
Expert Systems With Applications 225 (2023) 120069

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Snow ablation optimizer: A novel metaheuristic technique for numerical
optimization and engineering design
Lingyun Deng ∗, Sanyang Liu
School of Mathematics and Statistics, Xidian University, Xi’an, 710126, China

A R T I C L E I N F O

Keywords:
Snow ablation optimizer
Novel metaheuristic algorithm
Premature convergence
Benchmark
Engineering design

A B S T R A C T

This paper develops a novel nature-inspired metaheuristic technique named snow ablation optimizer (SAO)
for numerical optimization and engineering design. The SAO algorithm mainly emulates the sublimation and
melting behavior of snow to realize a tradeoff between exploitation and exploration in the solution space and
discourage premature convergence. The competitiveness and effectiveness of SAO are validated utilizing 29
typical CEC2017 unconstrained benchmarks and 22 CEC2020 real-world constrained optimization issues which
consist of 7 process synthesis and design issues and 15 mechanical engineering issues. Additionally, to further
verify its strength, the developed SAO is applied to extract the core parameters in photovoltaic systems. The
simulation outcomes have demonstrated that the developed SAO is a very promising technique that can yield
better performance than other state-of-the-art rival methods. The source code of SAO is publicly available at
https://github.com/denglingyun123/SAO-snow-ablation-optimizer.
1. Introduction

In the past two decades, metaheuristic algorithms (MAs) have been
broadly utilized to handle many complicated engineering problems in
various scientific fields. Especially when handling nonconvex, highly
nonlinear, nonsmooth, and even dynamic real-world problems, com-
pared with traditional mathematical optimization approaches, MAs are
more general because of their gradient-free characteristics and simple
structures (Li, Liu, & Yang, 2020; Su et al., 2023). These algorithms
start the search process in the solution space according to the prede-
fined rules. On the basis of the rules that the algorithm follows, MAs are
mainly classified into two types: evolutionary algorithms and swarm
intelligence algorithms, as depicted in Fig. 1.

As the first category, evolutionary algorithms emulate the compe-
tition rules of survival of the fittest in nature. Such algorithms mainly
employ the crossover strategy and mutation operator to reflect the evo-
lution of species. Genetic algorithm (GA) (Srinivas & Patnaik, 1994) is
a representative evolutionary computation technique and has been uti-
lized to effectively address numerous challenging problems in academia
and industry. The inspiration of GA originates from the perspective
of Darwinism. In addition, typical methods of this category contain
evolution strategy (Hansen et al., 2003), differential evolution (Storn
& Price, 1997), and evolutionary programming (Yao et al., 1999).

Another category is the swarm intelligence algorithm. Note that the
characteristics of most swarm intelligence optimizers are mainly di-
vided into the following four parts: bio-inspired, human-based,
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mathematics-based, and physics-based. Among them, bio-inspired al-
gorithms mimic the biological behavior of fishes, insects, and other
creatures. Recent and influential algorithms in the first group are par-
ticle swarm optimization (PSO) (Kennedy & Eberhart, 1995), grey wolf
optimizer (GWO) (Sm et al., 2014), butterfly optimization algorithm
(BOA) (Arora & Singh, 2018), and slime mould algorithm (SMA) (Deng
& Liu, 2023; Li, Chen, et al., 2020). Besides, human-based methods typi-
fied by the teaching–learning-based optimizer (TLBO) (Rao et al., 2012)
emulate the laws of human activities in communities, mathematics-
based methods represented by sine cosine algorithm (SCA) (Mirjalili,
2016) and arithmetic optimization algorithm (AOA) (Abualigah, Di-
abat, et al., 2021) imitate the laws of mathematics in real life, and
physics-based methods such as multi-verse optimizer (MVO) (Mirjalili
et al., 2015), equilibrium optimizer (EO) (Faramarzi, Heidarinejad,
Stephens, & Mirjalili, 2020), and simulated annealing (SA) (Ingber,
1993) simulate the laws of physics.

As the no-free-lunch theorem (NFL) (Wolpert & Macready, 1997)
suggests, although MAs are broadly used, they cannot always yield
excellent performance on all optimization problems. Therefore, re-
searchers are motivated to either put forward novel methods or rein-
force the convergence performance of existing algorithms by utilizing
some effective improvements. The ultimate goal is to realize a tradeoff
between exploitation and exploration (Hashim et al., 2019). Actually,
in the field of metaheuristic algorithms, the exploration capability rep-
resents the property of the algorithm to expand and discover promising
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Fig. 1. Classification of MAs.
egions in the solution space. When applying MAs to cope with compli-
ated multimodal problems, the exploration capability is supposed to be
reserved to encourage the search agents to jump out from numerous
ocal optima (Liang et al., 2006). Meanwhile, the exploitation capabil-
ty stands for the capability to converge towards the global optimal
olution with rapid convergence. Nevertheless, the major deficiency of
ost MAs is still the imbalance between exploration and exploitation

hat limits the performance of algorithms seriously. Hence, this article
evelops a novel physics-based metaheuristic technique named snow
blation optimizer (SAO) with the aiming of balancing exploration and
xploitation.

.1. Motivation

As one of the most powerful tools to cope with real-world optimiza-
ion issues, MAs have attracted a high level of interest. Based on the
bove description, numerous researchers have worked on strengthening
heir performances through different approaches, thereby deriving a
ubstantial number of interesting algorithms. Nevertheless, with more
nd more optimization problems becoming complicated, better opti-
ization techniques are always needed. In addition, the usefulness and

ffectiveness of MAs encourage us to develop a novel metaheuristic
echnique. Furthermore, the SAO algorithm is devised to overcome the
eaknesses of most MAs and achieve a tradeoff between the swarm’s
iversity and convergence eventually.

.2. Contribution

Inspired by the sublimation and melting behavior of snow in nature,
e propose a novel metaheuristic technique named snow ablation
ptimizer (SAO) for handling numerical optimization and engineering
esign issues. The major contributions are summarized in the following:

• A novel physics-based algorithm named snow ablation optimizer
(SAO) that emulates the sublimation and melting behavior of
snow is developed.

• 29 representative CEC2017 unconstrained benchmarks and 22
CEC2020 real-world constrained optimization issues are
employed to verify the strength of the developed technique and
simulation outcomes are contrasted with some well-regarded
methods.

• Statistical analyses such as Wilcoxon’s test and Friedman’s test are
utilized to investigate the strength of the raised SAO algorithm.

• The analysis of exploration and exploitation in SAO reveals the
reason behind the great performance of the developed technique.
2

• The application of SAO to extract core parameters of photovoltaic
systems also verifies the superiority of SAO over other rival
algorithms.

The remainder of this article is arranged as follows. Section 2
describes the snow ablation optimizer in detail. Section 3 presents and
analyzes the simulation outcomes. Conclusions and some future works
are shown in Section 4.

2. Snow ablation optimizer (SAO)

In this part, the source of inspiration for SAO, which is on the basis
of the sublimation and melting behavior of snow, is given. After that,
the mathematical model of this algorithm is presented. Finally, we give
the pseudo-code of SAO and analyze its time complexity.

2.1. Inspiration

Snow is one of the most fascinating and beautiful landscapes in
nature. Especially in winter, the ablation of snow plays a significant
role in the ecosystem, which affects the growth and development of
crops and human health (Edwards et al., 2007). In physics, snow can
transform into two forms: liquid water and steam. Corresponding to
these two forms are two physical processes: melting and sublimation.
As depicted in Fig. 2, in the process of melting, snow converts into
liquid water, whereas it can straightly convert into steam through
sublimation. Meanwhile, note that the liquid water converted from
snow melting can also be turned into steam by evaporating.

The source of inspiration for snow ablation optimizer (SAO) arises
from the sublimation and melting behavior of snow. In the following
parts, the initialization stage, exploration stage, exploitation stage, and
dual-population mechanism in the SAO algorithm will be introduced.

2.2. Initialization stage

In SAO, the procedure of iteration starts with a randomly produced
swarm. As given in Eq. (1), the whole swarm is usually modeled as a
matrix with 𝑁 rows and 𝐷𝑖𝑚 columns, where 𝑁 represents the swarm’s
size, and 𝐷𝑖𝑚 denotes the dimensionality of the solution space.

𝑍 = 𝐿 + 𝜃 × (𝑈 − 𝐿)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑧1,1 𝑧1,2 ⋯ 𝑧1,𝐷𝑖𝑚−1 𝑧1,𝐷𝑖𝑚
𝑧2,1 𝑧2,2 ⋯ 𝑧2,𝐷𝑖𝑚−1 𝑧2,𝐷𝑖𝑚
⋮ ⋮ ⋮ ⋮ ⋮

𝑧𝑁−1,1 𝑧𝑁−1,2 ⋯ 𝑧𝑁−1,𝐷𝑖𝑚−1 𝑧𝑁−1,𝐷𝑖𝑚
𝑧𝑁,1 𝑧𝑁,2 ⋯ 𝑧𝑁,𝐷𝑖𝑚−1 𝑧𝑁,𝐷𝑖𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦𝑁×𝐷𝑖𝑚

, (1)
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Fig. 2. Schematic diagram of inspiration source.
Fig. 3. Brownian motion.
Among them, 𝐿 and 𝑈 indicate the lower bound and upper bound of the
solution space, respectively. 𝜃 represents a number randomly produced
in [0,1].

2.3. Exploration stage

In this part, the exploration strategy in SAO is described in detail.
When the snow or the liquid water transformed from snow converts
into steam, the search agents present a high-decentralized feature
due to the irregular movement. In this study, Brownian motion is
utilized to model this situation. As a stochastic process, Brownian
motion is extensively applied to emulate the foraging behavior of
animals (Faramarzi, Heidarinejad, Mirjalili, & Gandomi, 2020), the
endless and irregular movement of particles (Abdel-Basset et al., 2018),
the fluctuating behavior of the stock price (Merton, 1976), etc. For
standard Brownian motion, the step size is attained by the probability
density function based on the normal distribution with mean zero and
variance one. The associated mathematical representation is shown in
the following (Faramarzi, Heidarinejad, Mirjalili, & Gandomi, 2020):

𝑓𝐵𝑀 (𝑥; 0, 1) = 1
√

2𝜋
× exp(−𝑥2

2
), (2)

The 1-dimensional distribution of Brownian motion and the trajec-
tory in 2- and 3-dimensional search spaces are shown in Fig. 3. As
described in Fig. 3, utilizing dynamic and uniform step length, the
Brownian motion enables some potential regions in the search space
to be explored. Hence, it can well reflect the situation of the steam
spreading out in the search space. The formula to calculate positions in
the process of exploration is presented in the following:

𝑍𝑖(𝑡+1) = 𝐸𝑙𝑖𝑡𝑒(𝑡)+𝐵𝑀𝑖(𝑡)⊗(𝜃1×(𝐺(𝑡)−𝑍𝑖(𝑡))+(1−𝜃1)×(�̄�(𝑡)−𝑍𝑖(𝑡))), (3)

Among them, 𝑍𝑖(𝑡) denotes the 𝑖th individual during the 𝑡th iteration,
𝐵𝑀 (𝑡) indicates a vector including random numbers on the basis
3

𝑖

of Gaussian distribution denoting the Brownian motion, the sign ⊗
represents entry-wise multiplications, 𝜃1 indicates a number randomly
chosen from [0,1]. Furthermore, 𝐺(𝑡) refers to the current best solution,
𝐸𝑙𝑖𝑡𝑒(𝑡) is a random individual selected from a set of several elites in the
swarm, and �̄�(𝑡) denotes the centroid position of the whole swarm. The
corresponding mathematical expressions are presented in the following:

�̄�(𝑡) = 1
𝑁

𝑁
∑

𝑖=1
𝑍𝑖(𝑡), (4)

𝐸𝑙𝑖𝑡𝑒(𝑡) ∈ [𝐺(𝑡), 𝑍𝑠𝑒𝑐𝑜𝑛𝑑 (𝑡), 𝑍𝑡ℎ𝑖𝑟𝑑 (𝑡), 𝑍𝑐 (𝑡)], (5)

where 𝑍𝑠𝑒𝑐𝑜𝑛𝑑 (𝑡) and 𝑍𝑡ℎ𝑖𝑟𝑑 (𝑡) represent the second-best individual and
the third-best individual in the current population, respectively. 𝑍𝑐 (𝑡)
denotes the centroid position of individuals whose fitness values ranked
in the top 50%. In this study, for simplicity, the individuals whose
fitness values ranked in the top 50% are named leaders. Additionally,
𝑍𝑐 (𝑡) is calculated utilizing the mathematical expression in Eq. (6).

