NEW BINARIZATION METHODS FOR APPLYING FRUIT FLY SWARM OPTIMIZATION TO THE SET COVERING PROBLEM

Broderick Crawford*, Ricardo Soto, Claudio Torres-Rojas
Pontificia Universidad Católica de Valparaíso, 2362807, Valparaíso, Chile
Franklin Johnson
Universidad de Playa Ancha, 2360003, Valparaíso, Chile.
Fernando Paredes
Escuela de Ingeniería Industrial, Universidad Diego Portales, 8370179, Santiago, Chile.
Carlos Castro
Universidad Técnica Federico Santa María, 2390123, Valparaíso, Chile.

Eric Monfroy
LINA, Université de Nantes, France.
Claudia Vasconcellos-Gaete
LERIA, Université d'Angers, France.
(Communicated by the associate editor name)

Abstract

The Fruit Fly Optimization Algorithm is a bio-inspired metaheuristic for deducing global optimization in continuous spaces, based on the foraging behavior of the fruit fly, which tends to have a much better sensory perception of smell and vision than any other specie. In the other hand, the Set Covering Problem is a well known NP-hard problem with many practical applications, including line balancing production, service installation and crew scheduling in railway and mass-transit companies, among others. In this article, we propose different binarization methods for the Fruit Fly Algorithm, using S-shaped and V-shaped transfer functions and several discretization methods to make the algorithm work in a binary search space. This new approach was tested on the benchmark instances of Set Covering Problem and the computational results show that algorithm proposed is robust enough to produce good results at a low computational cost.

[^0]1. Introduction. The Set Covering Problem (SCP) is a well-known covering problem belonging to the NP-hard class, which consists into find a subset of columns in a zero-one matrix such that they cover all the rows of the matrix at a minimum cost. It has important practical applications, such like : emergency services location [34], crew scheduling in mass-transit companies [26], vehicle routing [5], reconstruction of siblings relationships [9], etc.

Considering the complex nature of the SCP, the huge size of real datasets and the variety of methods designed to approach similar problems, the SCP has been solved by exact methods, metaheuristics and other techniques as well. Resolution by exact methods are mostly based on Branch-and-Bound, Branch-and-Cut and Lagrangean heuristics [6] among others. Resolution by metaheuristics includes: genetic algorithms [36], taboo search [7], ant colony optimization [31], artificial bee colonies [10], firefly algorithms [11], cat swarm optimization [12], cuckoo search [33], teaching-learning based optimization [14] and shuffled frog leaping algorithm [13], binary black hole algorithms [18] etc.

In this article, we present a new approach for solving the SCP based on Wen Tsao-Pan's Fruit Fly Optimization Algorithm (FFOA) [30]. This metaheuristic is based on foraging behavior of fruit flies, which use the smell and vision senses to find their food; in terms of the algorithm, these senses are represented by a combination between local (smell) and global (vision) searches to improve the quality of solutions. Given that FFOA was developed for continuous spaces and SCP is a binary problem, our work contributes to propose several binarization methods for a continuous algorithm; in this article, we present eight different transfer functions and five discretization methods, generating a total of 39 variations to the original BFFOA.

The discretization of continuous metaheuristics is not a new topic but, given that new algorithms are still coming, new discretizations need to be tested as well. Some of the recent literature in the area covers metaheuristics like: artificial bee colony ([21], [29]), artificial algae algorithm ([22], [38]) or dragonfly algorithm [27], among others.

The results of this work suggests that BFFOA (the binary version of FFOA) is a robust algorithm, capable to produce good results at a low computational cost.

This article is organized as follows: A brief description of the Set Covering Problem in Section 2, the presentation of the Pan's Fruit Fly Algorithm in Section 3, the description of the functions and methods used to allow the algorithm run into discrete spaces in Section 4. In Section 5, the experimental results for the different instances and finally, in Section 6, conclusions and suggestions of future research lines.
2. Set Covering Problem. The SCP is a classical covering problem that consists into find a subset of columns in a zero-one matrix such that they can cover all the rows of that matrix at a minimum cost. Let $A=\left(a_{i j}\right)$ be a $m \times n$ binary matrix with $I=\{1, \ldots, m\}$ and $J=\{1, \ldots, n\}$ being the row and column sets respectively. We say that a column j can cover a row i if $a_{i j}=1$. The cost of selecting the column j is represented by c_{j}, a non-negative value, and x_{j} is a decision variable to indicate if the column j is selected $\left(x_{j}=1\right)$ or not $\left(x_{j}=0\right)$.

Minimize $\quad Z=\sum_{j=1}^{n} c_{j} x_{j}$
Subject to

$$
\begin{align*}
& \sum_{j=1}^{n} a_{i j} x_{j} \geq 1 \quad \forall i \in I \tag{2}\\
& x_{j} \in\{0,1\} \quad \forall j \in J \tag{3}
\end{align*}
$$

One of the many practical applications of this problem is the location of fire stations. Lets consider a city divided in a finite number of areas which need to locate and build fire stations. Each one of this areas need to be covered by at least one station, but a single fire station can only bring coverage to its own area and the adjacent ones; also, the problem requires that the number of stations to build needs to be the minimum.

Intentionally, we have selected an instance of SCP with $m=11$ and $n=11$ to represent it graphically in figures 1,2 and by equations 4 to 15 . When a SCP formulation has a constant cost (a value of 1 in this case), we will refer to it as an Unicost SCP instance.

Figure 1. An example of SCP

Minimize

$$
\begin{equation*}
\sum_{j=1}^{11} c_{j} x_{j} \tag{4}
\end{equation*}
$$

Subject to:

$$
\begin{array}{rr}
\text { AREA }: & x_{1}+x_{2}+x_{3}+x_{4} \geq 1 \\
A R E A_{2}: & x_{1}+x_{2}+x_{3}+x_{5} \geq 1 \\
A R E A_{3}: & x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 1 \\
A R E A_{4}: & x_{1}+x_{3}+x_{4}+x_{6}+x_{7} \geq 1 \\
A R E A_{5}: & x_{2}+x_{3}+x_{5}+x_{6}+x_{8}+x_{9} \geq 1 \\
A R E A_{6}: & x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8} \geq 1 \\
A R E A_{7}: & x_{4}+x_{6}+x_{7}+x_{8} \geq 1 \\
A R E A_{8}: & x_{5}+x_{6}+x_{7}+x_{8}+x_{9}+x_{10} \geq 1 \\
A R E A_{9}: & x_{5}+x_{8}+x_{9}+x_{10}+x_{11} \geq 1 \\
A R E A_{10}: & x_{8}+x_{9}+x_{10}+x_{11} \geq 1 \\
A R E A_{11}: & x_{9}+x_{10}+x_{11} \geq 1 \tag{15}
\end{array}
$$

Figure 2. Solution to the practical example of SCP

As the SCP is a NP-hard class problem, one of the many difficulties that benchmarks arise is their size and the computational time associated. To solve this, many authors propose to do a pre-processing of the problem before apply any exact method or metaheuristic in order to obtain instances that are equivalent to original but smaller in terms of rows and columns. In the next section, we describe the methods used in this research.
2.1. Pre-Processing. To accelerate the problem solving, we introduce a preprocessing phase before run the metaheuristic to reduce the size of instances and improve the performance of the algorithm. In this article, we use two methods that have proven to be more effective: Column Domination [2] and Column Inclusion [17].

