
RAIRO-Oper. Res. 53 (2019) 1033–1059 RAIRO Operations Research
https://doi.org/10.1051/ro/2019039 www.rairo-ro.org

A SELF-ADAPTIVE BIOGEOGRAPHY-BASED ALGORITHM TO SOLVE THE
SET COVERING PROBLEM
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Abstract. Using the approximate algorithms, we are faced with the problem of determining the
appropriate values of their input parameters, which is always a complex task and is considered an
optimization problem. In this context, incorporating online control parameters is a very interesting
issue. The aim is to vary the parameters during the run so that the studied algorithm can provide
the best convergence rate and, thus, achieve the best performance. In this paper, we compare the
performance of a self-adaptive approach for the biogeography-based optimization algorithm using the
mutation rate parameter with respect to its original version and other heuristics. This work proposes
altering some parameters of the metaheuristic according to its exhibited efficiency. To test this approach,
we solve the set covering problem, which is a classical optimization benchmark with many industrial
applications such as line balancing production, crew scheduling, service installation, databases, among
several others. We illustrate encouraging experimental results, where the proposed approach is capable
of reaching various global optimums for a well-known instance set taken from the Beasleys OR-Library,
and sometimes, it improves the results obtained by the original version of the algorithm.
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1. Introduction

In the areas of optimization and engineering, there are a variety of problems that are complex to solve
regarding computational costs, and thousands, even millions, of iterations are required to find their optimal
solutions. These problems are commonly called NP-hard [23], and one of the alternatives for solving them is
the exact algorithms, such as branch & bound [27], branch & cut [36], and backtracking [22]. However, these
methods are not appropriate for large-scale problems because they require large computational capacities, time
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2 Universidad de Valparáıso, Valparáıso, Chile.
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and cost to reach a precise solution [3]. Therefore, we use metaheuristics to design or improve general heuristic
procedures that require high performance. The general purpose of a metaheuristic is to find a good solution for
the problem in a reasonable computational time (not necessarily the optimal solution, as in the case of exact
algorithms).

One of the fairly new metaheuristics is the biogeography-based optimization algorithm (BBOA). This method
belongs to the family of population algorithms for minimization problems with binary and real variables, and it is
useful for maximizing and minimizing problems [30]. BBOA is inspired by the concept of the Habitat Suitability
Index (HSI), which is generated from the characteristics of a habitat. The better the habitat characteristics are,
the higher the HSI, and the worse the habitat characteristics are, the lower the HSI. Additionally, when the
habitat has a high HSI, more species live there, unlike a habitat with a lower HSI [30,51]. Each habitat also has
immigration and emigration rates and mutation probabilities, which derive from the number of species in the
habitat.

In this work, we propose a self-adaptive biogeography-based optimization algorithm (SA-BBOA) that allows
for the setting of the mutation rate parameter during the run according to the best solutions found using
the fitness value (HSI). This approach is applied to solve the set covering problem (SCP), whose goal is to
cover a range of needs at the lowest cost. The SCP can be applied for location services, selection of files in a
database, simplifying boolean expressions, slot allocation, among others [5]. Currently, there are many papers
that deal with resolution methods for the set covering problem. These are exact methods [3,4,20] and heuristic
methods to solve a range of problems such as in [26]. The set covering problem was also successfully solved
with metaheuristics such as the tabu search [7], simulated annealing [47], genetic algorithm [24,32], ant colony
optimization [2, 32], particle swarm optimization [12], hybrid algorithms [1, 46], the hybrid ant algorithm [13],
binary cat swarm optimization [9], the bat algorithm [14], the cuckoo search [42], artificial bee colony [11], the
binary firefly algorithm [15], the shuffled frog leaping algorithm [17], the soccer league competition algorithm [25],
the binary black hole algorithm [38], the binary fruit fly algorithm [18], and the fish swarm algorithm [45].

BBOA has already been used to solve many combinatorial optimization problems, among them, the classic
traveling salesman problem. The TSP consists of finding the shortest route between a set of points, visiting all
of them only once and returning to the starting point [35]. It was solved by using BBOA in [34], demonstrating
that this method behaves very effectively for combinatorial optimization problems, and it is even better than
other traditional methods that are inspired by nature. Additionally, BBOA has been used to solve optimization
problems such as in [29], where it was indicated that BBO generally performs better than the genetic algorithm
(GA) and particle swarm optimization (PSO) in handling constrained single-objective optimization problems.
Undoubtedly, the BBOA is a method that may have a great potential to solve the SCP.

The remainder of this paper is structured as follows. Section 2 presents a detailed description of the SCP and
an example. Section 3 describes the BBOA we use. In Section 4, all modifications to the BBOA are discussed
for solving the SCP. Subsequently, the experimental results and comparisons with other algorithms are given in
Section 5. Finally, the conclusion and future works are in Section 6.

2. Problem statement

The set covering problem (SCP) is a classic combinatorial optimization problem, belonging to NP-hard
class [23] that has been used in a wide range optimization problems including airline and bus crew schedul-
ing [39], the location of emergency facilities [48], railway crew management [6], steel production [49], and vehicle
scheduling [21].

The SCP consists in finding a set of elements that covers a range of needs at the lowest cost. In its matrix
form, a feasible solution corresponds to a subset of columns and the needs are associated with the rows and
treated as constraints. The problem aims at selecting the columns that optimally cover all the rows.

Formally, we define the problem as follows: let A = (aji ) be a binary matrix with M -rows (∀ i ∈ I =
{1, . . . ,M}) × N -columns (∀ j ∈ J = {1, . . . , N}), and let C = (cj) be a vector representing the cost of each
column j, assuming that cj > 0, ∀ j ∈ N . Then, we observe that a column j ∈ {1, . . . , N} covers a row i if
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Table 1. Doctors and list of procedures.

Doctors
A B C D E F

Procedures

1 X X
2 X X
3 X X
4 X X
5 X X X
6 X

ai = 1. Therefore, we have:

aji =
{

1, if row i can be covered by column j
0, otherwise .

The SCP finds a minimum cost subset S of columns such that each row is covered by at least one column of
j. An integer programming formulation of the SCP is as follows:

minimize
n∑
j=1

cjxj

subject to:

n∑
j=1

ajixj ≥ 1 ∀ i ∈ I = {1, . . . ,M}

xj ∈ {0, 1} ∀ j ∈ J = {1, . . . , N}.

(2.1)

It is possible to consider at least two methods to work with this problem: unicost and nonunicost. The
unicost variant states that the cost for including a decision variable is equal to 1 for all of them. Conversely,
the nonunicost variant considers that the decision variables can have a different inclusion value. To clarify the
set covering problem, we first present an example with a unicost vector, cj = 1.

A medical center needs to keep doctors on call so that qualified individuals are available to perform every
medical procedure that might be required (there is an official list of such procedures). For each of several doctors
available for on-call duty, the additional salary they need to be paid and which procedures they can perform are
known. The goal is to choose doctors so that each procedure is covered at a minimum cost. A list of procedures
and doctors is illustrated in Table 1.

The binary-programming model includes the following decision variables:

xj =
{

1, if Doctor j is selected
0, otherwise . (2.2)

The objective function minimizes the number of doctors, i.e.:

minimize
6∑
j=1

xj . (2.3)
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Constraints: each procedure should be covered by at least one doctor. This can be seen in the following
summary:

(1) Procedure 1 is covered by Doctor 1 or 4.
(2) Procedure 2 is covered by Doctor 4 or 5.
(3) Procedure 3 is covered by Doctor 2 or 3.
(4) Procedure 4 is covered by Doctor 3 or 6.
(5) Procedure 5 is covered by Doctor 2, 3 or 6.
(6) Procedure 6 is covered by only Doctor 2.