𝑍𝑐 (𝑡) =
1
𝑁1

𝑁1
∑

𝑖=1
𝑍𝑖(𝑡), (6)

where 𝑁1 indicates the number of leaders, that is, 𝑁1 is equal to half
the size of the whole swarm, and 𝑍𝑖(𝑡) represents the 𝑖th best leader.
Therefore, during each iteration, the 𝐸𝑙𝑖𝑡𝑒(𝑡) is randomly selected from
a set that consists of the current best solution, second-best individual,
third-best individual, and centroid position of leaders.

Fig. 4 visually depicts the cross terms - 𝜃1 × (𝐺(𝑡) − 𝑍𝑖(𝑡)) and
(1−𝜃1)×(�̄�(𝑡)−𝑍𝑖(𝑡)) in 2-dimensional parametric space. The parameter
𝜃1 is responsible for controlling the movement towards the current best
individual and the movement to the centroid position of leaders. The
integration of the above two cross terms is mainly utilized to reflect the
interaction between individuals.
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Fig. 4. Schematic diagram of the cross term in SAO.
2.4. Exploitation stage

In this part, the exploitative characteristic of SAO is introduced.
Instead of expanding with a high-decentralized feature in the solution
space, search agents are encouraged to exploit high-quality solutions
around the current best solution when the snow converts into liquid
water by melting behavior. As one of the most classical snowmelt mod-
els, the degree-day method (Zhou et al., 2021) is utilized to reflect the
process of snow melting. The general form of this method is presented
in the following:

𝑀 = 𝐷𝐷𝐹 × (𝑇 − 𝑇1), (7)

Among them, M denotes the snowmelt rate, a key parameter to emulate
the melting behavior in the exploitation stage. 𝑇 represents the average
daily temperature. 𝑇1 refers to the base temperature that is usually set
to 0 (Zhou et al., 2021). This results in:

𝑀 = 𝐷𝐷𝐹 × 𝑇 , (8)

where 𝐷𝐷𝐹 indicates the degree-day factor that ranges from 0.35 to
0.6 (Martinec & Rango, 1986). In each iteration, the mathematical
expression to update the value of 𝐷𝐷𝐹 is presented in the following:

𝐷𝐷𝐹 = 0.35 + 0.25 × 𝑒
𝑡

𝑡max − 1
𝑒 − 1

, (9)

where 𝑡𝑚𝑎𝑥 represents the termination criterion. The trend of 𝐷𝐷𝐹 is
depicted in Fig. 5.

Then in SAO, the snowmelt rate is calculated utilizing the following
equation:

𝑀 = (0.35 + 0.25 × 𝑒
𝑡

𝑡max − 1
𝑒 − 1

) × 𝑇 (𝑡), 𝑇 (𝑡) = 𝑒
−𝑡

𝑡max , (10)

Then in the exploitation stage of SAO, the position updating equa-
tion is presented in the following:

𝑍𝑖(𝑡+1) = 𝑀 ×𝐺(𝑡)+𝐵𝑀𝑖(𝑡)⊗ (𝜃2×(𝐺(𝑡)−𝑍𝑖(𝑡))+(1−𝜃2)×(�̄�(𝑡)−𝑍𝑖(𝑡))),

(11)

where 𝑀 is the snowmelt rate, 𝜃2 indicates the random number chosen
from [−1,1]. This parameter facilitates communication between indi-
viduals. In this stage, with the help of the cross terms - 𝜃2×(𝐺(𝑡)−𝑍𝑖(𝑡))
and (1 − 𝜃2) × (�̄�(𝑡) − 𝑍𝑖(𝑡)), the individuals are more likely to exploit
promising regions based on the knowledge of current best search agent
and centroid position of the swarm.

2.5. Dual-population mechanism

Realizing a tradeoff between exploitation and exploration is very
significant in metaheuristic algorithms. As mentioned in Section 2.1,
4

Fig. 5. Trends of the 𝐷𝐷𝐹 .

some liquid water converted from the snow can also transform into
steam to perform the exploration process. That is, over time, the
likelihood of individuals doing irregular movements with a high-
decentralized feature increases. Then the algorithm gradually has a ten-
dency to explore the solution space. In our study, the dual-population
mechanism is devised to reflect this situation and maintain exploitation
and exploration. As presented in Algorithm 1, the whole population
is randomly divided into two equal-sized subpopulations at the early
phase of iteration. We denote the whole population and these two
subpopulations as 𝑃 , 𝑃𝑎, and 𝑃𝑏, respectively. In addition, the size of 𝑃 ,
𝑃𝑎, and 𝑃𝑏 are denoted as 𝑁 , 𝑁𝑎, and 𝑁𝑏, respectively. Among them, 𝑃𝑎
is responsible for the exploration, whereas 𝑃𝑏 is assigned to perform the
exploitation. Then in the subsequent iterations, the size of 𝑃𝑏 gradually
declines and the size of 𝑃𝑎 is accordingly increased.

Algorithm 1 Dual-population mechanism

1: Initialization: 𝑡 = 0, 𝑡𝑚𝑎𝑥, 𝑁𝑎 = 𝑁𝑏 = 𝑁
2 , where 𝑁 denotes the

population size
2: while (𝑡 < 𝑡𝑚𝑎𝑥) do
3: if 𝑁𝑎 < 𝑁 then
4: 𝑁𝑎 = 𝑁𝑎 + 1, 𝑁𝑏 = 𝑁𝑏 − 1
5: end if
6: 𝑡 = 𝑡 + 1
7: end while
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Table 1
Benchmark functions.

CEC2017

C20171 ,C20173 unimodal problems
C20174 − C201710 simple multimodal problems
C201711 − C201720 hybrid problems
C201721 − C201730 composition problems

To sum up, the complete position updating equation of the SAO
lgorithm is shown in the following:

𝑖(𝑡 + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸𝑙𝑖𝑡𝑒(𝑡) + 𝐵𝑀𝑖(𝑡)⊗ (𝜃1 × (𝐺(𝑡) −𝑍𝑖(𝑡))
+ (1 − 𝜃1) × (�̄�(𝑡) −𝑍𝑖(𝑡))), 𝑖 ∈ 𝑖𝑛𝑑𝑒𝑥𝑎

𝑀 × 𝐺(𝑡) + 𝐵𝑀𝑖(𝑡)⊗ (𝜃2 × (𝐺(𝑡) −𝑍𝑖(𝑡))
+ (1 − 𝜃2) × (�̄�(𝑡) −𝑍𝑖(𝑡))), 𝑖 ∈ 𝑖𝑛𝑑𝑒𝑥𝑏

, (12)

As described in Eq. (1), the whole population is actually a position
matrix. Hence, in Eq. (12), 𝑖𝑛𝑑𝑒𝑥𝑎 and 𝑖𝑛𝑑𝑒𝑥𝑏 denote a set of indexes
ncluding line numbers of individuals in 𝑃𝑎 and 𝑃𝑏 in the entire posi-
ion matrix, respectively. The entire process of the SAO algorithm is
ummarized in Algorithm 2.

Algorithm 2 Snow ablation optimizer (SAO)

1: Initialization: the swarm 𝑍𝑖(𝑖 = 1, 2,⋯ , 𝑁), 𝑡 = 0, 𝑡𝑚𝑎𝑥, 𝑁𝑎 = 𝑁𝑏 =
𝑁
2

2: Fitness evaluation
3: Record the current best individual 𝐺(𝑡)
4: while (𝑡 < 𝑡𝑚𝑎𝑥) do
5: Calculate the snowmelt rate 𝑀 through Eq. (10)
6: Randomly divide the whole population 𝑃 into two subpopula-

tions 𝑃𝑎 and 𝑃𝑏
7: for each individual do
8: Update each individual’s position through Eq. (12)
9: end for
0: Fitness evaluation
1: Update 𝐺(𝑡)
2: 𝑡 = 𝑡 + 1
3: end while
4: Return 𝐺(𝑡)

2.6. Time complexity of SAO

In this subsection, the time complexity of the snow ablation opti-
mizer (SAO) is analyzed. Note that the SAO algorithm mainly consists
of the following parts: initialization, position updating of individuals,
fitness evaluation, and fitness sorting. The time complexity of each part
is presented in the following: initialization 𝑂(𝑁 ∗ 𝐷𝑖𝑚), position up-
dating of individuals 𝑂(𝑁 ∗ 𝐷𝑖𝑚), fitness evaluation 𝑂(𝑁), and fitness
sorting 𝑂(𝑁 ∗ 𝑙𝑜𝑔𝑁). Among them, 𝐷𝑖𝑚 refers to the dimensionality of
the solution space. Then the time complexity can be estimated in the
following: 𝑂(𝑁 ∗ 𝐷𝑖𝑚 +𝑁 ∗ 𝑡 ∗ (𝑙𝑜𝑔𝑁 +𝐷𝑖𝑚 + 1)).
5

𝑚𝑎𝑥
3. Experimental outcomes and analyses

In this part, the strength of the snow ablation optimizer (SAO) is
validated through the CEC2017 test suite, CEC2020 real-world con-
strained optimization issues, and application to parameter extraction of
photovoltaic systems. The whole experiment consists of the following
five parts: (1) benchmark functions and experimental settings; (2) ex-
periments on the CEC2017 test suite; (3) experiments on the CEC2020
real-world constrained optimization issues; (4) analysis of exploration
and exploitation in SAO; and (5) application to parameter extraction
for photovoltaic systems.