Column Domination: It consists into deleting the redundant columns without affecting the final solution. In other words, if the rows belonging to the column j can be covered by another column with a cost lower than c_{j}, then the column j is dominated and it can be removed. This method is detailed in the Algorithm 1.

Column Inclusion: If a row is covered by only one column after the above domination, that column must be included in the optimal solution, and there is no need to evaluate its feasibility.

```
Algorithm 1 Column Domination
    Order all columns by cost, ascending.
    if Two or more columns have the same cost then
        Order those columns by the amount of rows \(I_{j}\) covered by column j, descend-
        ing
        Check if rows \(I_{j}\) can be covered by a set of other columns with a cost lower
        than \(c_{j}\)
        if Cost is lower then
            The column \(j\) is dominated and it can be removed.
        end if
    end if
```

3. Fruit Fly Optimization Algorithm. The FFOA is a bio-inspired metaheuristic [30] based on the foraging behavior of fruit flies or vinegar flies for finding food, considering that their smell (osphresis) and vision senses are much better than in any other specie. The foraging behavior processes consider smell the food source, fly to it and then visualize the same food source to determine a better direction.

In Figure 3, there is a graphical representation of these foraging search processes. Consider S_{1}, S_{2} and S_{3} as fruit flies from our population. During the smell-based search, the flies will randomly move across the search space, so their new positions will be $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)$ and $\left(X_{3}, Y_{3}\right)$ respectively; then, in the next phase, flies will be evaluated in their smell concentration (fitness function) to determine which one is the best in the group; for our example, we are using the reciprocal of distance to the origin $\left(1 / D i s t_{i}\right)$ as fitness function. Finally, and knowing which one is the best fruit fly, the population will move into its direction to get closer to the food source.

Figure 3. Food searching of a group of fruit flies

The traditional FFOA consists of 4 phases. These are: initialization, smell-based search, population evaluation, and vision-based search. In the initialization phase, parameters are set and the fruit flies (solutions) are created randomly with a very

```
Algorithm 2 Fruit Fly Optimization
    \{Initialization\}
    Initialize population size \((N)\)
    Initialize generation max (gen)
    for \(i=1\) to \(N\) do
        Create randomly \(F_{i}\), the \(i\)-th fruit fly
    end for
    for \(t=1\) to gen do
        \{Smell-based search\}
        \{Emulate the smell sense by modifying population with random values \(\}\)
        \(F_{i}=F_{i}+\) random_value
        \{Population evaluation\}
        Evaluate solutions fitness using the objective function.
        \{Vision-based search\}
        \(B F=\) Bestfruitfly
        for \(i=1\) to N do
            \(F_{i}=\left(F_{i}+B F\right) / 2\)
        end for
    end for
```

sensitive osphresis and vision organs. During the smell-based search phase, flies use their senses to feel all kinds of smells in the air and fly towards the corresponding locations. Then, the flies are evaluated to find the best concentration of smell. When they are near to food, in the vision-based search phase, they fly toward the food source using their vision organ. The pseudocode of these phases is detailed in Algorithm 2.

The FFOA has been successfully used to solve continuous problems such as: the financial distress [30], web auction logistics service [25], power load forecasting [24], design of key control characteristics for automobile parts [37] and distribution of pollution particles [20], among others.
4. Binary Fruit Fly Optimization Algorithm. In contrast with traditional FFOA, the BFFOA [35] uses a discrete binary string (Figure 4) to represent a solution and a probability vector to generates the population (Figure 5); then, the value of each bit of the fruit flies goes from zero to one (and viceversa) to exploit the neighborhood in the smell-based search process and perform a global vision-based search to improve the exploration ability. This new algorithm, detailed later in pseudocode (Algorithm 3), preserves the four phases but adds three search methods: Smell-based, Local-Vision-based and Global-Vision-based. Also, these methods will add new parameters to perform searches; all of them are detailed in table 1.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & 1 & 1 & \ldots & 1 & 1 & 0 & 1 \\
\hline
\end{array}
$$

Figure 4. Representation of a Fruit Fly (solution) in BFFOA
This article proposes and evaluates new instances for BFFOA, created from the combination of the original binary algorithm, eight transfer functions and two discrete methods, in order to improve solutions.

$p^{1}(t)$	$p^{2}(t)$	$p^{3}(t)$	\ldots	$p^{n-1}(t)$	$p^{n}(t)$

Figure 5. Representation of the Probability Vector in BFFOA

Table 1. BFFOA Parameters

Parameter	Detail
N	Population size.
$g e n$	Generations (iterations).
S	Neighbors to create during smell-based search.
L	Bits to flip randomly when generating neighbors.
b	Coefficient of vision sensitivity.

```
Algorithm 3 Binary Fruit Fly Optimization
    \{Initialization Phase \(\}\)
    Initialize parameter values of \(N\), gen \(, S, L\) and \(b\)
    Initialize probability vector \(p(t=0)\)
    for \(i=1\) to \(N\) do
        for \(d=1\) to \(n\) do
            Create randomly the \(F_{i}^{d}\) bit
        end for
    end for
    for \(t=1\) to gen do
        \{Smell-based Search\}
        for \(i=1\) to \(N\) do
            for \(s=1\) to \(S\) do
                Create the \(F_{i, s}\) neighbor, flipping \(L\) bits around \(F_{i}\)
            end for
        end for
        Apply the repair operator
        \{Population Evaluation Phase\}
        Evaluate solution fitness using the objective function
        \{Local-Vision-based Search\}
        for \(i=1\) to \(N\) do
            Find the best neighbor \(F_{i, \text { best }}\) for \(F_{i}\)
            Make the neighborhood fly towards \(F_{i, \text { best }}\)
        end for
        \{Global-Vision-based Search\}
        Find the best fruit fly in the population, \(F_{\text {best }}\)
        Select randomly two flies \(F_{1}\) and \(F_{2}\)
        Update probability vector \(p(t)\)
        for \(i=1\) to \(N\) do
            Create \(F_{i}\) according to \(p(t)\)
        end for
    end for
```

4.1. Initialization. In the BFFOA, each fruit fly is a solution represented by a n bit binary vector, where n is the number of columns in the instance to solve. Thus, in a fruit fly F_{i}, the value F_{i}^{d} represents the $d^{t h}$ binary decision bit, $d \in[1, n]$.

All fruit flies are generated by an n-dimensional probability vector $p(t)$, where t represents the generation (or iteration) with $t \in[1$, gen $]$. Then, the $p^{d}(t)$ is the probability in the $d^{t h}$ dimension of the fruit fly F_{i} to be 1 during generation t. The pseudocode for this phase is detailed in Algorithm 4.

To generate a uniformly distributed population in the search space, the probability vector must be $p(0)=[0.5,0.5, \ldots, 0.5]$, so all columns have fifty percent probability of being selected. In the next generation, a new population with N fruit flies will be generated using this probability vector.

```
Algorithm 4 Initial population in BFFOA
    for \(i=1\) to \(N\) do
        for \(d=1\) to \(n\) do
            if \(\operatorname{rand}()<p^{d}(0)\) then
                \(F_{i}^{d}=1\)
            else
                \(F_{i}^{d}=0\)
            end if
        end for
    end for
```

4.2. Smell-based Search. In this phase, we create S neighbors randomly around each fruit fly F_{i} using the smell-based search. Each one of these neighbors are generated using this method: first, we select randomly L-bits, and then flip these L columns values. For example, if we have a 9 -bit fruit fly and $L=3$, the smell-based search may produce a neighbor like the one represented in figure 6 .

