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Novel Metaheuristic: Spy Algorithm

Dhidhi PAMBUDI†,††, Student Member and Masaki KAWAMURA†a), Senior Member

SUMMARY We proposed a population-based metaheuristic called the
spy algorithm for solving optimization problems and evaluated its perfor-
mance. The design of our spy algorithm ensures the benefit of exploration
and exploitation as well as cooperative and non-cooperative searches in
each iteration. We compared the spy algorithm with genetic algorithm,
improved harmony search, and particle swarm optimization on a set of
non-convex functions that focus on accuracy, the ability of detecting many
global optimum points, and computation time. From statistical analysis
results, the spy algorithm outperformed the other algorithms. The spy al-
gorithm had the best accuracy and detected more global optimum points
within less computation time, indicating that our spy algorithm is more ro-
bust and faster then these other algorithms.
key words: population, metaheuristic, optimization

1. Introduction

Humans have long benefited from optimization. Optimiza-
tion will always be needed in line with our desire to always
obtain the best solutions by considering the constraints. We
can find optimization cases in almost all fields. Optimiza-
tion is common in the fields of engineering design, man-
agement, economics, physics, and biology. One of the op-
timization applications is the very large-scale integration
(VLSI) design [1] for creating an integrated circuit (IC) that
supports hardware and technology development. The de-
mand to obtain a high-capability chip requires increasingly
more components to be embedded. This is made even more
complicated by demands that the chip size should be small,
consume little power, yet work fast and be able to handle
noise. All processes must be done in a short time if the
manufacturer wants to launch a new chip by adjusting the
time-to-market strategy.

Solving optimization cases commonly starts with mod-
eling the problem to make it easier to understand. Un-
fortunately, the obtained models often tend to be compli-
cated and hard to solve. As optimization is equal to a de-
cision problems, a large-scale model often take too long
to solve. Moreover, many problems are intractable and
categorized as non-deterministic polynomial (NP)-complete
problem [2]. VLSI design is just one real-world applica-
tion of the graph-partitioning problem which is categorized

Manuscript received April 26, 2021.
Manuscript revised September 16, 2021.
Manuscript publicized November 1, 2021.
†The authors are GSTI, Yamaguchi University, Yamaguchi-shi,

753–8512 Japan.
††The author is Dept. of Mathematics Education, FKIP, Sebelas

Maret University, Indonesia.
a) E-mail: m.kawamura@m.ieice.org

DOI: 10.1587/transinf.2021EDP7092

as NP-complete. One of the basic partitioning problems is
the maximum cut problem which is included in the orig-
inal Karp’s 21 NP-complete problems [3] and is equiva-
lent to the Ising model [4], which is very influential in the
fields of physics and mechanical statistics. Another exam-
ple of an NP-complete problem that exists is complex job
schedulling.

In optimization, it is common to pursue accurate so-
lutions, but it is also practical to find a solution within a
reasonable and acceptable time. We do not want to waste
time in a highly competitive world. The demand for ob-
taining good solutions in a short time leads us to make a
compromise and accept the solution obtained through an ap-
proximation approach. A well-known approximation meth-
ods are metaheuristic algorithms, which usually includes
stochastic search. Compared with deterministic searches,
metaheuristics have the advantages that they do not require
any information about the function to be optimized. Many
metaheuristics do not necessarily take into account the gra-
dient of the function. Most are also flexible or problem-
independent which means they can be applied to various
kind of problems.

The advantages of metaheuristics has led to many
such algorithms being proposed. One of the most well-
known metaheuristic algorithms is the genetic algorithm
(GA) which was inspired by Darwin’s theory of evolu-
tion [5]. It mimics the natural evolution of a population
by the process of solution reproductions, creates new so-
lutions, and competes for survival [6] based on the opera-
tors of crossover, mutation, and sometimes elitism [7]. The
GA has been used in various fields and is able to provide
good solutions in many areas. Another well-known algo-
rithm is particle swarm optimization (PSO), which was orig-
inally intended for simulating social behavior, as it mimics
the movement of organisms such as a flock of bird or school
of fish [8]. PSO is a more recent algorithm than GA and
can be an alternative to GA since it is simpler and converges
faster than GA [9], [10]. Another more recent metaheuris-
tic algorithm that has attracted much attention is improved
harmony search (IHS). IHS is a modification of HS, the pro-
cess of which is inspired by a jazz musician finding a good
harmony of musical notes [11]–[13].

Metaheuristic algorithms have an important role in op-
timization in academic research and in real-world practice.
Many metaheuristic algorithms have been introduced, but
the demand for better, more accurate and faster algorithms
continues. Since there are various goals in the optimization
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problems, it is difficult to develop a single algorithm that
can solve a wide range of problems and always outperform
other algorithms. On the basis of the ‘no free lunch theo-
rem’ [14], it is challenging to derive a single metaheuristic
algorithm that fits any problems, since a certain metaheuris-
tic algorithm may be strong for certain problems but weak
for others.

