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a b s t r a c t

Several metaheuristic algorithms have been introduced to solve different optimization problems. Such
algorithms are inspired by a wide range of natural phenomena or behaviors. We introduced a new
metaheuristic algorithm called New Caledonian (NC) crow learning algorithm (NCCLA), inspired by
efficient social, asocial, and reinforcement mechanisms that NC-crows use to learn behaviors for
developing tools from Pandanus trees to obtain food. Such mechanisms were modeled mathematically
to develop NCCLA, whose performance was subsequently evaluated and statistically analyzed using
23 classical benchmark functions and 4 engineering problems. The results verify NCCLA’s performance
efficiency and highlight its accelerated convergence and ability to escape from local minima. An ex-
tensive comparative study was conducted to demonstrate that the solution accuracy and convergence
rate of NCCLA were better than those of other state-of-the-art metaheuristics. The results also indicate
that NCCLA is a promising algorithm that can be applied to solve other optimization and real-world
problems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The main goal of solving optimization problems is to find
optimal solutions using an appropriate exact, heuristic, or meta-
heuristic algorithms. Most real-world activities are optimized un-
der some predefined constraints to achieve particular objectives.
When attempting to find optimal solutions to real-world prob-
lems, we usually encounter a lack of resources, including time
and budget [1,2]. Metaheuristic algorithms have generated high-
quality, near-optimal solutions for both discrete and continuous
problems. In addition, they exhibit an excellent ability to solve
a wide range of real-world problems within a reasonable time
frame. The search process of any metaheuristic algorithm is com-
posed of two interchanging stages; exploitation(intensification)
and exploration (diversification). Although finding an appropriate
balance between these two phases represents the performance
key of an algorithm, it is still a challenging task due to the
stochastic nature of metaheuristics [1–4].

Nature-inspired metaheuristic algorithms are based on bio-
logical, mathematical, physical, vegetative, or social phenomena.
Most social phenomena used for optimization are referred to
as swarm intelligence (SI) or collective intelligence, representing
collaborations between organisms [5,6]. SI is based on the learn-
ing processes of a group of individuals, each of whom can perform
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tasks with others in the same group to increase the overall group
fitness. In other words, SI focuses on group effectiveness and its
overall contribution to accomplish tasks or important goals [5–7].
Compared with traditional optimization techniques, SI algorithms
have many advantages that include the following: (i) they are
readily used with only minor revisions in various fields; (ii) they
often use memory to retain the best solution achieved so far; (iii)
SI preserves the optimization information during iterations; (iv)
fewer parameters must be adjusted; therefore, SI algorithms are
easy to implement. Accordingly, several SI algorithms have been
inspired by collective behaviors such as particle swarm optimiza-
tion (PSO) based on birds flocking together through space [8],
firefly (FF) optimization based on the mutual attraction among
fireflies [9], and ant colony optimization (ACO) based on behav-
iors of foraging-ant groups [10]. Despite several metaheuristic
optimization algorithms published in the literature, demonstrat-
ing efficiency in tackling difficult optimization problems, both SI
and other metaheuristics are limited by premature convergence,
trapping at local optima, and lack of balance between exploitation
and exploration.

Learning behavior is a concept used to describe a set of com-
plex processes, enabling species to adapt to their environment or
situation by continuously adjusting their behaviors [11], whereby
individuals employ different social or asocial learning mecha-
nisms, as necessary. In social learning, instead of determining
appropriate behavior using numerous trial-and-error iterations,
also known as asocial learning, individuals guide their learning
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using the information provided by other group members, typi-
cally those with more experience [11,12]. Such learning enables
individuals to adapt and evolve complex behaviors found in their
societies. Asocial learning generally is more costly than social
learning. Social learning can be found in human and animal soci-
eties. According to the cost and reliability required to accomplish
certain behaviors, animals can conditionally behave, depending
on social and asocial information [11].

The earliest attempt at optimizing social-learning mechanisms
was made by Montes de Oca and Stützle in 2008 [13], wherein an
incremental social-learning framework was proposed and com-
bined with PSO. The authors found that incremental social learn-
ing could accelerate optimization and learning processes and im-
prove the quality of solutions and optimization strategies. How-
ever, their work does not represent an independent variant of
PSO. Later, Cheng and Jin introduced an independent variant of
PSO called social learning PSO (SLPSO) that incorporates a social-
learning mechanism known as limitation into PSO. Particles in
SLPSO learn from better particles known as demonstrators in
the swarm instead of learning from historically best particle
positions [14].

The learning mechanisms of human beings have attracted
the attention of researchers regarding the development of sev-
eral algorithms such as the teaching–learning based optimization
algorithm (TLBO) [15], social learning behavior based on the
Bandura’ social learning theory (SLA) [16], the socio evolution and
learning optimization algorithm (SELO) [17], the simple human
learning optimization algorithm (HLO) [18] and diverse human
learning optimization (DHLO) [19]. Although the recent studies
have assumed that inspiration from human society may yield in
developing more efficient metaheuristics, algorithms inspired by
the social phenomenon of human beings still produce equiva-
lent or comparable results to those algorithms inspired by social
animals and insects [20,21].

Crows are members of a widely known genus of birds, consid-
ered among the most intelligent animals in the world. They have
demonstrated distinctive behaviors such as: (i) self-awareness in
mirror tests; (ii) tool-making and using ability; (iii) faces recogni-
tion and warning each other when meeting unfriendly face, (iv)
communicate in sophisticated ways; and (v) food hiding [11,12,
22–26]. Such behaviors have attracted significant interest from
researchers developing algorithms for solving optimization prob-
lems. For example, the crow search algorithm (CSA) was inspired
by the food-hiding behavior of crows [27]; it imitates the ability
of crows to hide excess food in certain locations and retrieve
it as needed. The raven roosting optimization (RRO) algorithm
is another crow algorithm inspired by the roosting and foraging
behaviors of ravens [28]. In RRO, the leader is the raven that has
the best food source. Some ravens follow the leader to obtain a
food source, and the remaining ravens fly toward positions of the
best food sources that they have identified thus far. However, like
most metaheuristic algorithms, CSA and RRO exhibit premature
convergence and get stuck at local optima [29,30].

NC-crows are medium in size, all-black members of the Corvi-
dae family and have relatively large brains [11,12]. NC-crows
are the most well-known interactive birds owing to their in-
telligence and adaptability, and they have exceptional abilities
such as problem-solving and tool development. NC-crows can
develop plant-based tools (usually from Pandanus trees) includ-
ing sticks, leaf-based tools, and hooks used to capture prey or
grubs hiding in nooks, cracks, or crevices. NC-crows have devel-
oped Pandanus tool-making skills through both social and asocial
(i.e., individual) learning. The NC-crow social system encourages
the faithful transmission of information about local tool-design
by maximizing vertical learning from the parent to the offspring
and minimizing horizontal learning among unrelated individu-
als [11,12]. NC-crow behavior has many similarities with the

optimization process; hence it can be modeled to build an effec-
tive optimization algorithm that provides a good balance between
exploration and exploitation. To the best of our knowledge, there
has been no previous study in the literature inspired by the
crow-learning mechanism to solve optimization problems.

Herein, we propose an optimization algorithm inspired by
the learning mechanism of NC-crows developing Pandanus tools,
called new NC-crow learning algorithm (NCCLA). Our motivations
of introducing such algorithm are as follows: (i) the intelligent
and distinguished behavior of learning mechanism of NC-crows to
manufacture Pandanus tools; (ii) the previous studies highlighted
that the self-improvement through the learning process is more
direct and rapid than the natural evolution of genotypes [31,32].
As a result, employing the learning process techniques in NC-
crows may lead to developing more effective algorithm than
existing SI algorithms; (iii) it can also be noticed from the lit-
erature that the recently developed algorithms such as golden
ratio optimization method (GROM) [33], the grey wolf optimizer
(GWO) [34], the whale optimization algorithm (WOA) [35], the
pathfinder algorithm (PFA) [36], the social learning algorithm
(SLA) [16], and SLPSO [14] achieved better results and outper-
formed other traditional algorithms such as GA, ACO and PSO;
(iv) the no free lunch (NFL) theorem states that the absolute
superiority of an algorithm to solve all optimization algorithms
cannot be claimed [37,38]. Accordingly, it keeps this domain of
research open to either improve the existing algorithms such as
[39–42] or propose new algorithms for higher performance; and
(v) the rapid advancement in technology today leads increasingly
to many complex optimization problems [43]. Thus, the scientific
community is still developing new optimization techniques to
solve new and more complex optimization problems to reach a
better design.

In NCCLA, the parent and juvenile NC-crows represent agents
optimizing the search. Each juvenile in NCCLA tries to improve its
own behavior and skill to develop Pandanus tools by continuously
altering its own behavioral attributes, which can be achieved by
observing other demonstrators in its environment, copying some
interesting behavioral attributes, and then reinforcing them to
habituate better behaviors. In other words, NCCLA consists of
learning and reinforcement phases. In learning, a juvenile can
improve its behavior by learning socially or asocially (i.e., individ-
ually), representing a local or global search, respectively. Social
learning is a mechanism that enables juveniles to copy behav-
ioral attributes from their parents or more-experienced siblings.
Learning individually is the mechanism that allows juveniles to
learn individually by trial and error or by retaining its previous at-
tributes. In the reinforcement phase, some newly learned juvenile
attributes and parent’s behaviors may be influenced by positive or
negative rewards to intensively or extensively search among the
search space more effectively. In brief, the proposed work has the
following contributions.

(1) The main contribution is the development of a nature-
inspired NC-crow learning algorithm. NC-crows’ behaviors
toward developing Pandanus tools to obtain food are stud-
ied in detail and are subsequently modeled mathemati-
cally to guarantee a good balance between exploration and
exploitation.

(2) The updating and searching mechanisms in NCCLA that
simulate learning and reinforcement mechanisms of NC-
crows. Different mechanisms in learning and reinforce-
ment phases enable the NCCLA to effectively solve differ-
ent functions of varying complexity, containing 23 bench-
mark test functions and four classical engineering prob-
lems. Experimental results highlight the high performance
of NCCLA compared to other algorithms, including natural-
phenomenon-based such as GROM; swarm-based such as



W. Al-Sorori and A.M. Mohsen / Applied Soft Computing Journal 92 (2020) 106325 3

GWO, WOA, PFA, and CSA; and social-learning-based such
as SLA and SLPSO.

(3) Rigorous and extensive comparative study is conducted
with other metaheuristics using statistical analysis and
different performance analysis including exploration, ex-
ploitation and convergence behavior analysis.

The rest of the paper is organized as follows. Section 2 in-
troduces the inspiration for the current study. The proposed
algorithm is described in detail and is implemented in Section 3.
Differences between NCCLA and other metaheuristics are dis-
cussed in Section 4. In Section 5, NCCLA performance is detailed
and compared with those of other state-of-the-art optimization
algorithms using optimization problems with different levels of
complexity. The conclusions of this study are presented in Sec-
tion 6 by summarizing the key findings and their significance and
by proposing a direction for future research based on the current
findings.