Figure 6. Creation of a neighbor during Smell-based search
At this point, a population with $(N \cdot S)$-fruit flies is evaluated using the objective function. In case to get unfeasible solutions we apply a repair operator. This additional phase will be explained later (Subsection 4.5).
4.3. Local-Vision-based Search. Once all solutions in the neighborhood are feasible, the fruit flies are evaluated with the vision sense (the objective function) to find the best local neighbor and fly towards it. If a better neighbor is found, then the whole neighborhood will fly towards it and this recently discovered "local best" fruit fly will replace the previous solution; otherwise, solution will remain the same.
4.4. Global-Vision-based Search. This search works on the exploration ability (equations 16 and 17), considering that previous phases are more focused into the exploitation ability. To update the next fruit flies generation, this phase updates the probability vector with the differential information between the best fruit fly $F_{\text {best }}$ and two random fruit flies $\left(F_{1}\right.$ and $\left.F_{2}\right)$ to set a coefficient for the vision sensitivity b to enhance the exploration.

$$
\begin{align*}
\Delta^{d}(t+1) & =F_{\text {best }}^{d}+0.5\left(F_{1}^{d}-F_{2}^{d}\right) \tag{16}\\
p^{d}(t+1) & =\frac{1}{\left(1+e^{-b\left(\Delta^{d}(t+1)-0.5\right)}\right)} \tag{17}
\end{align*}
$$

4.5. Repair Operator. A common issue with metaheuristics is the generation of unfeasible solutions during an iteration. For the SCP, this means that some individuals will not cover all rows and a subset of constraints may be violated. To solve this issue, the algorithm implements a repair operator to make all individuals feasible and eliminate redundancy. The method described in [4] calculates a ratio between the cost of an uncovered column $\left(c_{j}\right)$ and the number of uncovered rows covered by that column; once all rows are covered and the solution is feasible, the operator includes an optimization step to eliminate any redundant column (Algorithm 5).

```
Algorithm 5 Repair Operator
    \(I=\) The set of all rows;
    \(J=\) The set of all columns;
    \(\alpha_{i}=\) The set of columns that cover row \(i, i \in I\);
    \(\beta_{j}=\) The set of rows covered by column \(j, j \in J\);
    \(K=\) The set of columns in a solution;
    \(w_{i}=\) The number of columns that cover row \(i, i \in I\). For this, \(w_{i}=\left|S \cap \alpha_{i}\right|\),
    \(\forall i \in I\);
    \(U=\) The set of uncovered rows. For this, \(U=\left\{i \mid w_{i}=0, \forall i \in I\right\}\);
    for all row \(i \in U\) (in increasing order of \(i\) ) do
        Find the first column \(j\) in increasing order of \(j \in \alpha_{i}\) that minimizes \(\frac{c_{j}}{\left|U \cap b_{j}\right|}\);
        Add \(j\) to \(K\) and set \(w_{i}=w_{i}+1, \forall i \in b_{j}\);
        Set \(U=U-b_{j}\);
    end for
    for all column \(j \in K\) (in decreasing order of \(j\) ) do
        if \(w_{i} \geq 2\) then
            \(K=K-j\);
            \(w_{i}=w_{i}-1, \forall i \in \beta_{j} ;\)
        end if
    end for
    \(K\) is now a feasible solution for the SCP that contains no redundant columns;
```

5. Proposed binarization methods for the BFFOA. In this article, we propose to modify the original BFFOA with a two-step binarization technique, which will transform the solution from \mathbb{R} to an "InterSpace" (in \mathbb{Z}) and then to the binary space. Following a procedure similar to the one proposed in [23] and [15], we will replace the equation for global searching (Equation 17) with one of the eight transfer functions described in [28]. Specifically, our idea is to replace the calculation for the differential information $b\left(\Delta_{i}^{d}-0.5\right)$, with one of these eight transfer functions in order to define the probability to move an element of the solution from 1 to 0 (or vice versa), forcing the fruit flies to be in the interval $[0,1]$.

It is important to notice that from the S-shaped functions (equations 18, 19, 20 and 21) and V-shaped functions (equations 22, 23, 24 and 25) presented here, the original BFFOA uses the transfer function $p_{S 2}$ with a Standard discretization method. In this article, we test an universe of 40 different instances of the algorithm, where 39 out the 40 are new variations made by our research.

$$
\begin{gather*}
p_{S 1}\left(\Delta^{d}(t+1)\right)=\frac{1}{1+e^{-2 b\left(\Delta^{d}(t+1)-0.5\right)}} \tag{18}\\
p_{S 2}\left(\Delta^{d}(t+1)\right)=\frac{1}{1+e^{-b\left(\Delta^{d}(t+1)-0.5\right)}} \tag{19}\\
p_{S 3}\left(\Delta^{d}(t+1)\right)=\frac{1}{1+e^{\frac{-b\left(\Delta^{d}(t+1)-0.5\right)}{2}}} \tag{20}\\
p_{S 4}\left(\Delta^{d}(t+1)\right)=\frac{1}{1+e^{\frac{-b\left(\Delta^{d}(t+1)-0.5\right)}{3}}} \tag{21}\\
p_{V 1}\left(\Delta^{d}(t+1)\right)=\left|\operatorname{erf}\left(\frac{\sqrt{\pi}}{2}\left(b\left(\Delta^{d}(t+1)-0.5\right)\right)\right)\right| \tag{22}\\
p_{V 2}\left(\Delta^{d}(t+1)\right)=\left|\tanh \left(b\left(\Delta^{d}(t+1)-0.5\right)\right)\right| \tag{23}\\
p_{V 3}\left(\Delta^{d}(t+1)\right)=\left|\frac{\Delta^{d}(t+1)}{\sqrt{1+\left(b\left(\Delta^{d}(t+1)-0.5\right)\right)^{2}}}\right| \tag{24}\\
p_{V 4}\left(\Delta^{d}(t+1)\right)=\left|\frac{2}{\pi} \arctan \left(\frac{\pi}{2}\left(b\left(\Delta^{d}(t+1)-0.5\right)\right)\right)\right| \tag{25}
\end{gather*}
$$

After updating the probability vector with one of these S-shaped or V-shaped transfer functions, an element of a fruit fly will be updated using one of the following discretization methods: Standard, Elitist, Static Probability, Complement and Elitist Roulette, detailed in the equations $26,27,28,29$ and 30 , respectively. In all of them, F_{i}^{d} represents the $d^{t h}$ position of the fruit fly $F_{i}, F_{\text {best }}$ is the best fruit fly in the current generation and α is the static probability.

