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Abstract. The Fruit Fly Optimization Algorithm is a bio-inspired meta-

heuristic for deducing global optimization in continuous spaces, based on the
foraging behavior of the fruit fly, which tends to have a much better sensory

perception of smell and vision than any other specie. In the other hand, the

Set Covering Problem is a well known NP-hard problem with many practical
applications, including line balancing production, service installation and crew

scheduling in railway and mass-transit companies, among others. In this arti-
cle, we propose different binarization methods for the Fruit Fly Algorithm, us-
ing S-shaped and V-shaped transfer functions and several discretization meth-
ods to make the algorithm work in a binary search space. This new approach

was tested on the benchmark instances of Set Covering Problem and the com-
putational results show that algorithm proposed is robust enough to produce

good results at a low computational cost.
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1. Introduction. The Set Covering Problem (SCP) is a well-known covering prob-
lem belonging to the NP-hard class, which consists into find a subset of columns in a
zero-one matrix such that they cover all the rows of the matrix at a minimum cost.
It has important practical applications, such like : emergency services location [34],
crew scheduling in mass-transit companies [26], vehicle routing [5], reconstruction
of siblings relationships [9], etc.

Considering the complex nature of the SCP, the huge size of real datasets and
the variety of methods designed to approach similar problems, the SCP has been
solved by exact methods, metaheuristics and other techniques as well. Resolution
by exact methods are mostly based on Branch-and-Bound, Branch-and-Cut and
Lagrangean heuristics [6] among others. Resolution by metaheuristics includes:
genetic algorithms [36], taboo search [7], ant colony optimization [31], artificial bee
colonies [10], firefly algorithms [11], cat swarm optimization [12], cuckoo search [33],
teaching-learning based optimization [14] and shuffled frog leaping algorithm [13],
binary black hole algorithms [18] etc.

In this article, we present a new approach for solving the SCP based on Wen
Tsao-Pan’s Fruit Fly Optimization Algorithm (FFOA) [30]. This metaheuristic is
based on foraging behavior of fruit flies, which use the smell and vision senses to
find their food; in terms of the algorithm, these senses are represented by a com-
bination between local (smell) and global (vision) searches to improve the quality
of solutions. Given that FFOA was developed for continuous spaces and SCP is a
binary problem, our work contributes to propose several binarization methods for
a continuous algorithm; in this article, we present eight different transfer functions
and five discretization methods, generating a total of 39 variations to the original
BFFOA.

The discretization of continuous metaheuristics is not a new topic but, given that
new algorithms are still coming, new discretizations need to be tested as well. Some
of the recent literature in the area covers metaheuristics like: artificial bee colony
([21], [29]), artificial algae algorithm ([22], [38]) or dragonfly algorithm [27], among
others.

The results of this work suggests that BFFOA (the binary version of FFOA) is
a robust algorithm, capable to produce good results at a low computational cost.

This article is organized as follows: A brief description of the Set Covering Prob-
lem in Section 2, the presentation of the Pan’s Fruit Fly Algorithm in Section 3,
the description of the functions and methods used to allow the algorithm run into
discrete spaces in Section 4. In Section 5, the experimental results for the different
instances and finally, in Section 6, conclusions and suggestions of future research
lines.

2. Set Covering Problem. The SCP is a classical covering problem that consists
into find a subset of columns in a zero-one matrix such that they can cover all the
rows of that matrix at a minimum cost. Let A = (aij) be a m×n binary matrix with
I = {1, . . . ,m} and J = {1, . . . , n} being the row and column sets respectively. We
say that a column j can cover a row i if aij = 1. The cost of selecting the column j
is represented by cj , a non-negative value, and xj is a decision variable to indicate
if the column j is selected (xj = 1) or not (xj = 0).
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Minimize Z =

n∑
j=1

cjxj (1)

Subject to
n∑

j=1

aijxj ≥ 1 ∀i ∈ I (2)

xj ∈ {0, 1} ∀j ∈ J (3)

One of the many practical applications of this problem is the location of fire
stations. Lets consider a city divided in a finite number of areas which need to
locate and build fire stations. Each one of this areas need to be covered by at least
one station, but a single fire station can only bring coverage to its own area and
the adjacent ones; also, the problem requires that the number of stations to build
needs to be the minimum.

Intentionally, we have selected an instance of SCP with m = 11 and n = 11
to represent it graphically in figures 1, 2 and by equations 4 to 15. When a SCP
formulation has a constant cost (a value of 1 in this case), we will refer to it as an
Unicost SCP instance.