Thus, the integer programming model is as follows:

minimize x1 + x2 + x3 + x4 + x5 + x6

subject to:
x1 + x4 ≥ 1
x4 + x5 ≥ 1
x2 + x3 ≥ 1
x3 + x6 ≥ 1

x2 + x3 + x6 ≥ 1
x2 ≥ 1

xj ∈ {0, 1},∀ j ∈ {1, . . . , 6}
Modeling as a unit cost optimization problem, we can find different optimal solutions. One of the solutions is

given by 〈x1, x2, x3, x4, x5, x6〉 = 〈0, 1, 0, 1, 0, 1〉, and its objective value is 3. This solution is represented by the
binary vector in Figure 1, where each value xj is a component of the solution. The optimal solution represents
the minimum number of doctors to cover all procedures.

We can transform this example into a nonunit cost problem; it is necessary to differentiate the cost of each
doctor. The component cj in the cost vector is associated with each xj , ∀ j ∈ {1, . . . , 6}. If we consider that
the cost for each doctor is stated in Table 2, the objective function becomes:

minimize
6∑
j=1

cjxj . (2.4)

The tuple 〈x1, x2, x3, x4, x5, x6〉 = 〈0, 1, 1, 1, 0, 0〉 gives the minimum value equal to 160. The vector that
describes the new optimal solution is depicted in Figure 2.

Figure 1. Representation of binary unit cost solution.

Table 2. Cost of selecting doctors.

Doctors Cost (cj)

A 55
B 65
C 35
D 60
E 50
F 60
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Figure 2. Representation of binary nonunit cost solution.

Figure 3. Species model of a single habitat.

However, to apply self-adaptive algorithm correctly, we define a binary vector Hi as the ith solution of the set
covering problem and Hj

i as the jth decision variable, whose value is 1 if this component is part of the solution,
or 0 otherwise.

3. Biogeography-based optimization algorithm

Biogeography studies the migration between habitats, speciation, and the extinction of species. In this research
line, Ma & Simon proposed the BBOA based on the mathematical models of biogeography proposed in the
1960s [30].

3.1. The biogeography phenomenon

The biogeography phenomenon is based on the concept of biogeography, which deals with the distribution
of species that depend on different factors such as rainfall, diversity of topographic features, temperature, and
land area. Biogeography describes how species migrate from one island or habitat to another, including how
new species arise and how species go extinct. A habitat is an island that is geographically isolated from other
habitats [30]. A habitat that has a High Suitability Index (HSI) is geographically well suited for the life of
the species. When a species shows a high HSI, its migration probability increases, which can lead to a species
changing its current habitat for a nearby habitat with a lower HSI value. This process is named emigration. In
immigration, the species move toward the high HSI habitat having few species. Then, based on the number of
species, it is possible to predict the rate of immigration and emigration. Habitats with a low HSI have a high
species immigration rate because of its sparse populations and a high rate of emigration, such as conditions
causing rapid departure or the extinction of species. This behavior is shown in Figure 3, where I and E are the
highest rates of immigration and emigration, and these are the same for simplicity. N is the maximum number
of species. Finally, λ is the immigration rate, and µ is the emigration rate.
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3.2. Optimization algorithm

In complexity theory, several problems are studied due to the exponential growth of the set of potential
solutions. The set covering problem is one of these problems. The exact methods are a good alternative if we
need to guarantee the optimal solution or we need to determine that there is no solution. However, when we try
to solve the most difficult instances of these problems, a tremendous increase in the runtime appears for exact
methods. For this reason, many problems are solved by metaheuristics. It is known that these algorithms do
not guarantee finding the best solution, but they provide a sufficient solution in a shorter resolution time.

To solve the most difficult instances of the set covering problem, the basis of biogeography theory mentioned
above is used. For this, we consider the existence of a set of potential solutions, analogous to a set of habitats
with a diversity of species, where the best solutions will be those with the highest HSI and the poorest solutions
with have the smallest HSI. The HSI measure of similarity of each solution to the fitness in other optimization
algorithms based on population can be derived from the objective function. Then, the components of a solution
are given by their characteristics, called the suitability index variable (SIV). In the case of the SCP, those
correspond to the binary values of the N decision variables [37]. Habitats tend to be variable for the species.
These are composed of several features (SIVs) that indicate how viable the habitat is to inhabit. According
to these characteristics, species migrate and immigrate. In addition, some attributes of a habitat may appear
randomly, such as natural disasters. To imitate the immigration and emigration behavior, BBOA proposes
two operators, the migration operator (migration based on habitat characteristics) and the mutation operator
(migration based on unexpected events in the habitat). Both phenomena are detailed in the next subsections.

3.2.1. Migration operator

Species can migrate between habitats. In BBOA, the characteristics of the solutions may affect others and
themselves, using immigration and emigration rates to share information between them probabilistically. In
this metaheuristic and based on Figure 3, the immigration curve is used to probabilistically determine whether
or not to immigrate each feature, or SIV, in any solution. If a characteristic of the solution is selected to
immigrate, a solution to migrate one of its characteristics is probabilistically selected randomly. Based on the
above description, the main steps in the BBOA are detailed in Algorithm 1.

Algorithm 1 begins with a loop statement for each solution, and in each iteration, an Hi is selected under a
probability λi. If a habitat Hi is selected, then it is necessary to take each component part of the solution. The
size of the solution is given by the parameter N and represents the decision variables. If a habitat Hi is selected
with probability λi, then two components {k, k′} ∈ [1, . . . , N ] from Hi are selected. The first component is
selected with the probability µi, and the second component is randomly selected. Then, Hk′

i is copied to Hk
i . k

and k′ represent the habitat species. This process is known as exploration.

Algorithm 1 Migration operator
1: {PopSize is the size of the population}
2: for i = 1 to PopSize do
3: Select Hi with probability λi
4: if Hi is selected then
5: {N is the size of the solution}
6: Select Hk

i with a probability µi
7: if Hk

i is selected then
8: Randomly select a component k′ ∈ [1, . . . , N ]

9: Set Hk′
i = Hk

i

10: end if
11: end if
12: end for
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The mutation operator helps the algorithms to avoid local optimum and explore the search space. During
the optimization process, the mutation rate is not often a fixed value [50–52].

3.2.2. Mutation operator

A natural habitat may be affected by cataclysmic events that drastically changes its HSI [30]. This could
cause a count of species that is different from its equilibrium value (species arriving from neighboring habitats,
diseases, natural disasters and others). Thus, the HSI of the habitat could suddenly change due to random
events.

In BBOA, the likelihood probability of each species (P (species)) is used to determine the mutation rates.
These are determined by the balance between the immigration and emigration rates (Fig. 3) as a balance
between these rates indicates that the probability that the number of species is greater; thus, species immigrate
at a rate that is similar to the number of species that migrate in the same habitat. Given that, the best and
worst habitats are less likely to have the number of species. This finding is explained in detail in [30]. Then,
the mutation rate is represented by m(species), and it is calculated as follows:

m(species) = m(max)
(

1− P (species)
P (max)

)
(3.1)

where m(max) is the maximum probability of the mutation parameter, and P (max) is the probability of a
maximum existing species. Algorithm 2 explains this operator.

Algorithm 2 Mutation operator
1: {N is the size of the solution}
2: for all j, (∀ j = 1, . . . , N) do
3: Calculate mutation rate m(j) based on (3.1)
4: Select SIV from Hi with probability m(j)
5: if Hj

i is selected then
6: Replace Hj

i with a randomly generated SIV.
7: end if
8: end for

For each habitat, the probability of species is calculated, and then, each characteristic that is selected for
mutation by this probability is randomly replaced with another SIV.

Note that in binary problems, the mutation operator for the exchange of an SIV acts so that Hj
i = 1 −Hj

i

[51].

3.2.3. Algorithm description

The features and steps are described in general terms of the BBOA:

Step 1. Initialize the parameters. Map the SIV and habitats according to the problem solutions. Initialize a
maximum of species N (for simplicity, matching with the size of the population), immigration, emigration,
and mutation maximum rates. An elitist parameter is used to save the best solutions.

Step 2. Randomly initialize a set of habitats, where each habitat corresponds to a possible solution to the
problem.