2. Inspiration

A recent field study by Holzhaider et al. [12] investigated social
learning in NC-crows based on the creatures eating habits. A type
of corvid family attracted the attention of researchers owing to
their exceptional behaviors and tool manufacturing skills. These
crows create three different types of tools from the leaves of
Pandanus trees, i.e. wide, narrow, and stepped tools. These tools
enable them to later probe for insects in holes in Pandanus or
other types of trees. NC-crows were shown to develop their
Pandanus tool-design skills through both asocial and social learn-
ing [11,44]. Fig. 1 illustrates an NC-crow holding a self-produced
wide Pandanus tool (Fig. 1(a)) and subsequently using it to reach
the food within a tree hole (Figs. 1(b, c, d)).

Holzhaider et al. [45] found that the social organization of
NC-crows may be suitable for enabling incremental, cumulative
technology. That exploits different forms of learning, such as
social and asocial learning. Authors also pointed out that juveniles
take more than one year to reach adults-like tool-design skills
using different learning mechanisms. Learning by trial and error,
asocial, is one of the essential learning mechanisms that enable
juveniles to develop their skills as well as increase diversity and
novelty. In addition, juveniles can improve their skills with social
learning. Social learning can be obtained by the observation of
others or interacting with others discarded ready-made tools
or with the counterparts that already found on Pandanus tree
leaves. The social system of NC encourages faithful information
transformation about local tool-design by maximizing vertical
learning, from parent to offspring, and minimizing horizontal
learning, between unrelated individuals.

Studies on animal social learning have also highlighted con-
cepts of behavioral imitation, reinforcement, and reward [46–
48]. Reinforcement is a source of information feedback that in-
dividuals can obtain either from other group members or by
simply performing the same behavior as the other members.
Reinforcement is conducted either by knowing whether the other
members have been rewarded or punished for their behaviors or
a reward for conformity. Moreover, social learning theories such
as Bandura theory [49] posited that individuals could positively
or negatively reinforce learned behaviors either by increasing or
decreasing the intensity of the learned attributes, respectively.

3. NC-Crow learning optimization algorithm (NCCLA)

Inspired by the aforementioned crow-learning mechanism, a
new population-based optimization algorithm called NCCLA was
developed based on the following assumptions.

Fig. 1. New Caledonian crows holding-wide-pandanus-tools, taken from [50].

(1) Juvenile NC-crows exchange between social and asocial
learning to develop their tool-design skills. Because this is
not a dangerous behavior, such as dealing with predators,
juveniles will depend extensively on social learning and
depend slightly on individual or asocial learning.

(2) NC-crows live in a relatively stable environment; thus, they
frequently rely on social learning.

(3) NC-crows are selective by nature; based on their selection
strategy, they can observe and select the crows and the
tool-development behaviors that they will copy.

(4) Each crow has one cognitive design template to develop
through incremental evolution before starting to build and
use tools.

(5) Parents update their behavioral attributes by exploiting
their own experience and knowledge.

Table 1 shows the analogy between crow learning tool-
development concepts and optimization concepts.

Fig. 2 illustrates how juvenile i in crow family F can im-
prove its behavior, comprising four social and asocial learning
attributes. Juvenile i can socially learn by observing other elder,
more-experienced family members. It almost exclusively learns
by observing its parents, from whom it may copy specific at-
tributes from parent 1 or 2. As shown from the figure, the juvenile
i copies two attributes from his first and second parents, including
‘‘P11’’ and ‘‘P22’’, respectively. Fig. 2 also illustrates that juvenile
i copies some attributes from its older, more-experienced sibling,
as shown with the ‘‘S13’’ attribute. Thus, it can copy attributes
from sibling one but not from sibling two. By asocial learning, ju-
venile i can also keep certain attributes representing its historical
experience or update them randomly through trial and error, as
shown with the Rand(L,U) attribute.

Similar to other population-based algorithms, NCCLA starts
with random initial behaviors for each juvenile. Each behav-
ior is represented by a vector of behavioral attributes in a D-
dimensional search space. Then, NCCLA improves these behaviors
using different learning and reinforcement techniques iteratively.
Finally, it returns the best behavior vector when one of the
terminal condition is satisfied. The power of NCCLA as a stochastic
algorithm is owing to its probabilistic nature, which guarantees
that the algorithm does not get trapped at local optima. The
following subsections illustrate NCCLA steps in detail.
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Table 1
Analogy between crow learning tool-development concepts and optimization concepts.
Tool-development learning concepts Optimization concepts

Crow’s behavioral attributes Design variables
Crow’s manufacturing behavior Solution
Behavior quality Objective function
Learning process Solution enhancement
Practice or experience Iterations
Crow’s adult-like tool-development behavior Optimal or near-optimal solution

Fig. 2. Updating behavioral schema for juvenile i.

3.1. Initialization

First, algorithm parameters such as number of crows n within
a family F , reinforcement probability (Rpprob), social learning
probability (SLprob), vertical learning probability (VSLprob), first
parent selection probability (P1prob), trial-and-error probability
(TaEprob), and the maximum number of iterations are specified.
Then, population generation is randomly defined such that there
exist n crows in family F representing the population, and behav-
ior of the ith crow is represented by solution vector Xi. Behaviors
of all the crows in F are represented by a matrix, as shown
in Eq. (1).

F =

⎡⎢⎢⎢⎢⎣
(X11 X12 X13 · · · X1d) ⇒ X1
(X21 X22 X23 · · · X2d) ⇒ X2
(X31 X32 X33 · · · X3d) ⇒ X3

...
...

...
...

...

(Xn1 Xn2 Xn3 · · · Xnd) ⇒ Xn

⎤⎥⎥⎥⎥⎦ , (1)

where Xi,j represents attribute j in behavior Xi of crow i. Uni-
form distribution, as shown in Eq. (2), is used to allocate initial
behaviors of each crow.

Xi,j = xL + U(0, 1) × (xU − xL), (2)

where xL and xU are lower and upper bounds of behavioral
attributes of the ith crow, respectively, and U(0, 1) is a uniformly
distributed random number in the range [0, 1].

After that, the fitness (i.e., quality) of each behavior is calcu-
lated according to behavioral attributes (i.e., decision variables)
for the problem under consideration. The fitness function of the
corresponding behavior is calculated. Fitness of each crow’s be-
havior represents the goodness of behavior when compared to
corresponding adult-like behavior, i.e., the optimal solution. Ac-
cordingly, the crow population is sorted from the best to the
worst according to the fitness function. Then, the two best so-
lutions in positions 1 and 2 are selected as parents, denoted X1
and X2, respectively. The rest n− 2 crows represent the juveniles

within the family. Eq. (3) shows the representation of the fitness
function.

f =

⎡⎢⎢⎢⎢⎣
f1([x11 x12 x13 · · · x1d])
f2([x21 x22 x23 · · · x2d])
f3([x31 x32 x33 · · · x3d])

...
...

...
...

...

fn([xn1 xn2 xn3 · · · xnd])

⎤⎥⎥⎥⎥⎦ (3)

3.2. Learning phase

In the learning phase, each individual or crow in the family im-
proves its behavior by employing different learning mechanisms,
including social or asocial learning. These mechanisms enable
the algorithm to strike a good balance between exploration and
exploitation and are illustrated as follows.

During the learning phase, each juvenile i in the family tries
to update its behavioral attributes either socially or individually
according to specific probabilities, SLprob or 1 − SLprob, respec-
tively. Each juvenile will try to intensify the search in promis-
ing areas, by updating its behavioral attributes socially, and to
explore the search space by updating behavioral attributes indi-
vidually. High SLprob enables search agents of NCCLA to intensify
the search in promising areas, and low SLprob leads agents to do
more exploration. Owing to characteristics of NC-crows, juve-
niles extensively rely on social learning, which is the mechanism
whereby juveniles learn vertically from their parents or hori-
zontally from their older, more-experienced siblings. Juveniles
can also learn individually by trial and error or by retaining
previous attributes. Strictly speaking, newly adjusted behavior is
composed of attributes copied from several demonstrators and
learned individually.

3.2.1. Social learning
When juvenile i chooses to learn socially according to SLprob,

it can decide to learn vertically from its parents or horizon-
tally from its older, more-experienced siblings according to a
predefined probability, VSLprob or 1 − VSLprob, respectively. High
VSLprob enables juveniles to copy more behavioral attributes from
their parents, the most experienced demonstrators in the family,
thereby leading juveniles to intensify the search more efficiently
around the best solutions. High 1 − VSLprob, on the other hand,
enables juveniles to copy more attributes from their older, more-
knowledgeable siblings and then explore different promising ar-
eas. Crow i (observer) can learn socially by coping one attribute j
or more from crow k (demonstrator) according to Eq. (4).

xi,j(t) =xk,j(t − 1) where j ∈ 1, 2, . . . , d
for vertical_learning : k = 1 or 2
for horizontal_learning : 3 ≤ k ≤ i − 1

(4)

In which xi,j(t) is the new (i.e., copied) attribute, j, for observer
juvenile i acquired from demonstrator k in iteration t . If (K =

1 or 2), crow i will copy attribute(s) from his parents; oth-
erwise it will copy attribute(s) from his siblings which their
positions between 3 and i − 1 in the sorted population.
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(1) Vertical Learning: If juvenile i chooses to learn vertically,
it will determine from which parent to learn according to a
predefined probability, P1prob. Here, k in Eq. (4) represents
either the first parent (X1) or second parent (X2) that ju-
venile i will choose to imitate. Increasing the X1 selection
probability, P1prob, intensifies the local search. Although
high P1prob intensifies the search around the first-best so-
lution, low P1prob intensifies it around the second-best
one. It is worth noting that juveniles tend to copy most
of their behavioral attributes from the first parent. As a
result, this enables juveniles to intensify the search around
the best solution in promising areas, thereby accelerating
convergence.

(2) Horizontal Learning: When the juvenile tends to learn
horizontally, it will observe one of its older, more-
experienced siblings according to Eq. (4). Here, k represents
a randomly chosen sibling whose fitness is better than that
of juvenile i as shown in Eq. (5). In other words, each ju-
venile can learn from others who are more knowledgeable
or more skillful.

k = 3 + ⌊rand × (i − 3)⌋, (5)

where rand is a uniformly distributed random number in
the range [0, 1] and i is the observer juvenile. k is the index
of sibling demonstrator that takes a random value in the
range [3, i − 1].
Therefore, from Eqs. (4) and (5), each juvenile can learn
or improve its behavior from different demonstrators, not
from just one demonstrator through either vertical or hor-
izontal learning, which enhances population diversity. Fur-
thermore, it can be observed that in each generation, a
crow could act as a demonstrator for different imitators
several times. Besides, the best juvenile in the sorted fam-
ily, i.e. crow in position 3, will imitate just its parents
attributes in addition to altering its attributes individually
which mean that it cannot learn horizontally. Moreover, all
crows in the family (i.e. parents and juveniles) could serve
as demonstrators for other observers within the family
except the crow with the worst behavior (i.e. juvenile in
the position n). In this context, parents will never serve as
imitators.