The major challenge in the field of optimization is to
develop robust algorithm that can solve a wide range of
problem types as accurately and efficiently as possible. A
robust algorithm is one that ensures convergence even when
starting from an arbitrary initial solution [15], [16]. Even af-
ter many runs, the obtained solutions should not be sensitive
to parameters [17] and have low variation [18]. Certain fast
algorithms are so focused on speed that they lack robust-
ness [18].

In an effort to develop a robust metaheuristic algorithm,
we propose an algorithm called the spy algorithm. The spy
algorithm is a population-based metaheuristic algorithm that
mimics the strategy of a group of spies, the spy ring. Within
a spy ring, each spy agent considers three types of move-
ments, which are: (i) movement within a small perimeter,
(ii) movement by considering another spy agent, or (iii) just
making a random move.

To demonstrate its robustness, it was tested to solve
two types of problems; (i) optimization problem with multi-
dimensional function, and (ii) multimodal optimization.
The non-convex functions were used on the test as non-
convex optimizations are NP-hard problem [19], so they are
suitable for testing metaheuristic algorithms. A total of 12
standard benchmark functions were used to demonstrate the
performance of the spy algorithm and the results were com-
pared with the GA, IHS, and PSO.

2. Metaheuristic Algorithm

Many metaheuristic algorithms have been introduced. Some
are categorized as population-based and others are catego-
rized as single-trajectory-based [20], [21]. The searching
with single-trajectory-based metaheuristic algorithms ma-
nipulates and modifies a single solution point in every iter-
ation. The well-known simulated annealing (SA) [22] is an
example of a successful single-trajectory-based metaheuris-
tic algorithm. In contrast, the population-based metaheuris-
tic algorithms combine a set of points to create new solu-
tions in every iteration.

A metaheuristic algorithm usually consists of two com-
ponents, i.e., exploration and exploitation. Exploration
means searching for solutions in the global space while
exploitation means searching for solutions by focusing in
a small area or an area near an already known solution.
The single-trajectory-based metaheuristic algorithm is ex-
ploitation oriented [20]. Population-based metaheuristic al-
gorithm executes searching by using many points distributed
on all search spaces, therefore it is exploration oriented [20].
Some metaheuristic algorithms use both exploration and ex-
ploitation orientation. To obtain a good result, exploration

and exploitation should be balanced by choosing the right
value of algorithm parameters. However, this is sometimes
time consuming.

A metaheuristic algorithm may be inspired by a unique
phenomenon that results in different strategies. Some meta-
heuristic algorithms may have simple processes while oth-
ers do not. Although many metaheuristic algorithms have
different processes, regardless of whether it is population-
based or single-trajectory-based, the framework in most
consists of the following five main steps.

1. Initialization. Initialization is commonly started from
random positions since there is no information about
the solution space. However, an initialization method,
such as the greedy procedure in GRASP [23], [24], can
be used.

2. Solution refinement. Better solutions are generated
in this step. Each metaheuristic algorithm has its
own refinement strategy inspired by real-world natu-
ral phenomena, such as ant colony optimization [25]
and cuckoo search [21]. The new solutions that are
expected to be better than the previous solutions are
produced. In exceptional cases, algorithms such as SA
can temporarily result in worse solutions [26]. Based
on its strategies, metaheuristic algorithms, such as the
GA and HS, may apply sorting mechanisms [27].

3. Solution update. When a new solution was created
from the previous solution by refinement strategy, the
algorithm should update its solution by selecting a new
one or old one on the basis of a certain rule. The up-
dated solutions will be transferred to the next iteration.

4. Termination. As the solution needs to be obtained in
a reasonable time, the algorithm should be stopped in
a reasonable manner. Usually, the algorithm is termi-
nated when the solutions are not expected to improve.
In addition, a maximum number of iterations is set to
avoid an infinite loop.

5. Finalization. After the algorithm is stopped, one of the
possible solutions is reported as the optimal solution.

The most important steps are the refinement strategy
and the updating mechanism since they make a metaheuris-
tic algorithm unique from others. The other steps are almost
similar in any metaheuristics algorithms. Refinement strat-
egy focuses on the mechanism for obtaining new solutions.
This step can be categorized into two strategies; cooperative,
non-cooperative.

The cooperative strategy means the new solutions are
obtained by involving and manipulating two or more pre-
vious solutions. An example of cooperative search is the
crossover operator in the GA. The non-cooperative strategy
requires only one previous solution for obtaining new so-
lutions such as in SA [22] and tabu search [28], [29]. The
previous solution is not necessary for random search.

