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Abstract
Metaheuristic algorithms (MAs) are used to find the answers to NP-Hard problems. NP-Hard problems basically refer to a set of
optimization problems that cannot be solved in a polynomial at a time.MAs try to find the optimal or near-definitive answer in the
shortest possible time to solve such problems and a set of optimization algorithmswith different origins. These algorithmsmay be
inspired by the natural sciences, physics, mathematics, and political science. However, a particular Metaheuristic algorithm may
not provide the best answer to all problems. Each MA may have a better response to specific problems than other similar
algorithms. Therefore, researchers will try to introduce and discover new algorithms to find optimal answers to a wide range
of problems. In this paper, a newMeta-heuristic algorithm called the Water optimization algorithm (WAO) is presented. WAO is
inspired by the chemical and physical properties of water molecules. The main idea of the proposed algorithm is to link water
molecules together to find the optimal points. Factors such as particle motion, particle evaporation, and particle bonding have
created a mechanism based on swarm intelligence and physical intelligence that inspired this algorithm to solve persistent
problems. In this algorithm, answers are defined as a water molecule, a set of them is defined as a local answer. Water bonds
provide the right move towards the optimal response. In evaluating the performance of the proposed algorithm, the proposed
method is applied to some standard functions and some practical problems. The results obtained from the experiments show that
the proposed algorithm has provided appropriate and acceptable answers in terms of execution time and accuracy compared to
some similar algorithms.
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1 Introduction

In the theory of computational complexity, there are different
types of problems.The computational complexity of problems
starts from P-time (P) problems [1] which is the simplest
model of the problem and ends with the most challenging
model of problems. A problem is non-deterministic polyno-
mial acceptable problems-Hard (NP-Hard), if solved in poly-
nomial time, would make it possible to solve all problems in
class NP in polynomial time [2]. NP-Hard Problems include
thousands of problems, each of which has many applications
in the engineering sciences. To date, no definitive answer has

been found for such issues [3]. One of the essential applica-
tions of Metaheuristic algorithms is to answer NP-Hard prob-
lems reasonably and with a near-definite answer [3]. The pro-
posed Meta-heuristic algorithms are inspired by various
sources that operate according to that source.

Metaheuristic algorithms include a set of algorithms that
are used in optimization problems. These algorithms are a
good solution in cases where there is no definitive solution
to the problem or the time to reach a definitive answer is too
long. In fact, instead of reaching a definite answer, these al-
gorithms obtain acceptable answers in a more appropriate
time. These algorithms often have exploitation and explora-
tion phases, the first of which is to maintain and enhance the
achievements of this phase, and the second is to seek better
answers in other areas that may not have been explored. The
search is done in two models, local and global, in the search
space. Some of these algorithms are swarm-based and rely on
several initial solutions that are improved in subsequent itera-
tions in proportion to the fitness function of the problem. The
population is usually constant until the end of the algorithm.
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The optimal initial population size and the number of algo-
rithm iterations play an essential role in finding appropriate
answers in an acceptable time. Metaheuristic algorithms opti-
mize NP-Hard problems. The optimization performed in these
methods depends on searching the sample space of the
answers.

Each Metaheuristic algorithm is designed by a source of
inspiration, which distinguishes it from other methods in the
same category. Algorithms are usually inspired by Nature,
mathematics, physics, political and economic sciences, medi-
cal and evolutionary sciences [4]. For example, one of the first
Meta-heuristic algorithms is the Genetic Algorithm (GA) [5].
Genetic algorithms were initially designed to solve problems
with discrete data. The approach of this algorithm to solve
problems is optimization [5] Another version of this algorithm
was later implemented to solve continuous problems [6].
Another algorithm in this field is Genetic Programming (GP)
that was designed by David Goldberg [6–8]. The mentioned
algorithms (GA, GP) have some functional similarities in
some cases, such as generation and recombination operators.

Although this algorithm is based on the theory of evolution,
it differs from the GA algorithm in its answers. For example,
different tree-based answers are displayed in this algorithm,
which is suitable for modeling [7]. Another algorithm called
Ant Colony Optimization (ACO) is known as meta-heuristic
algorithms [8]. This algorithm is inspired by the collective
behavior of ants [8]. Another widely used algorithm in me-
chanics is the Spotted Hyena Optimizer (SHO) algorithm [9].
SHO is a convenient algorithm for solving problems in the
online domain. The mass hunting behavior of hyenas inspires
this algorithm to achieve near-optimal responses. At a higher
level of algorithms for solving problems, hyper-heuristic al-
gorithms are presented [10]. Hyper-heuristic algorithms are
usually built by combining several heuristics or meta-
heuristic algorithms [10]. In some such algorithms, the
Machine Learning (ML) method has been used [11]. Hyper-
heuristics that have usedML are usually presented in a limited
way to solve a practical problem [12].

Although Metaheuristic algorithms seek to find near-
optimal answers to NP-Hard problems, according to the
NFL theory, not every algorithm can solve all problems
[13]. Nor can it be said that a Metaheuristic algorithm solves
a problem in the best way. The main challenge in
Metaheuristic algorithms is solving problems in the shortest
possible time with the utmost accuracy in optimizingNP-Hard
problems. Metaheuristic algorithms try to perform well in im-
proving response time, obtaining an optimal or near-optimal
response, especially in population-based and congestion
methods that can perform well with a minimal population of
initial responses. Population size is an essential challenge in
this area, so its increase leads to a long time to reach its re-
sponse, and its decrease leads to a drop in local optimality and
early convergence. For example, an algorithm such as ACO

has high accuracy in solving the tsp. problem, but its response
time is longer than similar algorithms in solving this problem.
For this reason, algorithmsmust converge to a good point both
in terms of accuracy and speed of performance. Hyper-
heuristic algorithms also face problems by combining several
different algorithms. The use of a combination of
Metaheuristic algorithms has limited them to solving a specif-
ic set of problems.

In this paper, a new Meta-heuristic algorithm is presented
that uses the chemical and physical properties of water mole-
cules. Hydrogen bonds of water metaheuristic algorithm
(WAO) use the relationship between water molecules and
are the optimal answer to problems. The proposed algorithm
uses the chemical properties of the water molecule and the
hydrogen bonds of this molecule to perform its local search.
It also conducts a global search using the laws of physics and
the molecular motion of water. In addition, using the applica-
tion of magnetic forces, the water atom pursues a global
search in a sample space. The steps to find the optimal points
are obtained with the help of the weight of the bonded mole-
cules inspired by the hydrogen bond of water. In this algo-
rithm, each water molecule is one of the desired answers to
search for the best answer.

The source of inspiration for this algorithm is the use of the
chemical and physical properties of water. Population-based
algorithms are highly dependent on the size of the population
and the number of iterations required to achieve the optimal or
near-optimal response. A smaller population size will cause a
fall in local optimum or early convergence. In contrast, in-
creasing population size will increase response time.
Therefore, there will always be a trade-off between the accu-
racy of the response and the timing. Due to its unique nature,
our proposed algorithm requires a smaller population com-
pared to similar methods, which in itself reduces the execution
time and increases the accuracy of achieving a more appropri-
ate response. The reason for this is the use of P and HTemp
lowering actuators, which are inspired by the physical and
chemical properties of the water atom. When applying the P
process, new responses are obtained from the bond between
members of the population, which, if better fitted, will replace
the pre-impact responses.

On the other hand, the P process is applied randomly and in
proportion to the quality of the initial responses. This work is
done not only to reinforce superior responses but also to en-
able weaker responses to avoid falling into local optimization.
In the P process, the appropriate responses from the collision
become a superior response, and fewer and better-improved
responses follow the population calculations. The HTemp op-
erator, which is formed by the nature of the boiling point of
water, also increases the search speed when needed. In other
words, the acceleration of the algorithm is proportional to the
progress made, increasing the response speed.The perfor-
mance of the WAO algorithm is due to the use of chemical
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and physical properties of water, such as a combination of
several Metaheuristics, each of which makes this algorithm
more responsive.

The main advantages of the proposed method include the
following:

& Design a new metaheuristic algorithm called WAO opti-
mization algorithm, inspired by chemical and physical
properties of water molecules.

& Introducing two new P and HTemp factor operators to
speed up response time and high accuracy in obtaining
the optimal response.

& Utilizing the strengths of several meta-heuristic
algorithms.

& Ability to solve continuous NP-Hard problems.
& We are maintaining the quality of responses with a smaller

population of initial responses compared to similar
methods.

& Comparing the performance of the proposed method and
its superiority over a variety of classic and new methods.

The other sections of the article are organized as follows:
In Section 2, the related works are reviewed. Then, in

Section 3, the proposed algorithm and its mechanism are in-
troduced. In the fourth part of this research, the performance
of the proposed algorithm is evaluated, and finally, in the 5th
part, the proposed method is concluded.

2 Related works

ManyMetaheuristic algorithms have been developed in recent
years. The main task and purpose of their design are to obtain
the optimal answer [14]. This section has a detailed look at the
process of some classic and new models, how to build them,
and a partial history of them. According to the sources of
inspiration of each Metaheuristic algorithm, there are catego-
ries for them, which generally include Evolutionary
Algorithms [15], Physical algorithms [16], Nature algorithms
[17], Swarm algorithms [18], and Biological Algorithms [19].

The theory of evolution generally inspires Evolutionary
Algorithms. One of the first Evolutionary algorithms is the
Genetic Algorithm (GA) [5]. GA is a convenient algorithm
for solving problems with discrete data. The GA algorithm is
proposed using the generation of chromosomes and the genet-
ic laws of the process. This algorithm was introduced in 1970
by John H. Holland. Another algorithm that can be named in
this category is the Differential Evolution Algorithm (DE)
[20]. The DE algorithm was introduced to improve the results
and problems of the genetic algorithm. GA is an algorithm for
solving problems with discrete data, so DE is designed to
improve performance for solving problems with GA continu-
ous data. Another algorithm in this category that the CEC2020

test has evaluated is the Improved Unified Differential
Evolution (IUDE) algorithm [21]. This algorithm has been
formed using a combination of physical and evolutionary al-
gorithms and has improved performance. Other algorithms
such as Genetic programming [7], evolutionary strategy
[22], and Evolutionary programming [23] are in this category.

The next category of algorithms is Physical algorithms.
These algorithms are generally inspired by the science of
physics [15]. The simulated annealing (SA) algorithm is one
of these that was introduced in 1983 [24]. The SA algorithm is
a Meta-heuristic optimization algorithm suitable for large
search spaces. Due to its high efficiency and simplicity, it is
widely used and popular among various methods, and this
algorithm is also suitable for solving discrete problems [24].
Another algorithm that works well in the physical category is
the Teaching-learning based optimization (TLBO) algorithm
[25]. The rules of learning and teaching inspire this algorithm.
Another algorithm called a gravitational search algorithm
(GSA) uses physical and gravitational laws in this category
[26]. The GSA was introduced in 2009. The Archimedes op-
timization algorithm (AOA) is a new method that falls into
this category. AOA was introduced in 2020 and is inspired by
Archimedes’ law [16]. This algorithm mimics the principle of
Archimedes law of floating force applied upwards on an ob-
ject, in which it moves partially or completely according to the
weight of the fluid immersed in the liquid [16]. Another new
algorithm in this category is called the Transient search opti-
mization (TSO) algorithm. This algorithm is inspired by the
use of electrical switching circuits such as inductors and ca-
pacitors and transient behavior in such circuits.TSO was in-
troduced in 2020 [27]. Another algorithm that has been de-
signed in this field and built using several algorithms is the
sCMAgES algorithm. This algorithm is designed and present-
ed in 2020 [28]. (HS) harmony search [29], memetic algo-
rithm (MA) [30], and electromagnetic algorithm an
electromagnetism-like mechanism (EM) [31] can also be
named from this category, each of which has its
characteristics.

Nature-inspired algorithms are another category [17]. In
this category, we can mention the Firefly algorithm (FF),
which is inspired by the optical connection between fireflies
[32]. FF was introduced in 2007. Another algorithm called the
Cuckoo search (CS) was introduced in 2013, inspired by
cuckoo behavior [33]. The cuckoo algorithm is a suitable al-
gorithm for solving persistent problems. Another widely used
algorithm in this category is the Harris Hawks optimization
(HHO) algorithm. This algorithm is inspired by the Harris
hawk bird hunting process and deals with optimization issues.
In this algorithm, Harris hawks can implement various hunt-
ing scenarios and models depending on the type of Nature or
prey, using collective intelligence when hunting. The HHO
algorithm is presented in 2019 [34]. One of the newest algo-
rithms in this field is the Trees Social Relations Optimization
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Algorithm: A new Swarm-Based metaheuristic technique to
solve continuous and discrete optimization problems (TSR),
which uses the collective intelligence behavior of trees to op-
timize. This algorithm was published in 2021 [35].
Furthermore, Biogeography-based optimization (BBO) [36],
gray wolf optimizer (GWO) algorithms [37], moth flame op-
timization algorithm (MFO) [38], the ant lion optimizer
(ALO) [39], grasshopper optimization algorithm (GOA)
[40], (BA) bat-inspired Algorithm [41], Invasive weed opti-
mization algorithm (IWO) [42] and The whale optimization
algorithm (WO) [43] are other algorithms in this category.

Swarm algorithms usually use swarm intelligence that can
solve many problems [18]. One of the most popular algo-
rithms in this category is called the Ant colony algorithm
(ACO). The ACO was introduced in 1992 [8]. The behavior
of ants inspires ACO to find food. In this algorithm, agents
alone do not have intelligence, but their collective behavior

has led to swarm intelligence. Another algorithm called parti-
cle swarm optimization (PSO) was introduced in 1995 and fell
into this category [44]. PSO is a convenient algorithm for
solving persistent problems inspired by birds’ social behavior,
and many researchers refer to it as the bird algorithm. Other
algorithms in the population-based category include the quasi-
oppositional chaotic antlion optimizer (QOCALO) algorithm.
The source of inspiration for this algorithm is antlion hunting,
and Antlions hunt for insects on the surface of the soil using
hollows such as ant colonies holes, which is the main source
of this algorithm. This algorithm is used to solve persistent
problems [45]. The artificial fish swarm optimization algo-
rithm aided by ocean current power (AFSAOCP) is also one
of the algorithms inspired by swarm intelligence. This algo-
rithm uses ocean currents to optimize problems in fish hunting
behavior, which is individual and collective [46]. Another
algorithm in the category of swarm intelligence is the
Human mental search algorithm (HMS). This algorithm is
inspired by various social behaviors, such as the online auc-
tion bidding space. HMS was introduced in 2017 and is suit-
able for solving persistent problems [47]. Another algorithm
in this category is the COLSHADE algorithm, which was
designed in 2020 using the combination of the nature of sev-
eral other super-innovative algorithms [48]. Another success-
ful algorithm in this field is A Self-Adaptive Spherical Search
Algorithm (SASS), which was introduced in 2020 [49]. This
algorithm is also designed using a combination and improve-
ment of other Metaheuristic algorithms such as Spherical
Search (SS). Artificial bee colony algorithm (ABC) [50], arti-
ficial fish swarm optimization algorithm (AFSO) [51], intelli-
gent water drops algorithm (IWD) [52], and SCA: A Sine
Cosine algorithm (SCA) [53] are other collective search
algorithms.

Meta-heuris�c 
algorithms

Evolu�onary 
algorithms

Gene�c 
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Differen�al evolu�on 
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Fig. 1 Classification of metaheuristic algorithms

Fig. 2 Water atom and its different poles
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Fig. 3 Steps of WAO algorithm
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Biological sources inspire the algorithms presented as
Biological Algorithms. The immune system of living things
and bacteria growth can be the source of inspiration for these
algorithms [19]. For example, one of the most well-known
algorithms in this category is called the artificial immune sys-
tem (AIS). AIS was introduced in 2010 and is inspired by a
biological immune system [54]. Another well-known algo-
rithm in this category is the krill herd algorithm (KH) intro-
duced in 2014 [55]. KH has used chaos theory to accelerate
the achievement of optimal points. One of the most popular
algorithms in this field is the An Endosymbiotic Evolutionary
Optimization (EEO) algorithm introduced in 2001. Inspired
by endosymbiotic behavior, This algorithm is inspired by
the evolution of eukaryotic cells and the combination of pro-
karyotic and eukaryotic cells for this evolution., this algorithm
is optimized for survival and life [56]. Other biological algo-
rithms include the Bacterial foraging optimization (BFO) al-
gorithm [57], The dendritic cell algorithm (DCA) [58], the
salp swarm algorithm (SSA) [59], and the Shuffled evolution
algorithm. (SCE) [1] also mentioned. Figure 1 shows the clas-
sification of Metaheuristic algorithms categorized according
to their sources of inspiration and performance.

A review of past work inMetaheuristic methods shows that
each of these methods has made reasonable efforts to improve

the optimal answers. Metaheuristic methods never claim to be
the best solution to all problems, so there is still a motivation
to find new methods in this area. In most Metaheuristic
methods, which are based on population and repetition, choos-
ing the size of the population is a challenge. Less population
size leads to early convergence and, in contrast to population,
increases time complexity. Therefore, to overcome this chal-
lenge, the proposed method is introduced. The use of HTemp
and P parameters in the proposed method results in better
initial responses and requires a smaller population to reach
the optimum point. P factor increases accuracy, and the
HTemp factor increases the speed of reaching the target. The
details of the algorithm are explained in the relevant sections.

3 Hydrogen bonds of water metaheuristic
algorithm (WAO)

In this section, Hydrogen bonds of the water metaheuristic
algorithm (WAO) are fully introduced. First, the source of
inspiration for this algorithm is pointed out. The working pro-
cess of the proposed algorithm is presented, and at the end, the
parameters of this algorithm are explained. Section 3.1 pro-
vides the source of inspiration for this algorithm. Section 3.2
describes the operation of the algorithm. After presenting the
proposed algorithm, Section 3.3 defines the parameters and
mathematical modeling of this algorithm. In Section 3.4, the
real problems are solved using the proposed algorithm.
Section 3.5 describes the WAO algorithm and shows its var-
ious steps with a flowchart. Finally, the proposed method is
described in Section 3.6.