3.2.2. Asocial (individual) learning
When juvenile i chooses to learn individually, it can choose to

update its behavioral attributes either randomly using Eq. (2) ac-
cording to a predefined probability, (1−SLprob)×TaEprob, or based
on its prior experience according to probability ((1 − SLprob) −

TaEprob). By this mechanism, juvenile i may retain some attributes
of the previous behavior, thereby intensifying the search around
its previous behavior to find improved behavior in the same
search area. Although parameter TaEprob supports global search,
it should take an appropriate value to enable the algorithm to
explore the search space well while maintaining convergence
speed. High values of TaEprob will let NCCLA search agents move
more randomly around the search space, thereby losing their
ability to converge to the optimal solution.

3.3. Reinforcement phase

After completion of the learning phase, some attributes of the
learned behavior of the juvenile and parent behaviors may be
rewarded based on reinforcement probability Rpprob.

(1) Juvenile reinforcement: Reinforcement of attributes of
updated juvenile behavior is defined by Eq. (6).

Xi,j(t) = Xi,j(t) ± RW , (6)

where RW represents the reward calculated using Eqs. (7)
and (8), wherein each attribute, j, of juvenile behavior Xi
can be either increased or decreased by RW as iteration t
continues. When the newly updated attribute, Xi,j, exceeds
its boundaries, crow i will re-observe behavioral attributes
of another more knowledgeable demonstrator. Calculation
of RW considers components α and β . The first, α, is the
difference between the newly copied attribute and the
previous one. It represents the effect of autonomous ex-
perience, which helps to intensify the search in promising
areas and is calculated, as shown in Eq. (7).

α = |Xi,j(t) − Xi,j(t − 1)| (7)

The second component, β , represents social learning effect
developed over time, which helps to explore the search
space well. Components of RW enable the algorithm to
strike a further balance between exploration and exploita-
tion. Calculation of β is shown in Eq. (8).

β = Xi,j(t − 1) × exp(−lf × r × t × mean(j)), (8)

where Xi,j(t − 1) is the previous behavioral attribute j of
crow i, r is a normally distributed random number in the
range [0, 1], mean(j) is the mean of attribute j among the
population (representing the behavioral attribute shown by
the majority of potential demonstrators), t is current iter-
ation, and lf is a learning factor starting from its minimum
value and iterating linearly toward its maximum one. The
idea behind such adaptation is to achieve a further balance
between exploration and exploitation by varying lf dynam-
ically over the algorithm runtime, and lf is calculated as
follows:

lf = lfmin + ((lfmax − lfmin)/max_t) × t, (9)

where lfmin is the minimum value of lf , lfmax is the max-
imum value of lf , t is the current iteration, and max_t is
the maximum number of iterations. RW is calculated using
Eq. (10):

RW =

{
β − α, if i < n/2,
r1 × ((r2 × β) − α), otherwise,

(10)

where i represents the current crow and n represents the
number of crows in the family. Because juveniles in the first
half are more experienced, it would be better for them to
intensify the search around a promising area by exploiting
historical and experiential data. By contrast, juveniles in
the second half are more likely to be inexperienced, so it
would be better to let them widely explore different areas
in the search space effectively. This can be achieved by
multiplying the value with a uniform random numbers, r1
and r2, as shown in Eq. (10). The balance between explo-
ration and exploitation is emphasized in the reinforcement
phase. The high value of reinforcement probability Rpprob
led to further balance of exploration and exploitation.

(2) Parents reinforcement: In addition to juvenile reinforce-
ment, parents X1 and X2 reward their behaviors because
their knowledge and experience increase over time ac-
cording to their past experiences. This can be performed
through the reinforcement phase, wherein X1 and X2 up-
date some of their behavioral attributes according to Rpprob.
Because X1 is more experienced, it would be better for
NCCLA to intensify the search around it, which can be con-
ducted by exploiting historical and experiential data of the
first parent. Conversely, the second parent has less expe-
rience than the first. Therefore, NCCLA will try to increase
the intensity of the search in a promising area around the
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second parent by exploiting historical and experiential data
in addition to exploring the promising area around the first
parent, which can be achieved by multiplying the result
with a uniform random number, r2. Parent’s behaviors are
updated according to Eq. (11):

Xi,j(t) =

⎧⎪⎪⎨⎪⎪⎩
Xi,j(t − 1) − [X1,j(t − 1) + exp{r1 × (mean(j)

− Xi,j(t − 1))}], i = 1.
Xi,j(t − 1) − [r2 × [X1,j(t − 1) − exp{r1

× (mean(j) − Xi,j(t − 1))}]], i = 2

(11)

where r1 is a normally distributed random number, and
r2 is a uniformly distributed number in the range [0, 1].
Here, Xi,j(t) represents the jth attribute for the best solution
among the sorted population, at position 1 or 2, during iter-
ation t . In addition, mean(j) is the mean of the jth attribute
among the population, representing the attribute shown by
the majority of individuals in the population.

3.4. Sorting and parent selection

Behaviors of the family population are evaluated and sorted
from the best to worst according to the crows’ fitness values.
Then, the two individuals with the best behaviors, X1 and X2 are
selected as parents of the family for the next iteration. The rest
of the population represents the juveniles of the family.

3.5. Check stopping criteria

Steps 3.2, 3.3 and 3.4 are repeated until one of two stopping
criteria is met. In this study, stopping criteria are either the
maximum number of iterations is reached, or the optimal solution
is found. Finally, NCCLA returns the best behavior as the global
best solution, X∗.

Fig. 3 exhibits the flowchart of NCCLA steps, and the pseu-
docode of the NCCLA is presented in Algorithm 1.
Algorithm 1: NCCLA Algorithm
1 begin
2 t=0;
3 Initialize the crow’s behaviors within the family F [n] = [X1, X2, ...., Xn] ;
4 Evaluate each behavior Xi in F using f (Xi);
5 Rank all behaviors and determine parent’s behavior X1 and X2 at positions 1 and 2,

respectively.;
6 while termination criterion not met do
7 for each juvenile i in the family F do

/* update behavior Xi through either social or asocial
learning */

8 for each attribute j in the behavior Xi do
9 if rand ≤ SLprob then

10 if rand ≤ VSLprob then
11 Xi,j(t) = Xpk,j(t−1); /* pk equals either 1 or 2

according to P1prob */
12 else
13 Xi,j(t) = Xsk,j(t−1); /* sk is any juvenile with a

better behavior than i */
14 end
15 else
16 if rand ≤ TaEprob then
17 Xi,j(t) = XL + U(0, 1) × (xU − xL); /* j is a new random

attribute */
18 else
19 Xi,j(t) = Xi,j(t−1); /* keep the previous attribute j

*/
20 end
21 end
22 end
23 With Rpprob , reinforce certain attributes of the modified Xi using Eq. (6)

and Eq. (10);
24 end
25 With Rpprob , parent1 X1 and parent2 X2 are reinforced according to Eq. (11) ;
26 Rank all behaviors and select the two best behaviors to be new parents X1 and

X2;
27 t = t + 1;
28 end
29 Return the global best solution or accepted (adult-like) behavior X∗ ;
30 end

4. Advantages and differences of NCCLA from other existing
meta-heuristics

In this section, NCCLA is compared on conceptual grounds
with other metaheuristics including GA, PSO, SLPSO, SLA and CSA
to highlights the significant differences of the new algorithm from
other previous algorithms. This need arose from the emergence
of “new”algorithms that sometimes come as an existing algorithm
just in a new appearance [51].

First, NCCLA differs from other metaheuristics regarding the
idea of inspiration and search process.

(1) The idea of inspiration of GA is a natural evolution, that
of PSO is particles collective behaviors, that of SLPSO and
SLA is social learning, and that of CSA is a crow hiding and
recovering extra food. NCCLA, in contrast, is inspired by NC-
crow learning mechanisms used to improve their behaviors
for developing Pandanus tools to obtain food.

(2) NCCLA search process also differs from those of other meta-
heuristics. In GA, exploration and exploitation are achieved
by mutation and crossover operators, respectively. In PSO,
they are achieved using a single strategy or formula [52].
In classical PSO, they are conducted through movement
among particles and by considering global and personal
bests. In NCCLA, exploration and exploitation are achieved
in two phases – learning and reinforcement – as previ-
ously discussed. Exploitation is achieved through either
vertical or horizontal social learning probability and by
rewarding the first half of juveniles and parents. Explo-
ration is achieved through individual learning probability
by trial and error as well as by rewarding the second half
of juveniles.
Furthermore, parents’ selection strategies and their pur-
pose in NCCLA are different from those in GA. In GA, differ-
ent selection strategies, such as roulette wheel and tourna-
ment, are used to select parents which mate to reproduce
offspring. Whereas, in NCCLA, there is no reproduction for
new offspring. Simply, in each iteration, NCCLA sorts the
population and chooses the best two solutions to represent
the parents of the crow family for the next iteration. Then,
juveniles (children) interact with their parents through
vertical learning to improve their behaviors by copying
some attributes to converge to parents behaviors. Similar
to other swarm-based algorithms such as PSO and TLBO,
the parents in NCCLA play the role of leaders to guide the
search within the search space.

Furthermore, NCCLA learning mechanisms differ from those of
other social-learning-based algorithms as illustrated below.

(1) NCCLA vs PSO

• In PSO, behavior is learned from historical best posi-
tions. In NCCLA, on the other hand, crows learn be-
haviors by combining different demonstrator behav-
ioral attributes to acquire distinct skills, ensuring that
they learn by observing a more-experienced individ-
ual (i.e., demonstrator) instead of learning from his-
torical best positions. Thus, NCCLA can better main-
tain population diversity.

(2) NCCLA vs SLA

• In SLA observer can acquire some behavioral attributes
from demonstrators based on a statistically signifi-
cant test. On the contrary, no need for this compli-
cated process in NCCLA where the observer can copy
attributes from any better demonstrator.



W. Al-Sorori and A.M. Mohsen / Applied Soft Computing Journal 92 (2020) 106325 7

Fig. 3. NCCLA flowchart.

• In SLA observers can learn from anyone of demonstra-
tors group without any preference to copy from the
best solutions in the population. In NCCLA crows tend
to copy more behavioral attributes from its parents,
best solutions. Thus, the new solutions are forced to
move toward the best solutions and therefore gaining
fast convergence.