3.1. Benchmark functions and experimental settings

Experimental studies are performed on 29 10-dimensional and 30-
dimensional benchmark problems from the CEC2017 test suite, re-
spectively. Based on their characteristics, 29 CEC2017 unconstrained
benchmarks are classified in Table 1. More details about these typical
test problems can be found in the corresponding Ref. (Onay & Aydemr,
2022).

As reported in Table 1, unimodal problems are often utilized to val-
idate the exploitation capability of algorithms because of the only one
global optimum they possess. On the other hand, simple multimodal
problems are more challenging to handle than unimodal problems
because of the existence of numerous local optima. Moreover, hybrid
problems and composition problems are likely to better imitate the real
search space due to their different characteristics in different regions.
Consequently, the potential performance of methods to cope with real-
world optimization issues can be reflected by utilizing these typical
benchmarks.

In our experiments, 30 search agents are employed and 1000 to-
tal iteration is utilized as the termination criterion. Moreover, eight
state-of-the-art competitors are chosen to make a comparison with
the snow ablation optimizer (SAO). They are AO (Abualigah, Yousri,
et al., 2021), MVO (Mirjalili et al., 2015), EO (Faramarzi, Heidarine-
jad, Stephens, & Mirjalili, 2020), AVOA (Abdollahzadeh et al., 2021),
HHO (Aaha et al., 2019), PSO-sono (Meng et al., 2022), SHADE (Tanabe
& Fukunaga, 2013), and LSHADE-SPACMA (Mohamed et al., 2017).
The parameter setup is kept consistent with the associated references,
as given in Table 2. To alleviate the interference of randomness to
the experiment, each algorithm is executed independently 20 times on
each test problem. All experiments have been done utilizing MATLAB
R2018a software under WINDOWS 10 64-bit operating system in Intel
Core i5-5250U CPU @1.60 GHz. The outcome attained by the best
algorithm is highlighted in boldface.

3.2. Experiments on the CEC2017 test suite

3.2.1. Convergence behavior of SAO
In this part, the convergence behavior of SAO is studied utilizing

several CEC2017 benchmarks in the 2-dimensional parametric space.
Specifically, in this experiment, the convergence behavior of SAO is
reflected by the search history, convergence graph, history of average
fitness, swarm’s diversity, and diagram of trajectory in the first dimen-
sion. As depicted in Fig. 6, the first column is the description of the
Table 2
Parameter setup in rival methods.

Method Reference Parameter Value

AO Abualigah, Yousri, et al. (2021) 𝛼, 𝛿 0.1, 0.1
MVO Mirjalili et al. (2015) 𝑊𝐸𝑃𝑚𝑎𝑥, 𝑊𝐸𝑃𝑚𝑖𝑛 1, 0.2
EO Faramarzi, Heidarinejad, Stephens, and Mirjalili (2020) 𝑎1, 𝑎2, 𝐺𝑃 2, 1, 0.5
AVOA Abdollahzadeh et al. (2021) 𝑃1, 𝑃2, 𝑃3 0.6, 0.4, 0.6
HHO Aaha et al. (2019) 𝐸0 (−1,1)
PSO-sono Meng et al. (2022) 𝑉𝑚𝑎𝑥, 𝑉𝑚𝑖𝑛, 𝑟 30, −30, 0.5
SHADE Tanabe and Fukunaga (2013) 𝑃𝑏𝑒𝑠𝑡𝑟𝑎𝑡𝑒, 𝐴𝑟𝑐𝑟𝑎𝑡𝑒 0.1, 2
LSHADE-SPACMA Mohamed et al. (2017) 𝐻 , 𝑁𝑚𝑖𝑛, 𝑃𝑏𝑒𝑠𝑡_𝑟𝑎𝑡𝑒, 𝐴𝑟𝑐_𝑟𝑎𝑡𝑒, 𝐹𝐶𝑃 , 𝑐 5, 4, 0.11, 1.4, 0.5, 0.8
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Fig. 6. Convergence behavior of SAO.
parametric space, and it reveals the smooth structure of unimodal prob-
lems such as C20171 and C20173. Meanwhile, a substantial number
of local optima exist in simple multimodal problems and complicated
hybrid problems well emulate the real solution space.
6

Then in the second column, the search history diagram visually
presents all individuals’ position history during the iteration procedure.
Note that individuals tend to discover potential and promising areas in
early iterations and finally cluster around the global optimal solution,
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Table 3
Experimental outcomes attained by nine algorithms on the CEC2017 test suite with 10Dim.

Function Metric AO MVO EO AVOA HHO PSO-sono SHADE LSHADE-SPACMA SAO

C20171 Mean 1.07E+06 8.10E+03 3.13E+03 3.16E+03 5.43E+05 2.71E+03 1.00E+02 1.00E+02 1.99E+03
SD 1.02E+03 4.81E+03 3.78E+03 1.83E+03 3.58E+05 3.57E+03 0.00E+00 0.00E+00 1.19E+03

C20173 Mean 833.07 300.04 300.00 303.52 307.19 300.00 300.00 300.00 300.00
SD 2.38E+02 3.16E−02 2.25E−03 1.57E+01 9.52E+00 8.82E−08 0.00E+00 0.00E+00 1.30E−10

C20174 Mean 413.05 404.38 404.97 419.73 431.33 405.96 400.00 400.00 401.67
SD 2.25E+01 1.61E+00 6.92E−01 2.98E+01 3.48E+01 1.35E+00 0.00E+00 0.00E+00 2.86E−01

C20175 Mean 5.32E+02 5.19E+02 5.16E+02 5.38E+02 5.49E+02 5.09E+02 5.05E+02 5.04E+02 5.14E+02
SD 1.03E+01 8.03E+00 8.29E+00 1.88E+01 2.17E+01 5.24E+00 1.47E+00 1.38E+00 3.17E+00

C20176 Mean 614.31 601.11 600.00 613.13 636.41 600.38 600.00 600.00 600.00
SD 5.74E+00 1.70E+00 1.78E−02 8.90E+00 1.05E+01 8.53E−01 1.48E−05 3.56E−04 1.13E−02

C20177 Mean 7.58E+02 7.25E+02 7.22E+02 7.68E+02 7.87E+02 7.19E+02 7.15E+02 7.14E+02 7.19E+02
SD 1.32E+01 8.00E+00 7.00E+00 2.24E+01 1.79E+01 4.20E+00 1.93E+00 2.01E+00 4.09E+00

C20178 Mean 8.25E+02 8.20E+02 8.11E+02 8.33E+02 8.31E+02 8.11E+02 8.04E+00 8.05E+02 8.10E+02
SD 6.67E+00 8.08E+00 4.54E+00 1.51E+01 9.79E+00 4.67E+00 2.16E+00 1.72E+00 4.18E+00

C20179 Mean 1059.92 900.45 900.62 1148.02 1424.84 901.53 900.37 900.26 900.19
SD 1.42E+02 6.34E−01 3.02E−01 2.33E+02 2.40E+02 2.17E+00 7.32E−01 4.37E−01 2.06E−01

C201710 Mean 1.88E+03 1.78E+03 1.61E+03 1.92E+03 2.09E+03 1.41E+03 1.24E+03 1.36E+03 1.57E+03
SD 2.67E+02 3.04E+02 2.64E+02 2.78E+02 3.86E+02 2.55E+02 1.17E+02 1.40E+02 1.29E+02

C201711 Mean 1171.62 1133.04 1106.91 1139.73 1169.96 1125.12 1101.44 1106.23 1108.81
SD 3.28E+01 4.92E+01 4.14E+00 3.74E+01 5.48E+01 2.15E+01 1.22E+00 6.70E+00 3.37E+00

C201712 Mean 3.02E+06 8.50E+05 1.03E+04 1.28E+06 2.92E+06 1.11E+04 1.65E+03 1.60E+03 8.71E+03
SD 3.34E+06 9.39E+05 7.75E+03 1.20E+06 3.39E+06 8.36E+03 2.87E+02 2.22E+02 4.03E+03

C201713 Mean 1.43E+04 1.00E+04 7.46E+03 1.02E+04 1.39E+04 1.57E+03 1.33E+03 1.32E+03 9.31E+03
SD 1.41E+04 1.03E+04 6.58E+03 8.77E+03 1.04E+04 1.73E+02 6.20E+01 5.15E+01 4.92E+03

C201714 Mean 2.17E+03 1.70E+03 1.48E+03 1.88E+03 1.64E+03 1.45E+03 1.41E+03 1.42E+03 5.88E+03
SD 8.81E+02 4.70E+02 3.17E+01 7.71E+02 1.92E+02 1.96E+01 9.73E+00 9.98E+00 6.17E+03

C201715 Mean 6.46E+03 2.20E+03 1.65E+03 4.59E+03 6.55E+03 1.62E+03 1.51E+03 1.51E+03 3.72E+03
SD 7.94E+03 1.37E+03 9.09E+01 2.62E+03 2.15E+03 1.35E+02 1.43E+01 7.87E+00 2.83E+03

C201716 Mean 1.81E+03 1.79E+03 1.74E+03 1.78E+03 1.90E+03 1.65E+03 1.61E+03 1.62E+03 1.68E+03
SD 1.32E+02 1.47E+02 6.19E+01 1.29E+02 1.24E+02 9.10E+01 3.64E+01 4.16E+01 7.93E+01

C201717 Mean 1772.17 1793.71 1742.94 1766.37 1775.52 1744.49 1702.62 1708.55 1741.57
SD 2.85E+01 6.32E+01 2.77E+01 3.43E+01 4.66E+01 2.11E+01 4.88E+00 1.01E+01 2.73E+01

C201718 Mean 2.95E+04 1.88E+04 1.88E+04 1.29E+04 1.19E+04 2.31E+03 1.84E+03 1.81E+03 1.32E+04
SD 1.55E+04 1.24E+04 1.26E+04 7.98E+03 7.27E+03 9.51E+02 2.35E+01 1.02E+01 1.01E+04

C201719 Mean 1.11E+04 2.68E+03 1.97E+03 7.99E+03 1.19E+04 1.92E+03 1.91E+03 1.90E+03 7.94E+03
SD 8.59E+03 1.04E+03 4.91E+01 6.28E+03 8.75E+03 1.60E+01 1.50E+01 8.87E−01 6.97E+03

C201720 Mean 2.12E+03 2.07E+03 2.05E+03 2.14E+03 2.17E+03 2.03E+03 2.01E+03 2.01E+03 2.05E+03
SD 5.69E+01 5.68E+01 5.32E+01 8.13E+01 7.52E+01 1.21E+01 8.18E+00 3.14E+00 5.83E+01

C201721 Mean 2313.89 2306.64 2295.84 2293.55 2337.74 2304.35 2296.87 2245.21 2292.64
SD 3.82E+01 3.73E+01 4.08E+01 6.82E+01 5.04E+01 2.48E+01 3.32E+01 1.55E+01 4.74E+01

C201722 Mean 2306.58 2320.86 2300.63 2308.16 2306.53 2299.07 2300.51 2300.65 2297.67
SD 1.61E+01 7.65E+01 3.63E+00 5.41E+00 2.38E+01 1.46E+01 4.35E+00 4.63E+00 1.23E+00