3. Spy Algorithm

The spy algorithm was inspired by the strategy used by a



PAMBUDI and KAWAMURA: NOVEL METAHEURISTIC: SPY ALGORITHM
311

spy ring to locate an enemy base. A spy ring is a group of
spies cooperating with each other by sharing intelligence. It
should be noted that the strategy adopted in the spy algo-
rithm is not the same as real-life espionage since a real spy
agent, alone or in a ring, will make many considerations to
determine movements.

3.1 Concepts

The spy algorithm is based on a scenario in which a coun-
try has been infiltrated by an enemy but its base is unknown
so that the spy agency tries to find the enemy base. The in-
formation quality of the enemy base is evaluated by a given
objective function. We consider the minimization problems.
Therefore, the smaller the value of the function, the better
the quality. The spy agents should follow the following steps
for finding the enemy base.

1. Initialization. The agents are sent to random locations
then evaluate the information quality of the locations
by using the objective function.

2. Refinement

• Agent classification. On the basis of the infor-
mation quality, the agents are classified into three
classes: high-rank, mid-rank, and low-rank. The
agent which give smaller value of function is the
criteria for the high-rank agent in the context of
minimization. In the case of maximization, this
selection can be easily switched or adjusted.
• Movement. On the basis of agent class, each agent

searches for a new location on the basis of the fol-
lowing rules.

a. High-rank agents perform SwingMove, i.e.,
they move within a small perimeter on the
basis of their own location.

b. Mid-rank agents perform MoveToward, i.e.,
they move toward another agent location.

c. Low-rank agents perform random search.

After performing these movements, each agent
evaluates the information quality of the new lo-
cations.

3. Update. If the new location has a better information
quality, the agent adopts the location; otherwise goes
back to the previous location.

4. Termination. Repeat main step 2 to 3 until stop com-
mand is issued.

5. Finalization. The location and its information obtained
by the best agent are reported as the final answer.

In the context of optimization, a spy agent can be seen
as a solution and the unknown enemy base is the optimum
point. The location or position of an agent forms a solution
vector and the information regarding its location is evalu-
ated by the objective function. In this scenario, the coop-
erative strategy is implemented in MoveToward and a non-
cooperative strategy is implemented into two movements,

Fig. 1 Agent movements

i.e., SwingMove and random search. To increase the con-
vergence speed, the agent with higher rank can be chosen in
the MoveToward movement. The movement for each agent
is illustrated in Fig. 1. The updating mechanism is a one-to-
one comparison between the newly generated solutions and
previous ones.

The concept of the spy algorithm is based on that ratio-
nal thinking that, on the high-rank agents, we should make a
slight refinement to avoid the risk of a significant decrease in
the quality of information. However, we need to make a pro-
gressive movement as well as take advantage of the benefit
of the already known solutions. Implementing this move-
ment for mid-rank agents is the right choice so that they can
improve the solution obtained by considering other agents.
However, the movements carried out by high and mid-rank
agents may lead to the local optimum. Therefore, we need a
mechanism that does not require taking into account the al-
ready obtained solutions so as not to be trapped at the local
optimum. This is where the low-rank agents play the role
to perform random searches so they can explore new loca-
tions. Since the random search sometimes leads to uncertain
results, assigning this search to low-rank agents is appropri-
ate. This design enables us to never lose the advantage of
exploratory search even when other solutions start converg-
ing at certain points. While many traditional population-
based-metaheuristic algorithms encounter decreasing bene-
fits of exploration search as iterations increase and solutions
tend to converge to certain points [30], [31], the py algorithm
is able to maintain and improve the solutions that have been
obtained while maintaining exploration.

The whole design of the spy algorithm is to provide
assurance that each type of movement will always exist in
every iteration. Each solution is only allowed to perform
one type of movement and the consideration is determined
on the basis of its solution quality that is converted into
a ranking system. Although the spy algorithm applies a
ranking system, its application differs from rank selection
applied in other metaheuristics, e.g., the GA [32]. To fit
the problem to be solved, the balance of occurrence of the
three types of movements is set with the parameters used to
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determine which solution is categorized as a high, medium,
or low quality.

Exploitation is implemented by SwingMove while ran-
dom movement is for exploration. The MoveToward tends
to be exploratory at the beginning but gradually turns into
exploitation as the iteration increases and the solutions get
closer to each other. The ability of the spy algorithm to con-
verge relies on SwingMove and MoveToward. This concept
enables the spy algorithm to take advantage of exploration
and exploitation as well as use the cooperative and non-
cooperative strategies on solution refinement. The spy algo-
rithm organizes all these aspects to occur separately while
guaranteeing its presence in each iteration.