• Reinforcement is different in SLA and NCCLA as fol-
lows. (a) In SLA, reinforcement occurs during the re-
production of new behaviors. Reinforcement in NC-
CLA, on the contrary, occurs after each juvenile learns
behaviors. (b) Unlike in SLA, reinforcement in NCCLA
is performed for both juveniles and parents. (c) In SLA,
copied dimensions are reinforced through the addi-
tion of positive rewards or negative punishments ac-
cording to significant differences between the copied
and previous dimensions. In NCCLA, on the contrary,
juveniles can choose the behavioral attributes to be
reinforced based on predefined probability, and each
attribute has an equal chance to add either positive
or negative reinforcements, which is compatible with

the stochastic nature of the algorithm which simu-
lates stochastic behavior in animal societies. (d) To
calculate reinforcement, SLA uses a stochastic dif-
ferential ranging from 0 to the value between the
demonstrator and the observer. However, NCCLA uses
a differential between the demonstrator and observer
in addition to the personal experience of each in-
dividual. (e)Unlike SLA, juveniles in NCCLA are re-
warded depending on the quality of individual behav-
iors. Less-experienced individuals tend to search more
randomly, and more-experienced ones tend to search
extensively around promising areas, as illustrated in
Eqs. (6) and (10). (f) Similarly, parents in NCCLA are
rewarded according to their personal experience, as
illustrated in Eq. (11), whereas in SLA, there are no
parents in the population.

(3) NCCLA vs SLPSO

• SLPSO is composed of swarm sorting and behavior
learning, whereas NCCLA is comprised of learning and
reinforcement.
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• In SLPSO, the best particle in the current swarm can-
not be updated. However, with increasing iterations
in NCCLA, parents continue learning by reinforcing
some of their attributes according to their knowledge,
thereby accelerating convergence.

• The updating procedure in SLPSO takes into account
the addition of a behavior correction component to
the particle’s attribute. Therefore, the behavior-
updating mechanism focuses on improving behavior
according to social learning and neglects trial-and-
error learning concept, which may lead to prema-
ture convergence and stuck in local optima. On the
contrary, juveniles in NCCLA update their behaviors
through the learning phase and the reinforcement
phase. In the learning phase, NCCLA either copies sev-
eral attributes from several demonstrators or updates
attributes individually. Then, in the reinforcement
phase, NCCLA reinforces (re-update) some attributes
based on crows’ knowledge and the difference be-
tween the current observer’s attribute and the mean
of this attribute among the population.

• NCCLA takes into account the quality of population
behaviors in the calculation of reward values. SLPSO,
on the contrary, takes into account the variety of
learning motivation between individuals based on the
learning probability.

Finally, NCCLA differs from other crow algorithms such as CSA in
the following aspects.

(1) CSA is composed of two phases: pursuit (i.e., the movement
toward the best solution) and evasion (i.e., random reini-
tialization of candidate solutions), whereas NCCLA is com-
posed of learning and reinforcement phases, as discussed
previously.

(2) CSA searches are controlled by an awareness probability
parameter, AP , that maintains a balance between explo-
ration and exploitation. In addition, random movement en-
ables CSA to explore the search area. From a practical point
of view, CSA prematurely converges and gets stuck at local
optima. NCCLA, on the contrary, overcomes such prob-
lems by employing different learning and reinforcement
mechanisms.

(3) Unlike behavior updating in NCCLA, that in the CSA pursuit
phase is based only on personal experience of each crow,
and social experience is neglected. Thus, through social-
learning probabilities in NCCLA, promising solutions have
a high probability of being exploited. Furthermore, behav-
ioral updating in CSA takes into account the entire behavior
as a unit. However, NCCLA works at the attribute level,
wherein each juvenile can learn behaviors from different
demonstrators, not just one, which helps in maintaining
population diversity.

The comparison mentioned above between NCCLA and other
algorithms shows the significant differences in the proposed al-
gorithm from other known metaheuristic. Also, it underlines that
to the best of our knowledge, no metaheuristic algorithm in
the literature tries to imitate the effective mechanisms that NC-
crows use to learn the behavior of tools development. It thus
prompted our attempt to develop a new metaheuristic algorithm
inspired by nature, inspired by the NC-crows’ biological behavior
to address a wider variety of optimization problems.

5. Experiment results and discussion

To verify NCCLA performance, we conducted various experi-
ments using benchmark and engineering test functions, and re-
sults obtained using NCCLA were compared to those obtained
using several other state-of-the-art algorithms

NCCLA was implemented in Java and compiled under Mi-
crosoft Windows 10. All the implementations were carried out
on a computer equipped with an Intel(R) Core(TM) i5–4210M @
2.60-GHz central processing unit (CPU).

NCCLA algorithm performance was evaluated using a set of
23 test functions representing classical benchmark functions used
by many previous studies [14,16,33–36]. Furthermore, four addi-
tional engineering optimization problems were tested to evaluate
NCCLA performance in real-world applications. To verify NCCLA
scalability, we used test functions with different levels of prob-
lem complexity such as unimodal, multi-modal, separable, and
non-separable functions in addition to low and high dimension-
ality. Unimodal functions are typically used to test algorithm
convergence ability. However, multi-modal functions are used
to validate the ability of an optimization algorithm to escape
from local minima and are therefore used to test the explo-
ration ability. It must be noted that non-separable functions are
more complex than separable ones owing to the dependency
among variables. Problems also become more complex with the
increasing number of dimensions, as stated in [27,28,53–58]. Test
functions used in the experiments and their characteristics are
listed in Table 2.

NCCLA performance was compared with seven of the state-of-
the-art algorithms, including a natural-phenomenon-based algo-
rithm (GROM), swarm-based algorithms (GWO, WOA, PFA, and
CSA), and social-learning-based algorithms (SLA and SLPSO). All
the algorithm source codes and parameter values are available
online. All the algorithms were written in MATLAB except for
SLA, which was written in C++. To analyze the optimization
robustness, NCCLA, and all the other algorithms were executed
30 times for each test function.

5.0.1. NCCLA’s parameters tuning
To tune and choose the proper combination of NCCLA parame-

ters, the statistical Taguchi experimental design was applied. The
Taguchi experimental design is a design method used to identify
the effective parameters and their levels with minimum number
of experiments [59]. For example, in case of applying classic full
factorials experiments, we need (55

= 3125) experiments for 5
parameters with 5 levels. On the other side, using Taguchi method
only 25 experiments (L25) will be needed. The levels of NCCLA’s
parameters were as follows: (i) P1prob (0.3, 0.5, 0.7, .9, 0.99); (ii)
Rpprob (0.1, 0.3, 0.5, 0.7, 0.9); (iii) TaEprob (0.01, 0.2, 0.4, 0.6, 0.8);
(iv) SLprob(0.3, 0.5, 0.7, .9, 0.99); and (v) VSLprob (0.3, 0.5, 0.7, .9,
0.99). Table 3 shows an appropriate orthogonal array that was
produced by Taguchi method using Minitab software. This array
offered a balance between the orthogonal index, parameters, and
levels. Taguchi classifies parameters into controllable and noise
parameters. It is used to determine the optimal levels of impor-
tant controllable parameters and minimize the effect of noisy
parameters.

To conduct the 25 experiments, seven test functions, which
represent different levels of complexity, were used with 100
dimensions. These functions are Sphere, Rosenbrock, Ackley, Ras-
tring, Shwefel1.2, Shwefel2.22, and Grainwank. Each function
was executed ten times for each combination to increase the
reliability of the experiments. The average results of all different
observation values were evaluated by transforming the results
into signal-to-noise ratio (S/N ratio) in the Taguchi experimental
design. The S/N ratios are used to identify the control factor
settings that minimize the variability caused by the noise fac-
tors. From Table 4, it is clear that the effect of parameters on
the S/N ratio had the following order: Rpprob (Delta 110.2594,
Rank = 1); followed by SLprob (Delta 46.8329, Rank = 2); then
followed by TaEprob, P1prob, and VSLprob. In addition, Fig. 4 em-
phasizes the effects of the parameters in terms of the S/N ratio
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Table 2
Unimodal, Multimodal and Fixed-dimension test functions employed in the study.
f (x) Type f (x) No. f (x) Name f (x) Formula Range Opt. Sol. Dim

Unimodal

F1 sphere f (x) = ΣD
i=1x

2
−100,100 0 30

F2 Schwefel2.22 f (x) = ΣD
i=1|xi|+

∏D
i=1|xi| −10,10 0 30

F3 Schwefel1.2 f (x) = ΣD
i=1(Σ

i
j=1xj)

2
−100,100 0 30

F4 Schwefel2.21 f (x) = max(|xi|, 1 ≤ i ≥ D) −100,100 0 30

F5 Rosenbrock f (x) = ΣD−1
i=1 [100(xi+1 − x2i )

2
+ (xi − 1)2] −30, 30 0 30

F6 step f (x) = ΣD
i=1(⌊xi + 0.5⌋)2 −100,100 0 30

F7 Quartic f (x) = ΣD
i=1ix

4
i + random[0, 1] −1.28,1.28 0 30

Multimodal

F8 Schwefel f (x) = ΣD
i=1 − xi sin(

√
xi) −500,500 −418.9829 × D 30

F9 Rastring f (x) = ΣD
i=1[x

2
i − 10 cos(2πxi) + 10D] −5.12,5.12 0 30

F10 Ackely f (x) = −20 exp(−0.2
√
1/DΣD

i=1x2) −32 32 0
− exp(1/DΣD

i=1 cos 2πxi) + 20 + ϱ 30
F11 Griewank f (x) = 1/4000ΣD

i=1(xi)
2
−

∏D
i=1 cos(xi/

√
i) + 1 −600, 600 0 30

F12
Penalized1

f (x) = π/D{10 sin2(πy1)
+ΣD−1

i=1 (yi − 1)2[1 + sin2(πyi+1) + (yD − 1)2]} −50,50 0
+ΣD

i=1u(xi, a, k,m) 30
F13

Penalized2
f (x) = 1/10{sin2(3πx1)
+ΣD−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)] + (xD − 1)2[1 + sin2(2πxD])} −50,50 0
+ΣD

i=1u(xi, a, k,m) 30

Fixed-dimension Multimodal

F14 De_Jong5 f (x) = ( 1
500 + Σ25

j=1(
1
j+ Σ2

i=1(xi − aij)))−1 −65,65 1 2

F15 kowalik f (x) = Σ11
i=1[ai −

x1(b2i +bix2)

b2i +bix+3+x4
]
2

−5,5 0.00030 4

F16 Camel_Six Hump f (x) = 4x21 − 2.1x41 +
1
3 x

6
1 + x1x2 + 4x22 + 4x42 −5,5 −1.0316 2

F17 Branin f (x) = (x2 −
5.1
4π2 x21 +

5
π
x1 − 6)2 + 10(1 −

1
8π ) cos x1 + 10 −5,5 0.398 2

F18

Goldstein

f (x) = (1 + (x1 + x2 + 1)2×
(19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22))×
(30 + (2x1 − 3x2)2 −2,2 3 2
×(18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22))

F19 Hartman3 f (x) = Σ4
i=1ci exp(−Σ3

i=1aij(xj−pij)2 ) 1,3 −3.86 3

F20 Hartman6 f (x) = Σ4
i=1ci exp(−Σ6

i=1aij(xj−pij)2 ) 0,1 −3.32 6

F21 Shekel5 f (x) = −Σ5
i=1[(X − ai)(X − ai)T + Ci]