1. Standard (STD): If condition is satisfied, standard method return 1, otherwise, return 0 .

$$
F_{i}^{d}(t+1)= \begin{cases}1 & , \text { if } \operatorname{rand}() \leq p^{d}(t+1) \tag{26}\\ 0 & , \text { otherwise }\end{cases}
$$

2. Elitist (ELT): The best value is assigned if random value is within the probability, otherwise a zero value is assigned.

$$
F_{i}^{d}(t+1)= \begin{cases}F_{\text {best }}^{d} & , \text { if } \operatorname{rand}() \leq p^{d}(t+1) \tag{27}\\ 0 & , \text { otherwise }\end{cases}
$$

3. Static probability (STAT): A probability is generated and it is evaluated with a transfer function.

$$
F_{i}^{d}(t+1)= \begin{cases}0 & , \text { if } p^{d}(t+1) \leq \alpha \tag{28}\\ F_{i}^{d}(t) & , \text { if } \alpha \leq p^{d}(t+1) \leq \frac{1}{2}(1+\alpha) \\ 1 & , \text { if } \frac{1}{2}(1+\alpha) \leq p^{d}(t+1)\end{cases}
$$

4. Complement (COMP): If condition is satisfied, the method will return the complement value.

$$
F_{i}^{d}(t+1)= \begin{cases}\text { complement }\left(F_{i}^{d}(t)\right) & , \text { if } \operatorname{rand}() \leq p^{d}(t) \tag{29}\\ 0 & , \text { otherwise }\end{cases}
$$

5. Elitist Roulette (ERLT): Also known as Monte Carlo, this method selects randomly among the best individuals of the population, with a probability directly proportional to its fitness. The $F_{\text {new }}$ is the fruit fly selected among the group of best individuals.

$$
F_{i}^{d}(t+1)= \begin{cases}F_{n e w}^{d} & , \text { if } \operatorname{rand}() \leq p\left(F_{i}^{d}(t+1)\right) \tag{30}\\ 0 & , \text { otherwise }\end{cases}
$$

The probability $P\left(F_{i}\right)$ to select a fruit fly F_{i} is detailed as:

$$
\begin{equation*}
P\left(F_{i}\right)=\frac{\frac{1}{z_{i}} \sum_{j=1}^{k}\left(z_{j}\right)}{\sum_{j=1}^{k} \sum_{i=1}^{k}\left(\frac{z_{j}}{z_{i}}\right)} \tag{31}
\end{equation*}
$$

Where z_{i} is the fitness of the possible solution to be selected represented by a fruit fly i and k is the number of candidate fruit flies.
6. Experimental Results. The modified BFFOA with the transfer functions proposed has been implemented in Java in a Common KVM processor of 2.66 GHz with 4 GB RAM computer, running Microsoft Windows 7. The parameter tuning for the algorithm is detailed in table 2.

Table 2. Parameter tuning for BFFOA experiments

Parameter	Detail	Value
N	Population size	50
$g e n$	Generations (iterations).	400
S	Neighbours for smell-based search.	5
L	Bits to flip randomly when generating neighbours.	3
b	Coefficient of vision sensitivity.	15
α	Static probability	0.2
k	Amount of best individuals for Elitist Roulette method	3

All the datasets tested are from Beasley's OR Library ${ }^{1}$. In total, we solved 65 data files; instances 4, 5, 6 are from [1], instances A, B, C, D are from [2] and instances NRE, NRF, NRG, NRH are the unknown-solution problem set from [3]. Details of datasets are described in table 3.

For each instance, we report the average values obtained after run 30 times each algorithm.

[^1]| Instance
 Set | Number of
 Instances | m | n | Cost
 Range | Density
 $(\%)$ | Optimal
 Solution |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 10 | 200 | 1000 | $[1,100]$ | 2 | Known |
| 5 | 10 | 200 | 2000 | $[1,100]$ | 2 | Known |
| 6 | 5 | 200 | 1000 | $[1,100]$ | 5 | Known |
| A | 5 | 300 | 3000 | $[1,100]$ | 2 | Known |
| B | 5 | 300 | 3000 | $[1,100]$ | 5 | Known |
| C | 5 | 400 | 4000 | $[1,100]$ | 2 | Known |
| D | 5 | 400 | 4000 | $[1,100]$ | 5 | Known |
| NRE | 5 | 500 | 5000 | $[1,100]$ | 10 | Unknown |
| NRF | 5 | 500 | 5000 | $[1,100]$ | 20 | Unknown |
| NRG | 5 | 1000 | 10000 | $[1,100]$ | 2 | Unknown |
| NRH | 5 | 1000 | 10000 | $[1,100]$ | 5 | Unknown |

Table 3. Set Covering Instances.
6.1. Comparison of proposed BFFOA with other metaheuristics. The tables $4,5,6,7,8,9,10$ and 11 show the detailed results obtained by different instances of our modified BFFOA. In all of them, the results are presented along with the transfer function (TF) and discretization method (DM) used in each case, and compared with other metaheuristics in terms of minimum and maximum number of optimal founded ($Z_{\text {MIN }}, Z_{\text {MAX }}$) and the relative percentage deviation (RPD), which represents the deviation of the objective value Z (fitness) from Z_{OPT} (equation 32).

$$
\begin{equation*}
\mathrm{RPD}=\frac{100\left(Z_{\mathrm{MIN}}-Z_{\mathrm{BKS}}\right)}{Z_{\mathrm{BKS}}} \tag{32}
\end{equation*}
$$

For comparison purposes, we consider the values reported in [33] for Binary Cuckoo Search (BCS) and Binary Black Hole (BBH); also, we have taken results for Binary Cat Swarm Optimization (BCSO) [12], Binary Firefly Optimization (BFO) [11], Binary Shuffled Frog Leap Algorithm (BSFLA) [13], Binary Electromagnetismlike Algorithm (BELA) [32] and Binary Artificial Bee Colony (BABC) [16].

Table 4 presents the results obtained from instance set 4. In this case our algorithm was better to all others in comparison, as it reached optimal values in all instances; BCSO, BSFLA, BELA and BABC are unable to achieve optimal values and BFO reached only two. The closest methods in comparison were BCS with eight optimal and BBH with five.

Table 5 describes the results from instance set 5 . Once again, our algorithm got the best results along with BCS and BBH . Algorithms BCSO and BELA are unable to solve optimally any instance, BABC found only two optimal values, BFO reached three and BSFLA got four.

Table 6 illustrates the results from instance sets 6 and A. Our algorithm performed well, reaching eight optimal values (the whole set 6 and 3 from set A). BBH was slightly better than BCS this time, BCSO and BELA are unable to optimally solve any instance, BABC is capable to find only two optimal values (one in each set), BFO reached three and BSFLA got four.

Table 7 shows the results from instance set B and C . In case of set B , our algorithm had a very good performance, reaching all the optimal values, just like BCS and BBH. For instance set C, situation is similar, as BFFOA reached four out of five optimal values, outperforming all other methods.