The spy algorithm can be simply implemented using
sorting to arrange the solutions. There are four main param-
eters that affect the performance, i.e., the number of solution
(NSol) that represents the number of spy agents, the maxi-
mum index for high-rank (HMI), the maximum index for
mid-rank (MMI), and the swing factor (SF) to bound the
perimeter. Another parameter is the number of iterations
(NI) as a stopping criterion commonly used in metaheuris-
tic algorithms.

3.2 Implementation

The objective function f should be defined by using variable
X. We assume the dimension of variable X is D ∈ N so that
X = (x1, x2, . . . , xD). This variable represents the location
of an agent in D dimensional space. Since there are NSol
agents, NSol values of the objective function are obtained
from NSol locations. We denote each location and its value
by Xμ and f (Xμ), respectively, where μ = 1, 2, . . . ,NSol.
The main concepts of the spy algorithm are very simple and
can be implemented in many various ways. One of its im-
plementations can be seen on the pseudocode in Fig. 2. The
ascending sorting can be used to simply determine the rank
of each agent. The best agent that gives the smallest value
should be placed at the first position and the largest at the
last position. It should be noted that refinements can be
carried out starting from the agent with the lowest to the
highest rank. This strategy is to maintain the position of
the higher rank agent to ensure that the rank, as well as its
location, does not change before it is used as a reference
by other lower rank agents. For clarity, we propose sim-
ple movements for SwingMove and MoveToward on the ba-
sis of the assumption that the algorithm works in discrete
time t related to the iteration. We denote the location of
the μ-th agent Xμ = (xμ1 , x

μ
2 , . . . , x

μ
D) at time t by Xμ(t), for

t = 1, 2, . . , (NI − 1).

* SwingMove

Xμ(t + 1) := Xμ(t) + rand(−1, 1)(SF/t) (1)

* MoveToward (assume that agent Xμ move toward Xν)

ν := randint(1, μ − 1) (2)

Xμ(t + 1) := Xμ(t) + rand(−1, 1)(Xν(t) − Xμ(t)) (3)

Fig. 2 Pseudocode of the spy algorithm

The function rand(−1, 1) is for generating a vector
of real random numbers within [−1, 1] that allows move-
ment in any directions. In MoveToward, the considered
agent is a randomly selected better agent Xν. The function
randint( 1, μ − 1) is used for generating an integer random
number ν within [ 1, μ − 1] where μ is the index of the agent
that performs MoveToward movement. Based on the pseu-
docode in Fig. 2, the process of selecting agent Xν can be
done before going to the MoveToward function.

Considering that the new obtained solutions must be
within the search space, there needs to be an additional sim-
ple mechanism to control the SwingMove and MoveToward.
This mechanism returns the value of each element of the so-
lution vector that is outside the search space to the nearest
bound of the search space.

Unlike most metaheuristic algorithms, the spy algo-
rithm implements a concept that each solution is only al-
lowed to perform one type of movement at the refinement
step, which is (SwingMove), (MoveToward), or random
search. Nevertheless, the spy algorithm assures all these
movements will always occur in each iteration. Therefore, a
proper arrangement is needed to guarantee the occurrence of
each movement. One of the strengths of population-based
metaheuristic algorithms is the cooperative search which
combines previously obtained solutions to create new bet-
ter solutions. Considering this benefit, it is necessary to set
that there is an adequate number of agents in the category
of mid-rank agent to perform MoveToward. As SwingMove
and random search are non-cooperative searches that do not
take a benefit from other solutions, it is reasonable to set the



PAMBUDI and KAWAMURA: NOVEL METAHEURISTIC: SPY ALGORITHM
313

Fig. 3 Solution distribution in each category

number of high-rank and low-rank agents small. Figure 3
shows how the parameters affect the number of agents in
each category.

It is common that, in all population-based algorithms,
cooperative search dominates the search processes. In
the case of GA, new solutions are created more through
crossover than through mutation. The spy algorithm accom-
modates the cooperative search by MoveToward performed
by mid-rank agents. To get the benefits of population-based
algorithms, it is necessary to arrange for the spy algorithm
to have a sufficient number of mid-rank agents. From our
experiments, it is suggested that the number of the mid-rank
agent is around 75%-95% of the total solution (NSol) with
the rest is for either high or low-rank agents.

The value of HMI parameter that regulates the number
of high-rank agents will affect the performance of the spy
algorithm. A small HMI value will make the spy algorithm
run longer than using a large HMI. A large HMI value will
reduce the number of cooperative searches so that the al-
gorithm can run faster but also risks reducing accuracy. In
the tuning process, the accuracy decreases quite a lot when
the HMI value is more than 0.15 which means the number of
high-quality agents is 15% of the total solution (NSol). Note
that in order to still get the benefits of exploratory search,
the spy algorithm needs to maintain the presence of the low-
rank agents category.