−1 0,10 −10.1531 4

F22 Shekel7 f (x) = −Σ7
i=1[(X − ai)(X − ai)T + Ci]

−1 0,10 −-10.4028 4

F23 Shekel10 f (x) = −Σ10
i=1[(X − ai)(X − ai)T + Ci]

−1 0,10 −10.5363 4
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Table 3
Parameter values obtained by the Taguchi method.
Experiment P1 Rp TaE SL VSL

1 0.3 0.1 0.01 0.3 0.3
2 0.3 0.2 0.2 0.5 0.5
3 0.3 0.4 0.4 0.7 0.7
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

25 0.99 0.8 0.6 0.7 0.5

Table 4
Response table for Signal-to-Noise ratios.
Level P1 Rp TaE SL VSL

1 −6.8275 −54.8397 24.4349 −17.2511 1.4942
2 9.3881 −21.1303 −0.3735 −11.3638 −6.0083
3 −10.6570 3.3867 −18.7726 −8.6649 2.041
4 9.8217 23.3044 3.6947 13.8389 3.2426
5 4.4154 55.4197 −2.8428 29.5817 5.3713
Delta 20.4787 110.2594 43.2075 46.8329 11.3796
Rank 4 1 3 2 5

Fig. 4. Main effects plot for S/N ratio (higher value is better).

and indicates that Rpprob has the largest effect on the signal-to-
noise ratio whereas VSLprob has the smallest effect or no effect
on the signal-to-noise ratio. It is clear from the figure that high
level values are more suitable for P1prob, Rpprob, SLprob and VSLprob,
whereas low level value is suitable for TaEprob. However, it is not
possible to define specific values for the algorithmic parameters
that will be the proper ones for all problems. In addition, changing
values of parameters with low sensitivity has little effect on the
NCCLA’s performance. Accordingly, the better performance and
robustness of NCCLA can be obtained when its parameters were
adjusted to the values suggested by the Taguchi method with very
little change. As shown in Table 5, P1prob, Rpprob, TaEprob, SLprob
and VSLprob were set to the values .95, .90, 0.3, 0.99 and 0.99
respectively.

All the NCCLA parameters were fixed during all the
benchmark-function simulations, which were conducted using a
population of 80 over 500 iterations, representing 40,000 function
evaluations (NFEs). The NCCLA algorithm stopping criterion was
met when the algorithm reached either the maximum NFEs or
found the best solution.

5.1. Performance of NCCLA with classical benchmark functions

NCCLA performance obtained over 30 independent runs was
tested and evaluated using standard benchmark functions. It
was subsequently compared with corresponding performance
obtained using seven other state-of-the-art algorithms, including

Table 5
Parameter settings for NCCLA.
Control parameter Value

No. of crows within a family 80
Maximum No. of Iterations 500
Reinforcement Probability (Rpprob) 0.9
Social Learning Probability (SLprob) 0.99
Vertical Learning Probability (VSLprob) 0.99
First Parent Selection Probability (P1prob) 0.95
Trial and Error Probability (TaEprob) 0.3
lfmin 0.0005
lfmax 0.02

GROM, GWO, WOA, CSA, PFA, SL-PSO, and SLA for the same
benchmark functions. Each function was executed 30 times to ob-
tain results recorded in Tables 6–8. Benchmark functions used in
this experiment were unimodal, multi-modal, and fixed-
dimension multi-modal, as shown in Table 2. The number of
scalable-function dimensions, including unimodal and multi-
modal was set to 30. It should be noted that unimodal functions
are employed to test the ability of the algorithms to exploit
the search for good solutions in a promising area of the search
space. Whereas, multi-modal functions, either fixed or non-fixed
(i.e., scalable), highlight the ability of an algorithm to explore the
search space.

5.1.1. Exploitation analysis
Unimodal functions were employed to study the ability of the

NCCLA algorithm to exploit a search within a promising search
space. Thus, NCCLA was tested among all unimodal functions
(F1–F7) listed in Table 2. Results achieved using NCCLA were
compared to those obtained using the other state-of-the-art al-
gorithms for the maximum number of iterations, as shown in
Table 6. It is noted that NCCLA algorithm was superior for solving
unimodal functions. NCCLA effectively reached global optima for
the best and average solutions achieved with functions (F1–F6),
as shown in Table 6. Moreover, it should be noted that SLA was
the second-best algorithm because it reached global optima with
functions F2, F4, F5, F6, and F7 in terms of the best and aver-
age solutions. However, SLPSO only reached global optima with
function F6. NCCLA reached global optima after 11.2, 4.8, 58.2,
and 8.333333333 iterations on average with functions F2, F4, F5,
and F6, respectively. By contrast, SLA reached global optima after
73.33333333, 22.86666667, 181.4, and 316.4666667 iterations on
average for all the runs, respectively.

Although non-separable functions such as Rosenbrock (F5)
are more complex, NCCLA, and SLA both achieved the same
performance with F5. Because F5 is nonlinear, it is difficult to
converge to the minimum with this function. Thus, algorithms
must strike a good balance between exploration and exploitation
to overcome such difficulty and solve the function. Results listed
in Table 6 highlight the ability of NCCLA to provide such balance
and solve F5 effectively. NCCLA can reach optima of F5 in fewer
than 60 iterations on average for all the runs because exploitation
components through SLprob, VSLprob, and P1prob enabled NCCLA
to intensify the search around the best solutions in promising
areas. In addition to the juvenile and first-parent rewards that
was calculated according to Eq. (10) and Eq. (11), respectively.

Results listed in Table 6, show that NCCLA is superior in
solving unimodal functions. As mentioned previously, unimodal
functions are suitable for benchmarking exploitation. Thus, these
results exhibit the superior exploitation performance of NCCLA.

5.1.2. Exploration analysis
Unlike unimodal functions, multi-modal ones show explo-

ration ability. Thus, multi-modal functions (F8–F13) listed in Ta-
ble 2 were used to study NCCLA ability to explore the search space
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Table 6
Results of unimodal functions with 30 dimensions and 500 iterations.
Alg. Fun. F1 F2 F3 F4 F5 F6 F7

NCCLA
Best 0 0 0 0 0 0 2.68E−06
Avg 0 0 0 0 0 0 3.76E−04
S.D. 0 0 0 0 0 0 6.25E−04

GROM
best 1.60E−69 1.58696E−38 1.77E−68 1.25E−22 17.79997 4.98E−08 7.02E−05
Avg 1.21E−67 1.78733E−37 3.4E−63 2.15E−22 19.46449 8.51E−07 1.97E−04
S.D. 1.84E−67 1.91481E−37 1.46E−62 4.77E−23 1.225087 1.81E−06 8.5E−05

GWO
best 1.46E−40 6.922E−24 5.02E−14 7.16E−11 25.21574 2.5E−05 0.000275
Avg 3.58E−38 1.07782E−22 3.38E−11 5.76E−10 26.42891 0.256525 0.000707
S.D. 6.08E−38 1.38198E−22 6.11E−11 3.88E−10 0.63204 0.25359 0.000301

SLPSO
best 8.89E−16 1.08E−08 2.20E+01 2.05E−04 2.50E+01 0 6.38E−03
avg 4.80E−15 2.52E−08 1.27E+02 4.78E−04 3.96E+01 0 1.48E−02
S.D. 3.62E−15 1.10049E−08 87.46587 0.000198 27.83026 0 0.004444

WOA
best 8.5E−107 8.39818E−63 4639.391 5.38E−05 26.47709 0.002962 9.89E−05
Avg 2.65E−93 2.50541E−56 23235.36 32.14791 27.04334 0.010499 0.001174
S.D. 8.6E−93 7.63502E−56 9198.434 32.02524 0.405875 0.005503 0.001367

SLA
best 0.001383 0 14118 0 0 0 0.485763
Avg 0.006361 0 22071.34 0 0 0 0.681824
S.D. 0.003879 0 4173.511 0 0 0 0.588307

PFA
best 9.47E−18 4.03067E−11 68.53747 0.002892 23.22998 2.4E−06 0.000846
Avg 7.14E−15 6.12057E−10 767.8065 0.12493 24.17964 6.46E−06 0.004511
S.D. 1.22E−14 1.096E−09 622.2952 0.178346 0.539809 3.15E−06 0.00335

CSA
best 0.328 0.603931314 22540.602 1.558 3799282 0.277 0.009
Avg 0.910 1.571553678 53460.831 2.937 25103353 0.780 0.021
S.D. 0.409 0.516243375 16102.663 0.760 15488639 0.374 0.009

Table 7
Results of multi-modal functions with 30 dimensions and 500 iterations.
Alg.\Fun. F8 F9 F10 F11 F12 F13

NCCLA
Best −1.26E+04 0.00E+00 0.00E+00 0.00E+00 1.57E−32 1.35E−32
Avg −1.26E+04 0.00E+00 0.00E+00 0.00E+00 1.57E−32 1.35E−32
S.D. 0.010461176 0.00E+00 0.00E+00 0.00E+00 5.47E−48 5.47E−48

GROM
best −9.09E+03 0.00E+00 8.88E−16 0.00E+00 3.98E−10 1.57E−07
Avg −5.52E+03 0.00E+00 8.88E−16 2.63E−03 2.42E−02 1.41E−01
S.D. 1.04E+03 0.00E+00 9.86E−32 4.76E−03 6.38E−02 2.76E−01

GWO
best −7.68E+03 0.00E+00 2.22E−14 0.00E+00 3.28E−06 3.87E−05
Avg −6.25E+03 1.05E+00 3.19E−14 3.09E−03 2.05E−02 2.21E−01
S.D. 9.24E+02 3.39E+00 4.49E−15 7.18E−03 1.21E−02 1.40E−01

SLPSO
best −1.16E+04 8.95E+00 8.31E−09 1.89E−15 2.57E−17 7.42E−16
avg −1.10E+04 4.93E+01 2.07E−08 5.75E−04 1.59E−16 3.66E−04
S.D. 3.26E+02 3.06E+01 7.97E−09 2.21E−03 1.20E−16 2.01E−03

WOA
best −1.26E+04 0.00E+00 8.88E−16 0.00E+00 3.10E−04 5.35E−03
Avg −1.19E+04 7.58E−15 4.20E−15 5.76E−03 4.41E−03 5.97E−02
S.D. 1.13E+03 2.47E−14 2.63E−15 2.33E−02 1.26E−02 6.22E−02

SLA
best −1.26E+04 2.00E+01 7.71E−03 5.82E−03 4.83E−03 1.46E−01
Avg −1.26E+04 3.11E+01 1.35E−02 4.75E−02 8.80E−01 2.77E+00
S.D. 1.38E+00 5.94E+00 4.28E−03 6.68E−02 1.51E+00 2.74E+00

PFA
best −1.03E+04 2.84E−13 1.27E−09 0.00E+00 5.37E−07 1.35E−05
Avg −8.01E+03 3.58E+01 1.58E−01 1.36E−02 4.54E−01 2.31E−02
S.D. 1.14E+03 1.72E+01 6.00E−01 1.82E−02 1.14E+00 3.25E−02

CSA
best −8.98E+03 5.812187627 1.592209279 0.551 169.831 16130.188
Avg −7.20E+03 16.01575782 2.734991305 0.719865114 6946.360 555412.332
S.D. 7.31E+02 5.879843778 0.459647157 0.107465121 11416.947 583418.412

well. Results shown in Table 7 compare all the algorithms’ results
achieved for the same number of iterations. As shown in Table 7,
NCCLA achieved the best results among all the algorithms with
all the test functions, reaching the global optimal solutions for
functions F8–F11 and the best solutions with functions F12 and
F13. NCCLA was able to get the optimal solutions with functions
F9, F10, and F11 in terms of best and average solutions.