Figure 1. An example of SCP

Minimize

11∑
j=1

cjxj (4)
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Subject to:

AREA1 : x1 + x2 + x3 + x4 ≥ 1 (5)

AREA2 : x1 + x2 + x3 + x5 ≥ 1 (6)

AREA3 : x1 + x2 + x3 + x4 + x5 + x6 ≥ 1 (7)

AREA4 : x1 + x3 + x4 + x6 + x7 ≥ 1 (8)

AREA5 : x2 + x3 + x5 + x6 + x8 + x9 ≥ 1 (9)

AREA6 : x3 + x4 + x5 + x6 + x7 + x8 ≥ 1 (10)

AREA7 : x4 + x6 + x7 + x8 ≥ 1 (11)

AREA8 : x5 + x6 + x7 + x8 + x9 + x10 ≥ 1 (12)

AREA9 : x5 + x8 + x9 + x10 + x11 ≥ 1 (13)

AREA10 : x8 + x9 + x10 + x11 ≥ 1 (14)

AREA11 : x9 + x10 + x11 ≥ 1 (15)

Figure 2. Solution to the practical example of SCP

As the SCP is a NP-hard class problem, one of the many difficulties that bench-
marks arise is their size and the computational time associated. To solve this,
many authors propose to do a pre-processing of the problem before apply any exact
method or metaheuristic in order to obtain instances that are equivalent to original
but smaller in terms of rows and columns. In the next section, we describe the
methods used in this research.

2.1. Pre-Processing. To accelerate the problem solving, we introduce a prepro-
cessing phase before run the metaheuristic to reduce the size of instances and im-
prove the performance of the algorithm. In this article, we use two methods that
have proven to be more effective: Column Domination [2] and Column Inclusion
[17].

Column Domination: It consists into deleting the redundant columns without
affecting the final solution. In other words, if the rows belonging to the column j
can be covered by another column with a cost lower than cj , then the column j is
dominated and it can be removed. This method is detailed in the Algorithm 1.

Column Inclusion: If a row is covered by only one column after the above domi-
nation, that column must be included in the optimal solution, and there is no need
to evaluate its feasibility.
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Algorithm 1 Column Domination

1: Order all columns by cost, ascending.
2: if Two or more columns have the same cost then
3: Order those columns by the amount of rows Ij covered by column j, descend-

ing
4: Check if rows Ij can be covered by a set of other columns with a cost lower

than cj
5: if Cost is lower then
6: The column j is dominated and it can be removed.
7: end if
8: end if

3. Fruit Fly Optimization Algorithm. The FFOA is a bio-inspired metaheuris-
tic [30] based on the foraging behavior of fruit flies or vinegar flies for finding food,
considering that their smell (osphresis) and vision senses are much better than in
any other specie. The foraging behavior processes consider smell the food source,
fly to it and then visualize the same food source to determine a better direction.

In Figure 3, there is a graphical representation of these foraging search processes.
Consider S1, S2 and S3 as fruit flies from our population. During the smell-based
search, the flies will randomly move across the search space, so their new positions
will be (X1, Y1), (X2, Y2) and (X3, Y3) respectively; then, in the next phase, flies
will be evaluated in their smell concentration (fitness function) to determine which
one is the best in the group; for our example, we are using the reciprocal of distance
to the origin (1/Disti) as fitness function. Finally, and knowing which one is the
best fruit fly, the population will move into its direction to get closer to the food
source.

Figure 3. Food searching of a group of fruit flies

The traditional FFOA consists of 4 phases. These are: initialization, smell-based
search, population evaluation, and vision-based search. In the initialization phase,
parameters are set and the fruit flies (solutions) are created randomly with a very
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Algorithm 2 Fruit Fly Optimization

1: {Initialization}
2: Initialize population size (N)
3: Initialize generation max (gen)
4: for i = 1 to N do
5: Create randomly Fi, the i-th fruit fly
6: end for
7: for t = 1 to gen do
8: {Smell-based search}
9: {Emulate the smell sense by modifying population with random values}

10: Fi = Fi + random value
11: {Population evaluation}
12: Evaluate solutions fitness using the objective function.
13: {Vision-based search}
14: BF = Bestfruitfly
15: for i = 1 to N do
16: Fi = (Fi +BF )/2
17: end for
18: end for

sensitive osphresis and vision organs. During the smell-based search phase, flies use
their senses to feel all kinds of smells in the air and fly towards the corresponding
locations. Then, the flies are evaluated to find the best concentration of smell.
When they are near to food, in the vision-based search phase, they fly toward the
food source using their vision organ. The pseudocode of these phases is detailed in
Algorithm 2.

The FFOA has been successfully used to solve continuous problems such as: the
financial distress [30], web auction logistics service [25], power load forecasting [24],
design of key control characteristics for automobile parts [37] and distribution of
pollution particles [20], among others.