C201723 Mean 2642.35 2620.34 2615.77 2640.06 2677.54 2608.83 2609.43 2608.11 2616.37
SD 1.33E+01 8.52E+00 6.07E+00 1.66E+01 3.03E+01 3.79E+00 2.95E+00 2.27E+00 7.07E+00

C201724 Mean 2740.69 2748.08 2745.69 2762.08 2815.91 2737.47 2737.71 2737.45 2743.12
SD 8.34E+01 1.15E+01 6.37E+00 6.54E+01 4.49E+01 3.64E+00 3.04E+00 2.26E+00 7.28E+00

C201725 Mean 2926.78 2925.94 2933.29 2913.97 2919.58 2938.31 2916.91 2926.37 2922.72
SD 2.32E+01 2.32E+01 3.15E+01 2.04E+01 7.48E+01 1.95E+01 2.35E+01 2.35E+01 1.07E+01

C201726 Mean 3052.78 2942.87 2969.37 3177.85 3470.52 3013.51 2968.22 2937.1 2934.44
SD 1.47E+02 2.53E+02 2.38E+02 3.17E+02 5.83E+02 2.94E+02 1.98E+02 4.93E+01 3.79E+01

C201727 Mean 3102.81 3097.48 3091.68 3104.56 3150.11 3080.91 3091.25 3090.52 3095.73
SD 6.85E+00 1.85E+01 2.48E+00 2.08E+01 4.44E+01 2.15E+00 3.81E+00 2.71E+00 5.07E+00

C201728 Mean 3395.92 3288.97 3316.08 3351.27 3434.87 3288.21 3329.65 3355.09 3285.24
SD 9.36E+01 1.31E+02 1.36E+02 1.14E+02 1.68E+02 1.08E+02 1.36E+02 1.04E+02 1.02E+02

C201729 Mean 3224.37 3229.43 3189.89 3265.47 3374.57 3193.45 3153.91 3151.61 3188.35
SD 4.33E+01 6.46E+01 4.97E+01 8.44E+01 9.83E+01 3.24E+01 3.58E+01 1.52E+01 6.08E+01

C201730 Mean 7.75E+05 3.13E+05 2.81E+05 1.96E+05 2.03E+06 1.50E+05 3.20E+03 3.40E+03 1.93E+05
SD 9.35E+05 5.26E+05 4.33E+05 2.82E+05 2.71E+06 2.54E+05 4.53E+00 4.23E+01 3.86E+05
which indicates SAO realizes a great tradeoff between exploration and
exploitation. Especially for hybrid problem C201724, the SAO has fo-
cused on exploiting the left region in the solution space for a long time,
whereas the best outcomes are attained in the right space. Actually, this
7

shows the excellent exploration capability possessed by the developed
technique, which enables the swarm’s diversity to be preserved and
facilitates local optima avoidance.

The convergence graph in the third column is the most broadly
utilized metric to validate the performance of metaheuristic techniques.

As described in Fig. 6, the convergence graphs attained by SAO suggest
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Table 4
Experimental outcomes attained by nine algorithms on the CEC2017 test suite with 30Dim.

Function Metric AO MVO EO AVOA HHO PSO-sono SHADE LSHADE-SPACMA SAO

C20171 Mean 4.34E+08 5.80E+05 4.09E+03 6.45E+03 3.00E+07 1.03E+05 1.00E+02 1.00E+02 3.96E+03
SD 1.47E+08 1.94E+05 3.95E+03 5.61E+03 6.77E+06 2.17E+05 2.30E−02 4.54E−04 5.40E+03

C20173 Mean 5.75E+04 1.82E+03 2.83E+04 3.49E+04 3.99E+04 1.30E+04 6.98E+02 8.35E+02 9.14E+04
SD 7.49E+03 1.20E+03 8.87E+03 8.12E+03 6.59E+03 6.27E+03 2.43E+01 2.97E+01 3.07E+04

C20174 Mean 6.49E+02 4.99E+02 5.00E+02 5.19E+02 5.70E+02 5.66E+02 4.58E+02 4.57E+02 4.92E+02
SD 6.85E+01 1.84E+01 2.19E+01 2.98E+01 4.48E+01 6.50E+01 3.35E+01 3.20E+01 1.33E+01

C20175 Mean 7.07E+02 6.14E+02 5.86E+02 7.32E+02 7.52E+02 5.55E+02 5.40E+02 5.56E+02 5.67E+02
SD 4.54E+01 3.49E+01 1.44E+01 3.86E+01 3.58E+01 2.33E+01 8.27E+00 1.18E+01 1.23E+01

C20176 Mean 653.71 622.28 600.74 651.97 664.06 604.52 600.13 600.00 600.42
SD 7.44E+00 1.46E+01 9.50E−01 7.84E+00 6.28E+00 3.15E+00 3.24E−01 9.75E−04 5.37E−01

C20177 Mean 1.11E+03 8.52E+02 8.29E+02 1.16E+03 1.27E+03 8.21E+02 7.79E+02 7.97E+02 9.20E+02
SD 5.57E+01 2.67E+01 2.86E+01 8.62E+01 6.49E+01 6.01E+01 9.75E+00 1.13E+01 5.48E+01

C20178 Mean 9.54E+02 9.08E+02 8.85E+02 9.64E+02 9.70E+02 8.67E+02 8.41E+02 8.56E+02 8.65E+02
SD 2.69E+01 3.41E+01 2.82E+01 3.27E+01 1.83E+01 1.68E+01 6.66E+00 1.00E+01 1.82E+01

C20179 Mean 6.71E+03 4.09E+03 1.18E+03 5.32E+03 8.06E+03 1.11E+03 9.31E+02 9.28E+02 9.71E+02
SD 1.11E+03 3.16E+03 4.55E+02 7.89E+02 7.85E+02 1.87E+02 3.59E+01 2.36E+01 2.58E+02

C201710 Mean 5.74E+03 4.86E+03 5.16E+03 5.60E+03 5.72E+03 4.67E+03 3.88E+03 4.62E+03 4.26E+03
SD 5.75E+02 7.16E+02 8.60E+02 8.26E+02 6.90E+02 9.72E+02 2.92E+02 4.73E+02 7.68E+02

C201711 Mean 2352.47 1330.91 1217.39 1251.94 1293.22 1316.44 1227.69 1199.73 1213.49
SD 6.49E+02 6.85E+01 4.19E+01 4.54E+01 4.24E+01 8.94E+01 4.85E+01 3.76E+01 5.05E+01

C201712 Mean 1.04E+08 1.02E+07 1.21E+06 6.53E+06 2.69E+07 3.39E+06 2.64E+04 2.10E+04 5.75E+05
SD 1.16E+08 8.61E+06 7.99E+05 5.58E+06 2.06E+07 7.77E+06 1.83E+04 1.06E+04 5.97E+05

C201713 Mean 1.36E+06 1.64E+05 2.27E+04 1.48E+05 6.37E+05 2.01E+04 2.58E+03 3.09E+03 1.80E+04
SD 1.26E+06 1.11E+05 2.10E+04 9.01E+04 2.40E+05 1.58E+04 2.63E+02 4.70E+02 1.95E+04

C201714 Mean 1.23E+06 2.95E+04 5.02E+04 2.88E+05 9.68E+05 5.57E+04 1.57E+03 1.61E+03 3.34E+05
SD 6.81E+05 3.52E+04 5.80E+04 2.62E+05 9.47E+05 7.65E+04 4.27E+01 5.19E+01 3.04E+05

C201715 Mean 1.18E+05 4.85E+04 4.87E+03 3.68E+04 8.97E+04 9.23E+03 1.85E+03 3.89E+03 4.14E+03
SD 6.20E+04 1.90E+04 3.22E+03 2.92E+04 4.98E+04 1.15E+04 1.76E+02 2.35E+02 3.83E+03

C201716 Mean 3.31E+03 2.77E+03 2.52E+03 3.18E+03 3.51E+03 2.40E+03 2.42E+03 2.33E+03 2.35E+03
SD 4.78E+02 2.80E+02 3.61E+02 5.24E+02 4.32E+02 3.71E+02 2.42E+02 2.01E+02 3.07E+02

C201717 Mean 2.47E+03 2.11E+03 2.04E+03 2.66E+03 2.61E+03 2.00E+03 1.95E+03 1.92E+03 2.09E+03
SD 2.85E+02 1.76E+02 1.77E+02 2.00E+02 2.58E+02 1.50E+02 1.32E+02 8.46E+01 1.72E+02

C201718 Mean 5.55E+06 3.54E+05 5.57E+05 1.45E+06 2.11E+06 3.68E+05 8.75E+03 4.07E+03 5.02E+05
SD 5.86E+06 2.59E+05 3.58E+05 1.43E+06 2.74E+06 4.23E+05 2.08E+03 1.28E+03 3.80E+05

C201719 Mean 2.18E+06 9.89E+05 1.08E+04 4.54E+04 8.77E+05 1.48E+04 2.08E+03 2.17E+03 5.76E+03
SD 1.70E+06 1.06E+06 1.41E+04 3.77E+04 7.93E+05 1.32E+04 8.05E+01 1.23E+02 3.93E+03

C201720 Mean 2526.16 2537.54 2364.34 2767.79 2884.66 2342.51 2265.24 2256.87 2401.25
SD 1.56E+02 1.67E+02 1.76E+02 2.27E+02 2.08E+02 1.64E+02 9.91E+01 7.96E+01 1.89E+02

C201721 Mean 2491.88 2415.44 2364.71 2518.67 2574.67 2357.95 2361.21 2342.14 2366.25
SD 3.75E+01 3.32E+01 2.32E+01 3.02E+01 4.72E+01 1.64E+01 9.81E+00 4.55E+00 1.65E+01

C201722 Mean 2.61E+03 4.89E+03 3.77E+03 6.08E+03 7.55E+03 2.52E+03 2.92E+03 2.75E+03 2.41E+03
SD 1.52E+02 1.65E+03 2.16E+03 2.34E+03 9.19E+02 9.55E+02 8.26E+03 7.38E+02 5.22E+02

C201723 Mean 2958.97 2745.95 2712.96 2962.96 3227.63 2721.91 2698.96 2710.63 2713.14
SD 6.06E+01 2.67E+01 2.53E+01 7.36E+01 1.90E+02 3.29E+01 8.07E+00 1.78E+01 1.21E+01

C201724 Mean 3.10E+03 2.92E+03 2.87E+03 3.13E+03 3.49E+03 2.88E+03 2.86E+03 2.87E+03 2.89E+03
SD 6.79E+01 3.27E+01 1.83E+01 7.76E+01 1.27E+02 2.43E+01 1.11E+01 1.51E+01 1.93E+01

C201725 Mean 2993 2894.78 2900.65 2921.45 2937.83 2924.64 2888.19 2887.39 2886.82
SD 2.73E+01 1.73E+01 1.95E+01 3.35E+01 2.38E+01 2.75E+01 2.68E+00 1.02+00 3.09E+00