Table 1 WAO algorithm parameters

Parameter name Description

Afit Average optimality

B link

FitG Optimal overall

FitL Local optimization

FitLG The best local optimizer

H Particle

HTemp Boiling point

K Temperature reduction coefficient

P strike

PL Location of each particle

S Initial speed

Temp Sample space temperature

Wh Weight

θh Initial angle

θNh The new angle of motion

θp Impact angle

Fig. 4 Hydrogen bonds and weight - H1, H2, H3 water molecules - B1,
B2 Hydrogen bonds

Table 2 Initial random
parameters X1 X2 Fitness

H11 0.5 0.5 0.5

H21 1 1 1

H31 1.5 1.5 4.75

H41 2 2 8

H51 2.5 1.5 8.5

H61 0.5 1.5 2.5

Table 3 Particles and initial values calculation

Particles

H11 H21 H31 H41 H51 H61

PL (0.5,1.5) (2.5,1.5) (2,2) (1.5,1.5) (1,1) (0.5,0.5)

S 1 1 1 1 1 1

Wh 18 18 18 18 18 18

θ 270° 270° 270° 0° 180° 90°
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3.1 Inspiration from water

The properties of the water molecule inspire the WAO algo-
rithm. One of the essential properties of the water molecule is
its chemical polarity. It means that each molecule of water can
absorb molecules close to it. Another advantage of this prop-
erty is that its stability will be higher when each molecule is
joined together. Another feature of this molecule is its physi-
cal properties. Therefore, the WAO algorithm can answer
problems with continuous data. The physical-chemical prop-
erties of water molecules inspire the WAO algorithm. Water
molecules can bond hydrogen with each other [60]. The water
molecule (H2O) is a quadrilateral atom resulting from two
covalent bonds of two hydrogens with one oxygen, shown
in Fig. 2, given the water molecule [61]. The covalent bond
in the water molecule causes it to polarize. When a molecule
becomes polarized, it will act like a charged object, absorbing
each other if two charged objects with opposite charges come
close to each other. Hydrogen bonds form this property in the
water molecule [60, 62].

The molecular mass of eachmolecule is used tomeasure its
mass. This value is measured in moles per kilogram. In mate-
rials science, each water molecule’s molar mass is equal to
18 mol per gram [63]. Another property of water is that it
evaporates at room temperature, which is equal to 24 °C. Its
boiling point is equal to 100 degrees Celsius, at which tem-
perature the water begins to change and evaporate. If heat
more than 100 degrees Celsius enters the water molecule, it
only causes the atoms of this molecule to move faster and
more lively [64]. As the level of kinetic energy in this mole-
cule increases, hydrogen bonds are separated, and new bonds
may be formed.

3.2 Operation process of WAO algorithm

The WAO algorithm is presented using the chemical-physical
properties of the water molecule. Figure 3 provides an over-
view of the performance of this algorithm; according to
Section A of Fig. 3, points are first created randomly in the
problem space. According to the source of inspiration, these
particles are the same as water molecules. Each particle
weights by default and also has a random speed and direction
of motion. As long as the water molecules are moving, a
hydrogen bond will form as each molecule collides with the

other, which in section B, the bonds are separated by lines.
Bonding two (or more) particles form a new point, with the
total weight of all the bonded particles at that point.

As shown in Section C of Fig. 3, as the bond increases at
each point, particles will form that is considered to be the local
optimal point. As the algorithm continues in Section D, dif-
ferent points are created, each with different weight and un-
used and unused points. When this happens, the local search
of the algorithm is over. In this part, local optimal points are
also formed, which may have the same or different values. To
find the best point up to this point in the algorithm, we calcu-
late the weight of each point and display the best point with
the maximum weight obtained. In the proposed algorithm, the
algorithm process proceeds at each stage with the probability
that the best local optimal is the global answer. All points are
also given a chance to be optimal.

According to Section E of Fig. 3, the algorithm searches for
a better response by tapping the local optimal points. This
impact enters the local optimal points with a random direction
and random velocity but does not enter the best local optimal
point in this iteration. As shown in this section, one of the local
optimal points is linked to the best local point of the previous
step, but the other local optimal point is far from the best local
optimal point. Also, the points that were not connected were
removed from the problem space to search for optimality with
a temperature reduction coefficient. In the next section of Fig.
3 (Section F), 2 points are formed, which is more likely to be
optimal. Therefore, the energy of the molecular movement of
water has been used to give a chance to the global search to the
optimal local points. Such a way that the points that have not
gained a better weight during the process of the previous sec-
tion are given a temperature of 100 degrees, which causes the
local optimal point to overlap, which throws every particle
from that point in a random direction and at a random speed.
This trend is shown in Section G of Fig. 3.

Eventually, new points may be formed, or the global point
may be strengthened, and more low points may be formed.
For example, in section H of Fig. 3, by applying molecular
motion to the local optimal point, three insignificant particles
were formed in the previous section, and one of the particles
succeeded in searching for the optimal point. When this hap-
pens, the insignificant points are removed from the problem
space with the coefficient of temperature decrease, and the

Table 4 The second step
of the first iteration of the
WAO algorithm

Initial values H1,H2,H6 H3,H4

PL 1.5 2.5

S 1–1+1=1 1+1=2

Wh 3*18=54 2*18=36

θ 270° 315°

Table 5 The second step
of the first iteration of the
WAO algorithm

Parameter H1,H2,H6, H3

PL 0.5

S 1–1+1–1=0

Wh 4*18=72

θ 315°

The water optimization algorithm: a novel metaheuristic for solving optimization problems



optimal point also appears, which is shown in the final part of
Fig. 3 (Section I) of the optimality of this step. After finding
the optimality in each step, depending on the condition of the
algorithm, the said steps will be repeated.

3.3 Mathematical parameters and formulas

This section introduces the parameters of the WAO algorithm
Table 1. According to the general trend of the algorithm, the
first parameter that we need to know is the generated re-
sponses or the same particle space of the sample problem
represented by H. In the proposed method, and the desired
points are loaded in a sample space. H particles are moving,
which includes the direction of motion and the speed of mo-
tion. The direction of motion in this algorithm is θh. This
value is set randomly. In two-dimensional space, the value is
between 0 and 360 degrees. The velocity parameter in the first
step of the algorithm process is constant and equal to 1 for all
particles and Sh. The amount of speed and direction of move-
ment at each point varies as the algorithm continues. So by
obtaining the velocity fit for the two points that collide with
each other, the new value Sh will be determined. The particles
of the algorithm have specific coordinates for movement,
which will be set depending on the problem, and are repre-
sented by the PL parameter.

The second parameter of this algorithm is called bonding,
where b represents hydrogen bonding. This parameter gener-
ates several other parameters that play an essential role in the
overall process of the algorithm. This parameter is calculated
in the algorithm so that if the distance between H1 and H2 is
zero, then a hydrogen bond is formed between two particles.
This parameter generates new weight and angle parameters,
denoted by (Wh and θNh), respectively. The weight of the
bonds formed is specified by the Wh parameter. When two
H atoms join together, a B bond is formed between them. We
quantify the weight of the particles according to the bond. For
example, if we have three atoms, there are two bonds between
them, which also weigh 3, shown in Fig. 4.

After gaining new weight, the new angle of motion must be
determined. This is because the particles are constantly moving.
The parameter θnewh (θNh) is used to check the direction of
motion when two points collide. This value is obtained using
elementary laws of physics and mathematics. So that the differ-
ence in the angle of motion of the heavier particle with the lighter
particle is equal to the new value of the direction of motion, more
than two particlesmay collide with each other. Equation 1 is then
used to obtain a new angle of motion (Eq. 1).

θNh ¼ ∑
n

i¼1
θið Þ ð1Þ

Fig. 5 Steps of WAO algorithm
(1.H3 and H4 are linked together,
2. They continue to move, 3.
Approaching the best local
optimization, 4. The P operator
enters them, 5. The best answer
and the most links are achieved)

A. Daliri et al.



According to the physical relations, after gaining weight
and updating the weights, the movement of the points will
slow down and eventually become static. The parameters of
local optimal weight (FitL) and the average of all FitLs are
then calculated to calculate the best local optimal point repre-
sented by (AFit). By comparing Afit with all points, we find
out which local points are optimal and which points are

worthless. Worthless points will be eliminated according to
the algorithm process, but FitL points will be hit. It is also
called the largest local optimizer (FitLG), which will not be
hit at any stage. Using the Impact parameter denoted by (P),
the impact points are entered for the global search. P intro-
duces a new force that includes the angle of impact and the
speed of impact to any point. The parameters of impact angle
and impact speed are equal (θp and Sp), respectively. Their
value is entirely random to create fair conditions for the im-
plementation of the steps. Calculating the speed and direction
of scattering and scattering of optimal particles is done in the
previous steps. Not all points may be searched after applying
changes by tapping.

Furthermore, there is a possibility that there will be no
change in the answers. The boiling temperature has been
used to solve this problem; this is displayed with the
parameter (H-temp). This operation occurs when there
is no change in the previous optimizations. In this oper-
ation, the local optimal particle temperature rises so high
that it causes the optimal points to overlap at a random
rate for each particle. This process must then be perform-
ed to the value of the algorithm stop condition. The stop
condition may be the number of repetitions, the time, the
convergence, which are bet as desired.

The mathematical relationships of the WAO algorithm are
given in the explanation of the parameters. The mass of atoms
is calculated using the molar mass, and the mass of one mole
of water is 18 g per mole [60] (Eq. 2). As a result, the wh of
each particle is 18 mol/g by default. If the molecules are con-
sidered Nh and the mass of each molecule is 18 g per mole,
then the mass value of each optimal point can be calculated
with (Eq. 3).

H2O ¼ 2Hþ O ¼ 2 1ð Þ þ 16 ¼ 18 g=Mol ð2Þ

Wh ¼ ∑
n

Nh¼1
18*Nhð Þ ð3Þ

The following parameter that is addressed is the angle of
motion. To calculate the angle, we may have an angle number
in the motion of N particles. For this reason, in the first step,
the difference in angles with each other must be calculated.
This difference will be either a positive number in the range of
zero degrees to 360 degrees or a negative number below 360
degrees. If this number is in the range of zero to 360 degrees,
the result is used as an angle. Otherwise, add the obtained
angle with 360 degrees to reach the first positive number in
the range of zero degrees to 360 degrees. Equation 4 calculates
the angle formula. In this relation, θ1 is the previous angle,
and θ2 is the new angle of motion. Equation 4 continues until
θ-total.

θnew ¼ θ1−θ2⇒ θtotal ¼ 360þ −θnewð Þ ð4Þ

Fig. 6 Flowchart of WAO algorithm
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The particle velocity must be checked after obtaining the
angle of motion. In classical physics relations, the higher the
weight, the lower the speed without acceleration and constant
[45]. This is done by combining classical physics (Newton’s
laws) with velocity formulas. Given that the particles are mov-
ing at the theta angle of motion, a new velocity is obtained by
taking a simple result between the speeds measured at each

point connected to the other point. . For example, if the weight
of each point is Wh and the velocity of each point is Sh, then
using Newton’s laws, Eq. 5 can be formed, which determines
the speed of each point. In Eq. 5, two forces are shown, with
F1.2 being a one-to-two force and F2.1 The force is two to one.
Finally, by taking the result between the velocities, the veloc-
ity of other points will be obtained in Eq. 6.

Table 7 Unimodal benchmark functions

Function Function name Dim Range Fmin

f 1(x)= ∑n
i¼1x

2
i Sphere 30 [−5.12,5.12] 0

f 2(x)= ∑n
i¼1x

2
i þ random 0:1½ � Sphere randomic 30 [−5.12,5.12] 0

f 3(x)= ∑n
i¼1 xij j + ∏n

i¼1 xij j Schwefel 2.22 30 [−100,100] 0

f 4(x)= ∑n
i¼1ix

2
i Sum Squares 30 [−10,10] 0

f 5(x)= ∑n−1
i¼1 x2i

� �x2iþ1þ1
+ x2iþ1

� �x2i þ1 Brown 30 [−1,4] 0

f 6(x)= 1+∑n
i¼1

x2i
4000 -∏

n
i¼1cos

xiffi
i

p
� �

Griewank 30 [−600,600] 0

f 7(x)= - exp (−0.5 ∑n
i¼1x

2
i ) Exponential 30 [−1,1] 0

f 8(x)= exp(−∑n
i¼1 xi=15ð Þ10−2exp −∑n

i¼1x
2
i

� �
∏n

i¼1cos
2 xið Þ Xin-She Yang N. 3 30 [−2π,2π] 0

f 9(x)= ∑n
i¼1x

2
i þ ∑n

i¼10:5ixi
� �2 þ ∑n

i¼10:5ixi
� �4 Zakharov 30 [−5,10] 0

Table 6 Hyperparameters of
algorithms Algorithms Parameters Values

Water Optimization Algorithm (WAO) Population size 50
Number of generations 1000

Biogeography-based Optimization (BBO) Population size 50
Number of generations 1000

Transient search optimization(TSO) Number of Elites 2
Population size 50
Number of generations 1000
t Iteration Counter

Harris hawks optimization (HHO) Population size 50
Number of generations 1000
j 0

Grasshopper Optimization Algorithm (GOA) Population size 50
Number of generations 1000
Search Agent Position Eq.
Value of Coefficient c

Moth-Flame Optimization (MFO) Convergence constant [−1,-2]
Logarithmic spiral 0.75
Search agents 100
Number of generations 1000

Salp Swarm Algorithm (SSA) Search Agent 50
Boundary No ub
Number of generations 1000

Sine Cosine Algorithm (SCA) Number of elites 2
Number of generations 1000
Search agent 100

Whale Optimization Algorithm (WA) Number of generations 1000
Parameter b 1
Initial population 100

The Ant Lion Optimizer (ALO) Boundary No ub
Number of generations 1000
Search agents 50

Archimedes optimization algorithm(AOA) Population size 50
Number of generations 1000
Update for best answer(L) L+8
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F1:2 ¼ −F2:1; Sh1 ¼ Sh2; SH ¼ Sh=Wh ð5Þ
Stotal ¼ SH1−SH2 ð6Þ

After considering the angle and weight calculations, the
fitness of each repetition is calculated. The suitability param-
eters of the WAO algorithm consist of four parts: FitL, FitLG,
Afit, and Fit-G. For optimal local FitL calculation. The weight
of each batch of particles must be calculated at each iteration.
There may be several local.

optimizations. The most considerable calculated local op-
timization is considered to be FitLG. The average of local
optimizations is also calculated according to Eq. 7. The opti-
mal global response is the Fit-G point, which has gained the
most weight in the response space and will establish a stop
condition. This calculation is performed using Eq. 8.

AFit ¼ Number of H
Number of FitL

ð7Þ

FitG ¼ maximum Whð Þ ð8Þ

A reduction Coefficient must be applied in the sample
space to eliminate weak points. The latent heat of the water
has been used for this purpose. Latent heat is the amount of
energy required to evaporate a substance, and heat of water
evaporation is the amount of energy that causes water to evap-
orate at a temperature of 100 °C, which is calculated in joules
and follows Eq. 9 [64]. In this relation, Q is equal to the
amount of energy received with the release during a phase
change (in joules). M is the mass of the material in question
(which in the algorithm is equal to Wh). L The specific latent
heat of a substance (this value is measured in joules per mole;
the specific latent heat of water at 100 °C is 2400 and the
melting point of ice at zero degrees is 336). According to the
description, we find that water can reduce worthless particles.
The proposed algorithm applies the temperature reduction co-
efficient after each optimization calculation. This is done ac-
cording to Eq. 10. In this respect, Hf is equal to the bonded
particle, Afit is the average of optimality. If the value obtained
is a negative number, it will be removed from the sample
space; otherwise, it will remain.

Table 8 Multimodal benchmark functions

Function Function name Dim Range Fmin

f 10(x)= ∑n
i¼1b xiþ1−x2i

� �2 þ a−xið Þ2; a ¼ 1; b ¼ 100 Rosenbrock 30 [−5,10] 0

f 11(x)= ∑n
i¼1ix

4
i + random [0,1] Quartic 30 [−1.28,1.28] 0

f 12(x)= 10n+ ∑n
i¼1ðx2i −10cos 2πxið Þ ) Rastrigin 30 [−5.12,5.12] 0

f 13(x)= 1+∑n
i¼1sin

2 xið Þ−0:1e ∑n
i¼1x

2
ið Þ Periodic 30 [−10,10] 0.9

f 14(x)= 1-cos(2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑D

i¼1x
2
i

q
)+0.1(

ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑D

i¼1x
2
i

q
) Salomon 30 [−100,100] 0

f 15(x)= ∑n
i¼1∑

5
i¼1 jsin jþ 1ð Þxi þ jð Þ Shubert 30 [−10,10] −29.6733337

f 16(x)= 1
2 ∑

n
1 x4i −16x2i þ 5xi
� �

Styblinski-Tank 30 [−5,5] −39.16599

f 17(x)= ∑n
i¼1εi xj jii Xin-She Yang 30 [−5,5] 0

f 18(x)= (∑n
i¼1 xij j )exp(−∑n

i¼1sin x2i
� �

) Xin-She Yang N. 2 30 [−2π,2π] 0

f 19(x)= (∑n
i¼1sin

2 xið Þ−e∑n
i¼1x

2
i )e−

∑
n

i¼1
sin2

ffiffiffi
xi

p Xin-She Yang N. 4 30 [−10,10] 0

Table 9 Fixed dimension multimodal benchmark functions

Function Dim Range Fmin

f 20(x)= ∑11
i¼1 ai−

x1 b2i þbix2ð Þ
b2i þbix3þx4

� �2 4 [−5, 5] 0.00030

f 21(x)= x2− 5:1
4π2 x

2
1 þ 5

π x1−6
� �2 þ 10 1− 1

8π

� �
cosx1 þ 10 2 [−5,5] −398

f 22(x)= -∑4
i¼1ciexp −∑3

j¼1aij x j−pij
� �2

	 

3 [0,1] −3.86

f 23(x)= -∑4
i¼1ciexp −∑6

j¼1aij x j−pij
� �2

	 

6 [0,1] −3.32

f 24(x)= -∑5
i¼1 X−aið Þ X−aið Þr þ ci½ �−1 4 [0,10] −10.1532

f 25(x)=-∑7
i¼1 X−aið Þ X−aið Þr þ ci½ �−1 4 [0,10] −10.4028

f 26(x)= -∑10
i¼1 X−aið Þ X−aið Þr þ ci½ �−1 4 [0,10] −10.5363
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Fig. 7 Graph results of standard functions
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Q ¼ M :L ð9Þ
k ¼ Hf −Afit ð10Þ

Impact calculation must also be done in this algorithm.
Impact includes two parameters of impact angle and im-
pact speed. The values entered in each stroke are selected
randomly. The random digits entered are calculated ac-
cording to the previous velocity and angle relations (Eqs.
5 and 7). After updating the speed and angle, the condition
for establishing the welding temperature should be
checked. If the condition is met, then the temperature of
each remaining optimal local point is considered 100 °C,
and the maximum speed in the previous stage recorded is
considered the moving speed. To calculate the moving an-
gle, we divide the optimal local particle number by 360 and
move the rendered value to the obtained angles at the pre-
vious speed. Equation 11 is used To calculate the H_temp
angle. We assign the obtained value in different directions
of the problems, and each particle starts moving at one of
these angles.