4. Binary Fruit Fly Optimization Algorithm. In contrast with traditional
FFOA, the BFFOA [35] uses a discrete binary string (Figure 4) to represent a
solution and a probability vector to generates the population (Figure 5); then, the
value of each bit of the fruit flies goes from zero to one (and viceversa) to exploit the
neighborhood in the smell-based search process and perform a global vision-based
search to improve the exploration ability. This new algorithm, detailed later in
pseudocode (Algorithm 3), preserves the four phases but adds three search methods:
Smell-based, Local-Vision-based and Global-Vision-based. Also, these methods will
add new parameters to perform searches; all of them are detailed in table 1.

0 1 0 1 1 . . . 1 1 0 1

Figure 4. Representation of a Fruit Fly (solution) in BFFOA

This article proposes and evaluates new instances for BFFOA, created from the
combination of the original binary algorithm, eight transfer functions and two dis-
crete methods, in order to improve solutions.



BINARIZATION METHODS FOR FRUIT FLY OPTIMIZATION 7

p1(t) p2(t) p3(t) . . . pn−1(t) pn(t)

Figure 5. Representation of the Probability Vector in BFFOA

Table 1. BFFOA Parameters

Parameter Detail

N Population size.

gen Generations (iterations).

S Neighbors to create during smell-based search.
L Bits to flip randomly when generating neighbors.

b Coefficient of vision sensitivity.

Algorithm 3 Binary Fruit Fly Optimization

1: {Initialization Phase}
2: Initialize parameter values of N , gen, S, L and b
3: Initialize probability vector p(t = 0)
4: for i = 1 to N do
5: for d = 1 to n do
6: Create randomly the F d

i bit
7: end for
8: end for
9: for t = 1 to gen do

10: {Smell-based Search}
11: for i = 1 to N do
12: for s = 1 to S do
13: Create the Fi,s neighbor, flipping L bits around Fi

14: end for
15: end for
16: Apply the repair operator
17: {Population Evaluation Phase}
18: Evaluate solution fitness using the objective function
19: {Local-Vision-based Search}
20: for i = 1 to N do
21: Find the best neighbor Fi,best for Fi

22: Make the neighborhood fly towards Fi,best

23: end for
24: {Global-Vision-based Search}
25: Find the best fruit fly in the population, Fbest

26: Select randomly two flies F1 and F2

27: Update probability vector p(t)
28: for i = 1 to N do
29: Create Fi according to p(t)
30: end for
31: end for

4.1. Initialization. In the BFFOA, each fruit fly is a solution represented by a n-
bit binary vector, where n is the number of columns in the instance to solve. Thus,
in a fruit fly Fi, the value F d

i represents the dth binary decision bit, d ∈ [1, n].
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All fruit flies are generated by an n-dimensional probability vector p(t), where t
represents the generation (or iteration) with t ∈ [1, gen]. Then, the pd(t) is the
probability in the dth dimension of the fruit fly Fi to be 1 during generation t. The
pseudocode for this phase is detailed in Algorithm 4 .

To generate a uniformly distributed population in the search space, the prob-
ability vector must be p(0) = [0.5, 0.5, . . . , 0.5], so all columns have fifty percent
probability of being selected. In the next generation, a new population with N
fruit flies will be generated using this probability vector.

Algorithm 4 Initial population in BFFOA

1: for i = 1 to N do
2: for d = 1 to n do
3: if rand() < pd(0) then
4: F d

i = 1
5: else
6: F d

i = 0
7: end if
8: end for
9: end for

4.2. Smell-based Search. In this phase, we create S neighbors randomly around
each fruit fly Fi using the smell-based search. Each one of these neighbors are
generated using this method: first, we select randomly L-bits, and then flip these L
columns values. For example, if we have a 9-bit fruit fly and L = 3, the smell-based
search may produce a neighbor like the one represented in figure 6.

0 1 0 1 1 0 0 1 1

⇓

0 0 0 1 1 1 1 1 1

Figure 6. Creation of a neighbor during Smell-based search

At this point, a population with (N ·S)-fruit flies is evaluated using the objective
function. In case to get unfeasible solutions we apply a repair operator. This
additional phase will be explained later (Subsection 4.5).

4.3. Local-Vision-based Search. Once all solutions in the neighborhood are fea-
sible, the fruit flies are evaluated with the vision sense (the objective function) to
find the best local neighbor and fly towards it. If a better neighbor is found, then
the whole neighborhood will fly towards it and this recently discovered “local best”
fruit fly will replace the previous solution; otherwise, solution will remain the same.