Table 4. Computational results for instance set 4

Instance		4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	4.10
$Z_{\text {opt }}$		429	512	516	494	512	560	430	492	641	514
Our approach											
BFFOA	$Z_{\text {min }}$	429	512	516	494	512	560	430	492	641	514
	$Z_{\text {avg }}$	431.57	512	516	495.53	514.2	560.87	430.67	494.2	646.83	514.1
	$R P D$	0	0	0	0	0	0	0	0	0	0
	$T F$	S2	S4	S4	S4	S4	S3	S3	S4	V4	S3
	$D M$	STD	STD	ELT	ELT	STD	STD	STD	STD	ELT	STD
Other approaches											
BCS	$Z_{\text {min }}$	430	512	517	494	512	560	430	492	641	514
	$Z_{\text {avg }}$	432	516	519	503	516	563	431	495	645	526
	$R P D$	0.23	0	0.19	0	0	0	0	0	0	0
BBH	$Z_{\text {min }}$	430	512	516	495	514	560	430	493	644	514
	$Z_{\text {avg }}$	430	512	517	501	519	562	432	495	648	517
	$R P D$	0.23	0	0	0.2	0.39	0	0	0.2	0.46	0
BCSO	$Z_{\text {min }}$	459	570	590	547	545	637	462	546	711	537
	$Z_{\text {avg }}$	480	594	607	578	554	650	467	567	725	552
	$R P D$	7	11.3	14.3	10.7	6.4	13.8	7.4	11	10.9	4.5
BFO	$Z_{\text {min }}$	429	517	519	495	514	563	430	497	655	519
	$Z_{\text {avg }}$	430	517	522	497	515	565	430	499	658	523
	$R P D$	0	0.97	0.58	0.2	0.39	0.53	0	1.01	2.18	0.97
BSFLA	$Z_{\min }$	430	516	520	501	514	563	431	497	656	518
	$Z_{a v g}$	430	518	520	504	514	563	432	499	656	519
	$R P D$	0.23	0.78	0.78	1.42	0.39	0.54	0.23	1.02	2.34	0.78
BELA	$Z_{\text {min }}$	447	559	537	527	527	607	448	509	682	571
	$Z_{\text {avg }}$	448	559	539	530	529	608	449	512	682	571
	$R P D$	4.20	9.18	4.07	6.68	2.93	8.39	4.19	3.46	6.40	11.09
BABC	$Z_{\min }$	430	513	519	495	514	561	431	493	649	517
	$Z_{\text {avg }}$	430	513	521	496	517	565	434	494	651	519
	$R P D$	0.23	0.20	0.58	0.20	0.39	0.18	0.23	0.20	0.93	0.58

Table 5. Computational results for instance set 5

Instance		5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	5.10
$Z_{\text {opt }}$		253	302	226	242	211	213	293	288	279	265
Our approach											
BFFOA	$Z_{\text {min }}$	253	304	226	242	211	213	293	288	279	265
	$Z_{\text {avg }}$	255.6	305.67	227.73	242.03	211	213.5	294.03	288.87	279.8	265.07
	$R P D$	0	0.66	0	0	0	0	0	0	0	0
	TF	S3	S4	S3	S2	V4	V4	S4	S3	S4	S4
	$D M$	STD	STD	STD	COMP	COMP	COMP	ELT	STD	STD	STD
Other approaches											
BCS	$Z_{\text {min }}$	253	304	226	242	212	213	293	288	279	265
	$Z_{\text {avg }}$	256	307	227	243	213	215	294	290	280	266
	$R P D$	0	0.66	0	0	0.47	0	0	0	0	0
BBH	$Z_{\text {min }}$	253	305	228	242	211	213	293	288	279	265
	$Z_{\text {avg }}$	256	307	230	242	211	213	294	289	280	267
	$R P D$	0	0.99	0.88	0	0	0	0	0	0	0
BCSO	$Z_{\text {min }}$	279	339	247	251	230	232	332	320	295	285
	$Z_{\text {avg }}$	287	340	251	253	230	243	338	330	297	287
	$R P D$	10.3	12.3	9.3	3.7	9	8.9	13.3	11.1	5.7	7.5
BFO	$Z_{\text {min }}$	257	309	229	242	211	213	298	291	284	268
	$Z_{\text {avg }}$	260	311	233	242	213	213	301	292	284	270
	$R P D$	1.58	2.31	1.32	0	0	0	1.7	1.04	1.79	1.13
BSFLA	$Z_{\text {min }}$	254	307	228	242	211	213	297	291	281	265
	$Z_{\text {avg }}$	255	307	230	242	213	214	299	293	283	266
	$R P D$	0.4	1.66	0.88	0	0	0	1.37	1.04	0.72	0
BELA		280	318	242	251	225	247	316	315	314	280
	$Z_{\text {avg }}$	281	321	240	252	227	248	317	317	315	282
	$R P D$	10.67	5.30	7.08	3.72	6.64	15.96	7.85	9.38	12.54	5.66
BABC		254	309	229	242	211	214	298	289	280	267
	$Z_{\text {avg }}$	255	309	233	245	212	214	301	291	281	270
	$R P D$	0.40	2.32	1.33	0	0	0.47	1.71	0.35	0.36	0.75

Table 8 shows the results from instance set D. Here, the BFFOA and BBH (3 optimal values each one) could not reach results of BCS. However, we can still say this is an acceptable result, considering that all other approaches got less than 30% of optimal values.

TABLE 6. Computational results for instance set 6 and A

Instance		6.1	6.2	6.3	6.4	6.5	A. 1	A. 2	A. 3	A. 4	A. 5
$Z_{\text {opt }}$		138	146	145	131	161	253	252	232	234	236
Our approach											
BFFOA	$Z_{\text {min }}$	138	146	145	131	161	253	254	233	234	236
	$Z_{\text {avg }}$	140.07	148.93	146.7	131	162.3	254.8	258.9	234.8	234.77	236.4
	$R P D$	0	0	0	0	0	0	0.79	0.43	0	0
	$T F$	S2	S3	S4	S3	S3	S1	S4	S3	S3	V4
	$D M$	COMP	STD	ELT	STD	STD	COMP	STD	STD	ELT	ELT
Other approaches											
BCS	$Z_{\text {min }}$	140	146	145	131	161	254	256	233	237	236
	$Z_{\text {avg }}$	141	147	146	133	163	254	257	235	239	237
	$R P D$	0.14	0	0	0	0	0.34	0.16	0.43	0.13	0
BBH	$Z_{\text {min }}$	140	147	145	131	161	253	253	233	234	236
	$Z_{\text {avg }}$	142	150	147	131	164	255	254	234	234	237
	$R P D$	1.45	0.68	0	0	0	0	0.39	0.43	0	0
BCSO	$Z_{\text {min }}$	151	152	160	138	169	286	274	257	248	244
	$Z_{a v g}$	160	157	164	142	173	287	276	263	251	244
	$R P D$	9.4	4.1	10.3	5.3	5	13	8.7	10.8	6	3
BFO	$Z_{\min }$	138	147	147	131	164	255	259	238	235	236
	$Z_{\text {avg }}$	140	149	150	131	157	256	261	240	237	237
	$R P D$	0	0.68	1.37	0	1.86	0.79	2.77	2.58	0.42	0
BSFLA	$Z_{\min }$	140	147	147	131	166	255	260	237	235	236
	$Z_{\text {avg }}$	141	147	148	133	169	258	260	239	238	239
	$R P D$	1.45	0.68	1.38	0	3.11	0.79	3.17	2.16	0.43	0
BELA	$Z_{\text {min }}$	152	160	160	140	184	261	279	252	250	241
	$Z_{\text {avg }}$	152	161	163	142	187	264	281	253	252	243
	$R P D$	10.14	9.59	10.34	6.87	14.29	3.16	10.71	8.62	6.84	2.12
BABC	$Z_{\min }$	142	147	148	131	165	254	257	235	236	236
	$Z_{\text {avg }}$	143	150	149	133	167	254	259	238	237	238
	$R P D$	2.90	0.68	2.07	0	2.48	0.40	1.98	1.29	0.85	0