C201726 Mean 5.91E+03 4.61E+03 4.21E+03 6.56E+03 7.78E+03 4.48E+03 4.11E+03 3.98E+03 4.16E+03
SD 1.46E+03 7.64E+02 3.87E+02 1.59E+03 1.03E+03 6.04E+02 2.23E+02 1.31E+02 2.51E+02

C201727 Mean 3393.24 3226.8 3222.77 3273.18 3472.33 3240.35 3221.49 3218.96 3225.85
SD 8.30E+01 1.82E+01 1.33E+01 3.83E+01 8.25E+01 3.23E+01 1.41E+01 9.24E+00 1.12E+01

C201728 Mean 3451.81 3244.98 3224.44 3278.38 3334.12 3308.34 3197.41 3158.25 3220.21
SD 8.44E+01 4.39E+01 2.37E+01 3.05E+01 3.43E+01 5.49E+01 5.18E+01 1.66E+01 3.03E+01

C201729 Mean 4.81E+03 4.05E+03 3.69E+03 4.32E+03 4.91E+03 3.96E+03 3.51E+03 3.56E+03 3.79E+03
SD 4.08E+02 1.91E+02 1.76E+02 3.12E+02 3.96E+02 2.00E+02 1.12E+02 2.03E+02 2.15E+02

C201730 Mean 1.35E+07 3.38E+06 1.12E+04 6.30E+05 5.02E+06 8.89E+04 5.71E+03 6.27E+03 9.47E+03
SD 1.35E+07 2.15E+06 5.08E+03 3.20E+05 3.43E+06 1.45E+05 5.70E+02 6.17E+02 3.32E+03
that the algorithm has a rapid convergence rate on all eight bench-
marks. For unimodal problems, due to the interaction and learning
between individuals, SAO presents a good exploitative characteristic
8

to approach the global optimum. When handling simple multimodal
problems and hybrid problems, SAO sometimes falls temporarily into
local optima, but the algorithm achieves a high precision under the
guidance of the elites in the swarm. Meanwhile, in the last steps

of iteration, the dynamic step length generated by Brownian motion
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Table 5
Comparison outcomes attained by Wilcoxon’s test on the 10-dimensional CEC2017 test suite.

Methods Unimodal problems Simple multimodal problems Hybrid problems Composition problems

SAO vs. AO 3.96E−08 4.86E−05 6.56E−03 8.05E−03
SAO vs. MVO 3.79E−06 8.31E−03 1.45E−02 2.35E−02
SAO vs. EO 4.51E−03 4.18E−02 3.78E−02 3.96E−02
SAO vs. AVOA 3.00E−02 1.58E−05 2.82E−02 8.89E−03
SAO vs. HHO 3.96E−08 1.29E−05 5.83E−03 4.14E−03
SAO vs. PSO-sono 4.19E−02 1.44E−01 1.50E−02 3.50E−02
SAO vs. SHADE 1.71E−01 1.12E−01 2.23E−06 1.98E−02
SAO vs. LSHADE-SPACMA 1.70E−01 4.96E−02 1.62E−02 3.00E−02
Table 6
Comparison outcomes attained by Wilcoxon’s test on the 30-dimensional CEC2017 test suite.

Methods Unimodal problems Simple multimodal problems Hybrid problems Composition problems

SAO vs. AO 1.44E−07 3.97E−07 2.79E−03 4.32E−04
SAO vs. MVO 6.79E−08 1.51E−02 1.16E−02 9.33E−03
SAO vs. EO 2.71E−03 2.61E−02 1.41E−01 2.83E−02
SAO vs. AVOA 5.37E−03 4.50E−03 2.31E−03 1.41E−05
SAO vs. HHO 6.79E−08 6.27E−07 7.64E−03 7.46E−08
SAO vs. PSO-sono 4.62E−05 3.52E−02 3.82E−02 1.68E−01
SAO vs. SHADE 1.62E−07 4.37E−02 1.08E−01 2.68E−02
SAO vs. LSHADE-SPACMA 1.05E−07 1.07E−01 7.00E−02 1.79E−01
Table 7
Rankings of nine methods on 29 CEC2017 unconstrained benchmarks
on the basis of Friedman’s test.

Methods Ranking

10Dim 30Dim

LSHADE-SPACMA 2.051 1.689
SHADE 2.189 1.844
SAO 3.741 3.689
PSO-sono 3.862 4.293
EO 4.586 4.517
MVO 6.017 5.793
AVOA 6.827 6.896
AO 7.586 7.931
HHO 8.137 8.344

can discourage premature convergence effectively. Also, in the fourth
column, the descending behavior can be observed in the diagrams of
average fitness history.

The swarm’s diversity and the diagram of trajectory in the first
dimension are shown in the fifth column and the sixth column, respec-
tively. As shown in Fig. 6, since the swarm’s diversity is well preserved
in the initial steps of iteration, the trajectory of individuals presents
abrupt and large changes, which indicates SAO is more possibly explore
and discover potential and high-quality solutions.

3.2.2. Comparisons with other state-of-the-art rival algorithms
This subsection compares the SAO with AO, MVO, EO, AVOA, HHO,

PSO-sono, SHADE, and LSHADE-SPACMA utilizing 10-dimensional and
30-dimensional CEC2017 test suites, respectively. The simulation out-
comes attained by nine algorithms are summarized in Tables 3 and 4.
On the basis of the mean and standard deviation, some comments are
shown as follows:

• For unimodal problems C20171 and C20173, when the dimen-
sionality of the problem is 10, the SAO algorithm attains better
outcomes than all rival algorithms except SHADE and LSHADE-
SPACMA. Especially for function C20173, SAO can straightly
discover the global optimal solution, whereas AO, MVO, AVOA,
and HHO cannot. Note that EO and PSO-sono also provide the
best outcomes on C20173, but they are surpassed by SAO based
on the standard deviation. In the case of 30Dim, the perfor-
mance of SAO is not seriously deteriorated due to the increase
in dimensionality.
9

• For simple multimodal problems C20174 - C201710, in the case
of 10Dim, SAO outperforms AO, MVO, EO, AVOA, HHO, PSO-
sono, SHADE, and LSHADE-SPACMA on 7, 7, 6, 7, 7, 4, 1, and 1
problems, respectively. In the case of 30Dim, SAO surpasses AO,
MVO, EO, AVOA, HHO, PSO-sono, SHADE, and LSHADE-SPACMA
on 7, 6, 6, 7, 7, 5, 0, and 0 problems, respectively.

• For hybrid problems C201711 - C201720, in the case of 10 Dim,
AO, MVO, EO, AVOA, HHO, PSO-sono, SHADE, and LSHADE-
SPACMA are surpassed by SAO on 9, 7, 5, 8, 8, 3, 0, and 0
problems, respectively. Moreover, in the case of 30Dim, SAO
outperforms AO, MVO, EO, AVOA, HHO, PSO-sono, SHADE, and
LSHADE-SPACMA on 10, 8, 7, 7, 10, 5, 0, and 0 problems,
respectively.

• For composition problems C201721 - C201730, in the case of
10Dim, SAO outperforms AO, MVO, EO, AVOA, HHO, PSO-sono,
SHADE, and LSHADE-SPACMA on 9, 10, 8, 9, 9, 6, 4, and 4
problems, respectively. Besides, SAO can attain the best outcomes
on 3 problems, whereas AO, MVO, EO, AVOA, HHO, PSO-sono,
SHADE, and LSHADE-SPACMA attain the best outcomes on 0, 0,
0, 1, 0, 1, 1, and 4 problems, respectively. As the dimensionality
of the problem rises to 30, SAO surpasses AO, MVO, EO, AVOA,
HHO, PSO-sono, SHADE, and LSHADE-SPACMA on 10, 10, 5, 10,
10, 8, 2, and 2 problems, respectively.

The Wilcoxon test (Derrac et al., 2011) is conducted on these
nine algorithms on the basis of 10-dimensional and 30-dimensional
CEC2017 test suites. As the test outcomes in Tables 5 and 6 present, in
most cases, the attained 𝑝 values are less than 5%. This indicates that
the developed SAO statistically outperforms other competitors except
for SHADE and LSHADE-SPACMA. Additionally, Friedman’s test (Der-
rac et al., 2011) is utilized to validate the strength of SAO. As sum-
marized in Table 7, SAO is ranked third among these nine algorithms,
followed by PSO-sono, EO, MVO, AVOA, AO, and HHO.

Fig. 7 depicts the convergence graphs attained by AO, MVO, EO,
AVOA, HHO, PSO-sono, SHADE, LSHADE-SPACMA, and SAO on 6 typ-
ical benchmark problems such as C20173, C20176, C201721, C201722,
C201726, and C201728 in the CEC2017 test suite with 10Dim. Note
that SHADE and LSHADE-SPACMA are two most outstanding algo-
rithms to tackle unconstrained benchmarks. Meanwhile, PSO-sono is
a representative state-of-the-art PSO variants for single-objective op-
timization issues. As shown in Fig. 7, the SAO algorithm achieves a
high level of convergence rate and accuracy, even if it is surpassed
by SHADE and LSHADE-SPACMA when coping with some complicated
benchmarks. Moreover, SAO presents superior accelerations in com-

parison to other competitors such as AO, MVO, EO and AVOA. The
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Fig. 7. Convergence graphs attained by nine algorithms on 6 CEC2017 benchmark problems with 10Dim.
convergence graphs attained by nine methods on C20173, C20176,
C201721, C201722, C201726, and C201728 are shown in Fig. 8. When
the dimensionality of the problem rises to 30, as depicted in Fig. 8, the
advantages of SAO over other rival algorithms are not weakened. On
the contrary, according to the increasing gap in the convergence graph,
the advantages of the developed technique become clear.

3.3. Analysis of exploration and exploitation in SAO

In this part, the behavior of exploration and exploitation in SAO
is analyzed through CEC2017 unconstrained benchmarks with 10Dim.
The above experiments investigate the performance of SAO through
10
some metrics such as standard deviation and mean value. Nevertheless,
the reason behind the excellent performance is not revealed. Hence,
this subsection explains how and why the SAO algorithm can yield
better performance than other competitors on numerous benchmark
instances. In Hussain et al. (2018), Hussain et al. put forward an
approach to measure and analyze the capability of exploitation and
exploration in metaheuristic algorithms. This approach builds on the
mathematical representation of dimension-wise diversity raised in Hus-
sain et al. (2018). The corresponding formulae are presented in the
following:

𝐷𝑖𝑣𝑠𝑗 =
1

𝑁
∑

𝑚𝑒𝑑𝑖𝑎𝑛(𝑧𝑗 ) − 𝑧𝑗𝑖 , (13)

𝑁 𝑖=1
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Fig. 8. Convergence graphs attained by nine algorithms on 6 CEC2017 benchmark problems with 30Dim.
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𝐷𝑖𝑣𝑠 = 1
𝐷𝑖𝑚

𝐷𝑖𝑚
∑

𝑗=1
𝐷𝑖𝑣𝑠𝑗 , (14)

where 𝑚𝑒𝑑𝑖𝑎𝑛(𝑧𝑗 ) indicates the median of the 𝑗th dimension. Then
the formulae to calculate the exploration percentage and exploitation
percentage are summarized as follows:

𝐸𝑝𝑙% = 𝐷𝑖𝑣𝑠
𝐷𝑖𝑣𝑠max

× 100, (15)

𝐸𝑝𝑡% =
|

|

𝐷𝑖𝑣𝑠 −𝐷𝑖𝑣𝑠max
|

| × 100, (16)
11

𝐷𝑖𝑣𝑠max
t

here 𝐷𝑖𝑣𝑚𝑎𝑥 represents the maximum diversity. 𝐸𝑝𝑙% and 𝐸𝑝𝑡% refer
o the exploration percentage and exploitation percentage, respectively.