We propose two variants of the spy algorithm. The first
variant uses only a single agent in the high-rank category.
Since the GA variant may use elitism where the algorithm
preserves the best individual and pass it over to the new gen-
eration, this idea became a motivation to be loosely adapted
into the spy algorithm. However, GA and the spy algorithm
apply a different strategy. The best solution in GA may not
be modified as the changes only apply to the selected so-
lutions, but the spy algorithm always tries to improve each
solution including the best one. Another inspiration came
from PSO where the swarm move by considering the global-
best location. This situation also inspired the global-best HS
which is a variant of IHS [13]. As the best solution should
be only a single solution, we designed the first variant of the
spy algorithm where the high-rank category consists of a
single solution only. This case is also common in spy agen-
cies where each agent competes to be the best one. Applying
a single high-rank agent will result in increasing the pro-
gressive search implemented by MoveToward on mid-rank
agents. This design will increase the occurrence of referrals
to the best agent in the solution refinement step. The first
variant can be obtained by setting parameter HMI = 1/NSol
or by setting in the code so the number of the high-rank
agent is directly set to 1. To make it simple, the first variant
is referred as Spy1. The second variant is the case where the

high-rank category consists of more than one agents, and it
is referred as Spy2.

The Spy2 allows the algorithm to have several dis-
tinct solutions that are considered high quality. In the case
of a problem having many solutions, it is advantageous to
have many agents to exploit many basins. In the context of
spy algorithm, exploitation is accommodated by SwingMove
which is performed by high-rank agents. When some agents
have more information than others, they have a greater
chance of finding the best solution. Therefore, a slight
movement is recommended for those agents rather than al-
ways moving progressively and exploring large areas. Con-
sidering the whole process of the spy algorithm, increas-
ing the number of high-rank agents will reduce the num-
ber of mid-rank agents assuming that the low-rank agents
are constant. The result is an increase in the occurrence of
SwingMove and a decrease in MoveToward. Since the
SwingMove process is simpler than MoveToward, the algo-
rithm may run faster.

4. Evaluation

4.1 Test Condition

Two tests were conducted for investigating the perfor-
mance of the spy algorithm, i.e., (i) optimization on multi-
dimensional function, and (ii) multimodal optimization.
Test (i) also involved multimodal functions, but the focus
was for finding the global optimum. Test (ii) focused on
finding all global optimums, which means how many global
optimum points can be detected with a certain algorithm.
For comparison, Spy1 and Spy2 were tested with the three
population-based metaheuristic algorithms of the GA [33],
IHS [12], and PSO [34]. A real-coded GA with simple arith-
metic operators was used to give an equal condition as the
other tested algorithms used simple arithmetic operators as
well. Tournament selection was used in the GA because
of its stability compared with roulette wheel selection. The
elitism was applied to GA. All tested algorithms were in
their basic version and did not use any specific approach
enabling us to investigate the original potential of each
algorithm.

The optimum points for each test function were known
so that the performance for each algorithm could be properly
measured. We made all tested functions have an optimum
value of 0 by normalizing several functions. On test (i), we
set the dimension size on 30 to gain adequate insight into
how the algorithm works on large dimensional problems.
The dimension size was set to 2 for test (ii) so we could
get visual results for better understanding. All test func-
tions are non-convex functions and listed in Table 1. The
plot of some 2-dimensional version of the test functions are
shown in Fig. 4. Unlike optimizations on convex functions,
which can be solved in polynomial time, optimizations on
non-convex functions are more difficult to solve since there
are many local optimums, valleys, or plateaus that can trap
the algorithm so that it fails to find a global optimum.
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Table 1 Test functions

Test Name Test function Dim Interval GOP
(D) Ii

Michalewicz* f1 = −∑n
i=1 sin(xi)sin20(

ix2
i
π ) 30 [ 0, π] 1

Rosenbrock f2 =
∑n

i=1
(
100(xi+1 − x2

i )2 + (1 − xi)2) 30 [ 0, 10] 1

Alpine01 f3 =
∑n

i=1

∣∣∣xi sin(xi) + 0.1xi

∣∣∣ 30 [ -10, 10] 1

(i) Ackley f4 = −20e

(
−0.2

√
1
n

∑n
i=1 x2

i

)
− e

(
1
n

∑n
i=1 cos(2πxi)

)
+ 20 + e 30 [ -30, 30] 1

Salomon f5 = 1 − cos
(
2π

√∑n
i−1 x2

i

)
+ 0.1

√∑n
i−1 x2

i 30 [ -100, 100] 1

Griewank f6 = 1 + 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos
(
xi/
√

i
)

30 [ -600, 600] 1

Bird* f7 =
(

sin x1e(1−cos x2)2
+ cos x2e(1−sin x1)2

+ (x1 − x2)2
)