θHtemp ¼ Nh
Problem directions

ð11Þ

3.4 Solving a real problem

In this part of the article, a practical example is solved to under-
stand the proposed algorithm better. To better understand the

process of the algorithm, the standard function f xð Þ ¼ ∑2
i¼1x

2
i

is calculated in three iterations. The dimensions of possible an-
swers are equal to the range (−3, 3). Six initial random answers
were used to obtain the minor point of the x2i functions.
According to the description of the parameters, the first six par-
ticles of the water molecule with the direction of motion and
velocity (S, θ) and for each particle, a random location PL is also
defined. The initial answers are given in Table 2, which by plac-
ing each answer and obtaining the output of the function x2i , we

represent it with PL in the algorithm. The weight of the particles
is also calculated by default according to Eq. 1. The velocity and
direction of motion of the particles are also randomly set.
Particles and initial values are shown in Table 3, where each
particle is represented by H, whose coefficient number indicates
the particles and their index.

The amount of displacement of each particle is calculated
using the Euclidean distance from the origin of the coordinates,
and the amount of its motion is determined by taking the result
with the previous location of each particle. By colliding each
particle with each other at a point, a bond is created, and with
the increase of particles at each point of the device, the coordi-
nates of the optimal points are formed. With the bonding of each
particle, the direction of motion also changes, and this change is
the result of taking the particles together. According to the pre-
vious location of each particle, the amount of displacement ob-
tained from it will be determined, and the particles will be
displaced. The amount of displacement is also calculated using
the constant velocity displacement formula. According to the
steps of the algorithm, in the first step, the particles H1, H2,
H6, and the particles H3, H4 are moved together in one place,
and bonds are established. Also, the H5 particle is removed from
all particles and will not affect optimality; according to the said
conditions, this point will be removed from the problem space
using the K parameter. To apply K on each particle, first, the
parameters Afit, Fitl, FitLG must be calculated, and then con-
cerning the value of Afit, it is determinedwhich particles must be
removed from the space. The steps are listed in Table 4.

Calculating parameters:

Afit ¼ number of H
number of bonding points

¼ 6

2
¼ 3

FitLG≥3

FitL < 3

KH5 ¼ Hf −Afit ¼ 0−3 ¼ −3

Table 10 Average results of unimodal benchmark function

Algorithm WAO BBO
(2012)

HHO
(2019)

GOA
(2019)

TSO
(2020)

MFO
(2015)

SSA
(2017)

SCA
(2016)

AOA
(2020)

ALO
(2015)

WO
(2016)Function

F1 1.66 0.12 0.46 1.77 0.33 1.84 3.18 0.91 0.23 2.08 4.07

F2 7.87 0.32 0.39 1.88 0.34 1.29 1.23 0.61 0.32 2.42 3.74

F3 1.55e+32 11.28e+34 2.35e+04 1.55e+32 7.06e+34 2.34e+36 8.37e+38 7.06e+34 2.34e+36 2.08e-07 1.95e+38

F4 2.50 11.99 101.49 51.38 57.89 103.90 151.62 43.23 209.20 116.77 209.21

F5 1.24 11.19 9.80e+03 3.24 108.82 65.96 9.80e+03 294.52 0.19 122.20 388.19

F6 0.47 11.99 7.19 3.02 0.68 7.17 578.01 3.63 3.96 7.35 16.18

F7 −0.92 −0.99 0.01 −0.98 −0.00 −0.98 −0.64 −0.99 −0.00 −0.98 −0.95
F8 −0.85 0.99 0.71 9.09e-04 0.01 0.99 0.99 0.99 0.01 0.07 0.99

F9 6.18 11.04 2.86e+03 3.05e+03 2.75e+03 1.01e+04 6.62e+05 105.29 2.81e+03 272.09 4.85e+04
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Continuing the process of the algorithm and obtaining
the local optimization, it is observed that the junction
point H3, H4 have not changed and have moved away
from better answers. In this case, using the hit operator
(P) on this link, a global search is created to join a better
point. After applying this operator, the two optimally ob-
tained answers are close, but no connection occurs. To
give local optimization a second chance, use the
HTEMP operator to remove the links of the desired points
and force it to search the world again. In this step, by
entering HTEMP to the local optimal point H3, H4 sepa-
rates the link and gives each one a random angle of mo-
tion and velocity. The H3 particle then binds to the best
local FitLG optimizer, and the H4 particle moves away
from the response space. According to the algorithm
steps, the optimization values are updated, and the K op-
erator is applied to the value points. At this stage, it is
observed that the global optimal point is formed by the
bond of 4 particles located in the coordinates (0 and 0.5).
Which also weighs 4. At the end of each iteration, the

weight of each response is calculated and compared with
the previous iteration. Then the fit of the obtained point to
the function will be calculated and compared with the
previous fit. The steps described in Table 5 are also cal-
culated and given.

Calculating parameters:

P : S ¼ 2; θ ¼ 180°f g;P þ H3;H4ð Þ ¼ Pl 0; 0:5ð Þ

HTEMP : make H3;H4 to 2 pointsf g
−H3 s : 1; θ : 315°f g−H4 s : 1; θ : 45°f g

Afit ¼ number of H
number of bonding points

¼ 6

1
¼ 6

FitLG≥6

FitL < 6

KH4 ¼ Hf −Afit ¼ 0−3 ¼ −6

Wh ¼ 4 with fit 1

Table 11 Average results of multimodal benchmark functions

Algorithm WAO BBO HHO GOA TSO MFO SSA SCA AOA ALO WO
Function

F10 9.10e+03 1.52e+03 1.67e+04 4.91e+03 855.42 1.40e+
04

1.68e+
04

3.11e+03 1.68e+04 1.00e+04 1.86e+04

F11 0.21 1.00 0.07 0.48 2.64 0.73 7.96 0.73 27.97 0.65 0.73

F12 38.52 25.48 27.82 122.32 25.07 88.66 166.22 28.63 4.75 49.91 104.60

F13 0.91 1.46 2.37 1.80 2.24 2.38 2.24 1.20 1.47 1.23 3.65

F14 0.01 0.75 0.30 2.20 0.63 1.09 23.89 0.89 4.18 2.12 2.68

F15 −376.52 −153.31 −263.97 −233.09 −244.58 −136.13 −187.72 −319.78 −197.56 −334.15 −253.11
F16 −1.01e+

03
−1.01e+

03
−1.05e+

03
−1.03e+

03
−1.15e+

03
−950.91 −892.85 −1.08e+

03
−1.05e+

03
−1.01e+

03
−1.11e+

03

F17 1.98e+15 1.85e+08 8.06e+08 2.18e+07 7.52e+08 8.42e+
08

3.10e+
10

6.70e+08 8.42e+08 7.94e+08 2.70e+09

F18 0.12e-08 1.42e-09 1.19e-06 9.63e-07 9.79e-07 1.19e-06 1.12e-06 9.81e-07 1.39e-09 1.12e-07 5.27e-06

F19 1.82e-15 3.07e-12 3.52e-11 2.82e-11 3.21e-10 4.46e-11 3.21e-10 2.84e-11 4.45e-11 4.37e-11 5.99e-10

F20 9.10e+03 1.52e+03 0.00 4.91e+03 9.15e-04 1.40e+
04

1.68e+
04

3.11e+03 3.39e-04 1.00e+04 1.86e+04

Table 12 Average results of fixed dimension multimodal benchmark functions

Algorithm WAO BBO HHO GOA TSO MFO SSA SCA AOA ALO WO
Function

F21 1.78e-04 4.79e-04 0.40 0.00 0.41 6.59e-04 7.23e-04 0.00 0.40 0.00 0.00

F22 0.38 0.39 −0.41 0.39 −0.99 0.40 0.39 0.39 −0.97 0.40 0.39

F23 −0.65 −0.99 −0.93 −0.94 −0.74 −0.97 −0.40 −0.98 −0.76 −0.96 −0.99
F24 −2.77 −0.98 −9.10 −0.89 −9.19 −0.72 −0.32 −0.94 −9.10 −0.93 −0.99
F25 −7.62 −9.11 −8.79 −7.54 −9.06 −9.10 −3.60 −8.83 −9.06 −8.80 −7.97
F26 −7.47 −9.11 −8.82 −7.82 −8.55 −9.06 −3.56 −8.92 −9.02 −8.79 −8.06
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After completing the first iteration, the second iteration
begins, and the algorithm tries to get a better answer. The
optimal point obtained in the previous iteration remains in
place. It contains four answers in 1 place. Two points, H4
and H5, are loaded randomly with the default and random
values of their parameters in the problem. As shown in
Fig. 5, points H4 and H5 are interconnected and continue
to move close to the best response. According to the pro-
cess of the algorithm, the calculated local optimal point is
hit by the operator and causes its connection with the
global optimal point. After the result between angles and
velocity, it is observed that the best local optimization is
equal to the global optimization, and there is no need to
apply the HTEMP operator. In this case, the second iter-
ation ends, and in fact, the algorithm achieves the re-
sponse convergence. After performing the steps of the
algorithm, the optimality values are calculated and com-
pared with the previous steps. The suitability of this step
is equal to the weight of 6, and at points (0 and 0), the

suitability of its function is equal to the seam, and the
minimum function is achieved.

3.5 Pseudo-code and flowchart

The steps of the WAO algorithm are as follows.

1. The initial population is loaded randomly with the default
speed value and random motion angle.

2. The weight of the optimum points, the new angle of mo-
tion, and the new speed are calculated for each point.

3. Local optimization, overall optimization, and average op-
timization for global search and elimination of weak
points are calculated.

4. If the local optimizations are less than the average optimi-
zation, then a shock jump occurs, creating new points,
new speed, the new angle of motion, and the temperature
reduction coefficient is calculated and applied to eliminate
weak points.

Table 13 Best results of unimodal benchmark functions

Algorithm WAO BBO HHO GOA TSO MFO SSA SCA AOA ALO WO
Function

F1 0 4.20e-183 1.64e-18 0.05 7.34e-45 1.08e-32 4.46e-05 0.00 3.24e-181 2.79e-17 1.11e-14

F2 2.82e-24 0.02 8.52e-19 0.64 9.04e-05 1.14e-04 6.96e-10 6.20e-10 0.00 0.12 7.26e-06

F3 3.09e-93 1.16e-9 4.54e-16 100.87 5.57e-13 1.63e-14 7.11 2.78 2.32e-22 6.78e+
34

4.95e-07

F4 7.99e-216 6.28e-49 1.70e-11 0.00 3.04e-72 5.30e-29 3.76e-11 0.08 5.78e-54 2.68e-15 1.02e-12

F5 7.79e-186 1.78e-52 1.16e-80 0.00 1.79e-50 6.31e-27 1.02e-06 9.72e-04 1.99e-181 4.46e-15 7.87e-15

F6 0 4.3e-164 1.06e-19 0.14 8.52e-23 0 530.84 0.62 1.74e-07 0.01 1.69e-10

F7 −1 −1 0 −0.99 −0.25 −1.00 −1.00 −1.00 −0.25 −1.00 −1.00
F8 -1 0.99 5.03e−19 0 1.41e-04 0.99 0.99 0.99 0.00 0 0.99

F9 0 3.57e-13 0.02 199.06 4.30e-21 2.15e-07 0.00 0.16 0.02 17.34 205.11

Table 14 Best results of multimodal benchmark functions

Algorithm WAO BBO HHO GOA TSO MFO SSA SCA AOA ALO WO
Function

F10 4.00e-19 20.89 7.50e-11 527.33 1.71e-17 0.07 26.50 80.26 0.03 72.22 37.46

F11 4.61e-05 3.60e-02 2.60e-04 0.26 0.05 0.00 0.03 0.00 0.70 0.02 0.00

F12 0 7.55 16.50 109.33 16.50 69.64 80.60 20.27 0.79 19.89 60.12

F13 0.90 1.06 0.99 1.10 0.99 1.00 1.00 1.00 0.99 1.00 2.68

F14 3.20e-04 1.05 6.95e-04 1.79 0.00 0.19 23.49 0.49 0.23 0.99 0.40

F15 −376.84 −245.44 −279.83 −247.53 −258.09 −148.50 −236.81 −374.98 −249.28 −384.46 −327.16
F16 −1.03e+

03
−1.03e+

03
−1.12e+

03
−1.04e+

03
−1.17e+

03
−1.00e+

03
−920.52 −1.09e+

03
−1.12e+

03
−1.0e+

03
−1.17e+

03

F17 6.85e-41 2.40e-36 1.29e-19 672.76 3.65e-11 1.82e-07 2.08e-05 5.03e-13 1.62e-07 0.72 6.86e-05

F18 6.19e-13 3.03e-11 7.09e-12 8.75e-10 4.93e-14 7.09e-12 6.34e-12 5.53e-12 2.70e-13 7.74e-12 1.42e-11

F19 2.13e-60 4.54e-32 3.14e-46 1.10e-14 1.09e-21 3.95e-42 1.37e-17 2.05e-15 3.52e-44 2.45e-27 5.59e-13

F20 4.00e-19 20.89 6.62e-04 527.33 5.82e-04 0.07 26.50 80.26 1.46e-04 72.22 37.46
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5. If there is no significant change in the impact jump, the
temperature jump will enter, and new points will appear.

6. The average optimality (AFit) and overall optimality
(FitLG) are checked. If the overall optimality (FitLG) is
better than the average optimality (AFit), the stage is com-
pleted; otherwise, it returns to stage 3.

7. The above steps are performed until the stop condition is
met.

After reviewing all the steps, the pseudo-code is given in
Algorithm 1. Then at the end of this section is an overview and
flowchart of the algorithm in Fig. 6.

3.6 The time complexity of WAO

The time complexity of the proposed WAO is analyzed as
follows. The While loop of WAO takes the most. It repeats
iteration counter times. In each iteration, and according to the
value of (FitL), we have three if conditions that contain p, q,
andm statements, respectively. So the complexity of the algo-
rithm is O(iteration counter + max(p,q,m), which is equal to
O(n).

4 Analysis of experiments and results

In this section, the work done to evaluate the WAO algorithm
is introduced. This assessment presents two artificial areas of
continuity and practical and real continuous issues. In the field
of artificial problems, 26 standard functions have been used to
evaluate the proposed algorithm, and its results have been
presented in comparison with similar algorithms. In applied
problems, four applied problems have been used, and each
problem has been defined and studied. First, in Section 4.1,
continuous functions are introduced, and the results are shown
with other continuous algorithms. Section 4.2 introduces prac-
tical problems and then compares the algorithms in numbers
and shapes for better understanding. These issues include
speed reducer, welded beam, robot path planning, and
Combinatorial-Optimization-Based Threat Evaluation and
Jamming Allocation (cotja). Also, to prove the algorithm’s
efficiency in the last part of this section, the proposed algo-
rithm, along with four well-known algorithms, has participat-
ed in the CEC2020 test. This test includes 57 real optimization
problems designed by the CEC Congress to validate
Metaheuristic algorithms [65].

Table 6 shows the hyperparameters of similar continuous
algorithms; This table uses each algorithm’s default values
that compare the results with their implementation. In the
compared algorithms, the parameters Population size and
number of generations are observed in some algorithms. The
values of these parameters in all the studied algorithms are
given with 50 and 1000, respectively. These values were cho-
sen because the execution conditions are the same. The rest of
the values given are valued according to the main algorithms
of each article. The given parameters have default values of
each algorithm. These values are given due to equal and fair
conditions and for comparison of other algorithms with the
WAO algorithm.

4.1 Review and analysis of experiments performed on
standard functions

TheWater metaheuristic algorithm uses 26 standard functions
to compare with competing algorithms. The same execution
conditions, the values of the repetition of the functions are
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considered the same in all problems. To better understand the
evaluation, problems were tested in three classes: 1- Unimodal
benchmark functions [37], 2- Multimodal benchmark func-
tions [66] and 3- Fixed dimension multimodal benchmark
functions [37, 66]. To compare the algorithm, BBO [32],
HHO [31], GOA [13], TSO [26], MFO [34], SSA [53],
SCA [47],AOA [15], ALO [35], andWO [39] have been used;
Table 7 lists the Unimodal functions, which give the optimal

values, range, and function name. Multimodal benchmark
functions are also listed in Table 8, which also shows average
values. Finally, Table 9 also includes the previous information
in Fixed dimension multimodal benchmark functions, the giv-
en computational information.