Fig. 9 depicts the simulation results of SAO on 6 CEC2017 bench-
arks with 10Dim. As depicted in Fig. 9, the raised SAO maintains a
igh level of exploitation percentage when coping with unimodal prob-
ems and that exactly gives the reason behind the excellent capability
f SAO to discover the global optimum on some unimodal problems
uch as C20173. On the other hand, when applying the SAO algorithm
o handle challenging benchmarks such as composition problems and
ybrid problems, it can also achieve an appropriate level of exploration
ercentage, and that is why the SAO can enable the swarm’s diversity
o be preserved and effectively discourage premature convergence. To
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Fig. 9. Graphs of exploitation percentage and exploration percentage for SAO on 6 CEC2017 unconstrained benchmarks.
sum up, the SAO algorithm realizes a tradeoff between exploration and
exploitation to a certain extent.

3.4. Experiments on the CEC2020 real-world constrained optimization is-
sues

Different from the above CEC2017 unconstrained benchmarks, in
this subsection, 22 CEC2020 real-world constrained optimization issues
in diverse engineering fields are employed to verify the strength of the
proposed SAO. These complicated nonconvex problems are classified
into two types: process synthesis and design issues and mechanical
engineering issues, which are constrained by equality and inequality
12
constraints. Table 8 presents a brief description of these challenging
issues and their mathematical expressions can be found in Kumar
et al. (2020). Besides, the penalty function approach is employed as
the constraint handling method. In the experiment, Each algorithm is
executed 20 times independently, 1000 total iteration is utilized as the
termination criterion and 30 individuals are employed.

Table 9 reports the experimental outcomes attained by nine algo-
rithms on 22 real-world engineering applications. Some observations
are presented as follows:

• For process synthesis and design problems R1-R7, SAO outper-

forms the other eight rival algorithms. More specifically, SAO
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Table 8
22 real-world engineering issues. 𝐷𝑖𝑚 denotes the dimensionality of the issue, 𝑁1 and 𝑁2 indicate the number of inequality constraints and equality constraints,
respectively. 𝑓 ∗ represents the best known feasible objective fitness value.

Category No. Name 𝑁1 𝑁2 𝐷𝑖𝑚 𝑓 ∗

Process synthesis and design problems R1 Process synthesis problem 1 2 0 2 2.0000000000E+00
R2 Process flow sheeting problem 3 0 3 1.0765430833E+00
R3 Process synthesis problem 2 9 0 7 2.9248305537E+00
R4 Multi-product batch plant 10 0 10 5.3638942722E+04
R5 Process synthesis and design problem 1 1 3 2.5576545740E+00
R6 Two-reactor problem 4 4 7 9.9238463653E+01
R7 Process design problem 3 0 5 2.6887000000E+04

Mechanical engineering problems R8 Speed reducer design 11 0 7 2.9944244658E+03
R9 Compression/tension spring design (case1) 3 0 3 1.2665232788E−02
R10 Welded beam design 5 0 4 1.6702177263E+00
R11 Multiple disk clutch brake design 7 0 5 2.3524245790E−01
R12 Step-cone pulley problem 8 3 5 1.6069868725E+01
R13 Four-stage gear box problem 86 0 22 3.5359231973E+01
R14 Rolling element bearing 9 0 10 1.4614135715E+04
R15 Compression/tension spring design (case2) 8 0 3 2.6138840583E+00
R16 Himmelblau’s function 6 0 5 −3.0665538672E+04
R17 Industrial refrigeration system design 15 0 14 3.2213000814E−02
R18 Pressure vessel design 4 0 4 5.8853327736E+03
R19 Three-bar truss design 3 0 2 2.6389584338E+02
R20 Planetary gear train design 10 1 9 5.2576870748E−01
R21 Gas transmission compressor design 1 0 4 2.9648954173E+06
R22 Gear train design 1 1 4 0.0000000000E+00
w
𝐼
r
c
(
p

𝐼

o
e

provides the best outcomes on 4 problems, whereas AO, MVO,
EO, AVOA, HHO, PSO-sono, SHADE, LSHADE-SPACMA attain
the best outcomes on 0, 0, 2, 0, 0, 3, 2, 3, and 5 problems,
respectively. Hence, SAO has excellent potential to tackle these
process synthesis and design problems.

• For mechanical engineering problems R8-R22, SAO is superior to
AO, MVO, EO, AVOA, HHO, PSO-sono, SHADE, LSHADE-SPACMA
on 5, 5, 5, 4, 4, 4, 5, and 5 problems, respectively. Especially
for the gear train design, the SAO algorithm can discover the
global optimum eventually and attain the best standard devia-
tion. Consequently, SAO is good at coping with these mechanical
engineering problems.

Furthermore, Friedman’s test is performed on nine algorithms on the
asis of 22 real-world engineering problems. Test outcomes reported in
able 10 indicate that the SAO attains the best ranking, followed by EO,
HADE, LSHADE-SPACMA, AVOA, HHO, MVO, PSO-sono, and AO.

.5. Application to parameter extraction for photovoltaic systems

In this part, a more crucial and meaningful real-world engineering
pplication is employed to evaluate the advantages of SAO over other
ell-regarded competitors. In the field of new energy, photovoltaic

PV) systems are powerful tools that can use solar energy and directly
ransform it into electricity. Hence, designing an efficient and accurate
odel for PV systems through its parameters extracted on the basis of

he measured current–voltage data is a vital assignment. SAO and the
ther eight algorithms are utilized to extract the core parameters for
V systems. Three classical PV models such as the single diode model
SDM), double diode model (DDM), and PV module model (PVMM) are
mployed. The equivalent circuit diagrams of these three models are
epicted in Fig. 10.

Five core parameters need to be extracted in SDM: the source
f photocurrent (𝐼𝑝ℎ), the reverse saturation current (𝐼𝑠𝑑), the series

resistance (𝑅𝑠), the shunt resistance (𝑅𝑠ℎ), and the ideal factor of diodes
(𝑛), as depicted in Fig. 10(a). The mathematical equation satisfied by
these parameters is summarized below:

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝑠ℎ − 𝐼𝑑 , (17)

𝐼𝑑 = 𝐼𝑠𝑑 ⋅ [exp(
(𝐼𝐿 ⋅ 𝑅𝑠 + 𝑉𝐿) ⋅ 𝑞

𝑇 ⋅ 𝑛 ⋅ 𝑘
) − 1], (18)

𝐼𝑠ℎ =
𝐼𝐿 ⋅ 𝑅𝑠 + 𝑉𝐿 , (19)
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𝑅𝑠ℎ
here 𝐼𝑑 represents the current of the diode calculated by Eq. (18),
𝐿 indicates the output current, 𝑉𝐿 denotes the output voltage, 𝑇
efers to the battery temperature in Kelvin, 𝑞 represents the electronic
harge (1.60217646 × 10−19), and 𝑘 indicates the Boltzmann’s constant
1.3806503 × 10−23 J/k). Then in SDM, the calculation formula of 𝐼𝐿 is
resented in Eq. (20).

𝐿 = 𝐼𝑝ℎ −
𝐼𝐿 ⋅ 𝑅𝑠 + 𝑉𝐿

𝑅𝑠ℎ
− 𝐼𝑠𝑑 ⋅ [exp(

(𝐼𝐿 ⋅ 𝑅𝑠 + 𝑉𝐿) ⋅ 𝑞
𝑇 ⋅ 𝑛 ⋅ 𝑘

) − 1], (20)

Different from SDM, the DDM is raised by considering the effect
f the recombination loss in depletion regions. Fig. 10(b) depicts the
quivalent circuit diagram. Then the formula to calculate 𝐼𝐿 in DDM is

presented in Eq. (21).

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝑠ℎ − 𝐼𝑑1 − 𝐼𝑑2 = 𝐼𝑝ℎ −
𝐼𝐿⋅𝑅𝑠+𝑉𝐿

𝑅𝑠ℎ
− 𝐼𝑠𝑑1 ⋅ [exp(

(𝐼𝐿⋅𝑅𝑠+𝑉𝐿)⋅𝑞
𝑇 ⋅𝑛1⋅𝑘

) − 1]

−𝐼𝑠𝑑2 ⋅ [exp(
(𝐼𝐿⋅𝑅𝑠+𝑉𝐿)⋅𝑞

𝑇 ⋅𝑛2⋅𝑘
) − 1]

,

(21)

where 𝐼𝑠𝑑1 denotes the diffusion current, and 𝐼𝑠𝑑2 indicates the satura-
tion current. 𝑛1 and 𝑛2 refer to the ideality factors of diodes. In DDM,
seven core parameters (𝐼𝑝ℎ, 𝐼𝑠𝑑1, 𝑅𝑠, 𝑅𝑠ℎ, 𝑛1, 𝐼𝑠𝑑2, 𝑛2) is supposed to be
extracted.

As depicted in Fig. 10(c), several identical PV cells in parallel
or series make up the single-diode-based PVMM. The mathematical
expression of 𝐼𝐿 in PVMM is given in Eq. (22).

𝐼𝐿 = 𝐼𝑝ℎ⋅𝑁𝑝−𝐼𝑠𝑑 ⋅𝑁𝑝⋅exp[(
(𝐼𝐿𝑁𝑠𝑅𝑠∕𝑁𝑝 + 𝑉𝐿) ⋅ 𝑞

𝑇 ⋅ 𝑛 ⋅ 𝑘 ⋅𝑁𝑠
)−1]−

𝐼𝐿𝑅𝑠𝑁𝑠∕𝑁𝑝 + 𝑉𝐿
𝑁𝑠𝑅𝑠ℎ∕𝑁𝑝

,

(22)

where 𝑁𝑝 and 𝑁𝑠 refer to the number of cells connected in par-
allel and series, respectively. In this model, five important parame-
ters (𝐼𝑝ℎ, 𝐼𝑠𝑑 , 𝑅𝑠, 𝑅𝑠ℎ, 𝑛) are supposed to be extracted. The bounds of
different parameters in three PV models are reported in Table 11.

In this problem, the main target is to realize the minimization of
error between the experimental data and the measured data. As a com-
plicated nonlinear optimization problem, the root mean square error
(RMSE) usually serves as the fitness function, and its mathematical
definition is presented in Eq. (23).

𝑅𝑀𝑆𝐸(𝑋) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
𝑓𝑖(𝑋, 𝐼𝐿, 𝑉𝐿), (23)
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Table 9
Experimental outcomes for problems R1-R22.