2 [−2π, 2π] 2

Cross in Tray* f8 = −0.0001

(∣∣∣∣∣∣ sin x1 sin x2e

∣∣∣∣∣100−
√

x2
1+x2

2
π

∣∣∣∣∣∣∣∣∣∣∣ + 1

)0.1

2 [ -10, 10] 4

(ii) Holder Table* f9 = −
∣∣∣∣∣∣ sin x1 cos x2e

∣∣∣∣∣∣1−
√

x2
1+x2

2
π

∣∣∣∣∣∣∣∣∣∣∣∣ 2 [ -9.7, 9.7] 4

Himmelblau f10 =
(
x2

1 + x2 − 11
)2
+

(
x1 + x2

2 − 7
)2

2 [ -6, 6] 4

Shubert* f11 =
∏n

i=1

(∑5
j=1 j cos

(
( j + 1)xi + j

))
2 [ -10, 10] 18

Inv. Vincent f12 =
1
n

∑n
i=1 sin

(
10 log xi

)
2 [ 0.2, 10] 36

*: normalized by subtracting it with the optimum value

Fig. 4 2-dimensional version of the test functions

The optimization of the non-convex function is categorized
as NP-hard [19], so it is suitable for testing metaheuristic
algorithms.

To adjust to the test and the characteristics of the prob-
lem, a different set of algorithm parameter values was tuned.
The solution (population) size was set to be equal for each
algorithm. The NI was set at 50 times the size of the prob-
lem dimension. Since IHS only generates one new solution
per iteration, the NI for IHS was set at 50 times the dimen-
sion size times the harmony memory size (HMS ) to make
it equal. Other algorithm parameter values are listed in Ta-
ble 2. These values were tuned to obtain an equal condition
that takes into account the number of function evaluations
and the search balance. All algorithms were implemented
in Python code. The code was run using Python 3.9.4 on a
Windows 10 PC powered by Intel i7-9750H and 16-GB of
RAM.

Each algorithm was run in 100 independent repetitions

Table 2 Algorithm parameters

GA IHS PSO Spy1 Spy2
Pop= 40 HMS=40 NSwarm=40 NSol=40 NSol=40
Tourn= 10 HMCR= 0.85 c1= 0.9 HMI= 1/NSol(∗) HMI= 0.1
Parent= 10 minPAR= 0.7 c2= 1 MMI=0.9 MMI= 0.9
pc= 0.9 maxPAR= 0.85 SF=1 SF=1
pm= 0.2 minBW= 0.5
StepSize=1 maxBW= 1.5
NI= 50D NI= 50D*HMS NI= 50D NI= 50D NI= 50D
D: dimension size
(*): the high-rank agent can also directly be set fix at 1

to obtain sufficient data to observe its behavior. The perfor-
mance criteria were mainly based on the average error and
its standard deviation, but because test (ii) is also for inves-
tigating the potential for finding all global optimum points
(GOPs), it has an additional criterion, which is the maxi-
mum peak ratio (MPR).
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Table 3 Average error ± Standard deviation

f GA IHS PSO Spy1 Spy2
f1 3.501 18.556 18.181 9.311 12.387

±0.564 ±0.423 ±0.776 ±3.378 ±1.461
f2 21.674 98.344 477.124 17.157 22.856

±10.316 ±60.779 ±1429.226 ±29.856 ±28.084
f3 0.284 1.922 1.229 0.019 0.250

±0.141 ±0.267 ±1.681 0.079 0.999
f4 0.431 2.396 1.434 7.617e-6 4.213e-4

±1.742 ±0.115 ±0.776 ±.972e-6 ±1.504e-4
f5 10.909 0.285 0.856 0.426 0.62

±2.170 ±0.031 ±0.336 ±0.056 ±0.077
f6 24.640 0.203 1.013 0.004 0.002

±20.167 ±0.115 ±0.195 ±0.011 ±0.008
f7 1.559 3.595 0.053 1.041e-6 1.415e-7

±7.155 ±7.521 ±0.140 ±5.553e-6 ±1.045e-6
f8 2.855e-7 3.973e-4 5.553e-5 3.592e-9 5.826e-10

±4.595e-7 ±0.003 ±7.386e-5 ±2.251e-8 ±3.681e-9
f9 1.368 0.199 0.011 2.186e-6 2.983e-7

±3.318 ±1.364 ±0.004 ±6.678e-6 ±1.442e-6
f10 2.286e-4 0.014 0.007 8.502e-7 6.126e-7

±4.968e-4 ±0.014 ±0.008 ±4.269e-6 ±2.536e-6
f11 3.207 1.083 0.961 0.003 7.885e-4

±13.836 ±1.057 ±2.216 ±0.004 ±0.001
f12 0.001 0.002 0.007 7.759e-7 4.342e-7

±0.010 ±0.007 ±0.021 ±2.800e-6 ±2.139e-6
*in bold: smallest among others

MPR =
Number of detected GOPs
Number of all actual GOPs

. (4)

When a solution falls near a certain GOP location which
means the error E is less than ε, that is,

E = ‖Xopt − X̂‖ < ε, ε ∈ R+, (5)

and falls within the same narrow basin of the GOP, we count
it as able to detect the GOP even though the obtained so-
lution might differ from the exact one. We used ε = 0.1
for test (ii) considering that all tested algorithms were set to
use a small number of solutions and iterations. The main
purpose of test (ii) is to investigate the ability of the tested
algorithms to distribute their set of solutions to reach many
distinct GOPs. The last criteria for each test is the computa-
tion time taken by the algorithm.