The results of the WAO algorithm in responding to stan-
dard functions are better than competing algorithms in
most functions. The basic parameters and initial solutions

Table 16 Time results of all algorithms

Algorithm WAO BBO HHO GOA TSO MFO SSA SCA AOA ALO WO
Function

F1 3.6866 4.3654 6.022 5.1144 5.121 5.9945 4.0114 4.5118 4.123 5.4555 6.3311

F2 3.5945 4.1148 5.101 5.1147 5.092 5.1466 3.9874 3.5554 4.011 5.3126 5.6544

F3 3.7914 4.3687 4.992 5.0012 5.032 5.3654 4.1121 4.3664 5.011 5.1154 5.1114

F4 3.4547 3.9874 5.899 5.4578 5.366 5.9987 3.9654 3.5654 4.110 5.4487 5.2314

F5 3.4874 4.1687 5.336 4.9546 5.066 6.3256 4.3365 4.7745 4.544 6.3346 5.3244

F6 3.1779 4.1369 5.112 4.6354 5.664 6.4541 3.6541 3.6571 4.411 6.7541 6.1645

F7 3.4777 3.9874 6.121 5.6541 5.855 6.7844 4.1121 4.6645 5.011 6.2114 6.0344

F8 4.0144 4.7741 5.411 5.2136 5.011 5.1554 4.3214 4.9975 4.154 5.6654 5.341

F9 3.7875 4.1389 5.844 5.9874 5.789 5.9415 4.3365 4.3322 4.314 5.3115 5.2214

F10 3.1478 3.8741 5.632 4.5689 5.103 6.3321 3.9654 3.9344 4.003 6.3111 6.6541

F11 4.1196 4.6974 5.139 4.9124 5.911 4.9456 4.2254 4.2854 4.977 4.1256 6.1442

F12 3.4147 3.8414 5.782 4.8524 5.312 4.9214 4.3114 4.3554 4.744 4.1144 6.3001

F13 3.9745 4.2159 5.144 5.4974 5.101 6.4895 4.5689 4.8789 4.441 6.1895 5.8014

F14 3.1789 3.5641 5.311 4.9844 5.021 6.3189 3.9114 3.1164 4.005 6.9389 5.6551

F15 3.4574 4.1036 5.082 4.8741 5.021 5.3298 3.8974 3.7474 4.413 5.2198 5.2741

F16 3.5446 3.8741 6.092 4.5644 5.701 5.1147 3.9774 3.9747 5.113 5.2217 5.2461

F17 3.7784 3.7841 6.121 5.1001 5.421 6.1020 3.8874 3.8774 4.033 6.1990 5.9674

F18 4.0224 4.3256 5.787 6.1014 5.331 6.2354 4.3332 4.5432 4.145 6.2354 5.0011

F19 4.1298 4.8621 6.410 6.3101 5.031 7.0121 4.5687 4.5587 4.978 7.0121 5.1017

F20 3.4479 3.5214 5.012 5.0114 4.127 6.1498 4.3558 4.2558 4.443 6.1958 5.1473

F21 3.8974 4.3001 4.042 4.1796 4.121 6.3321 4.1124 4.1774 4.143 6.5121 6.1741

F22 3.1799 3.9478 5.422 4.6932 5.114 5.8521 3.9114 3.7714 4.044 5.4621 6.4424

F23 3.6541 4.1877 5.141 4.3124 5.021 6.2305 3.8224 3.6924 4.023 6.6805 5.1477

F24 3.4799 4.3121 4.987 5.0210 4.157 6.1140 3.8874 3.8774 4.112 6.1220 5.7241

F25 3.7894 4.2379 5.101 5.3598 5.443 6.4474 4.2162 4.5762 4.011 6.1474 5.5314

F26 3.4547 3.9874 5.877 4.9593 5.123 6.3219 4.3354 4.2554 5.003 6.3229 5.101

Table 15 Best results of fixed dimension multimodal benchmark functions

Algorithm WAO BBO HHO GOA TSO MFO SSA SCA AOA ALO WO
Function

F21 1.14e-04 3.07e-04 0.39 8.03e-04 0.40 3.07e-04 4.43e-04 7.48e-04 0.39 7.43e-04 6.20e-04

F22 0.38 0.39 −1.00 0.39 −1.01 0.39 0.39 0.39 −1.01 0.39 0.39

F23 −0.65 −1.00 −1.00 −1.00 −1.05 −1.00 −0.99 −1.00 −1.05 −1.00 −1.00
F24 −2.77 −1.00 −10.00 −0.99 −10.00 −1.00 −0.99 −1.00 −10.00 −1.00 −1.00
F25 −10 −10.00 −10.00 −9.97 −10.00 −10.0 −9.99 −9.80 −10.00 −10.00 −10.00
F26 −10 −10.00 −9.82 −8.99 −9.85 −10.00 −9.99 −9.79 −10.00 −10.00 −10.00

The water optimization algorithm: a novel metaheuristic for solving optimization problems



of the functions are the same to make a fair comparison,
and the dimensions and amplitude in each function are the
same for each computed algorithm. According to Tables 7,
8, and 9, F1 to F9 are Unimodal benchmark functions, F10
to F19 are Multimodal benchmark functions, and F20 to
F26 is Fixed dimension multimodal benchmark functions.
Figure 7 shows all available answers of 26 standard func-
tions in a graph. According to these diagrams, the strength
of the proposed algorithm compared to competing algo-
rithms can be recognized. According to the diagrams, it
can be said that the proposed algorithm has a complete
advantage in responding to the functions F1, F2, F3, F4,
F5, F6, F9, F11, F12, F14, F17, F18, F19, F20, and with
more repetition. Therefore, it has a better response than
competing algorithms. Although the proposed algorithm
is superior in the said functions, according to the numerical
results of the response of the algorithms, it can be seen that
the performance of the proposed algorithm is entirely
superior.

The average answers of each algorithm are given in
Tables 10, 11, and 12 to evaluate the WAO algorithm in the
field of standard functions. According to the previous classi-
fication, Table 10 is the average response of Unimodal bench-
mark functions, Table 13 is the average response of

Multimodal benchmark functions, and Table 12 is the average
response of Fixed dimension multimodal benchmark func-
tions. Each algorithm shows the closest answer to the final
answer about their general answers in 1000 repetitions in these
tables. The proposed algorithm results are competitive com-
pared to the competing algorithms, and it has obtained better
answers in some functions. According to the previous classi-
fication, Table 10 is the average response of Unimodal bench-
mark functions; Table 11 is the average response of
Multimodal benchmark functions, and Table 12 is the average
response of Fixed dimension multimodal benchmark func-
tions. Each algorithm shows the closest answer to the final
answer concerning their general answers in 1000 repetitions
in these tables. The proposed algorithm results are competitive
compared to the competing algorithms, and it has obtained a
better response in some functions.

In this section, The best answer obtained in each algorithm
is discussed.Moreover, to show the capability of the proposed
algorithm in the field of standard functions. According to the
previous order in Tables 13, 14, and 15, the best answers of
each algorithm are given in Unimodal, Multimodal, and Fixed
dimension multimodal functions, respectively. According to
the results obtained in the said tables, it can be said that the
proposed algorithm is competitive with the compared

Fig. 8 Schematic view of speed
reducer problem [25]

Table 17 Speed reducer problem results

Algorithm Worst Best Mean Std.Dev. Time (Sec)

WAO 1.3270e+04 1.4022e+03 1.6046e+03 880.8960 3.9861

BBO 1.8138e+04 3.1356e+03 3.3081e+03 801.3358 4.9564

HHO 2.0742+04 2.9781e+03 3.0073e+03 1.6282e+03 5.921

GOA 1.2181e+04 2.6225e+03 2.7890e+03 967.5614 5.0112

TSO 2.1637e+04 2.5581e+04 1.5291e+03 3.3067e+03 5.181

MFO 2.1419e+04 2.3509e+03 2.5594e+03 884.9666 6.0123

SSA 2.5437e+04 2.5533e+03 2.9630e+03 1.0682e+03 4.1564

SCA 3.6867e+03 2.3672e+03 2.6440e+03 225.7505 4.1314

AOA 4.6030e+03 2.7031e+03 4.2413e+03 2.9732e+04 4.741

ALO 9.8795e+03 2.2513e+03 2.3266e+03 639.8625 5.4547

WO 1.6263e+04 1.6098e+03 1.8155e+03 766.9684 6.1144

A. Daliri et al.



algorithms and, in some functions, has achieved a better re-
sponse than the other algorithms.

To prove the superiority of the proposed algorithm, when
performing the performance test, the execution time of each
algorithm in 1000 repetitions is also recorded. The system
used with the Core i5 processor and 8 GB of RAM has re-
corded this time in the same execution conditions. The results
are shown in Table 16. As the time calculations show, the
proposed algorithm has the lowest execution time among
competing algorithms.

4.2 Review and analysis of experiments performed on
real functions

In this section, the WAO algorithm is examined and tested on
four practical issues. These issues include the speed reducer
problem [67], welded beam problem [68], robot path planning
[69], and Combinatorial-Optimization-Based Threat
Evaluation and Jamming Allocation (COTJA) [70]. To eval-
uate the performance of the proposed algorithm, the test re-
sults of this section are presented in numerical form. First, the
problem statement is explained for each problem, and then the
results of the WAO algorithm and competing algorithms are
evaluated. Also, to prove the capability of the proposed algo-
rithm, experiments that depend on the initial population of
each algorithm are presented. In such experiments, we have
determined what the WAO algorithm has shown to different
populations. Finally, to complete the evaluation and prove the
applicability of the proposed algorithm, using the CEC 2020

Fig. 9 Graph results of speed reducer problem

Fig. 10 The difference of population of speed reducer problem results

I

(i)

Fig. 11 Schematic view of Welded beam design

Table 18 Welded beam design results

Algorithm Worst Best Mean Std.Dev. Time (Sec)

WAO 14.7495 1.1764 1.4546 0.7483 3.7541

BBO 8.2782 1.4918 1.5212 0.3644 5.4564

HHO 14.9829 2.0110 1.9384 0.9815 5.584

GOA 14.1028 1.5163 1.6039 0.7677 5.4412

TSO 15.3078 16.9154 0.8726 2.0504 5.474

MFO 8.0565 1.5243 1.8215 0.6473 6.1244

SSA 21.3410 2.4488 2.6011 0.8726 4.6977

SCA 17.3706 1.7489 1.9426 0.8183 4.0156

AOA 11.3730 1.9475 2.6011 18.0292 5.041

ALO 10.7459 2.3946 2.5118 0.6987 5.1977

WO 3.1024 2.4488 2.4525 0.0271 6.1011
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test, the results are compared with the best algorithms present-
ed in this congress [65].

4.2.1 Speed reducer problem

In the case of the speed reducer problem, the goal is to mini-
mize the speed reducer optimally. As shown in Fig. 8, there
are several optimization parameters in this problem; in this
case, Z represents the number of teeth in the pin. L is the
length of the first shaft between the bearings, and L2 is the
length of the second shaft between the bearings. d1 is the
diameter of the first shaft, and d2 is the diameter of the second
shaft. In this issue, the two parameters of optimizing the face
width and module of teeth are also variables. In any case, the
problem of these variables can exist under different names. In
general, this problem is introduced as a real problem with
seven optimization variables. This is suitable for continuous
algorithms.

As shown in Table 17, the compared algorithms are com-
pared in 5 columns. The first column, called worst, represents
the first answer obtained by the algorithm. The second col-
umn, called best, is equal to the optimal and final response of
each algorithm. The third column is called mean, which rep-
resents the mean response. The fourth column is std—dev,
which shows the standard deviation of the algorithms. The
fifth column is time, which is the execution time of the algo-
rithms. In solving the speed reducer problem, the proposed
algorithm has complete superiority over the compared algo-
rithms. TheWAO algorithm has obtained the highest values in
the top response and the mean responses.

To better understand the performance of the proposed al-
gorithm on the Speed reducer Problem, the performance of

competing algorithms and the WAO algorithm shows in Fig.
9. The WAO algorithm is the first algorithm to achieve the
optimal response among the proposed algorithms. The WAO
algorithm achieves the optimal response from 800 iterations
onwards. A graph is prepared and shown in Fig. 10. In this
chart, different populations of 10, 30, 50, 80, and 100 have
been tested. Also, the number of repetitions in its maximum
value is 1000. Algorithm A first optimized with a population
of 10 and achieved convergence in its response. With the
addition of the population, the response has gradually im-
proved and is very close to the global optimum.

4.2.2 Welded beam design problem

The real continuous problem ofWelded beam design is shown
in Fig. 11. It is a representation of the welded beam on the
desired substrate. In this figure, the beam F is welded to the
substrate with a distance of L with welds of thickness h and a
length of (i). The desired beam is a rectangular section with
length t and width B. The beam material, in this case, is steel.
This problem aims to obtain the cost of beam welding and
deflection of the end of the beam under load pressure F [51,
68]. The results obtained from this issue are discussed below.

According to the previous problem in Table 18, the com-
parable algorithms in the five columns have been compared
with each other before. The proposed algorithm in solving the
problem ofWelded beam design has achieved the best optimal
answer. The WAO algorithm also has the highest average
performance. The WAO algorithm in the mean column has
also reached the best answer, which shows the superiority of
this algorithm over other algorithms. The WAO algorithm has
the best answer. The worst performance also belongs to SSA
and WAO algorithms. Also, for a better understanding of the

Fig. 12 Graph results of Welded beam design problem Fig. 13 The difference of population of welded beam design results
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performance of each algorithm, Fig. 12 shows a graphical
representation of the answers. Also, according to studies on
the number of population in this issue, the WAO algorithm
has performed well and has reached full optimality even with
a population of 50. Figure 13 shows the results of population
change.

4.2.3 Robot path planning problem

The performance of existing algorithms deals with the
problem of robot routing. In this case, the robot starts
moving from a specific direction and moves towards the
target, including various obstacles and paths. The goal
is to find the easiest route, the closest route. In this
case, the obstacles and the target point are identified
randomly. This experiment is performed with an initial
population of 50 and a repetition rate of 100. Table 19
shows the numerical results of this experiment. The
WAO algorithm has had the best performance in
obtaining the best response and the average response.
Also, the average time of obtaining these calculations
is 4.83 s, and the WAO algorithm has achieved the
optimal answer 1.42 s earlier. After the WAO algo-
rithm, the GOA algorithm has achieved the second op-
timal response. The TSO algorithm also has the worst
response of all the algorithms.

To better understand the performance of each algorithm,
Fig. 14 shows the performance results in this diagram. The
WAO algorithm has achieved the best response and conver-
gence after 60 iterations. Also, the WAO algorithm has
achieved results in iterations below 10, which most algorithms
have achieved from iterations 20 onwards. This performance
of the proposed algorithm makes the calculations faster.
Therefore, the proposed algorithm has the best performance
among the compared algorithms. Also, in Fig. 15, the

performance of theWAO algorithmwith different populations
is investigated, and it has a good performance.

4.2.4 Combinatorial-optimization-based threat evaluation
and jamming allocation (COTJA)

In this issue, advanced radar network systems have been stud-
ied. So that in advanced radar network systems, some mea-
sures must be taken in the face of threats. The goal is to
allocate resources and optimize resources under the manage-
ment of an aircraft detection radar. The allocation of distrib-
uted resources in the environment is an NP-Harddiscrete prob-
lem. The goal is to allocate these resources at the lowest pos-
sible cost. The results are given in Table 20 numerical calcu-
lations To investigate this issue. According to the studies per-
formed, it can be said that the proposed algorithm has the
average response and the average superiority time in the best
answer obtained. The WAO algorithm performed better than
the compared algorithms with a time difference of less than 1 s
and a considerable difference due to the best response.

To determine the performance of each algorithm, Fig. 16
shows the results of this problem in the form of diagrams. The
proposed algorithm achieves the optimal answer after 450
iterations. None of the algorithms compared in the 500 repli-
cations performed is optimal and has a more flawed result than
the WAO algorithm. After the WAO algorithm, the WO algo-
rithm has reached a superior result. Figure 17 also shows the
demographic of the WAO algorithm. The WAO algorithm
with a population of 50 has achieved the optimal response
and has gradually improved with the increasing population
of responses.

Fig. 14 Graph results of robot path planning

Table 19 Robot path planning results

Algorithm Worst Best Mean Std.Dev. Time(Sec)

WAO 194.9845 24.1539 29.8039 22.8057 3.4114

BBO 104.6929 37.8750 76.8314 19.4883 5.1554

HHO 118.3172 38.5503 30.3835 13.0157 5.122

GOA 117.7863 24.9787 31.9381 16.4096 4.9844

TSO 142.4730 141.4545 19.6985 53.1741 4.321

MFO 160.3998 29.4894 37.5654 20.5887 6.1944

SSA 144.6542 26.5946 33.8778 18.5676 4.1244

SCA 164.4003 28.2950 36.6915 21.4057 4.2344

AOA 101.7501 31.6901 33.7651 117.5317 3.977

ALO 171.1605 29.4585 38.2002 22.2859 5.3147

WO 149.4548 25.7227 33.3559 19.4597 5.8977
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4.2.5 CEC 2020 test evaluation results

This section examines the WAO algorithm to answer the
CEC2020 test. This test includes 57 real-world optimization
problems that Metaheuristic algorithms can answer.
Metaheuristic algorithms can evaluate their performance to
improve their efficiency using this test [65]. In this section, a
complete and real set of such problems is solved using the
proposed algorithm and compared with the top 6 algorithms
in this field. The algorithms compared in this section include
COLSHADE algorithms for Real-World Single-Objective
Constrained Optimization Problems [48], A Self-Adaptive
Spherical Search Algorithm for Real-World Constrained
Optimization Problems (SASS) [49], A Modified
Covariance Matrix Adaptation Evolution Strategy for Real-
World ConstrainedOptimization Problems [28], An improved

unified differential evolution algorithm for constrained opti-
mization problems (IUDE) [21]. Another algorithm that is one
of the best algorithms in the CEC 2107 test is examined in this
article. The Improved Multi-operator Differential Evolution
Algorithm for Solving Unconstrained Problems (IMODE),
which had the best results in the CEC 2017 test, is a combi-
nation of several meta-heuristic algorithms [71]. Also, the
Algorithm Improving the local search capability of Effective
Butterfly Optimizer using Covariance Matrix Adapted Retreat
phase (EBOwithCMAR), which is another superior algorithm
in the CEC 2017 test, is included in this evaluation. This
algorithm consists of several algorithms, the most famous of
which is the butterfly algorithm [72].

According to research, these six algorithms have obtained
the best results in this test. The extracted results are set and
implemented according to the article A test-suite of non-
convex constrained optimization problems from the real world
and some baseline results in the reference [65]. Table 27
shows Industrial Chemical Processes problems results
(RC01 – RC07), Table 28 shows Process Synthesis and
Design Problems results (RC08 – RC14), Table 29 shows
Mechanical Engineering Problems results (RC15 – RC33),
Table 30 shows Power System Problems results (RC34 –
RC044), Table 31 shows Power Electronic Problems results
(RC45 – RC50), Table 32 shows Livestock Feed Ration
Optimization Problems results (RC51 – RC57), which can
be seen in the Appendix. In these tables, 57 issues of each
section are separated in order. The results in this table include
the responses of each algorithm, with Best being the best
response of the algorithms, Median the average response of
each algorithm, Mean is the mean response of each algorithm,
Worst is the worst performance of the algorithm, and SD is the

Fig. 16 Graph results of COTJA

Fig. 15 The difference of population of robot path planning results

Table 20 Combinatorial-optimization-based threat evaluation and
jamming allocation results

Algorithm Worst Best Mean Std.Dev. Time(Sec)

WAO 1.8315 0.6269 0.7335 0.1222 3.8945

BBO 1.6677 0.7522 0.9233 0.1113 4.8764

HHO 3.0782 0.7430 0.7003 0.0861 6.122

GOA 3.0762 1.3620 1.6110 0.2338 4.8767

TSO 1.5371 1.0727 0.1177 0.7758 5.031

MFO 1.3962 0.6494 0.7193 0.0799 5.3611

SSA 1.8218 0.8217 1.0086 0.1216 4.1978

SCA 2.0274 0.9145 1.1224 0.1353 4.2397

AOA 1.8734 0.7058 0.9383 1.5059 4.113

ALO 1.8629 0.8083 0.8683 0.1089 5.1243

WO 1.9704 0.8550 0.9184 0.1152 5.5647
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standard deviation of the algorithms. One measure of the su-
periority of one method is that it has a better Best value com-
pared to other methods. The proposed algorithm excelled in
most issues, and its Best value was better than other algo-
rithms. The proposed algorithm achieved the best answer in
40 tests out of 57 tests and in the other tests had values close to
other algorithms. These results indicate the superiority of the
WAO algorithm in most evaluation scenarios.