Step 3. For each habitat, calculate the HSI and accordingly, the number of species (the greater the HSI, the
greater the number of species). Then, calculate the rates of immigration and emigration.

Step 4. Probabilistically use the rates of immigration and emigration to modify the habitats (Migration oper-
ator).

Step 5. For each habitat, update the probability of a number of species. Then, mutate based on the mutation
rate (mutation operator).
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Step 6. Return to step 3, and finish until a stopping criterion is satisfied.

Note that after each habitat is modified (steps 2, 4, and 5), its feasibility as a problem solution should be
verified. If it does not represent a feasible solution, then a method needs to be implemented to map it to the
set of feasible solutions [30].

4. Biogeography-based optimization algorithm for the set covering problem

After the description of the problem and the technique for its use, we present in this section the implemen-
tation and adaptation of BBOA to obtain acceptable results for the SCP.

4.1. General considerations

As general considerations of the algorithm implementation and indifference to the BBOA base, we can
highlight the following:

– The population is sorted in each generation, where the first solution is the highest HSI, and last solution is
the worst.

– The length of each solution (SIVs) equals the length of the cost vector in all instances of SCP.
– A repair function for infeasible solutions is used.
– A parameter of elitism, which stores the 2 solutions with the lowest cost over the generations, is used.
– The stop criterion is a maximum number of generations.
– Adaptive mutation rate.

Similar to other evolutionary algorithms, the biogeography-based optimization begins with an initial pop-
ulation of potential solutions, called the “habitat”. At each generation of the algorithm, a set of habitats is
improved and mapped as a group of solutions to the set covering problem. During this process, the best solution
is chosen as the best habitat according to its HSI value. The objective function gives the HSI value, and if it is
high, then we can say that this habitat describes a good solution. In the next subsection, we explain how the HSI
value is calculated. Sometimes, the potential solutions are unfeasible. In this work, we propose a technique that
handles solutions that violate the restrictions. Finally, to improve the performance of the BBOA, we present a
self-adaptive variation of the mutation rate parameter that allows us to enhance the quality of the solutions.

4.2. Fitness

An important point of the implemented algorithm is the calculation of the HSI, also called the fitness in other
population-based optimization algorithms. In a BBOA, the solutions with a greater HSI are the best, while the
worst are those with a low HSI. SCP is a minimization problem, and BOA must be adapted. The best solutions
are those with the lowest value.

HSI =
1

total cost solution
=

1∑n
j=1 cjxj

· (4.1)

4.3. Heuristic feasibility operator

Generally, metaheuristics may provide solutions that violate some constraints of the problem. For instance,
a new SCP solution owning uncovered rows clearly violates a subset of constraints. To provide feasible solu-
tions, the algorithm needs additional operators. To this end, we employ a heuristic operator that achieves the
generation of feasible solutions and additionally eliminates column redundancy.

For making all solutions feasible, we calculate a percentage based on the cost of column j over the sum of all
the constraint matrix rows covered by a column j, as shown in equation (4.2).

cj∑n
i=1 a

j
i

· (4.2)
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The unfeasible solutions are repaired by adding the columns of the solution that had the lower ratio. After
this, a local optimization step is applied where column redundancy is eliminated. A column is redundant when
it can be deleted, and the feasibility of the solution is not affected.

Algorithm 3 starts with the initialization of variables taken from the instance in Lines 1–5, The recognition
of the rows that are not covered are in Lines 6 and 7. Between the statements 8 and 18, a “greedy” heuristic
is run. Between the instructions 8 and 12, the columns with a lower ratio are added to the solution. Between
lines 13 and 18, the redundant columns with higher costs are deleted, while the solution is feasible.

Algorithm 3 Heuristic feasibility operator.
1: I ← The set of all rows.
2: J ← The set of all columns.
3: αi ← The set of columns that cover row i, i ∈ I.
4: βj ← The set of rows covered by column j, j ∈ J .
5: N ← The set of N -columns in a solution.
6: wi ← The number of columns that cover row i, i ∈ I. For this, wi ← |N ∩ αi|, ∀ i ∈ I
7: U ← The set of uncovered rows. For this, U = {i ∈ I | wi = 0}
8: while row i ∈ U (in increasing order of i) do

9: Find the first column j in increasing order of j ∈ αi that minimizes
cj

|U ∩ βj |
10: Add j to N , and set wi ← wi + 1, ∀ i ∈ βj
11: Set U ← U − βj
12: end while
13: while column j ∈ N (in decreasing order of j) do
14: for all row i ∈ βj do
15: if and only if wi ≥ 2 then
16: N ← N − j
17: wi ← wi − 1
18: end if
19: end for
20: end while
21: return the feasible solution H.

4.4. Adaptive mutation rate

In BBOA, the maximum mutation rate is very influential on the quality of the solutions. This mutation
scheme tends to enhance the diversity among the population, which helps to decrease the chance of becoming
trapped in local optima. For this, the value of this parameter is a low number (approximately 0.0005 to 0.004).
In the convergence of the BBOA, solutions generally stagnate in a local optimum, losing valuable iterations.
When this happens, we implement a method that increases the maximum mutation rate, adding diversity and
avoiding long stagnation.

The maximum rate of mutation should be increased allowing for new solutions to be obtained when there is
stagnation. For this, a percentage of 10% of deadlock over the missing iterations is calculated. If this is true,
the maximum mutation rate is increased by 0.0009 over the previous rate. Then, if the percentage of stagnation
continues to increase up to 20%, the rate increases again so that the local optimum changes. By applying this
method, the maximum mutation rate, which is a parameter BBOA, becomes variable. This method is a variation
of the BBOA algorithm that we call SA-BBOA and that was discovered through experimentation; we note the
improvements in the results.

4.5. Binary approaches

Set covering is a problem whose domain is limited to binary values, namely, Hj
i ∈ {0, 1}, ∀ j ∈ {1, . . . , N}.

Therefore, in this paper, we used a binary representation for each habitat-candidate solution.
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Table 3. S-Shape and V-Shape transfer functions.

S-Shape V-Shape

S1: V1:

g(xji ) =
1

1 + e−2x
j
i

g(xji ) =
∣∣∣erf
(√

π
2
xji

)∣∣∣

S2: V2:

g(xji ) =
1

1 + e2x
j
i

g(xji ) =
∣∣tanh

(
xji
)∣∣

S3: V3:

g(xji ) =
1

1 + e
−x

j
i

2

g(xji ) =

∣∣∣∣
x

j
i√

1+[x
j
i ]2

∣∣∣∣

S4: V4:

g(xji ) =
1

1 + e
−x

j
i

3

g(xji ) =
∣∣ 2
π

arctan
(
π
2
xji
)∣∣

The standard version of the biogeography-based optimization algorithm is designed to solve problems with
real domains. This task is resolved by transforming domains by applying binarization strategies, which are
responsible for forcing elements to move in a binary domain. The binarization strategy is composed of a transfer
function and a discretization method.

We evaluate different functions separated into two families [8, 33]: S-Shape and V-Shape (see Tab. 3). Inde-
pendent of the generated value Hj

i , the function g(Hj
i ) is always in a real domain between 0 and 1 [8], as shown

in Figure 4.
Once a transfer function is applied, the input real number is mapped to a real number belonging to a [0, 1]

interval. Then, a discretization method is required to produce a binary value from the real value. To achieve
this, we test four different methods:

(1) Standard: If the condition is satisfied, the standard method returns 1; otherwise, it returns 0

Hj
i =

{
1, if r and ≤ g(Hj

i )
0, otherwise

. (4.3)

(2) Complement: If the condition is satisfied, the standard method returns the complement value

Hj
i =

{
Hj
i , if r and ≤ g(Hj

i )
0, otherwise

. (4.4)

(3) Static probability: A probability is generated and evaluated with a transfer function

Hj
i =


0, if g(Hj

i ) ≤ α
Hj
i , if α < g(Hj

i ) ≤ 1
2 (1 + α)

1, if g(Hj
i ) ≥ 1

2 (1 + α)
. (4.5)

(4) Elitist: The discretization method elitist roulette, also known as Monte Carlo, randomly selects among the
best individuals of the population, with a probability proportional to its fitness

Hj
i =

{
Hj
i , if r and ≤ g(Hj

i )
0, otherwise

. (4.6)
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Figure 4. Behavior of the S-Shape and the V-Shape functions.