Table 7. Computational results for instance sets B and C

Instance		B. 1	B. 2	B. 3	B. 4	B. 5	C. 1	C. 2	C. 3	C. 4	C. 5
$Z_{\text {opt }}$		69	76	80	79	72	227	219	243	219	215
Our approach											
BFFOA	$Z_{\min }$	69	76	80	79	72	227	219	247	219	215
	$Z_{\text {avg }}$	70.67	76.27	80.17	80.1	72	230.77	221.57	254.27	223.07	216.8
	$R P D$	0	0	0	0	0	0	0	1.65	0	0
	TF	S2	S3	S1	V3	S1	V3	S4	S3	S3	V4
	$D M$	COMP	ELT	COMP	COMP	COMP	COMP	ELT	STD	ELT	ELT
Other approaches											
BCS	$Z_{\text {min }}$	69	76	80	79	72	228	221	247	221	216
	$Z_{\text {avg }}$	70	79	80	81	73	230	223	249	223	217
	$R P D$	0	0	0	0	0	0.44	0.9	1.62	0.9	0.46
BBH	$Z_{\min }$	69	76	80	79	72	229	219	245	219	215
	$Z_{\text {avg }}$	70	77	81	81	73	231	220	246	219	216
	$R P D$	0	0	0	0	0	0.88	0	0.82	0	0
BCSO	$Z_{\text {min }}$	79	86	85	89	73	242	240	277	250	243
	$Z \mathrm{avg}$	79	89	85	89	73	242	241	278	250	244
	$R P D$	14.5	13.2	6.3	12.7	1.4	6.6	9.6	14	12.3	13
BFO	$Z_{\min }$	71	78	80	80	72	230	223	253	225	217
	$Z_{\text {avg }}$	72	78	80	81	73	232	224	254	227	219
	$R P D$	2.89	2.63	0	1.26	0	1.32	1.82	4.11	2.73	0.93
BSFLA	$Z_{\text {min }}$	70	76	80	79	72	229	223	253	227	217
	$Z_{\text {avg }}$	70	77	80	80	73	231	225	253	228	218
	$R P D$	1.45	0	0	0	0	0.88	1.83	4.12	3.65	0.93
BELA	$Z_{\min }$	86	88	85	84	78	237	237	271	246	224
	$Z_{\text {avg }}$	87	88	87	88	81	238	239	271	248	225
	$R P D$	24.64	15.79	6.25	6.33	8.33	4.41	8.22	11.52	12.33	4.19
BABC	$Z_{\text {min }}$	70	78	80	80	72	231	222	254	231	216
	$Z_{\text {avg }}$	70	79	80	81	74	233	223	255	233	217
	$R P D$	1.45	2.63	0	1.27	0	1.76	1.37	4.53	5.48	0.47

For the NRE and NRF sets described in table 9 , only two $R P D=0$ per set are reached by the BFFOA algorithm. Other approaches fail in general to find optimum values as the instance set becomes harder. Only BCS and BBH are closer to our results. BSFLA and BABC achieve one optimum for the instances belonging to set NRF, while BBH and BCS reach three.

TABLE 8. Computational results for instance set D

Instance		D. 1	D. 2	D. 3	D. 4	D. 5
$Z_{\text {opt }}$		60	66	72	62	61
Our approach						
BFFOA	$Z_{\text {min }}$	60	67	73	62	61
	$Z_{\text {avg }}$	60	67.73	75.7	63.37	62.63
	$R P D$	0	1.52	1.39	0	0
	$T F$	S1	S3	S4	S2	S3
	$D M$	ERLT	ELT	ELT	COMP	ELT
Other approaches						
BCS	$Z_{\min }$	60	66	73	62	61
	$Z_{\text {avg }}$	60	66	74	62	62
	$R P D$	0	0	0.14	0	0
BBH	$Z_{\text {min }}$	60	67	73	62	61
	$Z_{\text {avg }}$	60	68	74	62	62
	$R P D$	0	1.51	1.38	0	0
BCSO	$Z_{\min }$	65	70	79	64	65
	$Z_{\text {avg }}$	66	70	81	67	66
	$R P D$	8.3	6.1	9.7	3.2	6.6
BFO	$Z_{\min }$	60	68	75	62	63
	$Z_{\text {avg }}$	61	68	77	62	63
	$R P D$	0	3.03	4.16	0	3.27
BSFLA	$Z_{\text {min }}$	60	67	75	63	63
	$Z_{\text {avg }}$	62	68	77	65	66
	$R P D$	0	1.52	4.17	1.61	3.28
BELA	$Z_{\text {min }}$	62	73	79	67	66
	$Z_{\text {avg }}$	62	74	81	69	67
	$R P D$	3.33	10.61	9.72	8.06	8.20
BABC	$Z_{\text {min }}$	60	68	76	63	63
	$Z a v g$	61	68	77	65	66
	$R P D$	0	3.03	5.56	1.61	3.28

Table 9. Computational results for instance set of NRE and NRF

Instance		NRE. 1	NRE. 2	NRE. 3	NRE. 4	NRE. 5	NRF. 1	NRF. 2	NRF. 3	NRF. 4	NRF. 5
$Z_{\text {opt }}$		29	30	27	28	28	14	15	14	14	13
Our approach											
BFFOA	$Z_{\text {min }}$	29	30	28	29	28	14	15	15	15	14
	$Z_{a v g}$	29	32.13	28.7	29.63	28.93	15	15.9	16.73	15.03	15.1
	$R P D$	0	0	3.7	3.57	0	0	0	7.14	7.14	7.69
	TF	S3	S3	S4	S4	V4	V4	S4	S4	V1	V3
	$D M$	ELT	ERLT	ERLT	ELT						
Other approaches											
BCS	$Z_{\text {min }}$	29	31	28	30	28	14	15	15	15	14
	$Z_{\text {avg }}$	30	32	29	31	30	14	17	16	15	15
	$R P D$	0	0.32	0.36	0.67	0	0	0	0.67	0.67	0.71
BBH	$Z_{\text {min }}$	29	31	28	29	28	14	15	16	15	14
	$Z_{\text {avg }}$	30	31	29	31	29	15	16	16	16	15
	$R P D$	0	3.33	3.7	3.57	0	0	0	4.28	7.14	7.69
BCSO	$Z_{\text {min }}$	29	34	31	32	30	17	18	17	17	15
	$Z_{a v g}$	30	34	32	33	30	17	18	17	17	16
	$R P D$	0	13.3	14.8	14.3	7.1	21.4	20	21.4	21.4	15.4
BFO	$Z_{\text {min }}$	29	32	29	29	29	15	16	16	15	15
	$Z_{\text {avg }}$	31	32	30	31	29	17	16	17	18	19
	$R P D$	0	6.66	7.4	3.57	3.57	7.14	6.66	14.28	7.14	15.38
BSFLA	$Z_{\text {min }}$	29	31	28	29	28	15	15	16	15	15
	$Z_{a v g}$	29	32	28	30	31	15	15	17	16	17
	$R P D$	0	3.33	3.7	3.57	0	7.14	0	14.29	7.14	15.38
BELA	$Z_{\text {min }}$	30	35	34	33	30	17	18	17	17	16
	$Z_{\text {avg }}$	31	35	34	34	31	17	18	18	19	17
	$R P D$	3.45	16.67	25.93	17.86	7.14	21.43	20	21.43	21.43	23.08
BABC	$Z_{\min }$	29	32	29	29	29	14	16	16	15	15
	$Z_{a v g}$	33	32	31	30	32	15	16	17	17	16
	$R P D$	0	6.67	7.41	3.57	3.57	0	6.67	14.29	7.14	15.38

Finally, for the hardest instance sets NRG and NRH (see Tables 10 and 11), we observe that the $R P D$ obtained by the proposed BBFOA is good enough to compete with the approaches like BCS and BBH , as in the three cases, they could only reached one optimal value.