After implementing the CEC 2020 test for the proposed
algorithm, Wilcoxon statistical analysis was performed.
Table 21 shows the results of theWilcoxon statistical analysis.
In this table, the column values R + and R- represent the value
of the signed-rank sum of the WAO algorithm and the com-
parable algorithms. The P value column shows the difference

between the results of each algorithm and the problems solved
in the CEC 2020 test because the WAO algorithm has been
compared with nine Metaheuristic algorithms that did not use
the CEC2020 test, statistical analysis of the results obtained
from those algorithms has also been added in Table 21. In the
continuation of this test, the algorithm in different dimensions
of 10, 15, 20, and 50 is examined. According to the results
obtained from this evaluation, the WAO algorithm has had
better results in most dimensions. Due to a large number of
results, the table of results is placed in the Appendix, which
includes Tables 33, 34, 35, 36. In these results, the values of
the best result (best), standard deviation (std) and median re-
sponse (mean) are also included. In addition, according to the
CEC2020 test instructions to evaluate the performance mea-
sure of each algorithm are repeated 25 times independently.
The algorithms are compared in different dimensions, and
finally, the value of the performance measure is determined.
The values obtained from the performance measurement re-
sults are shown in Table 22.

The proposed algorithm is a new algorithm with unique
features that had acceptable results in evaluations. The
WAO algorithm is suitable for solving continuous optimiza-
tion problems and is designed for such problems. However,
one limitation of the proposed method is that it is limited in
discrete problems and may not have optimal answers in some
problems. For example, in the CEC 2020 test, the WAO al-
gorithm did not achieve superior results in several problems
with a discrete nature, so the proposed algorithm must be
updated for discrete problems to be used for both discrete
and continuous domains.

Fig. 17 The difference in the population of COTJA

Table 21 Results of wilcoxon
signed-rank test WAO vs Best Mean Median

R+ R- p value R+ R- p value R+ R- p value

IUDE 321 135 0.0626 418 312 0.4231 313 135 0.0641

SASS 325.5 106 0.0096 325 82 0.0698 326 99 0.0078

ϵMAgES 215 165 0.5643 322 121 0.0541 342 112 0.0098

COLSHADE 315 120 0.0618 412 90 0.0021 356 97 0.0081

IMODE 311 122 0.0626 356 112 0.0598 368 111 0.0598

EBOwithCMAR 308 124 0.0649 362 129 0.0578 352 115 0.0647

BBO 313 121 0.0791 365 156 0.0534 321 127 0.0789

HHO 306 98 0.0123 303 109 0.0978 298 111 0.0197

GOA 256 123 0.3654 307 126 0.0687 292 136 0.0269

TSO 286 103 0.0569 369 156 0.0234 332 156 0.0569

MFO 356 156 0.1244 323 108 0.0878 302 148 0.0978

SSA 298 147 0.2784 312 113 0.0787 268 102 0.1650

SCA 306 126 0.2403 295 98 0.0523 288 131 0.2104

AOA 326 98 0.0978 315 103 0.0487 316 126 0.0063

ALO 326 156 0.1265 288 102 0.0689 310 116 0.0089
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4.2.6 Evaluation based on Taguchi parameter setting

In the final part of the implementation of the WAO algorithm,
to prove the performance criteria of the proposed algorithm,
the algorithm is implemented using the Taguchi parameter
adjustment method [73]. Parameters automatically selected
by the Taguchi method are selected in 25 different modes that
are output by this method [74]. The WAO algorithm has
achieved good results using this method. In this algorithm,
among all the parameters, there are five parameters that the
Taguchi method adjusts in 5 different steps with different
values and are sent to the evaluation stage of the algorithm.
The parameters of each algorithm are different, so the algo-
rithm may have combinations with smaller dimensions.

Table 37 shows these values, which are in the Appendix sec-
tion. The parameters are also given for ten other algorithms,
and their different steps and combinations can be seen. The
value numbers of initial particles and the dimensions of the
problems are selected using the same in the Taguchi method.

After taking the outputs of the Taguchi method to evaluate
the WAO algorithm, four real problems were solved using the
available figures, including Speed reducer problem, Welded
beam, robot path planning, and COTJA were tested and eval-
uated. The results of these tests include 25 different modes of
Taguchi parameter adjustment on each problem. The values
Worst, Best, mean, Std, and Time for each test are prepared as
output for each problem. The values obtained did not differ
much compared to setting the same parameters in the test of
each problem and are very close to the previous results.
However, the new results are entirely improved and better
than the experiments in Section 4. These results are presented
in Tables 23, 24, 25, and 26 for the Speed reducer problem,
Welded beam design, robot path planning, and COTJA, re-
spectively. The columns of all tables contain the same values
as the previous tables, and the Best column shows the best
response in the current iterations. The results obtained using
the Taguchi parameter adjustment method show the proper
performance of the proposed algorithm.

5 Discussion

The WAO algorithm is inspired by the physical and chemical
properties of water molecules. Properties such as P and
HTemp are influential in forming and changing the state of
water atoms. This algorithm has good acceleration due to its
special and unique feature while its effective performance in
reaching the optimal point. The P operator causes the initial
responses to collide with better results and, unlike most sim-
ilar methods, converges with a smaller population to the

Table 23 Speed reducer problrm evaluation with taguchi method

Algorithm Worst Best Mean Std.Dev. Time (Sec)

WAO 1.1104e+04 1.4002e+03 1.6001e+03 879.0154 3.9322

BBO 1.8038e+04 3.1256e+03 3.2751e+03 801.1048 4.9294

HHO 2.0542+04 2.8781e+03 3.0020e+03 1.6056e+03 5.851

GOA 1.1581e+04 2.5269e+03 2.7810e+03 967.4523 5.0012

TSO 2.1567e+04 2.5485e+04 1.5211e+03 3.3055e+03 5.164

MFO 2.1312e+04 2.3418e+03 2.5509e+03 884.9528 6.0013

SSA 2.5233e+04 2.5482e+03 2.9601e+03 1.0637e+03 4.1492

SCA 3.5867e+03 2.2982e+03 2.6429e+03 225.7482 4.1104

AOA 4.6000e+03 2.6831e+03 4.2402e+03 2.9623e+04 4.701

ALO 9.8795e+03 2.2493e+03 2.3248e+03 639.7309 5.4243

WO 1.6119e+04 1.5093e+03 1.8136e+03 765.0084 6.0104

Table 22 Performance
measure Algorithm Performance measure

WAO 0.2202

IUDE 0.4025

SASS 0.2923

ϵMAgES 0.3109

iLSHADEϵ 0.3086

IMODE 0.2899

EBOwithCMAR 0.2654

BBO 0.4297

HHO 0.4096

GOA 0.3945

TSO 0.3614

MFO 0.3321

SSA 0.3615

SCA 0.3121

AOA 0.3256

ALO 0.3012

WO 0.2622
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global optimum. Also, the HTemp parameter can increase the
execution speed of the algorithm when the answers are im-
proving. These two unique features distinguish the proposed
method from other existing methods. The results of evalua-
tions on unimodal and multimodal benchmarks show the su-
periority of the proposed method compared to ten similar new
and classic methods. In these issues, the effect of the proposed
method for different populations and replications were care-
fully studied and evaluated, and due to the new features of the
proposed method, namely the effect of P and HTemp, good
results were obtained. Also, the classic and essential quarterly
in various engineering fields were used as applied scenarios,
in which the superiority of the proposed method is shown.
Various evaluations for multiple parameters show that the
proposed method as an effective method can be used in opti-
mization problems and produce effective results. Various
evaluations for multiple parameters show that the proposed

method can be used effectively in optimization issues and
produce effective results.

Standard Taguchi methods for setting optimal parameters
on the proposed method and comparable algorithms have
been compared for further and complementary validation of
the proposed method. The CEC 2020 Test is also used to
comprehensively evaluate the proposed method, in addition
to the existing evaluations, and the results are presented in full
detail in the Appendix section. The experiments and valida-
tion methods have shown that the proposed method has a
suitable and acceptable performance in both areas of algo-
rithm speed and obtaining better results.

The proposed method is optimized to solve continuous
problems. However, as future work in this field, we intend
to update an optimized version of the proposed algorithm to
solve more discrete problems. Also, increase its ability to
solve multi-objective problems.

6 Conclusion

Metaheuristic algorithms are used to solve optimization prob-
lems as well as NP-Hard problems. Where there is no defini-
tive answer to solve problems, and optimization methods are
used to solve them. The goal of these algorithms is to obtain
an optimal or near-optimal response in good time. For this
reason, algorithms have been introduced, which have been
suitable for solving a specific category of problems.
However, due to the wide variety of optimization issues, re-
searchers are still looking for new ways to overcome the lim-
itations of previous methods. For this reason, the WAO algo-
rithm was introduced and formed inspired by the molecular
bonds of water and its properties. The proposed algorithm
consists of particles of water molecules that try to find the
optimal point by establishing hydrogen bonding under the
physical and chemical properties of the water molecule.

Table 26 COTJA problrm evaluation with taguchi method

Algorithm Worst Best Mean Std.Dev. Time(Sec)

WAO 1.6124 0.6139 0.7233 0.1101 3.1036

BBO 1.6243 0.6979 0.9111 0.1103 4.1597

HHO 3.0209 0.6879 0.6009 0.0089 6.009

GOA 3.0347 1.3137 1.6009 0.1215 4.4327

TSO 1.4168 1.0138 0.0186 0.5784 4.987

MFO 1.2943 0.5387 0.7079 0.0398 5.1182

SSA 1.6103 0.7087 1.0009 0.0205 4.1005

SCA 2.0094 0.8067 1.1112 0.0317 4.2003

AOA 1.5572 0.7001 0.9186 1.3008 4.007

ALO 1.5078 0.7099 0.8529 0.0109 5.1009

WO 1.8201 0.7732 0.9079 0.1009 5.4934

Table 25 Robot path planning problrm evaluation with taguchi method

Algorithm Worst Best Mean Std.Dev. Time(Sec)

WAO 183.0045 24.1148 27.0032 18.3009 3.3234

BBO 100.5203 37.4693 75.8008 19.0008 5.1502

HHO 110.4743 38.3309 29.0703 19.0005 5.022

GOA 113.5639 24.2236 30.7824 18.0028 4.8903

TSO 138.2869 141.3006 27.0921 53.0073 4.208

MFO 155.4899 29.1148 35.7839 20.0009 6.0931

SSA 144.6542 26.2793 31.8999 18.0043 4.1019

SCA 158.0907 28.1803 35.7983 21.0072 4.1109

AOA 97.5237 31.3571 31.8904 117.5003 3.103

ALO 167.0089 29.2143 36.9972 22.1413 5.2539

WO 137.56887 25.3114 31.0099 19.0003 5.6304

Table 24 Wlded beam problrm evaluation with taguchi method

Algorithm Worst Best Mean Std.Dev. Time (Sec)

WAO 12.0212 1.0111 1.2554 0.9554 3.1070

BBO 8.2000 1.3095 1.3016 0.3403 5.3514

HHO 13.0005 2.0110 1.8267 0.9631 5.531

GOA 13.0008 1.4079 1.5104 0.7307 5.2402

TSO 14.3002 16.8163 0.6705 2.0124 5.349

MFO 8.0008 1.4009 1.7904 0.5403 6.1004

SSA 20.3109 2.3249 2.5009 0.6799 4.52707

SCA 16.0509 1.6573 1.8397 0.6982 4.0036

AOA 10.2709 1.8109 2.4602 18.0102 5.023

ALO 10.2004 2.2005 2.4034 0.5628 5.0958

WO 3.0009 2.1007 2.3276 0.0209 6.0103
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The proposed algorithm works in both global and local
search domains. The two most essential operators of this
method are P and HTemp, which create unique properties.
Using the P operator causes the current responses to change
position by changing their position due to the force applied to
them, and the responses can collide to achieve better responses
and connect them. This feature causes the initial population to
be reduced due to the impact of P and particle bonding, result-
ing in more appropriate responses that affect the algorithm’s
faster convergence. The HTemp actuator also accelerates,

achieving a better response and increasing or decreasing its
intensity when necessary. The results of evaluations on real
problems, standard benchmarks, and various validation tech-
niques show that the proposed method has a significant ad-
vantage over several essential and new algorithms in contin-
uous problems. As future work in this field, we intend to
update better an optimized version of the proposed method
to solve discrete problems. Also, increase its ability to solve
multi-objective problems.

Appendix: Validation tests

Table 27 Results of industrial chemical processes problems (RC01 -RC07)

Prob Algorithm Best Median Mean Worst SD FR MV SR

RC01 WAO 1.87E+02 1.89E+02 1.89E+02 1.92E+02 2.17E-14 100 0.00E+00 33

IUDE 1.91E+02 3.05E+02 2.85E+02 2.00E+00 1.99E+02 0 1.48E+05 0

SASS 1.89E+02 3.08E+02 2.84E+02 2.06E+00 1.95E+02 2 1.45E+05 5

ϵMAgES 1.89E+02 1.90E+02 1.90E+02 1.92E+02 7.96E-01 100 0.00E+00 16

COLSHADE 1.89E+02 2.07E+02 1.97E+02 2.03E+02 6.58E+00 32 4.46E-04 4

IMODE 1.46E+02 2.25E+02 1.91E+02 2.23E+02 7.24E+00 51 1.23E-04 12

EBOwithCMAR 1.06E+02 3.12E+02 1.90E+02 2.17E+02 6.09E+00 12 9.02E-04 15

RC02 WAO 7.03E+03 7.04E+03 7.04E+03 7.05E+03 0.00E+00 100 0.00E+00 100

IUDE 7.05E+03 7.05E+03 6.93E+03 5.94E+03 3.70E+02 92 9.99E+03 92

SASS 7.04E+03 7.05E+03 6.98E+03 5.95E+03 3.72E+02 90 9.92E+03 88

ϵMAgES 7.05E+03 7.05E+03 1.05E+04 2.66E+04 6.54E+03 68 8.29E+01 68

COLSHADE 7.05E+03 7.05E+03 7.05E+03 7.05E+03 5.57E-13 100 0.04E+00 100

IMODE 7.19E+03 7.06E+03 1.26E+04 2.26E+04 4.27E+03 94 8.29E+01 59

EBOwithCMAR 7.06E+03 7.05E+03 5.97E+03 6.75E+03 1.25E-17 88 0.07E+00 84

RC03 WAO −4.51E+03 −4.51E+03 −4.35E+03 −1.42E+02 8.77E+02 100 0.00E+00 35

IUDE −4.53E+03 −1.43E+02 −6.08E+03 −1.57E+04 5.88E+03 68 3.86E+00 12

SASS −4.55E+03 −1.43E+02 −6.09E+03 −1.52E+04 5.88E+03 62 0.00E+00 22

ϵMAgES −1.43E+02 7.63E+01 3.21E+01 - 2.49E+02 1.43E+02 100 0.00E+00 0

COLSHADE −4.59E+03 −1.43E+02 9.57E+02 4.95E+02 2.04E+03 100 0.00E+00 36

IMODE −1.49E+02 5.22E+01 2.14E+01 1.41E+02 2.19E+02 97 0.00E+00 22

EBOwithCMAR −4.12E+03 −2.11E+02 −8.24E+02 2.74E+02 1.74E+03 67 0.00E+00 19

RC04 WAO −3.89E-01 −3.74E-01 −3.75E-01 −3.22E-01 4.69E-03 100 0.00E+00 100

IUDE −3.87E-01 −4.70E-01 −5.05E-01 −5.52E-01 7.80E-02 0 8.76E-02 0

SASS −3.88E-01 −4.72E-01 −4.08E-01 −3.69E-01 4.65E-03 98 0.00E+00 79

ϵMAgES −3.88E-01 −3.88E-01 −3.88E-01 −3.86E-01 7.55E-04 100 0.00E+00 84

COLSHADE −3.75E-01 −3.75E-01 −3.75E-01 −3.75E-01 1.21E-06 100 0.00E+00 100

IMODE −3.27E-01 −3.57E-01 −3.19E-01 −3.57E-01 7.12E-04 74 0.00E+00 59

EBOwithCMAR −3.71E-01 −3.89E-01 -4.24E-01 -3.48E-01 1.74E-06 59 0.00E+00 31

RC05 WAO −4.00E+02 −3.97E+02 −3.37E+02 0.00E+00 1.31E+02 100 0.00E+00 100

IUDE −4.00E+02 −4.00E+02 −3.56E+02 −8.30E-03 1.33E+02 100 0.00E+00 72

SASS −4.00E+02 −3.07E+02 −3.81E+02 0.10E+00 1.37E+02 100 0.00E+00 89
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Table 27 (continued)

Prob Algorithm Best Median Mean Worst SD FR MV SR

ϵMAgES -4.00E+02 -2.27E+02 -2.44E+02 -1.47E+02 9.30E+01 100 0.00E+00 36

COLSHADE -4.00E+02 -1.33E-02 -1.01E+02 -6.30E-03 1.57E+02 100 0.00E+00 44

IMODE −4.00E+02 −2.59E+02 −2.78E+02 −2.26E+02 8.47E+01 100 0.00E+00 97

EBOwithCMAR -4.00E+02 -1.12E-02 -2.11E+02 -4.17E-03 2.74E+02 98 0.00E+00 59

RC06 WAO 1.06E+00 1.07E+00 1.07E+00 1.21E+00 7.48E-03 25 2.11E+00 19

IUDE 1.88E+00 9.98E-01 1.10E+00 9.98E-01 2.92E-01 0 2.16E+00 0

SASS 1.35E+00 1.43E+00 1.43E+00 1.11E+00 7.48E-03 22 2.19E+00 0

ϵMAgES 2.04E+00 2.01E+00 2.06E+00 2.28E+00 1.60E-01 12 8.30E-03 0

COLSHADE 1.31E+00 1.64E+00 1.28E+00 1.22E+00 1.47E-01 0 1.24E-01 0

IMODE 2.42E+00 1.96E+00 2.76E+00 1.47E+00 2.27E-01 12 6.17E-03 2

EBOwithCMAR 2.01E+00 2.45E+00 4.71E+00 4.35E+00 4.97E-01 14 2.76E-01 0

RC07 WAO 9.55E-01 1.09E+00 1.16E+00 1.56E+00 1.94E-01 19 1.82E-02 15

IUDE 1.72E+00 2.16E+00 1.65E+00 1.24E+00 3.76E-01 0 2.18E-01 0

SASS 1.75E+00 1.62E+00 1.72E+00 1.55E+00 2.14E-01 0 1.89E-02 0

ϵMAgES 2.08E+00 1.67E+00 1.78E+00 1.57E+00 2.14E-01 0 1.86E-02 0

COLSHADE 1.88E+00 1.61E+00 1.77E+00 1.78E+00 1.50E-01 0 7.98E-02 0

IMODE 2.47E+00 2.11E+00 1.25E+00 1.22E+00 1.54E-01 2 1.14E-02 2

EBOwithCMAR 1.25E+00 1.45E+00 1.47E+00 1.41E+00 1.26E-01 0 4.24E-02 0

Table 28 Results of process synthesis and design problems (RC08 -RC14)