In the sample phase, we determine that the binarization strategy that achieves the best results is S2 +
Standard.

Finally, we incorporate the pseudocode of SA-BBOA (see Algorithm 4) solving the set covering problem.
Inputs to the procedure are the value of the population size popSize, the number of maximum iterations T ,
m(max), I, and E.

In the first step on Line 2, the SCP instance is loaded. Then, in Lines 4–9, a loop statement is presented.
These instructions allow for the generation of the initial solutions (random habitats) and determine the best
solution according to its performance. This performance is given by the cost of the solution in the objective
function.

Then, while a termination criterion (a maximum number of iterations or a sufficiently good solution was not
reached) is met, each fitness of a potential solution is evaluated (Lines 13–50). As previously mentioned, the set
covering problem is a minimization problem. This evaluation is handled by a comparison presented at Line 13.
If the new min value is less than the min global, the min global is changed by the new min value, and the best
solution is stored in Ĥ.

Then, the mutation rate m(species) is calculated according to equation (3.1). We use this probability for
selecting an SIV (jth component) of a habitat Hi. The SIV component is replaced with a randomly generated
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value. Next, in Lines 30–36, a solution Hi is selected with a probability λi to select a new SIV k ∈ [1, . . . , N ].
If µi > Random[0, 1], then a component k ∈ [1, . . . , N ] is randomly selected, and it is copied as Hj

i = Hk
i .

Algorithm 4 Self-adaptive biogeography-based optimization algorithm.
Require: Problem input data, popSize, T,m(max), I, E.
Ensure: The best solution that resolves the set covering problem.
1: {N is the solution length, and cj is the cost vector, 1 ≤ j ≤ N .}
2: {N, cj} ← loadProblemData()
3: {Produce the first generation of popSize habitat.}
4: for all habitat Hi, (∀ i = 1, . . . , popSize) do
5: for all SIV j, (∀ j = 1, . . . , N) do

6: Hj
i ← Random{0, 1}

7: end for
8: dofeasible(Hi)

9: HSIi ←
1

n∑

j=1

cjH
j
i

10: end for
11: globalfit← +∞
12: {Produce T -generations of popSize habitat.}
13: while t < T do
14: {minfit,minindex} ← min(HSI)
15: if minfit < globalfit then
16: globalfit← minfit
17: for all SIV j, (∀ j = 1, . . . , N) do

18: Ĥj(t)← Hj
minindex(t)

19: end for
20: end if
21: for all habitat Hi, (∀ i = 1, . . . , popSize) do
22: for all SIV j, (∀ j = 1, . . . , N) do
23: Calculate mutation rate m(j) based on equation (3.1).
24: Select SIV from Hi with probability m(j).
25: if m(j) > Random[0, 1] then

26: {Hj
i is selected.}

27: Replace Hj
i with a randomly generated SIV.

28: end if
29: end for
30: dofeasible(Hi)
31: Select Hi with probability λi.
32: {N is the solution length.}
33: for all SIV j, (∀ j = 1, . . . , N) do

34: Select Hj
i with a probability µi.

35: if µi > Random[0, 1] then

36: {Hj
i is selected.}

37: Select randomly a component k ∈ [1, . . . , N ] .

38: Set Hj
i = Hk

i .
39: end if
40: end for
41: dofeasible(Hi)
42: {Adaptive mutation rate.}
43: if HSIi < HSIminindex then
44: HSIminindex ← HSIi

45: missit ← 0
46: else
47: missit ← missit + 1
48: {Missing iterations.}
49: if missit > T × 10% then
50: for all SIV j, (∀ j = 1, . . . , N) do
51: m(j)← m(j) +m(j)× 0.0009
52: end for
53: missit ← 0
54: end if
55: end if
56: t← t+ 1
57: end for
58: end while
59: return Postprocess results and visualization.;
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At the end of the SA-BBOA, we present the adaptive mutation rate method. If the solutions do not improve
in a period of time (missing iterations), the maximum mutation rate is increased by 0.0009 over the rate. This
process runs until the local optimum changes.

5. Experiments and results

For the experiments, BBOA and the new approach SA-BBOA were implemented in the Java programming
language. The experiments were carried out on a Windows 8.1 operating system, with an Intel Core i3 2.50
GHz processor with 6 GB of RAM. For both algorithms, the parameter values used were: popSize = 15,
m(max) = 0.004, I = 1, E = 1 and the maximum iterations = 6000. Each instance was executed 30 times.
Moreover, we used preprocessed instances for SCP, obtained from the OR-Library [5]. Table 4 describes the
group of instance sets, the number of rows or constraints (M), the number of columns or variables (N), the
range of costs, the density (percentage of nonzeroes in the matrix) and whether the optimal solution is known
or unknown.

The results are evaluated using the relative percentage deviation (RPD). The RPD value quantifies the
deviation of the objective value Zmin from Zopt, which is the minimal best-known value for each instance in our
experiment, and it is calculated as follows:

RPD =
(
Zmin − Zopt

Zopt

)
· (5.1)

5.1. Biogeography algorithms comparison

In this section, we compare the proposed self-adaptive biogeography optimization algorithm vs. the basic
algorithm. Tables 5 and 6 illustrate the results obtained for the instances from groups 4 and 5, and 6 to C,
respectively. Table 7 details the results obtained for instances from groups NRE, NRF, and NRG. Finally, results
of the group NRH are exposed in Table 8.

Red-bold font emphasizes the cases in which the self-adaptive biogeography optimization algorithm outper-
formed the original version.

Regarding the instance sets between 4 and C, the self-adaptive approach shows a high performance for
reaching new optimum values: for group 4, the new values are in instances 4.1, 4.5, 4.7, 4.9, 4.10; in group 5 the

Table 4. SCP instances taken from the Beasley’s OR-Library.

Instance
M N

Cost Density Best
group range (%) known

4 200 1000 [1,100] 2 Known
5 200 2000 [1,100] 2 Known
6 200 1000 [1,100] 5 Known
A 300 3000 [1,100] 2 Known
B 300 3000 [1,100] 5 Known
C 400 4000 [1,100] 2 Known
D 400 4000 [1,100] 5 Known

NRE 500 5000 [1,100] 10
Unknown
(except NRE.1)

NRF 500 5000 [1,100] 20
Unknown
(except NRF.1)

NRG 1000 10000 [1,100] 2
Unknown
(except NRG.1)

NRH 1000 10000 [1,100] 5 Unknown
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Table 5. Computational results of groups 4 and 5.

Instance Zopt

Biogeography-based optimization algorithm
Basic BBOA-AS

Zmin RPD Times (ms) Zmin RPD Times (ms)

4.1 429 430 0.002 811.1 429 0.00 981.8
4.2 512 512 0.000 917.0 512 0.000 967.7
4.3 516 516 0.000 921.8 516 0.000 956.3
4.4 494 495 0.002 887.3 495 0.002 989.2
4.5 512 514 0.004 920.6 512 0.000 998.2
4.6 560 560 0.000 934.8 560 0.000 997.2
4.7 430 431 0.002 994.4 430 0.000 982.4
4.8 492 492 0.000 991.5 492 0.000 899.1
4.9 641 644 0.005 899.6 643 0.003 989.2
4.10 514 515 0.002 982.4 514 0.000 932.2
5.1 253 253 0.000 1714.7 253 0.000 1887.4
5.2 302 305 0.010 1202.3 302 0.000 1988.6
5.3 226 228 0.010 1588.3 226 0.000 2001.4
5.4 242 242 0.000 1378.0 242 0.000 2089.2
5.5 211 211 0.000 1461.3 211 0.000 2021.5
5.6 213 214 0.002 1351.8 213 0.000 2111.6
5.7 293 293 0.000 1542.3 293 0.000 2128.2
5.8 288 289 0.010 1644.9 288 0.000 2123.2
5.9 279 281 0.020 1454.8 279 0.000 2432.2
5.10 265 265 0.000 1583.7 265 0.000 2153.4

new values are in instances 5.1, 5.2, 5.3, 5.6, 5.8, and 5.9; and in group 6, the optimum values are achieved for
both algorithms.