Table 10. Computational results for instance set NRG

Instance		NRG. 1	NRG. 2	NRG. 3	NRG. 4	NRG. 5
$Z_{\text {opt }}$		176	154	166	168	168
Our approach						
BFFOA	$Z_{\text {min }}$	178	159	170	170	173
	$Z_{\text {avg }}$	180.3	160.43	171.57	172.2	175
	$R P D$	1.14	3.25	2.41	1.19	2.98
	$T F$	S4	V4	S4	V4	S4
	DM	ELT	ELT	ELT	ELT	ELT
Other approaches						
BCS	$Z_{\text {min }}$	176	156	169	170	170
	$Z_{a v g}$	177	157	170	171	171
	$R P D$	0	0.13	0.77	0.12	0.12
BBH	$Z_{\text {min }}$	179	158	169	170	168
	$Z_{\text {avg }}$	181	160	169	171	169
	$R P D$	1.7	2.59	1.8	1.19	0
BCSO	$Z_{\min }$	190	165	187	179	181
	$Z_{a v g}$	193	166	188	183	184
	$R P D$	8	7.1	20.6	6.5	7.7
BFO	$Z_{\text {min }}$	185	161	175	176	177
	$Z_{a v g}$	191	163	177	176	181
	$R P D$	5.11	4.54	5.42	4.76	5.35
BSFLA	$Z_{\text {min }}$	182	161	173	173	174
	$Z_{a v g}$	183	161	174	177	174
	$R P D$	3.41	4.55	4.22	2.98	3.57
BELA	$Z_{\text {min }}$	194	176	184	196	198
	$Z_{a v g}$	196	176	185	197	199
	$R P D$	10.23	14.29	10.84	16.67	17.86
BABC	$Z_{\text {min }}$	183	162	174	175	179
	$Z_{a v g}$	184	163	175	177	181
	$R P D$	3.98	5.19	4.82	4.17	6.55

Table 11. Computational results for instance set NRH

Instance		NRH. 1	NRH. 2	NRH. 3	NRH. 4	NRH. 5
$Z_{\text {opt }}$		63	63	59	58	55
Our approach						
BFFOA	$Z_{\text {min }}$	66	66	61	63	55
	$Z_{\text {avg }}$	67.47	66	63	63.5	58.07
	$R P D$	4.76	4.76	3.39	3.39	0
	TF	S3	S3	S4	S3	S4
	$D M$	ELT	ELT	ELT	ELT	ELT
Other approaches						
BCS	$Z_{\text {min }}$	64	64	62	59	56
	$Z_{\text {avg }}$	64	64	63	60	57
	$R P D$	0.16	0.16	0.48	0.17	0.18
BBH	$Z_{\text {min }}$	66	67	65	63	62
	$Z_{\text {avg }}$	67	68	65	64	62
	$R P D$	4.76	6.34	10.16	8.62	12.72
BCSO	$Z_{\text {min }}$	70	67	68	66	61
	$Z_{\text {avg }}$	71	67	70	67	62
	$R P D$	11.1	6.3	15.3	13.8	10.9
BFO	$Z_{\text {min }}$	69	66	65	63	59
	$Z_{\text {avg }}$	70	66	67	65	60
	$R P D$	9.52	4.76	10.16	6.77	7.27
BSFLA	$Z_{\text {min }}$	68	66	62	63	59
	$Z_{\text {avg }}$	69	66	63	64	61
	$R P D$	7.94	4.76	5.08	8.62	7.27
BELA	$Z_{\text {min }}$	70	71	68	70	69
	$Z_{\text {avg }}$	71	71	70	72	69
	$R P D$	11.11	12.70	15.25	20.69	25.45
BABC	$Z_{\text {min }}$	70	69	66	64	60
	$Z_{\text {avg }}$	71	72	67	64	61
	$R P D$	11.11	9.52	11.86	10.34	9.09

7. Conclusion. This article proposes several variations to BFFOA (39 to be precise), created by adding to the original BFFOA different transfer functions and discrete methods in order to improve the solutions obtained. All of these BBFOAvariations were tested into 65 SCP instances and the values reported correspond to the algorithm with the best performance. From our results, we conclude that variations presented are robust enough to compete with other algorithms as we were able to find many optimal solutions with a little parameter tuning.

We observed that best combinations of transfer functions and discretization methods depend on the instance size. For small instances (4, 5, 6, A, B, C, D) best results were achieved with transfer functions $p_{S 3}$ and $p_{S 4}$ plus the Standard discretization; whereas for huge instances (NRE, NRF, NRG, NRH) the best combinations are the same transfer functions $p_{S 3}$ and $p_{S 4}$, but with the Elitist method. A point to remark is that the use of the Elitist discretization is not exclusive for this algorithm and problem; other articles like [19] report good results with it.

In the future, we are interested in the hybridization of BFFOA with other metaheuristics or apply an hyper-heuristics version. In the short term, we expect to test our algorithms on other SCP libraries, such like the Unicost (available at ORLibrary website) or Italian railways [8] benchmarks. Due to the good results and the simplicity of this algorithm, it could be used to solve other combinatorial problems.

Acknowledgments. Broderick Crawford is supported by Grant CONICYT / FONDECYT / REGULAR / 1171243, Ricardo Soto is supported by Grant CONICYT / FONDECYT / REGULAR / 1160455. This research was partially funded by CORFO Program Ingeniería 2030 PUCV - Consortium of Chilean Engineering Faculties.