Prob Algorithm Best Median Mean Worst SD FR MV SR

RC08 WAO 2.00E+00 2.00E+00 2.00E+00 2.00E+00 1.82E-19 100 0.00E+00 100

IUDE 2.00E+00 2.00E+00 2.00E+00 2.00E+00 1.92E-16 100 0.00E+00 100

SASS 2.00E+00 2.00E+00 2.00E+00 2.00E+00 5.23E-05 100 0.00E+00 98

ϵMAgES 2.00E+00 2.00E+00 2.00E+00 2.00E+00 5.83E-05 100 0.00E+00 96

COLSHADE 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.36E-16 100 0.00E+00 100

IMODE 2.05E+00 2.04E+00 2.02E+00 2.12E+00 4.75E-05 100 0.00E+00 78

EBOwithCMAR 2.14E+00 2.09E+00 2.01E+00 2.09E+00 3.87E-16 100 0.00E+00 82

RC09 WAO 2.55E+00 2.55E+00 2.55E+00 2.57E+00 1.35E-15 100 0.00E+00 100

IUDE 2.56E+00 2.56E+00 2.60E+00 2.93E+00 1.23E-01 100 0.00E+00 88

SASS 2.57E+00 2.57E+00 2.57E+00 2.89E+00 1.63E-01 82 0.00E+00 69

ϵMAgES 2.56E+00 2.56E+00 2.56E+00 2.56E+00 0.00E+00 100 0.00E+00 100

COLSHADE 2.56E+00 2.56E+00 2.66E+00 2.69E+00 2.74E-01 88 2.31E-03 64

IMODE 2.57E+00 2.58E+00 2.62E+00 2.41E+00 0.00E+00 78 0.00E+00 54

EBOwithCMAR 2.58E+00 2.59E+00 2.57E+00 2.24E+00 4.17E-01 59 7.24E-08 47

RC10 WAO 1.07E+00 1.07E+00 1.15E+00 1.23E+00 8.78E-02 100 0.00E+00 100

IUDE 1.08E+00 1.08E+00 1.10E+00 1.25E+00 5.79E-02 100 0.00E+00 89

SASS 1.08E+00 1.08E+00 1.10E+00 1.26E+00 5.71E-02 100 0.00E+00 88

ϵMAgES 1.08E+00 1.08E+00 1.08E+00 1.08E+00 2.36E-16 100 0.00E+00 100

COLSHADE 1.08E+00 1.25E+00 1.21E+00 1.25E+00 7.65E-02 100 0.00E+00 76

IMODE 1.09E+00 1.11E+00 1.11E+00 1.14E+00 3.19E-16 100 0.00E+00 89

EBOwithCMAR 1.08E+00 1.17E+00 1.19E+00 1.18E+00 6.58E-02 98 0.00E+00 72

RC11 WAO 9.92E+01 1.05E+02 1.06E+02 1.07E+02 3.72E+00 100 0.00E+00 100

IUDE 9.92E+01 9.92E+01 1.02E+02 1.07E+02 4.07E+00 100 0.00E+00 52

SASS 9.92E+01 9.92E+01 1.04E+02 1.08E+02 1.15E+02 91 0.00E+00 43

ϵMAgES 9.92E+01 9.92E+01 1.05E+02 6.88E+00 1.13E+02 0 2.96E-06 0

The water optimization algorithm: a novel metaheuristic for solving optimization problems



Table 28 (continued)

Prob Algorithm Best Median Mean Worst SD FR MV SR

COLSHADE 9.92E+01 1.01E+02 1.03E+02 1.10E+02 4.60E+00 100 0.00E+00 44

IMODE 9.92E+01 8.41E+01 1.11E+02 5.25E+00 1.15E+02 89 0.00E+00 81

EBOwithCMAR 9.93E+01 3.12E+02 1.12E+02 2.54E+02 3.22E+00 87 0.00E+00 79

RC12 WAO 2.92E+00 2.92E+00 2.92E+00 3.92E+00 4.55E-16 100 0.00E+00 100

IUDE 2.92E+00 2.95E+00 3.08E+00 4.21E+00 4.21E-01 100 0.00E+00 16

SASS 2.92E+00 2.98E+00 3.24E+00 4.13E+00 5.23E-01 100 0.00E+00 22

ϵMAgES 2.92E+00 3.92E+00 3.64E+00 4.63E+00 6.72E-01 100 0.00E+00 20

COLSHADE 2.92E+00 2.92E+00 2.92E+00 2.92E+00 3.85E-08 100 0.00E+00 100

IMODE 2.92E+00 3.94E+00 3.47E+00 4.79E+00 5.83E-01 98 0.00E+00 97

EBOwithCMAR 2.92E+00 2.97E+00 2.15E+00 2.84E+00 3.32E-08 100 0.00E+00 99

RC13 WAO 2.61E+04 2.64E+04 2.64E+04 2.64E+04 1.11E-11 100 0.00E+00 100

IUDE 2.69E+04 2.69E+04 2.69E+04 2.69E+04 3.86E-12 100 0.00E+00 100

SASS 2.69E+04 2.69E+04 2.69E+04 2.69E+04 3.86E-12 100 0.00E+00 100

ϵMAgES 2.69E+04 2.69E+04 2.69E+04 2.69E+04 3.86E-12 100 0.00E+00 100

COLSHADE 2.69E+04 2.69E+04 2.69E+04 2.69E+04 3.86E-12 100 0.00E+00 100

IMODE 2.67E+04 2.69E+04 2.69E+04 2.69E+04 3.88E-12 100 0.00E+00 100

EBOwithCMAR 2.62E+04 2.68E+04 2.68E+04 2.68E+04 3.85E-12 100 0.00E+00 98

RC14 WAO 5.25E+04 5.25E+04 5.25E+04 7.36E+04 8.06E-09 100 0.00E+00 26

IUDE 6.19E+04 6.43E+04 6.60E+04 6.19E+04 4.37E+03 100 0.00E+00 0

SASS 6.23E+04 6.25E+04 6.25E+04 6.57E+04 3.63E+03 100 0.00E+00 0

ϵMAgES 5.36E+04 5.85E+04 5.78E+04 6.19E+04 2.60E+03 100 0.00E+00 0

COLSHADE 5.85E+04 5.99E+04 6.11E+04 6.57E+04 2.56E+03 100 0.00E+00 0

IMODE 5.36E+04 5.85E+04 5.78E+04 6.19E+04 2.60E+03 100 0.00E+00 8

EBOwithCMAR 5.85E+04 5.99E+04 6.11E+04 6.57E+04 2.56E+03 99 0.00E+00 7

Table 29 Results of Mechanical Engineering Problems (RC15 -RC33)

Prob Algorithm Best Median Mean Worst SD FR MV SR

RC15 WAO 2.99E+03 2.99E+03 2.99E+03 2.99E+03 0.00E+00 100 0.00E+00 100

IUDE 2.99E+03 2.99E+03 2.99E+03 2.99E+03 0.00E+00 100 0.00E+00 100

SASS 2.99E+03 2.99E+03 2.99E+03 2.99E+03 0.00E+00 100 0.00E+00 100

ϵMAgES 2.99E+03 2.99E+03 2.99E+03 2.99E+03 0.00E+00 100 0.00E+00 100

COLSHADE 2.99E+03 2.99E+03 2.99E+03 2.99E+03 0.00E+00 100 0.00E+00 100

IMODE 2.99E+03 2.99E+03 2.99E+03 2.99E+03 0.00E+00 100 0.00E+00 100

EBOwithCMAR 2.99E+03 2.99E+03 2.99E+03 2.99E+03 0.00E+00 100 0.00E+00 100

RC16 WAO 3.22E-02 3.22E-02 3.22E-02 3.22E-02 3.16E-22 100 0.00E+00 100

IUDE 3.22E-02 3.22E-02 3.22E-02 3.22E-02 4.91E-18 100 0.00E+00 100

SASS 3.22E-02 3.22E-02 3.22E-02 3.29E-02 4.09E-05 100 0.00E+00 93

ϵMAgES 3.22E-02 3.22E-02 3.40E-02 4.45E-02 4.09E-03 100 0.00E+00 88

COLSHADE 3.22E-02 3.22E-02 3.23E-02 3.25E-02 1.11E-04 100 0.00E+00 76

IMODE 3.22E-02 3.22E-02 3.59E-02 3.21E-02 7.23E-03 100 0.00E+00 59

EBOwithCMAR 3.22E-02 3.22E-02 3.29E-02 3.47E-02 8.46E-04 100 0.00E+00 78

RC17 WAO 1.26E-02 1.27E-02 1.27E-02 1.27E-02 2.01E-05 100 0.00E+00 100

IUDE 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.15E-06 100 0.00E+00 100

SASS 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.69E-07 100 0.00E+00 98

ϵMAgES 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.63E-07 100 0.00E+00 96
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Table 29 (continued)

Prob Algorithm Best Median Mean Worst SD FR MV SR

COLSHADE 1.27E-02 1.27E-02 1.27E-02 1.27E-02 2.22E-05 100 0.00E+00 84

IMODE 1.27E-02 1.27E-02 1.27E-02 1.27E-02 3.87E-07 100 0.00E+00 95

EBOwithCMAR 1.27E-02 1.27E-02 1.27E-02 1.27E-02 4.58E-08 100 0.00E+00 97

RC18 WAO 6.07E+03 6.57E+03 6.08E+03 6.69E+03 9.28E-13 100 0.00E+00 100

IUDE 5.89E+03 6.17E+03 6.27E+03 6.86E+03 4.05E+02 100 0.00E+00 24

SASS 5.99E+03 6.59E+03 6.24E+03 6.68E+03 4.22E+02 100 0.00E+00 26

ϵMAgES 5.89E+03 5.89E+03 5.89E+03 5.89E+03 0.00E+00 100 0.00E+00 100

COLSHADE 5.89E+03 5.89E+03 1.49E+04 5.72E+04 1.71E+04 100 0.00E+00 64

IMODE 5.89E+03 5.89E+03 4.28E+03 6.94E+03 1.27E+01 100 0.00E+00 88

EBOwithCMAR 5.95E+03 5.89E+03 2.67E+03 5.88E+04 1.28E+03 100 0.00E+00 94

RC19 WAO 1.67E+00 1.67E+00 1.67E+00 1.67E+00 0.00E+00 100 0.00E+00 100

IUDE 1.67E+00 1.67E+00 1.67E+00 1.67E+00 2.08E-16 100 0.00E+00 100

SASS 1.67E+00 1.67E+00 1.67E+00 1.67E+00 2.08E-19 100 0.00E+00 100

ϵMAgES 1.67E+00 1.67E+00 1.67E+00 1.67E+00 2.08E-16 100 0.00E+00 100

COLSHADE 1.67E+00 1.67E+00 1.67E+00 1.67E+00 1.07E-11 100 0.00E+00 100

IMODE 1.67E+00 1.67E+00 1.67E+00 1.67E+00 2.78E-15 100 0.00E+00 94

EBOwithCMAR 1.67E+00 1.67E+00 1.67E+00 1.67E+00 2.29E-14 98 0.00E+00 88

RC20 WAO 2.63E+02 2.63E+02 2.63E+02 2.69E+02 0.00E+00 100 0.00E+00 100

IUDE 2.64E+02 2.64E+02 2.64E+02 2.64E+02 0.00E+00 100 0.00E+00 100

SASS 2.64E+02 2.64E+02 2.64E+02 2.64E+02 0.00E+00 100 0.00E+00 100

ϵMAgES 2.64E+02 2.64E+02 2.64E+02 2.64E+02 0.00E+00 100 0.00E+00 100

COLSHADE 2.64E+02 2.64E+02 2.64E+02 2.65E+02 4.47E-01 100 0.00E+00 96

IMODE 2.64E+02 2.64E+02 2.64E+02 2.65E+02 0.00E+00 100 0.00E+00 100

EBOwithCMAR 2.64E+02 2.64E+02 2.64E+02 2.64E+02 0.00E+00 100 0.00E+00 100

RC21 WAO 2.35E-01 2.35E-01 2.35E-01 2.35E-01 1.11E-16 100 0.00E+00 100

IUDE 2.35E-01 2.35E-01 2.35E-01 2.35E-01 0.00E+00 100 0.00E+00 100

SASS 2.35E-01 2.35E-01 2.35E-01 2.35E-01 0.00E+00 100 0.00E+00 100

ϵMAgES 2.35E-01 2.35E-01 2.35E-01 2.35E-01 0.00E+00 100 0.00E+00 100

COLSHADE 2.35E-01 2.35E-01 2.35E-01 2.35E-01 0.00E+00 100 0.00E+00 100

IMODE 2.35E-01 2.35E-01 2.35E-01 2.35E-01 0.00E+00 100 0.00E+00 100

EBOwithCMAR 2.35E-01 2.35E-01 2.35E-01 2.35E-01 0.00E+00 100 0.00E+00 100

RC22 WAO 5.26E-01 5.26E-01 5.26E-01 5.56E-01 1.42E-03 100 0.00E+00 89

IUDE 5.26E-01 5.26E-01 5.26E-01 5.26E-01 1.22E-03 100 0.00E+00 36

SASS 5.26E-01 5.26E-01 5.26E-01 5.30E-01 1.05E-01 85 0.00E+00 21

ϵMAgES 5.29E-01 5.29E-01 5.29E-01 8.54E-01 1.05E-01 76 3.88E-01 0

COLSHADE 5.26E-01 5.26E-01 5.26E-01 5.31E-01 1.44E-03 100 0.00E+00 52

IMODE 5.28E-01 5.29E-01 5.29E-01 5.58E-01 1.45E-02 100 0.00E+00 26

EBOwithCMAR 5.27E-01 5.27E-01 5.27E-01 6.62E-01 1.23E-02 100 0.00E+00 58

RC23 WAO 1.60E+01 1.60E+01 1.60E+01 1.60E+01 3.33E-19 100 0.00E+00 100

IUDE 1.61E+01 1.61E+01 1.61E+01 1.61E+01 3.77E-15 100 0.00E+00 100

SASS 1.61E+01 1.61E+01 1.61E+01 1.61E+01 3.35E-14 100 0.00E+00 100

ϵMAgES 1.61E+01 1.61E+01 1.61E+01 1.61E+01 4.74E-14 100 0.00E+00 100

COLSHADE 1.61E+01 1.61E+01 1.61E+01 1.61E+01 3.67E-07 100 0.00E+00 92

IMODE 1.61E+01 1.61E+01 1.61E+01 1.61E+01 3.42E-19 100 0.00E+00 100

EBOwithCMAR 1.61E+01 1.61E+01 1.61E+01 1.61E+01 3.28E-14 100 0.00E+00 100

RC24 WAO 2.54E+00 2.54E+00 2.54E+00 2.54E+00 1.31E-12 100 0.00E+00 100

IUDE 2.54E+00 2.54E+00 2.54E+00 2.54E+00 4.81E-14 100 0.00E+00 100

SASS 2.54E+00 2.54E+00 2.54E+00 2.54E+00 1.36E-11 100 0.00E+00 100

ϵMAgES 2.55E+00 2.55E+00 3.34E+03 1.00E+04 4.99E+03 100 0.00E+00 23
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Table 29 (continued)