For the instance group A, we can see that the SA-BBOA reaches the one-only optimum values that the basic
algorithm cannot find. Only considering the instance set B, we can observe that the SA-BBOA exhibits clear
robustness to find the same optimal value as the BBOA. If we compare the instance groups C, we see again that
SA-BBOA obtains better results than BBOA. Finally, if we analyze the instance groups D, we can determine
that not exists a difference between the two approaches.

Finally, if we analyze the most difficult instances NRE, NRF, NRG, and NRH (see Tabs. 7 and 8), we can
see that again the BBOA shows an evident inefficiency for solving the set covering problem since it reaches only
3 of 20 optimal values. Nevertheless, the self-adaptive approach shows that we can further improve the BBO
algorithm performance by finding four better values and six new values.

If we focus on the time required for reaching the solutions, we may observe that times are very similar for
the two algorithms. However, we must consider that SA-BBOA needs the computation of the adaptive process
and is able to outperform the basic BBOA in terms of the optimum values reached. We can also observe a small
difference in terms of solving times in favor of the SA-BBOA with respect to BBOA.

Figures 5 and 6 illustrate the convergence charts for the most difficult instances of the test groups 4 to NRH.
Here, we observe that for group 4, the convergence of the SA-BBOA is clearly faster than the others. For group
5, the SA-BBOA begins with a bad quality solution but improves its performance in the middle of the process
outperforming the basic BBOA. The performance of the instances from groups 6, A, B, C, and D are similar,
all of them achieving an early convergence.

Convergence is similar in the NRE and NRF group. In both cases, SA-BBOA achieves better performance.
Finally, for the benchmarks from groups NRG and NRH, the behavior of SA-BBOA is clearly earlier than its
competitor.
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Table 6. Computational results of groups 6, A, B, and C.

Instance Zopt

Biogeography-based optimization algorithm
Basic BBOA-AS

Zmin RPD Times (ms) Zmin RPD Times (ms)

6.1 138 138 0.000 2545.5 138 0.000 2953.4
6.2 146 146 0.000 2802.1 146 0.000 2961.7
6.3 145 145 0.000 2798.5 145 0.000 2789.0
6.4 131 131 0.000 2817.3 131 0.000 2993.7
6.5 161 161 0.000 2855.6 161 0.000 2987.4
A.1 253 254 0.002 2989.5 253 0.000 3097.1
A.2 252 252 0.000 2988.3 252 0.000 3083.2
A.3 232 232 0.000 2998.2 232 0.000 3007.3
A.4 234 234 0.000 2991.8 234 0.000 3153.8
A.5 236 236 0.000 2989.3 236 0.000 3125.4
B.1 69 69 0.000 3203.5 69 0.000 3242.1
B.2 76 76 0.000 3113.3 76 0.000 3413.6
B.3 82 80 0.003 3523.3 80 0.000 3443.3
B.4 79 79 0.000 3142.1 79 0.000 3594.3
B.5 72 73 0.001 333.3 72 0.000 3443.4
C.1 227 229 0.009 3751.1 227 0.000 3957.5
C.2 219 219 0.000 3960.4 219 0.000 3991.4
C.3 243 245 0.008 3974.6 245 0.008 3943.4
C.4 219 219 0.000 3830.2 219 0.000 3933.9
C.5 215 215 0.000 3879.6 215 0.000 3914.6

Table 7. Computational results of groups D, NRE, NRF, and NRG.

Instance Zopt

Biogeography-based optimization algorithm
Basic BBOA-AS

Zmin RPD Times (ms) Zmin RPD Times (ms)

D.1 60 60 0.000 5828.3 60 0.000 6431.8
D.2 66 67 0.015 5990.2 67 0.015 6454.5
D.3 72 73 0.014 5971.2 73 0.014 6746.7
D.4 62 62 0.000 5903.4 62 0.000 6716.3
D.5 61 61 0.000 5891.4 61 0.000 6617.2
NRE.1 29 30 0.034 6200.0 29 0.000 6135.0
NRE.2 30 31 0.033 6235.4 31 0.033 6115.1
NRE.3 27 28 0.037 5988.3 28 0.037 5991.9
NRE.4 28 29 0.036 6875.2 28 0.000 7081.0
NRE.5 28 28 0.000 7298.1 28 0.000 7191.1
NRF.1 14 14 0.000 6788.4 14 0.000 7118.5
NRF.2 15 15 0.000 8313.4 15 0.000 8212.1
NRF.3 14 17 0.214 8934.4 16 0.143 9293.8
NRF.4 14 16 0.143 7746.3 14 0.000 8023.3
NRF.5 13 14 0.077 7021.1 13 0.000 7220.2
NRG.1 176 179 0.017 7143.5 179 0.017 7644.8
NRG.2 154 158 0.026 7948.0 158 0.026 8584.5
NRG.3 166 170 0.024 8771.8 166 0.000 9874.0
NRG.4 168 170 0.012 8123.7 168 0.000 8919.2
NRG.5 168 170 0.012 9013.4 168 0.000 9921.2
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Table 8. Computational results of the group NRH.

Instance Zopt

Biogeography-based optimization algorithm
Basic BBOA-AS

Zmin RPD Times (ms) Zmin RPD Times (ms)

NRH.1 63 66 0.048 15114.6 64 0.015 17911.2
NRH.2 63 67 0.063 16343.4 67 0.063 19733.4
NRH.3 59 64 0.085 19243.7 64 0.085 21840.3
NRH.4 58 64 0.103 18241.6 63 0.086 21421.7
NRH.5 55 63 0.145 24442.6 63 0.145 22242.5

5.2. Statistical test

To show a significant difference between the basic and self-adaptive approach for the biogeography-based
optimization algorithm, we perform a contrast statistical test for each instance through the Kolmogorov-Smirnov-
Lilliefors to determine the independence of the samples [28], and Wilcoxon’s signed rank [31] to compares the
results statistically.

For both tests, we consider a hypothesis evaluation, which is analyzed assuming a p value of 0.05, i.e., values
smaller than 0.05 determine that the corresponding hypothesis cannot be assumed. Both tests were conducted
using GNU Octave6. The first test allows us to analyze the independence of samples by determining whether
the Zmin results from the 30 executions of each instance are from a normal distribution or they are independent.
To proceed, we propose the following hypotheses: H0 states that Zmin follows a normal distribution. H1 states
the opposite. The conducted test yielded a p value lower than 0.05; therefore, H0 cannot be assumed. Next, as
the samples are independent and cannot be assumed to follow a normal distribution, it is not feasible to use the
central limit theorem to approximate the distribution of the sample mean as Gaussian. Therefore, we assume
the use of a nonparametric test for evaluating the heterogeneity of samples. For that, we use the Wilcoxon’s
signed rank test. This is a paired test that compares the medians of two distributions. To proceed, we propose
the following new hypotheses: H0: Z̃min achieved by basic BBOA is better than Z̃min achieved by SA-BBOA.
H1 states the opposite.

Tables 9–11 compare the basic biogeography-based optimization algorithm vs. its self-adaptive approach for
all tested instances via the Wilcoxon’s signed rank test. As the significance level is also established to 0.05, smaller
values than 0.05 define that H0 cannot be assumed. Bold font is used for a winner value of the metaheuristic
stated in the column of the table, e.g., for instance 4.1, the self-adaptive version is better than the basic version
as its value is lower than 0.05, and then, H0 cannot be assumed.

According to the results, those for p values lower than 0.05 for the basic biogeography-based optimization
algorithm are 9; the results for the self-adaptive approach are 32. The remainder does not provide significant
information. These results illustrate again that the performance of the self-adaptive approach is better than
basic BBOA.