Problem Metric AO MVO EO AVOA HHO PSO-sono SHADE LSHADE-SPACMA SAO

R1 Mean 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00
SD 1.45E−04 5.12E−06 4.60E−07 3.14E−07 4.60E−07 2.37E−16 3.14E−07 4.11E−07 4.11E−07

R2 Mean 1.25E+00 1.27E+00 1.10E+00 1.12E+00 1.12E+00 1.24E+00 1.18E+00 1.22E+00 1.09E+00
SD 9.50E−02 9.69E−02 8.71E−02 7.89E−02 9.87E−02 3.79E−02 4.78E−02 8.81E−02 2.50E−02

R3 Mean 2.95E+00 3.50E+00 3.49E+00 3.36E+00 2.96E+00 4.99E+00 3.36E+00 3.18E+00 2.93E+00
SD 2.68E−02 5.90E−01 9.00E−01 7.70E−01 2.82E−02 1.26E+00 9.11E−01 4.91E−01 2.74E−02

R4 Mean 7.24E+04 5.43E+04 5.46E+04 5.47E+04 6.37E+04 5.49E+04 5.47E+04 5.43E+04 5.43E+04
SD 6.19E+03 2.32E+03 2.48E+03 2.51E+03 6.16E+03 3.18E+03 3.88E+03 1.10E+03 2.68E+03

R5 Mean 2.566 2.557 2.557 2.557 2.563 2.557 2.557 2.557 2.557
SD 6.13E−03 5.49E−06 0.00E+00 1.67E−16 7.47E−03 0.00E+00 0.00E+00 0.00E+00 0.00E+00

R6 Mean 2.00E+02 1.54E+02 1.14E+02 1.44E+02 1.96E+02 1.67E+02 1.22E+02 1.46E+02 1.01E+02
SD 3.88E+01 3.95E+01 2.80E+01 9.21E+01 3.61E+01 3.67E+01 4.10E+01 4.48E+01 2.75E+01

R7 Mean 2.69E+04 2.69E+04 2.69E+04 2,69E+04 2.69E+04 2.69E+04 2.69E+04 2.69E+04 2.69E+04
SD 1.36E+01 2.71E+00 3.88E−12 7.01E−12 2.57E−02 3.88E−12 3.88E−12 3.88E−12 3.88E−12

R8 Mean 3.60E+03 3.04E+03 3.00E+03 3.00E+03 3.49E+03 3.01E+03 3.00E+03 3.00E+03 3.00E+03
SD 5.11E+02 1.74E+01 4.58E+00 5.98E+00 7.70E+02 5.63E+01 3.84E−13 2.54E−13 3.43E−13

R9 Mean 1.27E−02 1.46E−02 1.42E−02 1.79E−02 1.27E−02 2.12E−02 1.27E−02 1.27E−02 1.27E−02
SD 9.60E−04 7.73E−03 1.54E−06 1.28E−05 5.91E−04 4.18E−04 2.17E−18 2.45E−18 1.13E−09

R10 Mean 1.95E+00 1.69E+00 1.68E+00 1.72E+00 1.88E+00 1.68E+00 1.68E+00 1.68E+00 1.72E+00
SD 1.57E−01 1.61E−02 2.44E−04 3.84E−02 1.36E−01 2.68E−04 2.22E−16 2.22E−16 9.54E−02

R11 Mean 2.36E−01 2.36E−01 2.36E−01 2.36E−01 2.36E−01 2.36E−01 2.36E−01 2.36E−01 2.36E−01
SD 5.17E−04 5.51E−05 2.96E−17 1.81E−17 2.96E−17 2.96E−17 2.96E−17 2.96E−17 2.96E−17

R12 Mean 1.68E+01 1.62E+01 1.65E+01 1.67E+01 1.67E+01 1.69E+01 1.61E+01 1.61E+01 1.69E+01
SD 3.14E−01 1.21E−01 2.54E−01 1.96E−01 3.00E−01 9.21E−01 2.69E−15 2.69E−15 1.46E−01

R13 Mean 6.18E+01 6.51E+01 3.85E+01 5.83E+01 4.90E+01 4.18E+01 4.10E+01 4.69E+01 4.03E+01
SD 5.15E+00 8.64E+00 1.14E+00 1.06E+02 8.56E+00 5.93E+00 1.94E+00 2.44E+00 8.15E+00

R14 Mean 1.48E+04 1.47E+04 1.47E+04 1.47E+04 1.47E+04 1.49E+04 1.47E+04 1.47E+04 1.47E+04
SD 5.08E+01 1.33E+01 2.28E−10 2.47E−08 1.24E+01 8.65E+00 1.81E−09 2.17E−10 2.57E−12

R15 Mean 2.92E+00 4.63E+00 2.67E+00 2.75E+00 2.95E+00 3.65E+00 2.79E+00 3.81E+00 2.62E+00
SD 8.21E−01 3.63E+00 3.31E−01 3.96E−02 2.21E−01 1.14E+00 3.31E−01 7.89E−01 2.70E−02

R16 Mean −3.06E+04 −3.06E+04 −3.07E+04 −3.06E+04 −3.05E+04 −2.98E+04 −3.05E+04 −3.07E+04 −3.07E+04
SD 1.29E+02 2.24E+02 3.88E−12 1.99E+02 2.44E+02 3.19E+02 1.61E−03 1.69E−05 1.94E−12

R17 Mean 1.97E+00 1.29E+00 3.41E−02 3.45E−02 4.76E−02 9.21E−01 9.05E−01 1.19E+00 3.30E−02
SD 1.55E+00 1.19E+00 3.04E−03 6.25E−04 7.99E−03 1.28E+00 1.20E+00 1.24E+00 1.12E−04

R18 Mean 6.44E+03 6.26E+03 6.17E+03 6.53E+03 6.25E+03 7.41E+03 5.90E+03 6.07E+03 5.99E+03
SD 5.88E+02 5.43E+02 5.36E−02 1.06E+02 6.77E+02 7.49E+02 1.07E+02 2.64E+02 2.00E+02

R19 Mean 2.65E+02 2.64E+02 2.64E+02 2.64E+02 2.65E+02 2.64E+02 2.64E+02 2.64E+02 2.64E+02
SD 2.46E−01 8.91E−04 1.77E−05 1.46E−02 1.49E−01 1.89E−03 0.00E+00 0.00E+00 9.71E−02

R20 Mean 1.22E+01 1.14E+00 5.39E−01 6.94E−01 5.98E−01 8.95E−01 6.86E−01 1.53E+00 5.84E−01
SD 3.14E+01 5.65E−01 1.13E−02 1.97E−01 1.37E−01 2.75E−01 2.19E−01 2.84E−01 9.17E−02

R21 Mean 3.04E+06 3.01E+06 2.97E+06 2.97E+06 3.02E+06 2.99E+06 2.97E+06 2.97E+06 2.97E+06
SD 4.52E+04 4.86E+04 1.45E−04 1.68E+03 1.78E+04 3.07E+03 5.56E−10 5.56E−10 2.15E+03

R22 Mean 6.72E−11 4.32E−13 2.53E−18 0.00E+00 0.00E+00 0.00E+00 4.16E−17 1.31E−17 0.00E+00
SD 1.38E−10 8.85E−13 7.17E−18 0.00E+00 0.00E+00 0.00E+00 1.15E−16 3.70E−17 0.00E+00
Fig. 10. Equivalent circuit diagrams for photovoltaic cells.
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Table 10
Rankings of nine methods on 22 CEC2020 real-world
engineering issues on the basis of Friedman’s test.

Methods Ranking

SAO 2.925
EO 3.375
SHADE 4.025
LSHADE-SPACMA 4.300
AVOA 4.750
HHO 5.725
MVO 6.150
PSO-sono 6.375
AO 7.375

Table 11
Bounds of different parameters in three PV models.

Parameter SDM/DDM PVMM

LB UB LB UB

𝐼𝑝ℎ(𝐴) 0 1 0 2
𝐼𝑠𝑑1 , 𝐼𝑠𝑑2 , 𝐼𝑠𝑑 (𝜇𝐴) 0 1 0 50
𝑛1 , 𝑛2 , 𝑛 1 2 1 50
𝑅𝑠ℎ(𝛺) 0 100 0 2000
𝑅𝑠(𝛺) 0 0.5 0 2

Among them, 𝑁 denotes the number of measured data, and 𝑋 refers
to the solution vector including the unknown core parameters. Then the
objective function of each model is expressed in the following:

• For SDM:
{

𝑓𝑖(𝑋, 𝐼𝐿, 𝑉𝐿) = 𝐼𝑝ℎ − 𝐼𝑠𝑑 ⋅ [exp( (𝐼𝐿⋅𝑅𝑠+𝑉𝐿)⋅𝑞
𝑇 ⋅𝑛⋅𝑘 ) − 1] − 𝐼𝐿⋅𝑅𝑠+𝑉𝐿

𝑅𝑠ℎ
− 𝐼𝐿

𝑋 = {𝐼𝑝ℎ, 𝐼𝑠𝑑 , 𝑅𝑠, 𝑅𝑠ℎ, 𝑛}
,

(24)

• For DDM:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑓𝑖(𝑋, 𝐼𝐿, 𝑉𝐿) = 𝐼𝑝ℎ − 𝐼𝑠𝑑1 ⋅ [exp(
(𝐼𝐿⋅𝑅𝑠+𝑉𝐿)⋅𝑞

𝑇 ⋅𝑛1⋅𝑘
) − 1]

−𝐼𝑠𝑑2 ⋅ [exp(
(𝐼𝐿⋅𝑅𝑠+𝑉𝐿)⋅𝑞

𝑇 ⋅𝑛2⋅𝑘
) − 1]

− 𝐼𝐿⋅𝑅𝑠+𝑉𝐿
𝑅𝑠ℎ

− 𝐼𝐿
𝑋 = {𝐼𝑝ℎ, 𝐼𝑠𝑑1, 𝑅𝑠, 𝑅𝑠ℎ, 𝑛1, 𝐼𝑠𝑑2, 𝑛2}

, (25)

• For PVMM:

⎧

⎪

⎨

⎪

⎩

𝑓𝑖(𝑋, 𝐼𝐿, 𝑉𝐿) = 𝑁𝑝 ⋅ 𝐼𝑝ℎ −𝑁𝑝 ⋅ 𝐼𝑠𝑑 ⋅ exp[( (𝐼𝐿𝑁𝑠𝑅𝑠∕𝑁𝑝+𝑉𝐿)⋅𝑞
𝑇 ⋅𝑛⋅𝑘⋅𝑁𝑠

) − 1]

− 𝐼𝐿𝑅𝑠𝑁𝑠∕𝑁𝑝+𝑉𝐿
𝑁𝑠𝑅𝑠ℎ∕𝑁𝑝

− 𝐼𝐿
𝑋 = {𝐼𝑝ℎ, 𝐼𝑠𝑑 , 𝑅𝑠, 𝑅𝑠ℎ, 𝑛}

,

(26)

n this experiment, the benchmark measured current–voltage data are
ttained from Easwarakhanthan et al. (1986), where a commercial RTC
rance silicon solar cell with 57 mm diameter (under 1000 W/m2 at
3 ◦C). This benchmark dataset is broadly utilized to test the efficacy of
15

o

lgorithms proposed for parameters extraction (Kharchouf et al., 2022;
idha et al., 2022; Yu et al., 2017). Besides, 1000 total iteration is uti-

ized as the termination criterion and 30 individuals are employed. The
est outcomes attained by nine algorithms based on 20 independent
xecutions on SDM, DDM, and PVMM are reported in Tables 12–14,
espectively. Some observations are presented as follows:

• For SDM, the best outcomes attained by AO, MVO, EO, AVOA,
HHO, PSO-sono, SHADE, LSHADE-SPACMA, and SAO are
5.9041E−02, 1.5286E−03, 1.1551E−03, 1.0946E−03, 1.4178E
−03, 9.8602E−04, 9.8602E−04, 9.8602E−04, and 1.0007E−03,
respectively. Compared with other competitors except PSO-sono,
SHADE, and LSHADE-SPACMA, the SAO algorithm can obtain the
best RMSE.