REFERENCES

[1] E. Balas and A. Ho Set covering algorithms using cutting planes, heuristics, and subgradient optimization: A computational study, Combinatorial Optimization, (1980), 37-60.
[2] J. Beasley, An algorithm for set covering problem, European Journal of Operational Research, 31 (1987), 85-93.
[3] J. Beasley, A lagrangian heuristic for set-covering problems, Naval Research Logistics (NRL), 37 (1990), 151-164.
[4] J. Beasley and P. Chu, A Genetic Algorithm for the Set Covering problem, European Journal of Operational Research, 94 (1996), 392-404.
[5] V. Cacchiani, V. Hemmelmayr and F. Tricoire, A set-covering based heuristic algorithm for the periodic vehicle routing problem, Discrete Applied Mathematics, 163 (2014), 53-64.
[6] A. Caprara, P. Toth and M. Fischetti, Algorithms for the set covering problem, Annals of Operations Research, 98 (2000), 353-371.
[7] M. Caserta, Tabu Search-Based Metaheuristic Algorithm for Large-scale Set Covering Problems, Metaheuristics: Progress in Complex Systems Optimization, 39 (2007), 43-63.
[8] S. Ceria, P. Nobili and A. Sassano, A Lagrangian-based heuristic for large-scale set covering problems, Mathematical Programming, 81 (1998), 215-228.
[9] W. Chaovalitwongse, T. Berger-Wolf, B. Dasgupta and M. Ashley, Set covering approach for reconstruction of sibling relationships, Optimisation Methods and Software, 22 (2007), 11-24.
[10] B. Crawford, R. Soto, R. Cuesta and F. Paredes, Application of the Artificial Bee Colony Algorithm for Solving the Set Covering Problem, The Scientific World Journal, 2014 (2014).
[11] B. Crawford, R. Soto, M. Olivares-Suárez and F. Paredes, A Binary Firefly Algorithm for the Set Covering Problem, Modern Trends and Techniques in Computer Science: 3rd Computer Science On-line Conference 2014 (CSOC 2014), 285 (2014), 65-73.
[12] B. Crawford, R. Soto, N. Berríos, F. Johnson, F. Paredes, C. Castro, Carlos and E. Norero, A Binary Cat Swarm Optimization Algorithm for the Non-Unicost Set Covering Problem, Mathematical Problems in Engineering, (2015).
[13] B. Crawford, R. Soto, C. Peña, W. Palma, F. Johnson and F. Paredes, Solving the Set Covering Problem with a Shuffled Frog Leaping Algorithm, Intelligent Information and Database Systems, (2015), 41-50.
[14] B. Crawford, R. Soto, F. Aballay, S. Misra, F. Johnson and F. Paredes, A Teaching-LearningBased Optimization Algorithm for Solving Set Covering Problems, Computational Science and Its Applications-ICCSA 2015, (2015), 421-430.
[15] B. Crawford, R. Soto, G. Astorga, J. García, C. Castro and F. Paredes Putting Continuous Metaheuristics to Work in Binary Search Spaces, Complexity, 2017 (2017).
[16] R. Cuesta, B. Crawford, R. Soto and F. Paredes, An Artificial Bee Colony Algorithm for the Set Covering Problem, Advances in Intelligent Systems and Computing, (2014), 53-63.
[17] M. Fisher and P. Kedia, Optimal solution of set covering/partitioning problems using dual heuristics, Management Science, 36 (1990), 674-688.
[18] J. García, B. Crawford, R. Soto and P. García, A multi dynamic binary black hole algorithm applied to set covering problem, International Conference on Harmony Search Algorithm, v (2017), 42-51.
[19] N. Ghorbani, E. Babaei and F. Sadikoglu, BEMA: Binary Exchange Market Algorithm, Procedia Computer Science, 120 (2017), 656-663.
[20] Z. He, H. Qi, Y. Yao and L. Ruan, Inverse estimation of the particle size distribution using the Fruit Fly Optimization Algorithm, Applied Thermal Engineering, 88 (2015), 306-314.
[21] M.S. Kiran, The continuous artificial bee colony algorithm for binary optimization, Applied Soft Computing, 33 (2015), 306-314.
[22] S. Korkmaz and M.S. Kiran, An artificial algae algorithm with stigmergic behavior for binary optimization, Applied Soft Computing, 64 (2018), 627-640.
[23] J. Lanza-Gutierrez, B. Crawford, R. Soto, N. Berrios, J. Gomez-Pulido and F. Paredes, Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization, Expert Systems with Applications, 70 (2017), 67-82.
[24] H. Li, S. Guo, Ch. Li, and J. Sun, A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm, Knowledge-Based Systems, 37 (2013), 378-387.
[25] S. Lin, Analysis of service satisfaction in web auction logistics service using a combination of Fruit Fly optimization algorithm and general regression neural network, Neural Computing and Applications, 22 (2013), 783-791.
[26] M. Mesquita and A. Paias, Set partitioning/covering-based approaches for the integrated vehicle and crew scheduling problem, Computers 83 Operations Research, 35 (2008), 15621575.
[27] S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Computing and Applications, 27 (2015), 1053-1073.
[28] S. Mirjalili and A. Lewis, S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization, Swarm and Evolutionary Computation, 9 (2013), 1-14.
[29] C. Ozturk, E. Hancer and D. Karaboga, A novel binary artificial bee colony algorithm based on genetic operators, Information Sciences, 297 (2015), 154-170.
[30] W. Pan, A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example, Knowledge-Based Systems, 26 (2012), 69-74.
[31] Z. G. Ren, Z. R. Feng, L. J. Ke and Z. J. Zhang New ideas for applying ant colony optimization to the set covering problem, Computers \mathcal{G} Industrial Engineering, 58 (2010), 774-784.
[32] R. Soto, B. Crawford, A. Muñoz, F. Johnson, and F. Paredes, Pre-processing, Repairing and Transfer functions can help Binary Electromagnetism-like algorithms, Artificial Intelligence Perspectives and Applications, 347 (2015), 89-97.
[33] R. Soto, B. Crawford, R. Olivares, J. Barraza, I. Figueroa, S. Niklander, F. Johnson, F. Paredes and E.Olguin, Solving the non-Unicost Set Covering problem by using Cuckoo Search and Black Hole Optimization, Natural Computing, (2016), 213-229.
[34] D. Šarac, M. Kopić, K. Mostarac, M. Kujačić and B. Jovanović, Application of Set Covering Location Problem for Organizing the Public Postal Network, PROMET-Traffic \&s Transportation, 28 (2016), 403-413.
[35] L. Wang, X. Zheng and S. Wang, A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem, Knowledge-Based Systems, 48 (2013), 17-23.
[36] R.L. Wang and K. Okazaki, An improved genetic algorithm with conditional genetic operators and its application to set-covering problem, Soft computing, $\mathbf{1 1}$ (2007), 687-694.
[37] Y. Xing, Design and optimization of key control characteristics based on improved fruit fly optimization algorithm, Kybernetes, 42 (2013), 466-481.
[38] X. Zhang, Ch. Wu, J. Li, X. Wang, Z. Yang, J.M. Lee and K.H. Jung, Binary artificial algae algorithm for multidimensional knapsack problems, Applied Soft Computing, 43 (2016), 538595.

E-mail address: broderick.crawford@pucv.cl
E-mail address: ricardo.soto@pucv.cl
E-mail address: claudio.torres.r@mail.pucv.cl
E-mail address: franklin.johnson@upla.cl
E-mail address: fernando.paredes@udp.cl
E-mail address: carlos.castro@inf.utfsm.cl
E-mail address: eric.monfroy@univ-nantes.fr
E-mail address: claudia.vasconcellos@univ-angers.fr

[^0]: 2010 Mathematics Subject Classification. Primary: 11Y16, 90C59; Secondary: 68Q25.
 Key words and phrases. Set Covering Problem, Fruit Fly Optimization Algorithm, Metaheuristics, Binarization Methods, Combinatorial Optimization Problem.

 Broderick Crawford is supported by Grant CONICYT / FONDECYT / REGULAR / 1171243.

 * Corresponding author: Broderick Crawford.

[^1]: ${ }^{1}$ http://people.brunel.ac.uk/~mastjjb/jeb/info.html