5.3. BBOA-AS vs. other optimization techniques

To evidence the performance of our self-adaptive approach, we perform a comparison with different approxi-
mation techniques: binary cat swarm optimization (BCSO) [10], binary firefly optimization (BFO) [16], binary
shuffled frog leaping algorithm (BSFLA) [17], binary artificial bee colony algorithm (BABC) [19], and binary
electromagnetism-like algorithm (BELA) [41]. It will additionally incorporate a comparative using Mixed Inte-
ger Linear Programming (MIP) as exact solving method implemented on MiniZinc G12 MIP. With the solver,

6Available at https://www.gnu.org/software/octave/download.html

https://www.gnu.org/software/octave/download.html
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Figure 5. Convergence charts for the most difficult instances of the test groups 4, 5, 6, A, and B.
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Figure 6. Convergence charts for the most difficult instances of the test groups: C, D, NRE,
NRF, NRG, and NRG.
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Table 9. Statistical test: instances of groups 4, 5 and 6.

Instance 4.1 4.2 4.3 4.4 4.5
Basic 0.04 – 0.04 – –
BBOA-AS – 0.02 – 0.03 0.03

Instance 4.6 4.7 4.8 4.9 4.10
Basic – – – – –
BBOA-AS 0.02 0.02 – 0.05 –
Instance 5.1 5.2 5.3 5.4 5.5
Basic 0.05 – – – –
BBOA-AS – – 0.02 0.03 0.01
Instance 5.6 5.7 5.8 5.9 5.10
Basic – – – – –
BBOA-AS 0.01 – 0.01 0.01 0.03
Instance 6.1 6.2 6.3 6.4 6.5
Basic – – – – –
BBOA-AS – – – – –

Table 10. Statistical test: instances of groups A, B, C, and D.

Instance A.1 A.2 A.3 A.4 A.5
Basic – 0.05 – – –
BBOA-AS – – 0.05 0.01 0.02

Instance B.1 B.2 B.3 B.4 B.5
Basic – 0.01 – 0.02 –
BBOA-AS 0.02 – 0.01 – 0.02
Instance C.1 C.2 C.3 C.4 C.5
Basic 0.05 – – – –
BBOA-AS – – – – –
Instance D.1 D.2 D.3 D.4 D.5
Basic – 0.01 0.01 – –
BBOA-AS – – – 0.04 –

Table 11. Statistical test: instances of groups NRE, NRF, NRG, and NRH.

Instance NRE.1 NRE.2 NRE.3 NRE.4 NRE.5
Basic – – – – –
BBOA-AS 0.05 – – 0.03 0.01

Instance NRF.1 NRF.2 NRF.3 NRF.4 NRF.5
Basic 0.02 0.03 0.04 – –
BBOA-AS – – 0.01 – 0.04
Instance NRG.1 NRG.2 NRG.3 NRG.4 NRG.5
Basic – – – – –
BBOA-AS – – 0.02 0.02 0.01
Instance NRH.1 NRH.2 NRH.3 NRH.4 NRH.5
Basic – 0.01 – – –
BBOA-AS 0.01 – 0.02 0.01 –
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Table 12. Comparison results for instance set of groups 4 and 5. BBOA-AS v/s BCSO and BFO.

Instance Zopt
BBOA-AS

Optimization algorithms
BCSO BFO

Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

4.1 429 429 430 0.000 459 480 0.070 429 430 0.000

4.2 512 512 514 0.000 570 594 0.113 517 517 0.010

4.3 516 516 516 0.000 590 607 0.143 519 522 0.006
4.4 494 494 502 0.000 547 578 0.107 495 497 0.002

4.5 512 512 515 0.000 545 554 0.064 514 515 0.004
4.6 560 560 561 0.000 637 650 0.138 563 565 0.005

4.7 430 430 430 0.000 462 467 0.074 430 430 0.000

4.8 492 492 497 0.000 546 567 0.110 497 499 0.010
4.9 641 641 645 0.000 711 725 0.109 655 658 0.022

4.10 514 514 516 0.000 537 552 0.045 519 523 0.010

5.1 253 253 253 0.000 279 287 0.103 257 260 0.016

5.2 302 302 307 0.000 339 340 0.123 309 311 0.023
5.3 226 226 229 0.000 247 251 0.093 229 233 0.013

5.4 242 242 242 0.000 251 253 0.037 242 242 0.000

5.5 211 211 213 0.000 230 230 0.090 211 213 0.000
5.6 213 213 213 0.000 232 243 0.089 213 213 0.000

5.7 293 293 293 0.000 332 338 0.133 298 301 0.017

5.8 288 288 288 0.000 320 330 0.111 291 292 0.010
5.9 279 279 281 0.000 295 297 0.057 284 284 0.018

5.10 265 265 267 0.000 285 287 0.075 268 270 0.011

Table 13. Comparison results for instance set of groups 6, A, B, and C. BBOA-AS v/s BCSO
and BFO.

Instance Zopt
BBOA-AS

Optimization algorithms
BCSO BFO

Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

6.1 138 138 138 0.000 151 160 0.094 138 140 0.000

6.2 146 146 146 0.000 152 157 0.041 147 149 0.007

6.3 145 145 148 0.000 160 164 0.103 147 150 0.014
6.4 131 131 132 0.000 138 142 0.053 131 131 0.000

6.5 161 161 163 0.000 169 173 0.050 164 157 0.019

A.1 253 253 253 0.000 286 287 0.130 255 256 0.008
A.2 252 252 253 0.000 274 276 0.087 259 261 0.028
A.3 232 232 234 0.000 257 263 0.108 238 240 0.026

A.4 234 234 239 0.000 248 251 0.060 235 237 0.004

A.5 236 236 241 0.000 244 244 0.034 236 237 0.000

B.1 69 69 73 0.000 79 79 0.145 71 72 0.029
B.2 76 76 79 0.000 86 89 0.132 78 78 0.026

B.3 80 80 84 0.000 85 85 0.063 80 80 0.000

B.4 79 79 83 0.000 89 89 0.127 80 81 0.013
B.5 72 72 72 0.000 73 73 0.014 72 73 0.000

C.1 227 227 229 0.000 242 242 0.066 230 232 0.013

C.2 219 219 219 0.000 240 241 0.096 223 224 0.018
C.3 243 244 248 0.004 277 278 0.140 253 254 0.041
C.4 219 219 221 0.000 250 250 0.142 225 227 0.027
C.5 215 215 217 0.000 243 244 0.130 217 219 0.009
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Table 14. Comparison results for instance set of groups D, NRE, NRF, and NRG. BBOA-AS
v/s BCSO and BFO.

Instance Zopt
BBOA-AS

Optimization algorithms

BCSO BFO
Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

D.1 60 60 63 0.000 65 66 0.083 60 61 0.000

D.2 66 66 69 0.000 70 70 0.061 68 68 0.030

D.3 72 72 77 0.000 79 81 0.097 75 77 0.042
D.4 62 62 62 0.000 64 67 0.032 62 62 0.000

D.5 61 61 61 0.000 65 66 0.066 63 63 0.033

NRE.1 29 29 29 0.000 29 30 0.000 29 31 0.000

NRE.2 30 30 31 0.000 34 34 0.133 32 32 0.067
NRE.3 27 28 28 0.037 31 32 0.148 29 30 0.074

NRE.4 28 28 28 0.000 32 33 0.143 29 31 0.036

NRE.5 28 28 28 0.000 30 30 0.071 29 29 0.036

NRF.1 14 14 15 0.000 17 17 0.214 15 17 0.071
NRF.2 15 15 15 0.000 18 18 0.200 16 16 0.067

NRF.3 14 14 16 0.000 17 17 0.214 16 17 0.143

NRF.4 14 14 17 0.000 17 17 0.214 15 18 0.071
NRF.5 13 13 14 0.000 15 16 0.154 15 19 0.154

NRG.1 176 176 177 0.000 190 193 0.080 185 191 0.051

NRG.2 154 156 156 0.013 165 166 0.071 161 163 0.045

NRG.3 166 166 169 0.000 187 188 0.127 175 177 0.054
NRG.4 168 171 171 0.018 179 183 0.065 176 176 0.048

NRG.5 168 169 169 0.006 181 184 0.077 177 181 0.054

Table 15. Comparison results for instance set of the group NRH. BBOA-AS v/s BCSO and BFO.