Prob Algorithm Best Median Mean Worst SD FR MV SR

COLSHADE 2.54E+00 2.54E+00 2.54E+00 2.54E+00 5.14E-06 100 0.00E+00 88

IMODE 2.54E+00 2.54E+00 2.55E+00 2.22E+00 2.35E+01 100 0.00E+00 100

EBOwithCMAR 2.54E+00 2.54E+00 2.54E+00 1.63E+00 5.77E-04 100 0.00E+00 100

RC25 WAO 1.61E+03 1.61E+03 1.61E+03 1.61E+03 1.61E+03 100 0.00E+00 46

IUDE 2.51E+03 4.88E+03 4.92E+03 1.05E+04 3.14E+03 56 7.60E-01 5

SASS 1.66E+03 1.66E+03 1.66E+03 1.66E+03 1.66E+03 96 0.00E+00 2

ϵMAgES -4.49E+01 1.63E+03 −3.52E+03 1.63E+03 1.98E+04 100 0.00E+00 0

COLSHADE 1.67E+03 2.04E+03 2.44E+03 1.73E+02 2.14E+03 88 1.73E-05 0

IMODE 1.47E+03 2.01E+03 1.49E+03 1.12E+04 1.25E+04 95 0.00E+00 15

EBOwithCMAR 2.61E+03 2.01E+03 1.24E+03 1.31E+03 2.30E+03 100 0.00E+00 11

RC26 WAO 3.51E+01 3.51E+01 3.72E+01 3.72E+01 5.99E-01 100 0.00E+00 100

IUDE 3.54E+01 3.81E+01 3.91E+01 4.56E+01 3.62E+00 100 0.00E+00 24

SASS 3.59E+01 3.59E+01 3.54E+01 3.59E+01 5.11E-00 100 0.00E+00 69

ϵMAgES 6.07E+01 2.10E+01 5.78E+01 1.99E+01 6.85E+01 32 2.61E-01 0

COLSHADE 3.65E+01 3.93E+01 4.03E+01 5.42E+01 5.52E+00 100 0.00E+00 32

IMODE 4.23E+01 2.23E+01 4.88E+01 2.02E+01 4.77E+01 100 0.00E+00 41

EBOwithCMAR 3.31E+01 3.86E+01 5.33E+01 3.14E+01 5.01E+00 100 0.00E+00 87

RC27 WAO 5.24E+02 5.24E+02 5.24E+02 5.24E+02 3.76E-07 100 0.00E+00 100

IUDE 5.24E+02 5.24E+02 5.24E+02 5.24E+02 1.01E-04 100 0.00E+00 88

SASS 5.24E+02 5.24E+02 5.24E+02 5.24E+02 3.26E-02 100 0.00E+00 96

ϵMAgES 5.24E+02 5.24E+02 5.26E+02 5.31E+02 2.70E+00 100 0.00E+00 72

COLSHADE 5.24E+02 5.24E+02 5.24E+02 5.25E+02 9.97E-03 100 0.00E+00 80

IMODE 5.24E+02 5.24E+02 5.24E+02 5.26E+02 3.14E-06 100 0.00E+00 87

EBOwithCMAR 5.24E+02 5.24E+02 5.24E+02 5.25E+02 1.91E-05 100 0.00E+00 95

RC28 WAO 1.56E+04 1.56E+04 1.56E+04 1.56E+04 3.71E-12 100 0.56E+00 92

IUDE 1.46E+04 1.46E+04 1.46E+04 1.46E+04 1.93E-12 100 0.00E+00 100

SASS 1.46E+04 1.46E+04 1.46E+04 1.46E+04 1.93E-12 100 0.00E+00 100

ϵMAgES 1.46E+04 1.46E+04 1.46E+04 1.46E+04 1.93E-12 100 0.00E+00 100

COLSHADE 1.46E+04 1.46E+04 1.46E+04 1.46E+04 1.93E-12 100 0.00E+00 100

IMODE 1.46E+04 1.46E+04 1.46E+04 1.46E+04 1.93E-12 100 0.00E+00 100

EBOwithCMAR 1.49E+04 1.51E+04 1.49E+04 1.49E+04 1.91E-12 95 0.00E+00 91

RC29 WAO 2.96E+06 2.96E+06 2.96E+06 2.96E+06 3.19E-23 100 0.00E+00 100

IUDE 2.96E+06 2.96E+06 2.96E+06 2.96E+06 6.59E-10 100 0.00E+00 100

SASS 2.96E+06 2.96E+06 2.96E+06 2.96E+06 4.29E-10 100 0.00E+00 100

ϵMAgES 2.96E+06 2.96E+06 2.96E+06 2.96E+06 0.00E+00 100 0.00E+00 100

COLSHADE 2.96E+06 2.96E+06 2.97E+06 2.97E+06 1.23E+03 100 0.00E+00 76

IMODE 2.96E+06 2.96E+06 2.97E+06 2.97E+06 0.12E+00 100 0.00E+00 100

EBOwithCMAR 2.96E+06 2.96E+06 2.96E+06 2.96E+06 0.07E+00 100 0.00E+00 98

RC30 WAO 2.61E+00 2.61E+00 2.82E+00 2.63E+00 3.65E-19 100 0.00E+00 100

IUDE 2.61E+00 2.61E+00 2.61E+00 2.61E+00 1.75E-01 100 0.00E+00 64

SASS 2.61E+00 2.61E+00 2.70E+00 3.07E+00 1.25E-01 100 0.00E+00 93

ϵMAgES 2.61E+00 2.61E+00 2.61E+00 2.61E+00 5.02E-13 100 0.00E+00 100

COLSHADE 2.61E+00 2.63E+00 2.67E+00 2.98E+00 1.17E-01 100 0.00E+00 76

IMODE 2.61E+00 2.64E+00 2.66E+00 2.91E+00 3.24E-13 100 0.00E+00 82

EBOwithCMAR 2.61E+00 2.63E+00 2.69E+00 2.88E+00 2.14E-01 100 0.00E+00 100

RC31 WAO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 100

IUDE 3.06E-19 2.39E-18 7.76E-17 6.64E-16 2.20E-16 100 0.00E+00 100

SASS 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 100

ϵMAgES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 100
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Table 29 (continued)

Prob Algorithm Best Median Mean Worst SD FR MV SR

COLSHADE 0.00E+00 1.55E-20 5.26E-19 3.67E-18 1.21E-18 100 0.00E+00 100

IMODE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 98

EBOwithCMAR 0.00E+00 0.41E-09 0.41E-11 0.41E-06 0.41E-08 100 0.00E+00 100

RC32 WAO -3.06E+04 -3.06E+04 -3.06E+04 -3.06E+04 3.71E-12 100 0.00E+00 100

IUDE −3.07E+04 −3.07E+04 −3.07E+04 −3.07E+04 3.86E-12 100 0.00E+00 100

SASS −3.07E+04 −3.07E+04 −3.07E+04 −3.07E+04 3.86E-12 100 0.00E+00 100

ϵMAgES -3.07E+04 -3.07E+04 -3.07E+04 -3.07E+04 3.86E-12 100 0.00E+00 100

COLSHADE -3.07E+04 -3.07E+04 -3.07E+04 -3.07E+04 3.86E-12 100 0.00E+00 100

IMODE −3.07E+04 −3.07E+04 −3.07E+04 −3.07E+04 3.86E-12 100 0.00E+00 100

EBOwithCMAR −3.07E+04 −3.07E+04 −3.07E+04 -3.07E+04 3.86E-12 100 0.00E+00 100

RC33 WAO 2.63E+00 2.63E+00 2.63E+00 2.63E+00 1.07E-12 100 0.00E+00 100

IUDE 2.64E+00 2.64E+00 2.64E+00 2.64E+00 4.44E-16 100 0.00E+00 100

SASS 2.64E+00 2.64E+00 2.64E+00 2.64E+00 4.23E-11 100 0.00E+00 100

ϵMAgES 2.65E+00 2.65E+00 2.65E+00 2.67E+00 8.64E-03 100 0.00E+00 0

COLSHADE 2.64E+00 2.64E+00 2.64E+00 2.64E+00 1.03E-15 100 0.00E+00 10

IMODE 2.64E+00 2.65E+00 2.65E+00 2.66E+00 1.12E-11 100 0.00E+00 56

EBOwithCMAR 2.64E+00 2.64E+00 2.64E+00 2.65E+00 2.58E-11 100 0.00E+00 41

Table 30 Results of Power System Problems (RC34 -RC44)

Prob Algorithm Best Median Mean Worst SD FR MV SR

RC34 WAO 1.82E-09 1.49E-01 2.93E+00 1.16E+00 3.56E+00 100 0.00E+00 22

IUDE 3.42E+00 4.60E+00 4.54E+0052 1.66E+00 1.55E+00 85 4.33E-02 0

SASS 2.11E+00 2.90E+00 4E+00 1.33E+00 2.23E+00 22 0.00E+00 0

ϵMAgES 3.99E-01 8.90E-01 9.50E-01 1.83E+00 4.17E-01 100 0.00E+00 5

COLSHADE 4.33E+00 1.15E+01 8.23E+00 6.26E+00 2.28E+00 0 4.49E-02 0

IMODE 1.12E+01 4.52E-01 4.63E-01 5.45E+00 2.13E-01 100 0.00E+00 2

EBOwithCMAR 4.14E+00 2.25E+01 2.44E+00 2.07E+00 4.78E+00 26 0.00E+00 11

RC35 WAO −5.59E+01 9.36E+01 7.31E+01 1.42E+01 5.23E+01 56 15

IUDE 9.52E+01 8.82E+01 1.02E+02 1.10E+02 9.46E+00 0 0.23E-09 0

SASS 4.53E+01 8.22E+01 2.92E+01 1.82E+01 2.82E+01 26 8.34E-01 0

ϵMAgES 1.20E-01 -1.12E+00 -1.69E+00 −7.30E+00 2.47E+00 12 1.02E-05 0

COLSHADE 1.92E+02 1.85E+02 1.68E+02 1.17E+02 2.28E+01 0 8.26E-02 0

IMODE 2.41E-02 4.22E+01 1.22E+01 1.17E+01 3.17E+00 45 1.78E-01 11

EBOwithCMAR 7.01E+01 2.44E+01 1.99E+01 1.76E+01 4.34E+00 26 6

RC36 WAO -7.95E+01 6.08E+00 4.88E+01 1.29E+02 6.77E+01 43 4.29E-01 0

IUDE 7.84E+01 7.79E+01 8.81E+01 9.29E+01 1.07E+01 0 8.62E-01 0

SASS 5.83E+01 5.80E+01 5.78E+01 8.24E+01 2.04E+01 30 5.62E-01 0

ϵMAgES 2.46E-01 1.07E+00 1.18E-01 −1.65E+00 7.32E-01 32 5.23E-02 0

COLSHADE 1.54E+02 1.09E+02 1.31E+02 1.94E+02 3.01E+01 0 5.45E-01 0

IMODE 6.41E+00 7.55E+00 4.17E+01 6.65E+01 2.63E+01 41 4.23E-01 0

EBOwithCMAR 3.47E+00 2.44E+00 2.65E+01 3.63E+01 2.45E+01 39 3.31E-01 0

RC37 WAO -1.36E+01 1.78E+00 1.13E-01 1.42E+00 1.41E+00 65 0.94E-01 0

IUDE 2.32E+00 1.21E+00 2.10E-01 3.49E+00 1.39E+00 0 1.54E-01 0

SASS 3.22E+00 1.62E+00 5.23E-01 3.32E+00 1.79E+00 33 1.14E-01 0

ϵMAgES 6.55E-01 1.40E+00 8.65E-01 6.68E-01 5.48E-01 12 5.61E-03 0

COLSHADE 3.61E+00 3.66E+00 3.73E+00 3.69E+00 4.69E-01 0 5.71E-02 0
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Table 30 (continued)

Prob Algorithm Best Median Mean Worst SD FR MV SR

IMODE −0.58E+01 1.45E+00 2.54E-01 2.51E+00 2.44E+00 16 1.04E-01 0

EBOwithCMAR 1.01E+00 1.49E+00 1.19E-01 2.26E+00 2.41E+00 22 1.23E-01 0

RC38 WAO 1.63E+00 −8.40E+00 −9.09E+00 2.11E+01 8.32E+00 0 1.12E-01 0

IUDE 2.03E+00 −7.64E+00 −9.29E+00 3.48E+01 9.02E+00 0 1.58E-01 0

SASS 1.99E+00 −7.17E+00 −8.12E+00 2.48E+01 7.44E+00 0 4.68E-01 0

ϵMAgES 7.18E+00 6.89E+00 6.49E+00 6.62E+00 7.74E-01 0 4.59E-03 0

COLSHADE 5.07E+00 2.47E+00 3.39E+00 3.25E+00 9.53E-01 0 5.72E-02 0

IMODE 7.34E+00 4.09E+00 5.19E+00 4.62E+01 9.64E-01 0 5.34E-04 0

EBOwithCMAR 5.26E+00 2.98E+00 4.19E+00 4.35E+00 7.77E-01 0 2.91E-01 0

RC39 WAO −5.24E+00 −1.87E+01 −1.82E+01 −3.22E+01 1.24E+01 0 1.84E-01 0

IUDE −5.03E+00 −1.57E+01 −1.65E+01 −3.81E+01 1.44E+01 0 1.84E-01 0

SASS −5.17E+00 −1.41E+01 −1.49E+01 −3.59E+01 1.63E+01 0 1.84E-01 0

ϵMAgES 9.25E+00 5.15E+00 7.44E+00 6.19E+00 2.23E+00 0 1.02E-02 0

COLSHADE 4.09E+00 3.25E+00 3.19E+00 1.96E+00 1.42E+00 0 5.94E-02 0

IMODE 1.11E+00 2.18E+00 7.63E+01 5.22E+01 1.83E+01 0 4.98E-02 0

EBOwithCMAR 1.10E+00 1.48E+00 1.64E+01 3.16E+01 1.96E+01 0 2.12E-01 0

RC40 WAO 8.75E+01 5.22E+01 7.21E+01 1.47E+02 7.41E+01 0 2.25E+00 0

IUDE 4.78E+01 4.54E+01 8.54E+01 1.95E+02 4.86E+01 12 1.45E+00 0

SASS 3.23E+01 4.11E+01 7.59E+01 1.76E+02 5.47E+01 0 1.05E+00 12

ϵMAgES 1.70E−12 4.81E+00 5.69E+01 1.08E+02 8.41E+01 0 2.04E-01 0

COLSHADE 3.45E+01 1.03E+02 1.57E+02 9.94E+01 7.77E+01 0 1.89E+00 0

IMODE 3.44E+05 9.51E+04 6.23E+02 7.18E+02 6.35E+02 2 1.87E-01 0

EBOwithCMAR 3.69E+03 8.87E+03 6.09E+01 6.36E+01 6.22E+01 0 1.23E+01 0

RC41 WAO 3.21E-02 2.91E+00 1.12E+01 2.93E+01 5.84E+01 100 0.00E+00 100

IUDE 2.21E+01 1.41E+02 8.18E+01 4.51E+01 9.64E+01 0 1.22E+00 0

SASS 1.26E+01 2.41E+00 1.12E+00 3.31E+00 3.14E+00 100 0.00E+00 23

ϵMAgES 1.25E-19 2.80E-19 2.52E-19 3.53E-19 9.08E-20 100 0.00E+00 100

COLSHADE 5.07E+00 1.22E+02 9.62E+01 2.93E+02 1.10E+02 0 1.18E+00 0

IMODE 1.25E-01 0.02E-01 0.12E-01 0.12E-01 0.24E-01 100 0.00E+00 100

EBOwithCMAR 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 100 0.00E+00 100

RC42 WAO -1.90E+00 -1.13E-01 −1.48E+00 −2.05E+00 2.23E+00 12 1.23E+00 8

IUDE 1.33E+02 3.87E+01 −2.38E+01 −5.29E+02 2.07E+02 0 4.99E+00 0

SASS −1.26E+00 −9.37E-01 −1.12E+00 −1.89E+00 2.16E+00 0 2.14E+00 0

ϵMAgES 7.64E+01 6.17E+01 6.73E+01 3.64E+01 5.26E+01 0 1.06E+00 0

COLSHADE −1.26E+00 -9.18E-01 -1.08E+00 −1.25E+00 1.52E-01 0 2.03E+00 0

IMODE 1.24E+01 1.01E+01 1.56E+01 1.01E+01 1.21E+01 7 2.76E+00 2

EBOwithCMAR 1.87E+01 1.47E+01 1.63E+01 1.07E+01 1.36E+01 5 2.19E+00 0

RC43 WAO −1.82E+01 1.46E+01 -1.39E+00 3.92E+01 1.82E+00 0 2.38E+00 0

IUDE 1.62E+01 9.12E+00 8.95E+00 7.71E+00 9.51E+00 0 2.98E+00 0

SASS 1.23E+01 1.15E+01 1.32E+00 7.52E+01 1.62E+01 0 2.38E+00 0

ϵMAgES 1.06E+02 4.04E+01 7.61E+01 1.06E+02 2.71E+01 0 1.16E+00 0

COLSHADE 3.47E+01 3.45E+01 4.50E+01 4.53E+01 7.89E+00 0 2.38E+00 0

IMODE 2.46E+01 2.17E+01 2.36E+00 3.69E+01 2.26E+00 0 3.08E+00 0

EBOwithCMAR 2.41E+01 2.74E+01 2.34E+00 3.84E+00 3.22E+00 0 2.82E+00 0

RC44 WAO −6.31E+03 -6.13E+03 -6.19E+03 -6.00E+03 2.22E+01 100 0.00E+00 78

IUDE −6.15E+03 −6.12E+03 −6.12E+03 −6.07E+03 2.74E+01 100 0.00E+00 0

SASS −6.15E+03 −6.19E+03 −6.14E+03 −6.06E+03 2.11E+01 100 0.00E+00 0

ϵMAgES -6.10E+03 -6.06E+03 -6.05E+03 -5.94E+03 5.22E+01 100 0.00E+00 0
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Table 30 (continued)

Prob Algorithm Best Median Mean Worst SD FR MV SR

COLSHADE -6.24E+03 -6.19E+03 -6.20E+03 -6.17E+03 2.70E+01 100 0.00E+00 19

IMODE −6.17E+03 −6.16E+03 −6.16E+03 −6.16E+03 5.09E+01 100 0.00E+00 52

EBOwithCMAR −6.02E+03 −6.00E+03 −6.00E+03 -6.00E+03 3.12E+01 100 0.00E+00 47

Table 31 Results of Power Electronic Problems (RC45 -RC50)

Prob Algorithm Best Median Mean Worst SD FR MV SR

RC45 WAO 7.79E-02 1.22E-01 1.26E-01 5.24E-01 2.21E-02 100 0.00E+00 56
IUDE 5.52E-02 6.56E-02 7.66E-02 1.17E-01 2.41E-02 100 0.00E+00 11
SASS 5.21E-02 2.36E-01 5.58E-01 1.14E-01 2.17E-02 100 0.00E+00 11
ϵMAgES 3.80E-02 4.95E-02 5.01E-02 6.42E-02 9.33E-03 100 0.00E+00 4
COLSHADE 7.71E-02 1.13E-01 1.08E-01 1.64E-01 2.97E-02 100 0.00E+00 2
IMODE 5.07E-02 6.47E-02 6.62E-02 6.87E-02 6.25E-02 100 0.00E+00 42
EBOwithCMAR 6.45E-02 7.26E-01 7.50E-01 7.83E-01 7.96E-01 100 0.00E+00 23

RC46 WAO 2.11E-02 2.15E-02 2.41E-02 2.14E-01 3.98E-03 100 0.00E+00 26
IUDE 4.31E-02 5.16E-02 5.48E-02 6.71E-02 9.07E-03 100 0.00E+00 0
SASS 2.28E-02 4.01E-02 2.81E-02 2.36E-02 4.63E-03 100 0.00E+00 15
ϵMAgES 2.36E-02 3.03E-02 2.91E-02 3.37E-02 4.13E-03 100 0.00E+00 0
COLSHADE 6.67E-02 7.27E-02 9.20E-02 2.04E-01 4.45E-02 100 0.00E+00 2
IMODE 4.47E-02 4.96E-02 4.92E-02 4.99E-02 4.47E-02 100 0.00E+00 19
EBOwithCMAR 6.99E-02 7.05E-02 7.00E-02 7.19E-02 6.99E-02 100 0.00E+00 7

RC47 WAO 3.81E-02 3.12E-02 5.24E-02 1.04E-01 6.67E-02 100 0.00E+00 61
IUDE 3.44E-02 3.82E-02 6.44E-02 4.23E-01 4.74E-02 92 7.37E-04 0
SASS 3.23E-02 3.92E-02 4.94E-02 2.12E-01 5.76E-02 100 0.00E+00 12
ϵMAgES 1.51E-02 2.06E-02 1.98E-02 2.46E-02 2.99E-03 100 0.00E+00 4
COLSHADE 2.71E-02 4.52E-02 4.57E-02 6.98E-02 1.12E-02 100 0.00E+00 0
IMODE 3.81E-02 1.31E-02 1.35E-02 1.07E-01 1.51E-02 100 0.00E+00 26
EBOwithCMAR 1.49E-02 1.58E-02 1.59E-02 1.98E-01 1.63E-02 100 0.00E+00 68

