA [64] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA_I [64] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA_II [64] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

MFO [65] 5.984871 5.316726 4.497332 3.513616 2.1616200 1.339988

SHO 6.0049 5.3227 4.4737 3.5065 2.16637 1.339987

Bold entries highlight the best result of the algorithm on this problem

Table 20 Statistical results of different algorithms for cantilever beam
design problem

Algorithms Best Mean Worst Std Eval

MMA [64] 1.3400 / / / /

GCA_I [64] 1.3400 / / / /

GCA_II [64] 1.3400 / / / /

MFO [65] 1.339988 / / / /

SHO 1.339987 1.341450 1.348049 1.685306E-03 15,000

L

l h t
P

b

Fig. 14 Welded beam design problem
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5 Conclusion

In this paper, a novel sea horse optimizer (SHO) was present-
ed based on natural heuristics. The proposed SHO algorithm
simulates three kinds of intelligent behaviors of sea horses,
which are feeding, male reproduction, and movement.
Firstly, SHO employs the logarithmic helical equation and
Levy flight to mathematically express and construct for
the spiral floating. The aim is to make sea horses move
randomly with large span step size and improve the local
exploitation of SHO. Meanwhile, Brownian motion is used
to explore the search space more comprehensively. Then,
the speed between the sea horse and the prey are set accord-
ing to the probability to express whether the predation suc-
cess or failure. In order to regulate constantly the search
neighborhoods of the proposed SHO algorithm, adaptive
parameter is introduced into the predation behavior.
Finally, based on the new generated population by follow-
ing the first two behaviors, offspring are bred, which inherit
the good genetic characteristics from their fathers and in-
crease the diversity of individuals in population.

Qualitative experiments analyzed the influence of differ-
ent behaviors of sea horses on different stages of the pro-
posed SHO algorithm from the search history, the trajectory
of 1st sea horse, average fitness of all sea horses and

convergence curve. 23 well-known functions were selected
to verify the local exploitation accuracy and global explo-
ration ability of algorithms. Meanwhile, CEC2014 bench-
mark functions were used to test the local extreme value
avoidance of the algorithm and the effectiveness of SHO
in the high-dimensional case of the two sets of test
functions.

Experimental results show that SHO is significantly supe-
rior to six state-of-the-art comparison algorithms on seven
unimodal functions and most of the multimodal functions.
For CEC2014 benchmark functions, SHO also has stronger
local extremum avoidance than the other six algorithms.
Simultaneously, SHO has fast convergence speed and good
local extremum avoidance proved by convergence analysis. It
can still keep high convergence accuracy in higher dimen-
sions. The results of Wilcoxon rank sum test and Friedman
rank test prove the superiority of SHO on most test functions.
Finally, the application of SHO in several practical engineer-
ing problems verify that SHO has high optimization ability
and low computational cost, which can replace some tradition-
al metaheuristics or certain new proposed algorithms in recent
years.

In the future, SHO can be applied in a wider range of fields,
such as the hyper-parameter optimization of extreme learning
machines and the intelligent solving of complex optimization
problems. In addition, multi-objective and binary versions of
SHO can be further developed to address multi-objective and
discrete optimization problems.
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Table 22 Statistical results of different algorithms for welded beam
design problem

Algorithms Best Mean Worst Std Eval

HHO [23] 1.8561 1.9302 1.9759 6.47E-02 30,000

CPSO [59] 1.728024 1.748831 1.782143 1.2926E-02 200,000

GWO [60] 1.726995 1.727128 1.727564 1.157E-03 30,000

SCA [60] 1.759173 1.817657 1.873408 2.7543E-02 30,000

WOA [38] 2.3584 2.5685 2.7862 2.14E-01 30,000

GEO [28] 1.8653598 / / / 50,000

MVO [60] 1.725472 1.729680 1.741651 4.866E-03 30,000

SHO 1.7259 1.7699 2.0029 6.055328E-02 15,000

Table 21 Optimal results of
different algorithms for welded
beam design

Algorithms h l t b Optimal value

HHO [23] 0.2134 3.5601 8.4629 0.2346 1.8561

CPSO [59] 0.202369 3.544214 9.048210 0.205723 1.728024

GWO [60] 0.205678 3.475403 9.036964 0.206229 1.726995

SCA [60] 0.204695 3.536291 9.004290 0.210025 1.759173

WOA [38] 0.329 2.5471 6.8078 0.3789 2.3584

GEO [28] 0.2443688 3.0630204 8.2914827 0.2443689 1.8653598

MVO [60] 0.205611 3.472103 9.040931 0.205709 1.725472

SHO 0.20585 3.46946 9.03276 0.20591 1.7259
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