4.2 Experimental Result

We tested the spy algorithm, GA, IHS, and PSO on various
problems having various characteristics to investigate their
accuracy, speed, and robustness. The descriptive statistical
results are listed in Table 3. The spy algorithm provided the
most accurate results in most test functions. Even though the
spy algorithm performed poorly in two test functions ( f1 and
f5), Spy1 and Spy2 did not perform the worst. The charts of
the average error are shown in Fig. 5. From these results, the
spy algorithm tended to have small errors and small stan-
dard deviation. These results differed from GA, IHS, and
PSO whose results tended to vary markedly at different test
functions. The results indicate that the spy algorithm was
more robust than the other tested algorithms.

Of all tests, the spy algorithm performed worse in ac-
curacy for the Michalewicz ( f1) function. This algorithm
was worse than the GA, although it was better than IHS
and PSO. As the representation of the characteristic, the 2-
dimensional Michalewicz function has a contour in the form
of valleys as well as plateaus which can trap the algorithm
so that it fails to approach the global optimum point. Such a
characteristic did not exist in other tested functions. On the
Michalewicz function, GA showed its superiority over the
others. For functions similar to the Michalewicz function,
the spy algorithm may perform worse than the GA. Consid-
ering that the spy algorithm was better than IHS and PSO
in this case, it is possible to improve the performance of the
spy algorithm by adjusting the parameters.

To provide a more in-depth investigation in the differ-
ences of each algorithm, we conducted a Kruskal-Wallis H
test using α = 0.05 on each test function. Our test results
on each test function indicate that there were significant dif-
ferences among these algorithms. To know the detail, we
conducted the Gomes-Howell post hoc comparison. The P-
values of this comparison are listed in Table 4. Considering
the average error values and these P-values, the spy algo-
rithm significantly gave the best results or was always in the
best group. These results also showed that the two variants
of the spy algorithm had significant differences on several
test functions. Table 3 shows that Spy1 tended to be bet-
ter than Spy2 on the high-dimensional test functions while
Spy2 was slightly better than Spy1 on the 2-dimensional test
functions.

Without changing the algorithm parameter values, on
test (ii), we tested all algorithms to detect as many GOPs as
possible. Combined with test (i), test (ii) will provide a more
deep investigation of the robustness of the algorithm. The
visual results of detecting GOPs on f11 are shown in Fig. 6.
The diamonds denote that there are solutions that fall near
the location of the global optimum, triangles indicate that
no solution lies near the considered location of the global
optimum. The averages of all maximum peak ratios (MPRs)
are listed in Table 5. In this test, the GA and IHS performed
poorly with low MPR results. These results indicate that
the GA and IHS were weak in detecting many GOPs and
tended to converge to a few. PSO provided a good enough
MPR, so that it was suitable to use to find many GOPs. From
these results, the spy algorithm was outperformed PSO, as
seen from the MPR, which was greater than that of PSO.
Both Spy1 and Spy2 had similar accuracy in detecting many
GOPs.

In terms of time performance, we computed the ag-
gregate computation times regardless of the test function.
Although the complexity of the test function affected com-
putation time, the differences were not very large. As the
time difference is more affected by the dimensions of the
problem, we separated test (i) that applied the dimension
size of 30 and test (ii) that applied the dimension size of
2. The computation times are shown in the boxplot chart
in Fig. 7. We again performed Kruskal-Wallis H test us-
ing α = 0.05 to compare computation times. As the output
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Fig. 5 Error charts