In addition, the superiority of NCCLA, followed by that of SLA,
in solving the Schewefel function (F8) should be noted. This note
is due to Schewefel function characteristics. Although Schewefel
has several local minima, its global minimum is at the boundary
of the search space, unlike most other test functions. In the same
context, only the best and average NCCLA and GROM reached
global optima with the Rastrigin function (F9). However, NCCLA
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Table 8
Results of fixed multi-modal Functions with 500 iterations.
Alg. Fun. F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

NCCLA
Best 9.98E−01 3.07E−04 −1.03E+00 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01
Avg 9.98E−01 4.83E−04 −1.03E+00 3.98E−01 3.00E+00 −3.86E+00 −3.26E+00 −8.79E+00 −1.02E+01 −1.02E+01
S.D. 5.30E−11 2.69E−04 3.79E−08 1.69E−04 2.75E−14 1.44E−06 5.94E−02 2.25E+00 9.54E−01 1.35E+00

GROM
best 9.98E−01 3.07E−04 −1.03E+00 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01
Avg 1.06E+00 3.07E−04 −1.03E+00 3.98E−01 3.00E+00 −3.86E+00 −3.30E+00 −1.02E+01 −1.04E+01 −1.05E+01
S.D. 3.56E−01 4.33E−19 5.83E−08 5.87E−06 4.44E−16 2.66E−15 4.76E−02 1.78E−15 0.00E+00 8.88E−15

GWO
best 9.98E−01 3.07E−04 −1.03E+00 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01
Avg 3.16E+00 2.44E−03 −1.03E+00 3.98E−01 3.00E+00 −3.86E+00 −3.26E+00 −9.14E+00 −1.02E+01 −1.05E+01
S.D. 3.12E+00 5.98E−03 7.69E−09 1.68E−04 4.32E−06 2.37E−03 6.59E−02 2.02E+00 9.54E−01 4.68E−04

SLPSO
best 6.48E+00 4.78E−04 −9.47E−01 4.89E−01 4.93E+00 −9.01E−01 −6.94E+02 −4.54E+00 −9.94E+00 −1.04E+01
avg 9.38E+01 7.34E−01 2.67E+00 1.40E+01 1.64E+02 −2.69E−01 −4.70E+02 −1.54E+00 −2.17E+00 −2.38E+00
S.D. 1.34E+02 1.23E+00 1.04E+01 2.01E+01 2.73E+02 2.93E−01 1.48E+02 1.11E+00 2.06E+00 1.82E+00

WOA
best 9.98E−01 3.08E−04 −1.03E+00 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01
Avg 1.26E+00 7.99E−04 −1.03E+00 3.98E−01 3.00E+00 −3.86E+00 −3.27E+00 −9.81E+00 −8.75E+00 −8.68E+00
S.D. 6.35E−01 6.36E−04 2.34E−11 5.79E−07 4.09E−06 2.17E−03 7.26E−02 1.30E+00 2.84E+00 2.95E+00

SLA
best 9.98E−01 4.87E−04 −1.03E+00 3.98E−01 3.00E+00 −3.00E−01 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01
Avg 9.98E−01 5.68E−03 −1.03E+00 3.98E−01 3.00E+00 −3.00E−01 −3.31E+00 −5.64E+00 −4.81E+00 −4.37E+00
S.D. 6.78E−16 8.49E−03 0.00E+00 1.69E−16 0.00E+00 1.13E−16 3.02E−02 3.46E+00 3.33E+00 2.04E+00

PFA
best 9.98E−01 3.07E−04 −1.03E+00 3.98E−01 3.00E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01
Avg 1.03E+00 1.31E−03 −1.03E+00 3.98E−01 3.00E+00 −3.86E+00 −3.25E+00 −8.96E+00 −7.56E+00 −8.60E+00
S.D. 1.81E−01 3.63E−03 2.88E−13 2.95E−11 2.43E−11 4.32E−11 5.83E−02 2.19E+00 3.37E+00 3.09E+00

CSA
best 9.53E−01 4.97E−03 −1.03E+00 4.08E−01 3.06E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01
Avg 1.03E+00 1.73E−02 −9.57E−01 5.05E−01 5.65E+00 −3.86E+00 −3.32E+00 −1.02E+01 −1.04E+01 −1.05E+01
S.D. 2.60E−01 9.18E−03 5.36E−02 9.12E−02 2.80E+00 2.66E−15 8.09E−13 1.45E−13 6.26E−14 3.05E−14

reached global optima with this function in around ten iterations
on average for all the runs. By contrast, GROM reached global
optima with F9 after 53.5 iterations on average for all the runs.

In addition to multi-modal of the functions, a non-separable
feature increases the complexity that optimization algorithms
may face, such as the complexity encountered when trying to
solve the Ackley function (F10). Despite such difficulty, only NC-
CLA addressed this function perfectly, reaching optima in 15
iterations on average for all the runs.

Overall, NCCLA outperformed all the other algorithms for solv-
ing functions F8–F13, achieving average global optima with four
of six multi-modal functions. Penalized functions (F12 and F13)
are complex and challenging to solve because they are composed
of different sinusoidal functions. Despite such a challenge, NCCLA
outperformed all the other algorithms, reaching the best-known
solutions that all the other algorithms failed to reach. Moreover,
low standard deviations achieved with functions F8, F12, and
F13, and zero deviation obtained with functions F9, F10, and F11,
demonstrate NCCLA robustness owing to exploration achieved
through TaEprob, thereby enabling NCCLA to explore the search
space effectively, and to autonomous experience employed in the
reinforcement phase. This effect was also produced by the juve-
nile and second-parent reward calculated according to Eq. (11),
thereby helping to explore the search space well.

Fixed-dimension multi-modal functions (F14–F23) shown in
Table 2 have several local optima. Therefore, the exploration
ability of the optimization algorithm also should be evaluated by
employing such test functions. Results listed in Table 8 show that
for functions F14–F23, all the algorithms reached approximately
the same best result. NCCLA was able to reach the global optimal
solution in terms of best and average with all the fixed-dimension
functions, F14–F23 in terms of the best solution, and similar to
the global optima with five of ten functions (i.e., F14, F16, F17,
F18, and F19) in terms of average solution. Although some of the
other algorithms, such as GROM and CSA, achieved better average
solutions with Shekel functions (i.e., F21–F23), and with functions
(i.e., F19–F20) respectively, NCCLA solutions achieved with these

functions were still reasonable. They were comparable with the
corresponding solutions produced by the other algorithms. More-
over, NCCLA achieved the best standard deviations among all the
algorithms with some of the test functions, i.e., F14 and F16.

Overall, results listed in Tables 7 and 8 show that NCCLA
achieved excellent exploration performance and demonstrated
good ability to find the best result among different local optima.
Although NCCLA became slightly stuck at local optima, its overall
performance for exploring optima within search spaces of scal-
able multi-modal functions was superior to those of all the other
algorithms, as shown in Table 7. Moreover, NCCLA provided good
results comparable to those obtained by the other algorithms
with non-scalable multi-modal functions, as shown in Table 8.

5.1.3. NCCLA Convergence behavior
NCCLA convergence behavior was evaluated, and the best,

worst, and average convergence behavior achieved for an inde-
pendent run are plotted in the left column of Fig. 5. Sphere (F1),
Rosenbrock (F5), Rastrigin (F9), Ackley (F10), and Goldstein (F18)
functions were used to evaluate NCCLA convergence behavior. All
these functions have 30 dimensions except the Goldstein function
(F18), which is a non-scalable two-dimensional function. It can
be noted that NCCLA quickly converged. Furthermore, NCCLA
has a high capability to escape from local optima, as shown
with function F10, regained its diversity, and converged to global
optima, as demonstrated with the Rosenbrock function(F5).

Furthermore, the convergence behavior achieved by each al-
gorithm during the first 100 iterations are plotted in the right
column of Fig. 5 to fairly compare the convergence behavior of all
the algorithms. It is clear from the figure that NCCLA converged
faster than all the other algorithms with all the test functions.
Furthermore, NCCLA converged to the well-known solution faster
than any other algorithm (i.e., in fewer than 40 iterations) with
all depicted functions. Fig. 5 also highlights the superior NCCLA
convergence speed.
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Fig. 5. Convergence behavior of NCCLA and other tested algorithms.

5.1.4. Discussion of NCCLA performance
Experimental results revealed interesting NCCLA characteris-

tics. High exploitation and convergence abilities of NCCLA were
due to NC behavior-updating mechanisms. Clearly, NCCLA
achieved performance comparable or superior to the performance
of the other state-of-the-art metaheuristics in terms of best and
average values. In terms of the best value, NCCLA reached the
optimal solution of the unimodal and multi-modal (fixed and

non-fixed) functions with success rates, (Number of optimum
achievements/ Number of problems), of 86% and 88% respectively.
In general, NCCLA was capable of reaching the optimal solution
for 20 functions out of 23; this refers to an average success rate of
87%. For the remaining three functions (F7, F12, and F13), NCCLA
found near-optimum solutions that were better than all other
compared methods. The second success rate (57%) was achieved
by SLA, followed by GROM, GWO, and WOA with a success rate
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Table 9
Average rankings of Friedman test and ρ-values obtained with Holm’s post hoc test using the NCCLA
as a control algorithm over the 23 tested functions.
DataSet/Algorithm Ranking p z Holm

NCCLA 2.5870 The control method

GROM 3.1522 0.4339 0.7825 0.0500
WOA 4.3696 0.0136 2.4679 0.0250
SLA 4.5652 0.0062 2.7388 0.0167
GWO 4.7391 0.0029 2.9795 0.0125
PFA 4.9130 0.0013 3.2203 0.0100
SLPSO 5.7391 0.0000 4.3640 0.0083
CSA 5.9348 0.0000 4.6349 0.0071

of 52%. Lastly, CSA with a success rate of 26%. In terms of the
average results over 30 runs, NCCLA achieved an average success
rate (Number of average optimum achievements/ Number of
problems), of 74% followed by GROM and SLA with an average
success rate of 43%. In detail, it reached the optimum solution
of the unimodal functions with success rates of 86%, which was
the better achievement rate over all other methods. For multi-
modal functions, its achievement was identical to GROM at 56%,
followed by SLA with 38%. The standard deviations of NCCLA
algorithm were the best for some test functions and competitive
to other methods for some other test functions. Moreover, the
average of 30 experiments for each test function was identical
or very close to the optimal solution. Lower standard deviation
values also explain this feature of NCCLA. Notably, it was the
most efficient or second-best algorithm in the majority of test
functions.