Instance Zopt
BBOA-AS

Optimization algorithms
BCSO BFO

Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

NRH.1 63 65 65 0.032 70 71 0.111 69 70 0.095
NRH.2 63 67 67 0.063 67 67 0.063 66 66 0.048

NRH.3 59 64 65 0.085 68 70 0.153 65 67 0.102

NRH.4 58 63 63 0.086 66 67 0.138 63 65 0.086
NRH.5 55 62 62 0.127 61 62 0.109 59 60 0.073

the instances are solved to a maximum time of 8 h. If no solution is found at this point the problem is set to
time-out (t.o.).

Tables 12–23 illustrate that the proposed approach can achieve competitive results in contrast to those modern
optimization techniques.

For group 4, the adaptive approach shows outstanding behavior and achieves 100% of the total optimum
values, while BFO only identifies two optimum values. BCSO exhibits poor performance by producing 0 optimal
values. In the same group of instances, BBOA-AS is better than BELA, BSFLA, and BABC, even when BSFLA
reaches 4 good results. On the other hand, MIP shows an excellent performance to identify all optimum values.

Considering the group, 5 we observe that the adaptive biogeography-based optimization algorithm can find
all the optimum values. BSFLA is its closest competitor finding 4 optimal values. BFO follows it with 3 optimal
values, and BABC with 2 reached optimal results. Finally, BCSO and BELA show that they are not able to
solve the instances of the SCP.
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Table 16. Comparison results for instance set of groups 4 and 5. BBOA-AS v/s BSFLA and
BELA.

Instance Zopt
BBOA-AS

Optimization algorithms

BSFLA BELA

Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

4.1 429 429 430 0.000 430 430 0.002 447 448 0.042
4.2 512 512 514 0.000 516 518 0.008 559 559 0.092

4.3 516 516 516 0.000 520 520 0.008 537 539 0.041

4.4 494 494 502 0.000 501 504 0.014 527 530 0.067
4.5 512 512 515 0.000 514 514 0.004 527 529 0.029

4.6 560 560 561 0.000 563 563 0.005 607 608 0.084

4.7 430 430 430 0.000 431 432 0.002 448 449 0.042
4.8 492 492 497 0.000 497 499 0.010 509 512 0.035

4.9 641 641 645 0.000 656 656 0.023 682 682 0.064
4.10 514 514 516 0.000 518 519 0.008 571 571 0.111

5.1 253 253 253 0.000 254 255 0.004 280 281 0.107
5.2 302 302 307 0.000 307 307 0.017 318 321 0.053

5.3 226 226 229 0.000 228 230 0.009 242 240 0.071

5.4 242 242 242 0.000 242 242 0.000 251 252 0.037
5.5 211 211 213 0.000 211 213 0.000 225 227 0.066

5.6 213 213 213 0.000 213 214 0.000 247 248 0.160
5.7 293 293 293 0.000 297 299 0.014 316 317 0.078

5.8 288 288 288 0.000 291 293 0.010 315 317 0.094

5.9 279 279 281 0.000 281 283 0.007 314 315 0.125
5.10 265 265 267 0.000 265 266 0.000 280 282 0.057

Table 17. Comparison results for instance set of groups 6, A, B, and C. BBOA-AS v/s BSFLA
and BELA.

Instance Zopt
BBOA-AS

Optimization algorithms
BSFLA BELA

Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

6.1 138 138 138 0.000 140 141 0.014 152 152 0.101
6.2 146 146 146 0.000 147 147 0.007 160 161 0.096

6.3 145 145 148 0.000 147 148 0.014 160 163 0.103

6.4 131 131 132 0.000 131 133 0.000 140 142 0.069
6.5 161 161 163 0.000 166 169 0.031 184 187 0.143

A.1 253 253 253 0.000 255 258 0.008 261 264 0.032
A.2 252 252 253 0.000 260 260 0.032 279 281 0.107
A.3 232 232 234 0.000 237 239 0.022 252 253 0.086
A.4 234 234 239 0.000 235 238 0.004 250 252 0.068

A.5 236 236 241 0.000 236 239 0.000 241 243 0.021

B.1 69 69 73 0.000 70 70 0.014 86 87 0.246

B.2 76 76 79 0.000 76 77 0.000 88 88 0.158
B.3 80 80 84 0.000 80 80 0.000 85 87 0.063
B.4 79 79 83 0.000 79 80 0.000 84 88 0.063

B.5 72 72 72 0.000 72 73 0.000 78 81 0.083

C.1 227 227 229 0.000 229 231 0.009 237 238 0.044

C.2 219 219 219 0.000 223 225 0.018 237 239 0.082
C.3 243 244 248 0.004 253 253 0.041 271 271 0.115

C.4 219 219 221 0.000 227 228 0.037 246 248 0.123
C.5 215 215 217 0.000 217 218 0.009 224 225 0.042
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Table 18. Comparison results for instance set of groups D, NRE, NRF, and NRG. BBOA-AS
v/s BSFLA and BELA.

Instance Zopt
BBOA-AS

Optimization algorithms

BSFLA BELA
Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

D.1 60 60 63 0.000 60 62 0.000 62 62 0.033

D.2 66 66 69 0.000 67 68 0.015 73 74 0.106

D.3 72 72 77 0.000 75 77 0.042 79 81 0.097
D.4 62 62 62 0.000 63 65 0.016 67 69 0.081

D.5 61 61 61 0.000 63 66 0.033 66 67 0.082

NRE.1 29 29 29 0.000 29 29 0.000 30 31 0.034

NRE.2 30 30 31 0.000 31 32 0.033 35 35 0.167
NRE.3 27 28 28 0.037 28 28 0.037 34 34 0.259

NRE.4 28 28 28 0.000 29 30 0.036 33 34 0.179

NRE.5 28 28 28 0.000 28 31 0.000 30 31 0.071

NRF.1 14 14 15 0.000 15 15 0.071 17 17 0.214
NRF.2 15 15 15 0.000 15 15 0.000 18 18 0.200

NRF.3 14 14 16 0.000 16 17 0.143 17 18 0.214

NRF.4 14 14 17 0.000 15 16 0.071 17 19 0.214
NRF.5 13 13 14 0.000 15 17 0.154 16 17 0.231

NRG.1 176 176 177 0.000 182 183 0.034 194 196 0.102

NRG.2 154 156 156 0.013 161 161 0.045 176 176 0.143

NRG.3 166 166 169 0.000 173 174 0.042 184 185 0.108
NRG.4 168 171 171 0.018 173 177 0.030 196 197 0.167

NRG.5 168 169 169 0.006 174 174 0.036 198 199 0.179

Table 19. Comparison results for instance set of the group NRH. BBOA-AS v/s BSFLA and
BELA.

Instance Zopt
BBOA-AS

Optimization algorithms
BSFLA BELA

Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

NRH.1 63 65 65 0.032 68 69 0.079 70 71 0.111

NRH.2 63 67 67 0.063 66 66 0.048 71 71 0.127

NRH.3 59 64 65 0.085 62 63 0.051 68 70 0.153
NRH.4 58 63 63 0.086 63 64 0.086 70 72 0.207

NRH.5 55 62 62 0.127 59 61 0.073 69 69 0.255

For groups 6, A, B, and C, we note that the adaptive biogeography-based optimization algorithm can find all
the optimum values, again. We can observe a high superiority compared to BCSO and BELA. BFO, BSFLA,
and BABC are not rivals for our adaptive approach due to they only found 6 different optimal values and
BBOA-As finds 95% of them (19 of 20). In this stage, MIP begins showing a bad performance being not able
to solve form the A-group to head.