RC48 WAO 4.85E-02 4.60E-02 4.22E-02 4.79E-01 4.48E-02 100 0.00E+00 4
IUDE 2.85E-02 4.69E-02 6.53E-02 2.56E-01 5.58E-02 100 0.00E+00 0
SASS 4.50E-02 4.56E-02 5.56E-02 2.39E-01 4.26E-02 100 0.00E+00 0
ϵMAgES 1.68E-02 1.68E-02 1.74E-02 2.24E-02 1.87E-03 100 0.00E+00 6
COLSHADE 4.71E-02 1.96E-01 2.23E-01 4.94E-01 1.62E-01 100 0.00E+00 0
IMODE 3.23E-02 5.59E-02 5.23E-02 3.46E-01 5.77E-02 100 0.00E+00 4
EBOwithCMAR 3.06E-02 3.11E-02 4.16E-02 4.23E-01 4.16E-02 100 0.00E+00 0

RC49 WAO 3.81E-02 2.77E-02 4.01E-02 8.58E-02 4.39E-02 100 0
IUDE 2.85E-02 5.11E-02 2.30E-02 9.88E-02 2.31E-02 100 0.00E+00 0
SASS 3.11E-02 4.41E-02 3.53E-02 4.54E-02 1.13E-02 100 0.00E+00 0
ϵMAgES 9.83E-03 2.99E-02 3.06E-02 5.96E-02 1.69E-02 100 0.00E+00 0
COLSHADE 6.78E-02 1.36E-01 1.61E-01 3.20E-01 8.89E-02 100 0.00E+00 0
IMODE 3.81E-02 4.52E-02 4.25E-02 5.13E-02 3.56E-02 100 0.00E+00 0
EBOwithCMAR 9.92E-03 2.99E-02 3.01E-02 4.78E-02 1.44E-02 100 9

RC50 WAO 1.11E-01 2.41E-01 2.87E-01 2.73E-01 2.17E-00 77 4.28E-03 0
IUDE 2.02E-01 1.43E-01 2.53E-01 3.78E-01 1.13E-01 36 2.51E-03 0
SASS 6.23E-02 2.78E-01 2.07E-01 2.52E-01 3.17E-00 22 5.38E-03 0
ϵMAgES 1.56E-02 1.66E-02 2.94E-02 7.77E-02 2.34E-02 100 0.00E+00 0
COLSHADE 2.62E-01 3.01E-01 3.07E-01 3.53E-01 3.17E-02 0 4.78E-03 0
IMODE 1.25E-01 2.26E-01 3.08E-02 3.65E-01 1.37E-01 15 0.00E+00 0
EBOwithCMAR 1.99E-01 1.95E-01 3.26E-01 3.14E-01 6.45E-01 88 5.19E-05 0
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Table 32 Results of Livestock Feed Ration Optimization Problems (RC51 -RC57)

Prob Algorithm Best Median Mean Worst SD FR MV SR

RC51 WAO 4.38E+03 4.41E+03 4.43E+03 4.56E+03 3.91E+00 0 6.13E-08 0
IUDE 4.55E+03 4.55E+03 4.55E+03 4.55E+03 1.07E-01 0 2.13E-06 0
SASS 4.45E+03 4.53E+03 4.55E+03 4.62E+03 3.62E+00 0 4.91E-06 0
ϵMAgES 4.40E+03 4.32E+03 4.17E+03 3.23E+03 3.59E+02 0 4.98E-02 0
COLSHADE 4.55E+03 4.55E+03 4.55E+03 4.56E+03 3.82E+00 0 6.13E-06 0
IMODE 4.40E+03 4.40E+03 4.78E+03 4.19E+03 4.01E+01 0 6.22E-07 0
EBOwithCMAR 4.55E+03 4.55E+03 4.32E+03 3.89E+03 3.89E+01 0 5.81E-04 0

RC52 WAO 3.34E+03 3.34E+03 3.34E+03 3.49E+03 2.42E+01 100 0.00E+00 23
IUDE 3.36E+03 3.39E+03 3.39E+03 3.43E+03 2.33E+01 100 0.00E+00 0
SASS 3.38E+03 3.39E+03 3.38E+03 3.45E+03 2.39E+01 100 0.00E+00 0
ϵMAgES 3.62E+03 3.84E+03 3.86E+03 4.26E+03 1.79E+02 100 0.00E+00 0
COLSHADE 3.81E+03 3.98E+03 4.01E+03 4.30E+03 1.54E+02 100 0.00E+00 2
IMODE 3.39E+03 3.62E+03 3.69E+03 4.42E+03 1.74E+02 100 0.00E+00 15
EBOwithCMAR 3.87E+03 3.91E+03 3.90E+03 4.51E+03 1.48E+02 100 0.00E+00 19

RC53 WAO 4.32E+03 4.42E+03 4.44E+03 5.40E+03 4.29E+01 100 0.00E+00 25
IUDE 5.00E+03 5.04E+03 5.04E+03 5.10E+03 3.35E+01 100 0.00E+00 8
SASS 5.01E+03 5.12E+03 5.14E+03 5.32E+03 3.28E+01 100 0.00E+00 12
ϵMAgES 5.57E+03 4.82E+03 5.09E+03 4.54E+03 3.56E+02 12 1.29E-03 0
COLSHADE 5.07E+03 5.15E+03 5.24E+03 5.48E+03 1.59E+02 100 0.00E+00 0
IMODE 5.04E+03 4.45E+03 5.49E+03 5.54E+03 3.01E+02 100 3.56E+02 14
EBOwithCMAR 5.12E+03 5.29E+03 5.31E+03 5.40E+03 1.87E+02 100 1.59E+02 9

RC54 WAO 1.56E+03 5.68E+03 4.91E+03 5.29E+03 1.66E-03 100 0.00E+00 81
IUDE 4.24E+03 4.24E+03 4.24E+03 4.24E+03 1.16E+00 100 0.00E+00 20
SASS 4.23E+03 4.64E+03 4.22E+03 4.21E+03 1.29E+00 100 0.00E+00 39
ϵMAgES 4.18E+03 3.30E+03 3.33E+03 4.26E+03 5.37E+02 0 5.16E-02 0
COLSHADE 4.24E+03 4.24E+03 4.24E+03 4.24E+03 4.68E-01 100 0.00E+00 36
IMODE 3.09E+03 3.30E+03 3.31E+03 4.75E+03 5.24E+02 100 0.00E+00 52
EBOwithCMAR 2.24E+03 2.39E+03 2.41E+03 3.43E+03 4.21E-01 100 0.00E+00 69

RC55 WAO 1.60E+03 1.62E+03 1.61E+03 2.21E+03 1.81E+02 10 4.23E-03 0
IUDE 2.20E+03 2.32E+03 2.16E+03 2.16E+03 1.91E+02 0 9.88E-03 0
SASS 1.82E+03 1.92E+03 1.86E+03 1.96E+03 1.86E+02 5 2.28E-03 0
ϵMAgES 6.24E+03 2.57E+03 5.37E+03 5.03E+03 2.59E+03 0 2.46E-01 0
COLSHADE 7.03E+03 6.42E+03 6.54E+03 6.57E+03 2.37E+02 9 2.03E-03 0
IMODE 2.89E+03 2.98E+03 2.23E+03 3.56E+03 1.41E+02 6 2.13E-03 0
EBOwithCMAR 2.02E+03 2.12E+03 2.54E+03 3.09E+03 1.63E+02 8.63E-03 0

RC56 WAO 9.84E+03 1.19E+04 1.12E+04 1.14E+04 1.269E+03 0 8.69E-03 0
IUDE 1.54E+04 1.08E+04 1.19E+04 2.06E+04 1.49E+03 0 1.49E-01 0
SASS 1.24E+04 1.22E+04 1.23E+04 1.56E+04 1.89E+03 0 9.28E-03 0
ϵMAgES 1.48E+04 1.61E+04 1.56E+04 1.87E+04 2.14E+03 0 8.12E-03 0
COLSHADE 1.40E+04 1.34E+04 1.26E+04 1.69E+04 9.72E+02 0 4.21E-01 0
IMODE 1.42E+04 1.78E+04 1.87E+04 1.97E+04 3.78E+03 0 7.56E-03 0
EBOwithCMAR 1.21E+04 1.56E+04 1.53E+04 1.56E+04 8.21E+03 0 6.49E-03 0

RC57 WAO 1.97E+03 2.47E+03 2.42E+03 3.54E+03 5.04E-04 0 3.23E-09 0
IUDE 2.57E+03 2.54E+03 2.47E+03 2.84E+03 2.04E+02 0 2.03E-03 0
SASS 2.57E+03 2.54E+03 2.47E+03 2.81E+03 2.04E+02 0 4.07E-04 0
ϵMAgES 2.65E+03 2.42E+03 3.42E+03 4.33E+03 5.16E+03 0 1.88E-01 0
COLSHADE 2.65E+03 2.42E+03 3.42E+03 5.16E+03 1.33E+03 0 1.88E-01 0
IMODE 2.04E+03 2.54E+03 3.56E+03 4.39E+03 4.65E+03 0 1.42E-02 0
EBOwithCMAR 2.01E+03 2.31E+03 3.63E+03 5.56E+03 2.45E+03 0 2. 73E-03 0
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Table 33 10D evaluation results

WAO vs. Criteria Better Similar Worse P value

BBO Best 28 2 0 7.42e-04

STD 26 0 4 0.55

Mean 26 0 4 0.43

HHO Best 25 5 0 1.49e-06

STD 25 0 5 0.36

Mean 24 0 6 0.44

GOA Best 28 2 0 4.89e-07

STD 26 0 4 0.37

Mean 26 0 4 0.22

TSO Best 25 5 0 1.12e-02

STD 26 0 4 0.32

Mean 27 0 3 0.41

MFO Best 25 5 0 4.75e-02

STD 27 0 3 0.34

Mean 25 0 5 0.42

SSA Best 24 6 0 6.25e-03

STD 24 0 6 0.51

Mean 22 0 8 0.43

SCA Best 20 9 1 0.02

STD 28 0 2 0.40

Mean 27 0 3 0.43

AOA Best 26 4 0 2.19e-08

STD 24 0 6 0.39

Mean 23 0 7 0.37

ALO Best 26 4 0 2.29e-02

STD 22 0 8 0.43

Mean 22 0 8 0.32

WO Best 20 10 0 3.17e-01

STD 27 0 3 0.40

Mean 24 0 6 0.42

IUDE Best 48 4 5 0.22

STD 45 0 12 0.81

Mean 48 0 9 0.55

SASS Best 42 9 6 0.54

STD 41 0 16 0.61

Mean 44 0 13 0.58

ϵMAgES Best 49 0 8 0.17

STD 43 0 14 0.51

Mean 46 0 11 0.44

COLSHADE Best 41 9 7 0.44

STD 44 0 13 0.44

Mean 46 0 11 0.52

IMODE Best 47 3 7 0.44

STD 43 0 14 0.46

Mean 42 0 16 0.54

EBOwithCMAR Best 41 10 6 0.43

STD 46 0 11 0.46

Mean 43 0 14 0.57

Table 34 15D evaluation results

WAO vs. Criteria Better Similar Worse P value

BBO Best 27 3 0 1.54e-06

STD 26 0 4 0.52

Mean 26 0 4 0.42

HHO Best 27 3 0 2.71e-04

STD 25 0 5 0.37

Mean 27 0 3 0.42

GOA Best 27 3 0 8.52e-06

STD 27 0 3 0.33

Mean 26 0 4 0.24

TSO Best 25 5 0 6.17e-04

STD 26 0 4 0.37

Mean 27 0 3 0.41

MFO Best 25 5 0 2.71e-03

STD 27 0 3 0.36

Mean 25 0 5 0.42

SSA Best 24 6 0 7.71e-06

STD 24 0 6 0.50

Mean 22 0 8 0.46

SCA Best 20 9 1 0.03

STD 27 0 3 0.42

Mean 26 0 4 0.46

AOA Best 26 4 0 4.28e-07

STD 24 0 6 0.41

Mean 23 0 7 0.37

ALO Best 26 4 0 1.10e-03

STD 22 0 8 0.46

Mean 24 0 6 0.36

WO Best 26 4 0 2.12e-09

STD 27 0 3 0.40

Mean 24 0 6 0.45

IUDE Best 48 4 5 0.25

STD 45 0 12 0.83

Mean 48 0 9 0.54

SASS Best 42 9 6 0.55

STD 41 0 16 0.63

Mean 44 0 13 0.56

ϵMAgES Best 49 0 8 0.20

STD 46 0 11 0.47

Mean 46 0 11 0.46

COLSHADE Best 43 7 7 0.46

STD 44 0 13 0.46

Mean 46 0 11 0.54

IMODE Best 47 3 7 0.48

STD 43 0 14 0.42

Mean 42 0 16 0.54

EBOwithCMAR Best 41 10 6 0.46

STD 47 0 10 0.45

Mean 43 0 14 0.56
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Table 35 20D evaluation results

WAO vs. Criteria Better Similar Worse P value

BBO Best 30 0 0 4.27e-06

STD 26 0 4 0.51

Mean 26 0 4 0.38

HHO Best 26 4 0 7.22e-05

STD 26 0 4 0.32

Mean 24 0 6 0.42

GOA Best 27 3 0 3.73e-06

STD 27 0 3 0.30

Mean 26 0 4 0.22

TSO Best 25 5 0 8.19e-05

STD 27 0 3 0.35

Mean 27 0 3 0.40

MFO Best 25 5 0 6.88e-04

STD 27 0 3 0.36

Mean 25 0 5 0.40

SSA Best 26 4 0 5.72e-05

STD 24 0 6 0.50

Mean 22 0 8 0.41

SCA Best 25 4 1 0.01

STD 27 0 3 0.35

Mean 26 0 4 0.42

AOA Best 26 4 0 3.25e-04

STD 24 0 6 0.42

Mean 23 0 7 0.39

ALO Best 26 4 0 1.26e-03

STD 22 0 8 0.44

Mean 24 0 6 0.36

WO Best 21 9 0 2.88e-03

STD 27 0 3 0.41

Mean 24 0 6 0.43

IUDE Best 48 4 5 0.25

STD 45 0 12 0.81

Mean 48 0 9 0.55

SASS Best 42 9 6 0.54

STD 41 0 16 0.62

Mean 44 0 13 0.54

ϵMAgES Best 49 0 8 0.19

STD 43 0 14 0.52

Mean 46 0 11 0.44

COLSHADE Best 41 9 7 0.43

STD 44 0 13 0.43

Mean 46 0 11 0.54

IMODE Best 47 3 7 0.44

STD 43 0 14 0.47

Mean 42 0 16 0.56

EBOwithCMAR Best 41 10 6 0.44

STD 46 0 11 0.47

Mean 43 0 14 0.54

Table 36 50D evaluation results

WAO vs. Criteria Better Similar Worse P value

BBO Best 27 3 0 3.52e-04

STD 26 0 4 0.56

Mean 26 0 4 0.41

HHO Best 26 4 0 4.25e-03

STD 25 0 5 0.36

Mean 24 0 6 0.45

GOA Best 27 3 0 7.03e-04

STD 27 0 3 0.31

Mean 26 0 4 0.23

TSO Best 25 5 0 7.10e-03

STD 26 0 4 0.37

Mean 27 0 3 0.41

MFO Best 25 5 0 2.71e-03

STD 27 0 3 0.37

Mean 25 0 5 0.41

SSA Best 24 6 0 7.70e-04

STD 24 0 6 0.51

Mean 22 0 8 0.48

SCA Best 20 9 1 0.03

STD 27 0 3 0.41

Mean 26 0 4 0.47

AOA Best 26 4 0 6.78e-04

STD 24 0 6 0.41

Mean 23 0 7 0.39

ALO Best 26 4 0 4.21e-02

STD 22 0 8 0.46

Mean 24 0 6 0.37

WO Best 21 9 0 4.82e-02

STD 27 0 3 0.41

Mean 24 0 6 0.44

IUDE Best 48 4 5 0.24

STD 45 0 12 0.83

Mean 48 0 9 0.54

SASS Best 42 9 6 0.55

STD 41 0 16 0.63

Mean 44 0 13 0.56

ϵMAgES Best 49 0 8 0.19

STD 43 0 14 0.55

Mean 46 0 11 0.45

COLSHADE Best 41 9 7 0.44

STD 44 0 13 0.47

Mean 46 0 11 0.56

IMODE Best 47 3 7 0.44

STD 43 0 14 0.47

Mean 42 0 16 0.56

EBOwithCMAR Best 41 10 6 0.44

STD 46 0 11 0.47

Mean 43 0 14 0.56
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Table 37 Adjustment of Taguchi control parameters in five types, for 10 algorithms compared with WAO

Algorithm

WAO Parametrs bestBound boundNum Htemp nVar H

Types

Type 1 2 0.1 0.3 2 10

Type 2 5 0.2 0.5 4 20

Type 3 10 0.3 0.6 5 30

Type 4 20 0.5 0.8 8 40

Type 5 30 1.0 1.0 10 50

BBO Parametrs Keep lambdaLower lambdaUpper I E popSize dim
Types

Type 1 1 0.0 1 1 1 10 2

Type 2 2 0.2 2 2 2 20 4

Type 3 3 0.4 3 3 3 30 5

Type 4 4 0.6 4 4 4 40 8

Type 5 5 0.8 5 5 5 50 10

HHO Parametrs searchAgents_
no

dim j

Types

Type 1 10 2 0

Type 2 20 4 1

Type 3 30 5 2

Type 4 40 8 3

Type 5 50 10 4

GOA Parametrs cMax cMin dim VOC popSize

Types

Type 1 1 0.00004 2 1 10

Type 2 2 0.00001 4 2 20

Type 3 3 0.00003 5 3 30

Type 4 4 0.00005 8 4 40

Type 5 5 0.00002 10 5 50

TSO Parametrs searchAgents_
no

dim Elites

Types

Type 1 10 2 2

Type 2 20 4 3

Type 3 30 5 4

Type 4 40 8 5

Type 5 50 10 6

MFO Parametrs searchAgents_
no

Boundary_no dim Logarithmic spiral

Types

Type 1 10 2 2 0.75

Type 2 20 3 4 0.85

Type 3 30 4 5 0.95

Type 4 40 5 8 0.65

Type 5 50 6 10 0.55

SSA Parametrs searchAgents_
no

dim

Types

Type 1 10 2

Type 2 20 4

Type 3 30 5

Type 4 40 8

Type 5 50 10
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