• For DDM, the optimal RMSE over 20 independent runs
attained by AO, MVO, EO, AVOA, HHO, PSO-sono, SHADE,
LSHADE-SPACMA, and SAO are 6.0578E−02, 1.1095E−03,
9.8598E−04, 1.1942E−03, 1.2445E−03, 9.8366E−04, 9.8248E−
04, 9.8248E−04, and 9.8324E−04. Therefore, the SAO outper-
forms AO, MVO, EO, AVOA, HHO, and PSO-sono.

• For PVMM, the best outcomes provided by AO, MVO, EO, AVOA,
HHO, PSO-sono, SHADE, LSHADE-SPACMA, and SAO are 9.331
E−02, 2.4942E−03, 2.4266E−03, 2.4357E−03, 1.2887E−02,
2.4251E−03, 2.4251E−03, 2.4251E−03, and 2.4254E−03, respec-
tively.

The statistical results for the RMSE attained by AO, MVO, EO,
VOA, HHO, PSO-sono, SHADE, LSHADE-SPACMA, and SAO on three
V models are reported in Table 15. We can observe that SAO outper-
orms AO, MVO, AVOA, and HHO. Also, SAO can provide competitive
esults when compared to PSO-sono, SHADE, and LSHADE-SPACMA.
urthermore, Friedman’s test is conducted on nine algorithms on the
asis of three PV models. As summarized in Table 16, among these
ine algorithms, SAO attains a good ranking. Specifically, according
o the average performance, SAO performs better than AO, MVO,
O, AVOA, and HHO, and slightly worse than PSO-sono, SHADE, and
SHADE-SPACMA.

Figs. 11–13 depict the difference between the experimental data
ttained by SAO and the measured data on SDM and DDM, respectively.
s shown in Figs. 11–13, we can observe that the experimental data
ttained by the SAO algorithm can fit perfectly the measured data.

. Conclusion

In this article, inspired by the sublimation and melting behavior
f snow, a novel metaheuristic technique named the snow ablation
ptimizer (SAO) is raised with the aim of balancing exploitation and ex-
loration and discouraging premature convergence. In the exploration
tage of the SAO algorithm, the search agents tend to discover more po-
ential and promising regions, whereas they turn to exploit high-quality
olutions around the current best solution during the exploitation stage.

The strength of the SAO algorithm is verified through 29 CEC2017
nconstrained benchmarks and 20 CEC2020 real-world constrained

ptimization issues. Additionally, the developed technique is employed
Table 12
The best outcomes attained by nine methods over 20 independent runs on SDM.

Methods Optimal variables RMSE

𝐼𝑝ℎ(𝐴) 𝐼𝑠𝑑 (𝜇𝐴) 𝑅𝑠(𝛺) 𝑅𝑠ℎ(𝛺) 𝑛

AO 0.724216 0.607958 0.0516663 27.0936 1.56212 5.9041E−02
MVO 0.76252 0.385612 0.0352405 42.749 1.4995 1.5286E−03
EO 0.760639 0.43864 0.0351438 65.9151 1.51259 1.1551E−03
AVOA 0.760621 0.413816 0.0353887 62.3453 1.50653 1.0946E−03
HHO 0.76005 0.239914 0.0372831 54.3757 1.45171 1.4178E−03
PSO-sono 0.760776 0.323021 0.0363771 53.7185 1.48119 9.8602E−04
SHADE 0.760776 0.323021 0.0363771 53.7185 1.48119 9.8602E−04
LSHADE-SPACMA 0.760776 0.323021 0.0363771 53.7185 1.48119 9.8602E−04
SAO 0.760816 0.295288 0.036731 51.3886 1.4722 1.0007E−03
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Fig. 11. Comparisons between measured data and experimental data attained by SAO for SDM.

Fig. 12. Comparisons between measured data and experimental data attained by SAO for DDM.

Fig. 13. Comparisons between measured data and experimental data attained by SAO for PVMM.
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Table 13
The best outcomes attained by nine methods over 20 independent runs on DDM.

Methods Optimal variables RMSE

𝐼𝑝ℎ(𝐴) 𝐼𝑠𝑑1(𝜇𝐴) 𝑅𝑠(𝛺) 𝑅𝑠ℎ(𝛺) 𝑛1 𝐼𝑠𝑑2(𝜇𝐴) 𝑛2
AO 0.80648 0.680011 0.0574887 18.6472 1.90551 0.161456 1.43113 6.0578E−02
MVO 0.76022 0.234578 0.0373124 55.5148 1.45193 0.352137 2 1.1095E−03
EO 0.760813 0.999599 0.0370484 55.0058 1.99253 0.186609 1.43472 9.8598E−04
AVOA 0.760141 0.703766 0.0373927 58.1967 1.90393 0.258884 1.45913 1.1942E−03
HHO 0.760195 0.434397 0.0351994 76.6725 1.53251 0.0393049 1.44289 1.2445E−03
PSO-sono 0.760778 0.542787 0.0365657 55.6795 1.99993 0.25589 1.46171 9.8366E−04
SHADE 0.760781 0.74934 0.0367404 55.4854 2 0.225974 1.45102 9.8248E−04
LSHADE-SPACMA 0.760781 0.74934 0.0367404 55.4854 2 0.225974 1.45102 9.8248E−04
SAO 0.760774 0.606521 0.0366366 55.6498 1.96842 0.236754 1.45536 9.8324E−04
Table 14
The best outcomes attained by nine methods over 20 independent runs on PVMM.

Methods Optimal variables RMSE

𝐼𝑝ℎ(𝐴) 𝐼𝑠𝑑 (𝜇𝐴) 𝑅𝑠(𝛺) 𝑅𝑠ℎ(𝛺) 𝑛

AO 1.1271983 1.2666945 1.4741654 1281.5935 44.973713 9.331E−02
MVO 1.0295786 4.2065418 1.1817839 1207.1767 49.376275 2.4942E−03
EO 1.030247 3.5670769 1.1992199 1028.4195 48.734337 2.4266E−03
AVOA 1.030276 3.298946 1.208045 986.773 48.43451 2.4357E−03
HHO 1.022035 0.1386828 1.545559 996.4929 38.71288 1.2887E−02
PSO-sono 1.030514 3.482263 1.201271 981.9822 48.6429 2.4251E−03
SHADE 1.030514 3.482263 1.201271 981.9822 48.6429 2.4251E−03
LSHADE-SPACMA 1.030514 3.482263 1.201271 981.9822 48.6429 2.4251E−03
SAO 1.030593 3.433816 1.202717 967.1524 48.58935 2.4254E−03
Table 15
Statistical outcomes of RMSE attained by nine methods on three PV models.

Model Methods RMSE

Min Max Mean SD

SDM AO 5.9041E−02 2.6682E−01 1.7922E−01 6.5974E−02
MVO 1.5286E−03 1.084E−02 5.5717E−03 3.7212E−03
EO 1.1551E−03 3.8151E−02 1.074E−02 1.6922E−02
AVOA 1.0946E−03 3.5622E−03 2.2895E−03 8.6407E−04
HHO 1.4178E−03 3.9497E−02 1.1198E−02 1.2578E−02
PSO-sono 9.8602E−04 9.8905E−04 9.8644E−04 1.0563E−06
SHADE 9.8602E−04 9.8602E−04 9.8602E−04 2.8951E−17
LSHADE-SPACMA 9.8602E−04 9.8602E−04 9.8602E−04 1.9412E−17
SAO 1.0007E−03 2.1816E−03 1.6459E−03 4.0721E−04

DDM AO 6.0578E−02 3.6267E−01 2.1331E−01 7.1544E−02
MVO 1.1095E−03 8.8732E−03 3.8886E−03 1.9281E−03
EO 9.8598E−04 3.3392E−02 4.1524E−03 8.7194E−03
AVOA 1.1942E−03 4.154E−03 2.4764E−03 7.6928E−04
HHO 1.2445E−03 6.574E−02 1.134E−02 1.2549E−02
PSO-sono 9.8366E−04 2.3088E−03 1.3915E−03 4.9853E−04
SHADE 9.8248E−04 1.5781E−03 1.0305E−03 1.4488E−04
LSHADE-SPACMA 9.8248E−04 1.7509E−03 1.0311E−03 1.5685E−04
SAO 9.8324E−04 2.6279E−03 1.9411E−03 4.3455E−04

PVMM AO 9.331E−02 1.4221E+00 5.1337E−01 3.0579E−01
MVO 2.4942E−03 2.7429E−01 2.4823E−02 7.4307E−02
EO 2.4266E−03 2.7425E−01 1.9244E−02 6.509E−02
AVOA 2.4357E−03 2.7431E−01 5.4181E−02 1.0468E−01
HHO 1.2887E−02 4.3802E−01 1.2805E−01 1.1043E−01
PSO-sono 2.4251E−03 3.8836E−03 2.478E−03 2.1244E−04
SHADE 2.4251E−03 2.6081E−03 2.4287E−03 2.5886E−05
LSHADE-SPACMA 2.4251E−03 2.4294E−03 2.4252E−03 7.6454E−07
SAO 2.4254E−03 2.9972E−02 3.9398E−03 5.2021E−03
to extract the core parameters in photovoltaic systems. The simulation
outcomes over 20 independent runs indicate that the SAO algorithm
can yield better performance than other competitors such as AO, MVO,
EO, AVOA, and HHO. Importantly, SAO can provide competitive re-
sults when compared to state-of-the-art algorithms such as PSO-sono,
17
SHADE, and LSHADE-SPACMA. Due to its simple structure and excel-
lent performance on benchmark problems, SAO can be applied to cope
with more challenging problems in other scientific fields. Hence, as a
future direction, applications of SAO to robot path planning and image
segmentation will be investigated.
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Table 16
Rankings of nine methods on three PV models based
on Friedman’s test.

Methods Ranking

LSHADE-SPACMA 1.500
SHADE 1.500
PSO-sono 3.000
SAO 4.000
AVOA 5.667
MVO 6.000
EO 6.333
HHO 8.000
AO 9.000
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