For the rest of the instances (hardest instances), the technique behaviors are similars. BBOA-AS follows
showing excellent results. By comparing the optimal values, we can no doubt ensure that our approach is better
than other metaheuristics.
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Table 20. Comparison results for instance set of groups 4 and 5. BBOA-AS v/s BABC and MIP.

Instance Zopt
BBOA-AS

Optimization algorithms
BABC MIP

Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

4.1 429 429 430 0.000 430 430 0.002 429 429 0.000

4.2 512 512 514 0.000 513 513 0.002 512 512 0.000

4.3 516 516 516 0.000 519 521 0.006 516 516 0.000
4.4 494 494 502 0.000 495 496 0.002 494 494 0.000

4.5 512 512 515 0.000 514 517 0.004 512 512 0.000
4.6 560 560 561 0.000 561 565 0.002 560 560 0.000

4.7 430 430 430 0.000 431 434 0.002 430 430 0.000

4.8 492 492 497 0.000 493 494 0.002 492 492 0.000
4.9 641 641 645 0.000 649 651 0.012 641 641 0.000

4.10 514 514 516 0.000 517 519 0.006 514 514 0.000

5.1 253 253 253 0.000 254 255 0.004 253 253 0.000

5.2 302 302 307 0.000 309 309 0.023 302 302 0.000
5.3 226 226 229 0.000 229 233 0.013 226 226 0.000

5.4 242 242 242 0.000 242 245 0.000 242 242 0.000

5.5 211 211 213 0.000 211 212 0.000 211 211 0.000
5.6 213 213 213 0.000 214 214 0.005 213 213 0.000

5.7 293 293 293 0.000 298 301 0.017 293 293 0.000

5.8 288 288 288 0.000 289 291 0.003 288 288 0.000
5.9 279 279 281 0.000 280 281 0.004 279 279 0.000

5.10 265 265 267 0.000 267 270 0.008 265 265 0.000

Table 21. Comparison results for instance set of groups 6, A, B, and C. BBOA-AS v/s BABC
and MIP.

Instance Zopt
BBOA-AS

Optimization algorithms
BABC MIP

Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

6.1 138 138 138 0.000 142 143 0.029 138 138 0.000

6.2 146 146 146 0.000 147 150 0.007 146 146 0.000

6.3 145 145 148 0.000 148 149 0.021 145 145 0.000
6.4 131 131 132 0.000 131 133 0.000 131 131 0.000

6.5 161 161 163 0.000 165 167 0.025 161 161 0.000

A.1 253 253 253 0.000 254 254 0.004 t.o.
A.2 252 252 253 0.000 257 259 0.020 t.o.
A.3 232 232 234 0.000 235 238 0.013 t.o.

A.4 234 234 239 0.000 236 237 0.009 t.o.

A.5 236 236 241 0.000 236 238 0.000 t.o.

B.1 69 69 73 0.000 70 70 0.014 t.o.
B.2 76 76 79 0.000 78 79 0.026 t.o.

B.3 80 80 84 0.000 80 80 0.000 t.o.

B.4 79 79 83 0.000 80 81 0.013 t.o.
B.5 72 72 72 0.000 72 74 0.000 t.o.

C.1 227 227 229 0.000 231 233 0.018 t.o.

C.2 219 219 219 0.000 222 223 0.014 t.o.
C.3 243 244 248 0.004 254 255 0.045 t.o.
C.4 219 219 221 0.000 231 233 0.055 t.o.
C.5 215 215 217 0.000 216 217 0.005 t.o.
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Table 22. Comparison results for instance set of groups D, NRE, NRF, and NRG. BBOA-AS
v/s BABC and MIP.

Instance Zopt
BBOA-AS

Optimization algorithms

BABC MIP
Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

D.1 60 60 63 0.000 60 61 0.000 t.o.

D.2 66 66 69 0.000 68 68 0.030 t.o.

D.3 72 72 77 0.000 76 77 0.056 t.o.
D.4 62 62 62 0.000 63 65 0.016 t.o.

D.5 61 61 61 0.000 63 66 0.033 t.o.

NRE.1 29 29 29 0.000 29 33 0.000 t.o.

NRE.2 30 30 31 0.000 32 32 0.067 t.o.
NRE.3 27 28 28 0.037 29 31 0.074 t.o.

NRE.4 28 28 28 0.000 29 30 0.036 t.o.

NRE.5 28 28 28 0.000 29 32 0.036 t.o.

NRF.1 14 14 15 0.000 14 15 0.000 t.o.
NRF.2 15 15 15 0.000 16 16 0.067 t.o.

NRF.3 14 14 16 0.000 16 17 0.143 t.o.

NRF.4 14 14 17 0.000 15 17 0.071 t.o.
NRF.5 13 13 14 0.000 15 16 0.154 t.o.

NRG.1 176 176 177 0.000 183 184 0.040 t.o.

NRG.2 154 156 156 0.013 162 163 0.052 t.o.

NRG.3 166 166 169 0.000 174 175 0.048 t.o.
NRG.4 168 171 171 0.018 175 177 0.042 t.o.

NRG.5 168 169 169 0.006 179 181 0.065 t.o.

Table 23. Comparison results for instance set of the group NRH. BBOA-AS v/s BABC and MIP.

Instance Zopt
BBOA-AS

Optimization algorithms
BABC MIP

Zmin Zavg RPD Zmin Zavg RPD Zmin Zavg RPD

NRH.1 63 65 65 0.032 70 71 0.111 t.o.

NRH.2 63 67 67 0.063 69 72 0.095 t.o.
NRH.3 59 64 65 0.085 66 67 0.119 t.o.

NRH.4 58 63 63 0.086 64 64 0.103 t.o.

NRH.5 55 62 62 0.127 60 61 0.091 t.o.

6. Conclusion

In this paper, we presented a self-adaptive approach for a biogeography-based optimization algorithm to
solve different instances of the set covering problem. This approach is based on online control for the mutation
rate parameter, which is evaluated before the run of the metaheuristic. We added an effective preprocessing
process to the core algorithm that allows for filtering and discarding values leading to unfeasible solutions. We
also include a set of binarization strategies to adapt the biogeography algorithms to the binary domain. We
tested 65 nonunit cost instances from the Beasley’s OR-Library where several global optimum values, which
were not reached using the basic biogeography-based optimization algorithm, were achieved via the self-adaptive
approach. Both approaches were evaluated using a nonparametric statistical test, and the results are conclusive.

In future work, we plan to test self-adaptive approaches in recent bioinspired algorithms and to provide a
larger comparison of techniques for solving the set covering problem. The integration of online parameter control
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can lead the research toward new topics of study, such as dynamically selecting the best binarization solution
strategy according to the performance indicators as analogously studied in [40,43,44].
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2018).

References

[1] S. Al-Shihabi, M. Arafeh and M. Barghash, An improved hybrid algorithm for the set covering problem. Comput. Ind. Eng.
85 (2015) 328–334.

[2] F. Amini and P. Ghaderi, Hybridization of harmony search and ant colony optimization for optimal locating of structural
dampers. App. Soft Comput. 13 (2013) 2272–2280.

[3] E. Balas and M.C. Carrera, A dynamic subgradient-based branch-and-bound procedure for set covering. Oper. Res. 44 (1996)
875–890.

[4] J. Beasley, An algorithm for set covering problem. Eur. J. Oper. Res. 31 (1987) 85–93.

[5] J. Beasley and K. Jørnsten, Enhancing an algorithm for set covering problems. Eur. J. Oper. Res. 58 (1992) 293–300.

[6] A. Caprara, M. Fischetti, P. Toth, D. Vigo and P.L. Guida, Algorithms for railway crew management. Math. Program. 79
(1997) 125–141.

[7] M. Caserta, Tabu search-based metaheuristic algorithm for large-scale set covering problems. In: Metaheuristics. Springer
Nature, Basingstoke (2007) 43–63.
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