This performance was gained due to the characteristics of
NCCLA in its two main phases. Firstly, in the learning phase,
different parameters contributed to increasing the exploitation
component. The high value of SLprob, VSLprob and P1prob led to
intensify the search around best solutions. On the other hand,
exploration parameters contributed to increasing the exploration
component. The probability of horizontal learning 1 − VSLprob
and the past experience probability ((1 − SLprob) − TaEprob) led
to maintain the diversity of the population. In addition, the low
value of the trial and error probability TaEprob, which led to
exploring the search space well. Moreover, the balance between
exploration and exploitation was emphasized in the reinforce-
ment phase of juveniles and parents, as mentioned previously in
Section 3.3. The high value of reinforcement probability Rpprob led
to further balance of exploration and exploitation. By combining
fine parameter tuning and different updating procedures dis-
cussed previously in the two phases, NCCLA shows local optima
avoidance and high convergence speed simultaneously during the
course of the run.

5.1.5. Statistical test
To draw fair, meaningful conclusions about algorithm per-

formance, we conducted rigorous statistical analysis on average
algorithm solutions achieved using 23 functions. Because results
were not normally distributed, as proven by a normality test
wherein ρ = 0.0000(< 0.05), a nonparametric test was con-
ducted. Because six algorithms were applied, a multiple com-
parison test should be used [60]. A Friedman Test examines the
null hypothesis that there were no significant differences among
all tested algorithms χ2(df = 7) = 35.72463768115928, ρ <

0.05. Results were distributed according to a chi-squared distri-
bution with six degrees of freedom. For the Friedman Test, ρ =

0.000, indicating that the results were statistically significant.
Therefore, algorithm performance showed statistically significant
differences. As noted in column 1 Table 9, the NCCLA algorithm
achieved the lowest rank among all the algorithms.

In addition, Holm’s post-hoc test was conducted to evaluate
the statistical significance of NCCLA performance. Column 5 of
Table 9 shows ρ values obtained by applying Holm’s post-hoc
test with NCCLA as the control algorithm. Results listed in Table 9
show that NCCLA was significantly better than the other algo-
rithms in solving the 23 test functions. Wherein Holm’s procedure
rejected those hypotheses with p value ≤ 0.05. The statistical test
results support conclusions previously drawn from experimental
results. Therefore, NCCLA significantly outperformed all the other
algorithms.

5.1.6. Large-scale optimization functions
It becomes more challenging for optimization algorithms to

solve high-dimensional functions owing to the increased com-
plexity. To evaluate NCCLA performance for solving such func-
tions, unimodal and scalable multi-modal test functions were
employed by considering 100 decision variables (i.e., dimensions)
for each test function. Test functions were solved by applying
various optimization algorithms to a population of 80 for 500
iterations.

Results obtained using different algorithms to solve large-
scale unimodal and multi-modal test functions are listed in Ta-
ble 10. It is worth noting that the best and average NCCLA
solutions reached the well-known solution or optima for 6 of the
13 functions and obtained the best solutions for the remaining
functions.

NCCLA achieved excellent performance in solving large-scale
test functions, even when the same number of iterations was
used to solve 30-dimensional functions. This highlights the con-
vergence speed of NCCLA compared to the other algorithms.

The statistical result obtained for the Friedman test applied
to NCCLA as the control algorithm was 48.826923076923016
according to a chi-squared distribution with seven degrees of
freedom, and the corresponding ρ was 0.0000. NCCLA achieved
the best rank, as shown in column 1 of Table 11. In addition,
Holm’s post-hoc test was conducted to evaluate the statistical
significance of NCCLA performance. Table 11 shows ρ obtained
by applying Holmâôs post-hoc test to NCCLA as the control algo-
rithm. According to results listed in column 5 of Table 11, NCCLA
showed significantly better performance than WOA, GWO, PFA,
SLPSO, SLA, and CSA in solving the 13 test functions. In addition,
Holm’s post-hoc test indicated no statistically significant differ-
ences between NCCLA and GROM performance. Holms’ procedure
rejects hypotheses that have a p value of ≤ 0.025.

5.2. Performance of NCCLA with classical engineering problems

NCCLA was applied to solve four real-world, continuous, con-
strained engineering design problems: tension/compression
spring, welded beam, pressure vessel, and cantilever. Using the
penalty functions, all the constrained problems were converted
into unconstrained ones.
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Table 10
Results of large-scale unimodal and multi-modal functions with 80 crows and 500 iterations.
Alg.\Fun. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

NCCLA
Best 0 0 0 0 0 0 2.69E−05 −41898.3 0 0 0 4.71E−33 1.35E−32
Avg 0 0 1717.286104 0 0 0.333333 0.050863 −41897.7 1.089118 0 0 4.71E−33 1.35E−32
S.D. 0 0 2517.348493 0 0 0.745356 0.063877 2.199551 3.445333 0 0 1.37E−48 5.47E−48

GROM
best 1.524E−52 3.72E−29 1.40146E−57 8.81E−22 92.49585 2.46004 5.07E−05 −12089.6 0 8.88E−16 0 0.016125 3.981439
Avg 2.033E−51 9.3E−29 6.17247E−51 1.24E−21 95.02978 4.07E+00 0.000252 −9427.55 0.033166 8.88E−16 0 0.028937 8.438889
S.D. 1.439E−51 3.83E−29 3.08619E−50 1.64E−22 1.637102 0.73171 0.000113 947.7429 0.181655 1E-31 0 0.008464 1.768591

GWO
best 3.397E−18 4.5E−11 1.451700434 0.00076 95.60586 4.804013 0.000466 −22521.9 1.14E−12 2.65E−10 0 0.098504 4.248918
Avg 1.972E−17 8.11E−11 23.4384845 0.029006 97.20363 6.939992 0.002501 −17332.3 5.670678 5.97E−10 0.002072 0.173875 5.312495
S.D. 1.528E−17 2.44E−11 39.45927659 0.059322 0.875415 0.827528 0.001129 1894.003 6.95094 2.76E−10 0.005507 0.047015 0.463021

SLPSO
best 4.57E−03 5.43E−02 1.25E+05 1.86E+01 9.48E+01 0 1.05E−01 −3.75E+04 8.10E+02 1.07E−02 2.04E−03 7.86E−03 3.71E−02
avg 1.15E−02 1.01E−01 1.53E+05 2.32E+01 4.31E+02 5.00E−01 1.53E−01 −3.61E+04 8.86E+02 1.84E−02 8.81E−03 1.08E−01 3.47E−01
S.D. 0.0044469 0.034931 14942.31144 3.182139 598.9306 1.074789 0.026586 761.8651 34.01318 0.00408 0.005951 0.108776 0.290593

WOA
best 2.36E−103 6.55E−61 482785.5697 0.434559 96.80322 0.30145 3.05E−05 -41898 0 8.88E−16 0 0.004648 0.151153
Avg 6.564E−91 7.66E−56 733084.0782 66.70356 97.45627 0.710536 0.001488 −39248.1 0 4.91E−15 0.004063 0.008356 0.803998
S.D. 3.188E−90 3.68E−55 107782.5514 29.99599 0.402671 0.228054 0.001918 3796.925 0 2.59E−15 0.022254 0.002311 0.34603

SLA
best 18050.8 21 324291 0 0 14774 248.776 −36150.5 448.878 13.1608 163.457 41372100 1.48E+08
Avg 22191.743 27.2 376425.4667 16.6 4.11E−32 21874.9 512.5443 −34942.2 528.652 14.0301 200.7257 85969607 2.15E+08
S.D. 2416.4059 3.585411 33389.56471 10.75303 2.25E−31 2404.281 151.3742 756.3685 34.90379 0.436331 21.74757 18691958 36416333

PFA
best 3.762E−10 1.7E−07 13326.394 0.391121 94.7561 0.113476 0.001421 −34856.5 1.23E−09 3.45E−06 5.94E−11 0.002447 0.931414
Avg 1.767E−08 1.03E−06 46370.23358 2.085942 96.57428 0.729456 0.009169 −25802.7 84.05996 1.18E−05 0.010471 0.178963 1.473349
S.D. 3.696E−08 1.08E−06 19607.51271 1.705639 0.779889 0.369062 0.005502 4402.496 106.2562 9.8E−06 0.017715 0.343718 0.350448

CSA
best 206.670 12.509 337078.344 7.613 227982609 193.728 0.125597 −18970.889 144.037 3.937 2.789 591 136622
Avg 282.319 17.576 554414.429 8.933 1493298223 276.852 0.223 −16313.652 204.265 4.940 3.519 127016 2280259
S.D. 42.365 1.605 171619.404 0.718 4.71E+08 3.92E+01 0.0417 1767.879 30.848 0.558 0.359 170994 1816890
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Table 11
Average rankings of Friedman test and ρ-values obtained with Holm’s post hoc
test using the NCCLA as a control algorithm over large-scale functions.
DataSet/Algorithm Ranking p z Holm

NCCLA 1.6538 The control method

GROM 3.1154 0.1282 1.5212 0.0500
WOA 3.5385 0.0498 1.9616 0.0250
GWO 4.1538 0.0093 2.6021 0.0167
PFA 4.6923 0.0016 3.1625 0.0125
SLPSO 5.1538 0.0003 3.6429 0.0100
SLA 6.8462 0.0000 5.4043 0.0083
CSA 6.8462 0.0000 5.4043 0.0071

5.2.1. Tension/compression spring design problem
Arora and Belegundu [61,62] introduced the tension/

compression spring design problem. The problem has three de-
sign variables: mean coil diameter (D), wire diameter (d), and
a number of active coils (N), as shown in Fig. 6. Considering
these variables, the problem aims to minimize the total weight of
the tension/compression spring, which is achieved by considering
constraints such as shear stress g1(X), surge frequency g2(X), and
the minimum deflection g3(X) and limits on the outside diameter
g4(X). Eq. (12) shows the mathematical formulation of the design
problem. In addition, Table 12 compares fitness values and design
variables obtained by employing NCCLA and the other algorithms
to solve the problem. Tabulated results show that NCCLA achieved
the best performance when solving the problem, followed by
SLA.