Table 4 P-values of Games-Howell post hoc error comparison

Comparison f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

GA - IHS <.001 <.001 <.001 <.001 <.001 <.001 0.780 <.001 <.001 <.001 0.534 0.958
GA - PSO <.001 0.017 <.001 <.001 <.001 <.001 0.063 <.001 <.001 <.001 0.167 0.013
GA - Spy1 <.001 0.609 <.001 0.106 <.001 <.001 0.003 <.001 <.001 <.001 0.095 0.851
GA - Spy2 <.001 0.995 0.997 0.106 <.001 <.001 0.003 <.001 <.001 <.001 0.095 0.851
IHS - PSO <.001 0.071 <.001 <.001 <.001 <.001 0.002 0.009 0.669 <.001 0.303 0.016
IHS - Spy1 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 0.609 <.001 0.055 <.001
IHS - Spy2 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 0.609 <.001 0.055 <.001
PSO - Spy1 <.001 0.015 <.001 <.001 <.001 <.001 0.398 <.001 <.001 <.001 <.001 0.002
PSO - Spy2 <.001 0.017 <.001 <.001 <.001 <.001 0.398 <.001 <.001 <.001 <.001 0.002
Spy1 - Spy2 <.001 0.634 0.154 <.001 <.001 0.471 0.613 0.383 0.058 1.000 0.012 0.951
The difference is significant if P − value < α, (α = 0.05)

of Kruskal-Wallis H test showed that there were significant
differences, we followed it up with a post hoc comparison.
The results are listed in Table 6. From these P-values, the
only one insignificant difference was between IHS and Spy1
for the dimension size of 2. From the results in Fig. 7 and

Table 6, the spy algorithm was the fastest among the algo-
rithms. Another important result was that Spy2 was faster
than Spy1. The shortest computation time of Spy2 could
be easily understood because Spy2 used more SwingMove
and less MoveToward than Spy1. SwingMove took less
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Fig. 6 Detecting global optimums on Shubert function having 18 GOPs (red dots are solutions, dia-
monds means the solutions lie near a certain GOP while triangles are missed GOPs)

Table 5 Average MPR

f GA IHS PSO Spy1 Spy2
f7 0.47 0.49 0.495 0.99 0.96
f8 0.25 0.2575 0.5675 0.925 0.9075
f9 0.1425 0.2375 0.2525 0.9875 1
f10 0.25 0.255 0.305 0.7525 0.78
f11 0.054 0.0961 0.18 0.4556 0.4828
f12 0.0272 0.0464 0.1228 0.2925 0.2903
*larger is better, maximum is 1

Fig. 7 Boxplots of computation time

Table 6 P-values of post hoc time comparison

Comparison D = 2 D = 30
GA - IHS <.001 <.001
GA - PSO <.001 <.001
GA - Spy1 <.001 <.001
GA - Spy2 <.001 <.001
IHS - PSO <.001 <.001
IHS - Spy1 0.891 <.001
IHS - Spy2 <.001 <.001
PSO - Spy1 <.001 <.001
PSO - Spy2 <.001 <.001
Spy1 - Spy2 <.001 <.001
The difference is significant if P − value < α, (α = 0.05)

computation time because the SwingMove has simpler op-
eration than MoveToward.

The spy algorithm, GA, IHS, and PSO were tested on
two tests without changing the algorithm parameters. The
tests applied an equal condition for all tested algorithms
and all algorithm parameters were tuned up to suit the set
of test functions as a whole. Based on the descriptive re-
sults and statistical analysis, overall spy algorithm showed

the best performances in accuracy, MPR, and computation
time. These results indicate that the spy algorithm was more
robust than the GA, IHS, and PSO. Changes in parameter
values in the spy algorithm have a direct effect on the num-
ber of occurrences of SwingMove, MoveToward, and ran-
dom search. These changes may have an impact on the
performance. Spy2 was substantially faster than Spy1 but
Spy1 tended to have better accuracy on high-dimensional
test functions. Both Spy1 and Spy2 showed almost equally
good ability for detecting many GOPs.

The spy algorithm performed well because its rule and
all processes are very simple so it can achieve a low com-
putational cost. The spy algorithm is accurate because it
uses two types of solution refinements. SwingMove is a
slight refinement to avoid a sudden drop in solution qual-
ity. However, the SF has an important role to manage its
change. A small SF tends to provide a new solution that is
not much different from the previous solution. While the
SwingMove preserve solution quality, the MoveToward per-
forms a progressive search by benefiting the previously ob-
tained location. These two strategies are well managed so
that the spy algorithm can achieve high accuracy while re-
ducing the computational costs.

5. Conclusion

We proposed the spy algorithm, which is a population-
based metaheuristic algorithm that ensures the benefit of ex-
ploration and exploitation as well as cooperative and non-
cooperative searches in each iteration. Unlike many tradi-
tional population-based metaheuristic algorithms that loses
exploration as the iteration increase, the spy algorithm is
able to maintain exploitation as well as exploration search
to improve the solutions.

We tested the GA, IHS, PSO, and spy algorithm on a
set of non-convex functions that focus on accuracy, the abil-
ity to detect many global optimum points, and computation
time. We conducted a statistical analysis to gain insight into
accuracy and computational cost. As a result, the spy al-
gorithm outperformed GA, IHS, and PSO. It resulted in less
errors and higher maximum peak ratios within less computa-
tion time, indicating that the spy algorithm was more robust
than other tested algorithm.
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