5.2.2. Welded beam design problem
Ragsdell and Phillips introduced the welded beam design

problem in 1976 [63]. The problem is composed of beam A, which
must be joint-welded to member B, as shown in Fig. 7. The
objective is to minimize the fabrication cost of the welded beam
by finding a feasible set of problem dimensions required to carry a
certain load, P . Such dimensions represent the problem’s design
variables: weld-joint thickness h, length of the attached part of
the bar l, bar height t , and bar thickness b. Constraints are shear
stress τ , bending stress in the beam s, bucking load on the bar P ,
and end deflection on the beam d. The mathematical formulation
of the optimization problem is summarized in Eq. (13).

Consider
−→

X⃗ = [x1, x2, x3] = [d,D,N]

Minimize f (
−→

X⃗ ) = (x3 + 2)x2x21

Subject to g1(
−→

X⃗ ) =
4x22 − x1x2

12566(x2x31 − x41)
+

1
5108x21

≤ 0

g2(
−→

X⃗ ) = 1 −
140.45x1

x22x3
≤ 0

g3(
−→

X⃗ ) = 1 −
(x32x3)

71785x41
≤ 0

g4(
−→

X⃗ ) =
x1 + x2
1.5

− 1 ≤ 0

Variables range 0.05 ≤ x1 ≤ 2.00

0.25 ≤ x2 ≤ 1.30

2.00 ≤ x3 ≤ 15.0

(12)

Fig. 6. Tension/compression spring design problem, source: [64].

Fig. 7. Welded beam design problem, source: [65].

Table 12
Results of tension/compression spring design.
Algo.\var. f_min X1 X2 X3

NCCLA 0.009463 0.046802 0.304659 12.17996
GROM 0.012666 0.051654 0.355873 11.33888
GWO 0.012681 0.051167 0.34418 12.07236
WOA 0.012701 0.053105 0.391739 9.496823
SLA 0.009872 0.05 0.374433 8.54657
SLPSO 0.012667 0.052043 0.365284 10.80385
PFA 0.012666 0.051843 0.36044 11.0742
CSA 0.012665 0.05165 0.355771 11.3447

Consider
−→

X⃗ = [x1, x2, x3, x4] = [h, l, t, b],

Minimize f (
−→

X⃗ ) = 1.10471x21x2 + 0.048211x3x4(14.0 + x2),

Subject to g1(
−→

X⃗ ) = τ (x) − τmax ≤ 0,

g2(
−→

X⃗ ) = σ (x) − σmax ≤ 0,

g3(
−→

X⃗ ) = δ(x) − δmax ≤ 0,

g4(
−→

X⃗ ) = x1 − x4 ≤ 0,

g5(
−→

X⃗ ) = P − Pc(x) ≤ 0,

g6(
−→

X⃗ ) = 0.125 − x1 ≤ 0,

g7(
−→

X⃗ ) = 1.10471x21 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0
Variables range 0.1 ≤ x1 ≤ 2,
0.1 ≤ x2 ≤ 10,
0.1 ≤ x3 ≤ 10,
0.1 ≤ x4 ≤ 2

(13)

where L = 14in, τmax = 136, 000psi, τ (x), σmax = 36, 600psi,
s(x), Pc(x), P = 6, 000lb, dmax, and d(x) represent overhang length,
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Table 13
Results of welded beam design.
Algo.\var. f_min X1 X2 X3 X4

NCCLA 1.695911 0.205285 3.260604 9.038254 0.205733
GROM 1.724852 0.20573 3.470489 9.036624 0.20573
GWO 1.725995 0.205529 3.475308 9.039084 0.205779
WOA 1.801188 0.194855 3.920691 8.849531 0.21452
SLA 1.69551 0.203204 3.30138 9.03658 0.205738
SLPSO 1.724852 0.20573 3.470489 9.036624 0.20573
PFA 1.724875 0.205729 3.470483 9.036765 0.20573
CSA 1.724856 0.20573 3.470484 9.036649 0.20573

allowable shear stress of the weld, weld shear stress, allowable
yield stress for the bar material, the bending stress, bar bucking
load, loading condition, allowable bar end deflection, and bar end
deflection, respectively. In addition, E = 30×106 and terms τ (x),
σ (x), Pc(x), and d(x) are calculated as follows.

τ (
−→

X⃗ ) =

√
(τ ′)2 + 2τ ′τ ′′

x2
2R

+ (τ ′′)2,

τ ′
=

P
√
2x1x2

, τ ′′
=

MR
J

, M = P(L +
x2
2
),

R =

√
x22
4

+ (
x1 + x3

2
)2,

J = 2
√
2x1x2[

x22
4

+ (
x1 + x3

2
)2],

σ (
−→

X⃗ ) =
6PL
x4x23

, δ(
−→

X⃗ ) =
6PL3

Ex23x4
,

Pc(
−→

X⃗ ) =
4.013E

√
x23x

6
4

36

L2
(1 −

x3
2L

√
E
4G

)

(14)

Table 13 compares fitness values and design variables ob-
tained by solving the problem with NCCLA and the other al-
gorithms. Results show that NCCLA achieved the second-best
performance (1.695911392) in solving the problem, which is
nearly identical to the best performance (1.69551) achieved by
SLA.

5.2.3. Pressure vessel design problem
The pressure vessel problem model is illustrated in Fig. 8.

This problem seeks to minimize the total cost consisting of the
material, formation, and welding of a cylindrical vessel capped
on both ends, with a hemispherical head [66]. Design variables
include shell thickness Ts, head thickness Th, inner radius R, and
length of the cylindrical part without head L. The problem is
subject to constraints shown in Eq. (15). Results listed in Ta-
ble 14 demonstrate that most of the algorithms (including SLA,
GROM, and PFA) achieved the best results (5885.33, 5885.331,
and 5885.365, respectively) with nearly identical performance in
solving the problem. In addition, NCCLA achieved a reasonably
comparable result of 5887.806 in solving the problem.

5.2.4. Cantilever design problem
The cantilever design optimization problem aims to minimize

the weight of a beam [67], as shown in Fig. 9. The problem con-
siders five design variables, x1–x5, to reach this aim. The model
in Fig. 9 exhibits five hollow square elements showing a constant
wall/perimeter thickness. In addition, the first element is sup-
ported rigidly, whereas node 5 can hold a vertical load on the free
end of the beam. The problem is subject to one constraint, g(X),
which imposes vertical displacement, as illustrated in Eq. (16).
Almost all tested algorithms showed good performance in solving

Fig. 8. The pressure vessel design problem, source: [68].

Fig. 9. Cantilever design problem, source: [33].

the problem, as shown by results listed in Table 15. GROM, NC-
CLA, and SLPSO exhibited comparable performance of 1.339956,
1.339957, and 1.339957377, respectively.

Consider
−→

X⃗ = [x1, x2, x3, x4] = [Ts, Th, R, L],

Minimize f (
−→

X⃗ ) = 0.6224x1x3x4 + 1.7781x2x23
+ 3.1661x21x4 + 19.84x21x3,

Subject to g1(
−→

X⃗ ) = −x1 + 0.0193x3 ≤ 0

g2(
−→

X⃗ ) = −x3 + 0.00954x3 ≤ 0

g3(
−→

X⃗ ) = −πx23x4 −
4
3
πx33 + 1296000 ≤ 0

g4(
−→

X⃗ ) = x4 − 240 ≤ 0
Variables range 0 ≤ x1 ≤ 99
0 ≤ x2 ≤ 99,
10 ≤ x3 ≤ 200,
10 ≤ x4 ≤ 200

(15)

Consider
−→

X⃗ = [x1, x2, x3, x4, x5] = [v1, v2, v3, v4, v5]

Minimize f (
−→

X⃗ ) = 0.6224(x1 + x2 + x3 + x4 + x5),

Subject to g1(
−→

X⃗ ) =
61
x31

+
37
x32

+
19
x33

+
7
x34

+
1
x35

≤ 0,

Variables range 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100

(16)

6. Conclusion

In this paper, we introduced an NC-crow learning algorithm,
NCCLA, inspired by mechanisms that NC-crows use to learn be-
haviors for developing Pandanus tools to obtain food. The NCCLA
algorithm was applied to solve continuous optimization prob-
lems, and its ability to solve such problems was tested and
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Table 14
Results of pressure vessel design.
Algo./variables f_min X1 X2 X3 X4

NCCLA 5887.806 0.778698 0.385095 40.34487 199.6833
GROM 5885.331 0.778168 0.384649 40.31962 200
GWO 5892.678 0.779063 0.385935 40.34745 199.6541
WOA 6018.055 0.82361 0.422247 42.66257 169.7694
SLA 5885.33 0.778169 0.38465 40.3197 199.999
SLPSO 5908.631 0.791567 0.391272 41.01385 190.5564
PFA 5885.365 0.778167 0.384653 40.31964 200
CSA 5886.556 0.778525 0.384895 40.33686 199.7718

Table 15
Results of cantilever beam design.
Algo./variables f_min X1 X2 X3 X4 X5

NCCLA 1.339957 6.013778 5.311017 4.49201 3.505521 2.151349
GROM 1.339956 6.015849 5.308661 4.494831 3.501864 2.152454
GWO 1.339977 6.027633 5.316478 4.484833 3.493066 2.151975
WOA 1.349924 6.085676 5.215101 4.136845 3.835008 2.360773
SLA 1.33996 6.01699 5.32277 4.52573 3.4861 2.12381
SLPSO 1.339957 6.015077 5.308306 4.496387 3.501656 2.152236
PFA 1.33996 6.019605 5.30383 4.500031 3.501003 2.149244
CSA 1.339957 6.016677 5.307885 4.494765 3.50259 2.151751

evaluated using 23 different benchmark test functions and four
engineering test problems. Experimental results showed that the
NCCLA has an excellent ability to solve simple and complex
optimization problems. NCCLA also demonstrated good ability to
escape from local minima of multi-modal functions. Furthermore,
NCCLA delivered superior performance in solving unimodal, most
multi-modal, and large-scale functions. All the experimental re-
sults indicated that NCCLA is a promising algorithm that can be
enhanced and applied to solve other categories of optimization
problems. Results also showed that NCCLA significantly outper-
formed all the other algorithms with most of the 23 benchmarks.
Employing learning mechanisms in optimization algorithms re-
sulted in the development of effective optimizers such as NCCLA,
SLA, and SLPSO; it accelerated convergence while maintaining a
good balance between exploration and exploitation. The follow-
ing NCCLA characteristics can be identified from the results: (a)
NCCLA shows a good balance between exploitation and explo-
ration, so solutions are updated very well, and quickly converge
to the best final results. (b) According to the learning and re-
inforcement procedures, NCCLA is a competitive algorithm. (c)
NCCLA algorithm is robust and achieves approximately the same
results in different experiments. (d) NCCLA has high performance
in solving continuous optimization problems, including classical
problems with different dimensions and real engineering prob-
lems. As a future study, NCCLA will be applied to solve different
discrete optimization and real-world problems. Furthermore, NC-
CLA performance using multiple families will be studied in our
future research. It will also be possible to combine NCCLA with
other promising algorithms, including GROM, SLA, and PFA, which
have demonstrated a good performance.
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