4.4. Global-Vision-based Search. This search works on the exploration ability
(equations 16 and 17), considering that previous phases are more focused into the
exploitation ability. To update the next fruit flies generation, this phase updates the
probability vector with the differential information between the best fruit fly Fbest

and two random fruit flies (F1 and F2) to set a coefficient for the vision sensitivity
b to enhance the exploration.
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∆d(t+ 1) = F d
best + 0.5(F d

1 − F d
2 ) (16)

pd(t+ 1) =
1

(1 + e−b(∆d(t+1)−0.5))
(17)

4.5. Repair Operator. A common issue with metaheuristics is the generation of
unfeasible solutions during an iteration. For the SCP, this means that some individ-
uals will not cover all rows and a subset of constraints may be violated. To solve this
issue, the algorithm implements a repair operator to make all individuals feasible
and eliminate redundancy. The method described in [4] calculates a ratio between
the cost of an uncovered column (cj) and the number of uncovered rows covered
by that column; once all rows are covered and the solution is feasible, the operator
includes an optimization step to eliminate any redundant column (Algorithm 5).

Algorithm 5 Repair Operator

1: I = The set of all rows;
2: J = The set of all columns;
3: αi = The set of columns that cover row i, i ∈ I;
4: βj = The set of rows covered by column j, j ∈ J ;
5: K = The set of columns in a solution;
6: wi = The number of columns that cover row i, i ∈ I. For this, wi = |S ∩ αi|,
∀ i ∈ I;

7: U = The set of uncovered rows. For this, U = {i | wi = 0, ∀ i ∈ I};
8: for all row i ∈ U (in increasing order of i) do

9: Find the first column j in increasing order of j ∈ αi that minimizes
cj

|U ∩ bj |
;

10: Add j to K and set wi = wi + 1, ∀ i ∈ bj ;
11: Set U = U − bj ;
12: end for
13: for all column j ∈ K (in decreasing order of j) do
14: if wi ≥ 2 then
15: K = K − j;
16: wi = wi − 1, ∀ i ∈ βj ;
17: end if
18: end for
19: K is now a feasible solution for the SCP that contains no redundant columns;

5. Proposed binarization methods for the BFFOA. In this article, we pro-
pose to modify the original BFFOA with a two-step binarization technique, which
will transform the solution from R to an “InterSpace” (in Z) and then to the binary
space. Following a procedure similar to the one proposed in [23] and [15], we will
replace the equation for global searching (Equation 17) with one of the eight trans-
fer functions described in [28]. Specifically, our idea is to replace the calculation for
the differential information b(∆d

i − 0.5), with one of these eight transfer functions
in order to define the probability to move an element of the solution from 1 to 0 (or
vice versa), forcing the fruit flies to be in the interval [0, 1].
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It is important to notice that from the S-shaped functions (equations 18, 19,
20 and 21) and V-shaped functions (equations 22, 23, 24 and 25) presented here,
the original BFFOA uses the transfer function pS2 with a Standard discretization
method. In this article, we test an universe of 40 different instances of the algorithm,
where 39 out the 40 are new variations made by our research.

pS1(∆d(t+ 1)) =
1

1 + e−2b(∆d(t+1)−0.5)
(18)

pS2(∆d(t+ 1)) =
1

1 + e−b(∆d(t+1)−0.5)
(19)

pS3(∆d(t+ 1)) =
1

1 + e
−b(∆d(t+1)−0.5)

2

(20)

pS4(∆d(t+ 1)) =
1

1 + e
−b(∆d(t+1)−0.5)

3

(21)

pV 1(∆d(t+ 1)) =

∣∣∣∣erf

(√
π

2
(b(∆d(t+ 1)− 0.5))

)∣∣∣∣ (22)

pV 2(∆d(t+ 1)) =
∣∣tanh(b(∆d(t+ 1)− 0.5))

∣∣ (23)

pV 3(∆d(t+ 1)) =

∣∣∣∣∣ ∆d(t+ 1)√
1 + (b(∆d(t+ 1)− 0.5))2

∣∣∣∣∣ (24)

pV 4(∆d(t+ 1)) =

∣∣∣∣ 2πarctan(π2 (b(∆d(t+ 1)− 0.5))
)∣∣∣∣ (25)

After updating the probability vector with one of these S-shaped or V-shaped
transfer functions, an element of a fruit fly will be updated using one of the following
discretization methods: Standard, Elitist, Static Probability, Complement and Elitist
Roulette, detailed in the equations 26, 27, 28, 29 and 30, respectively. In all of them,
F d
i represents the dth position of the fruit fly Fi, Fbest is the best fruit fly in the

current generation and α is the static probability.

1. Standard (STD): If condition is satisfied, standard method return 1, otherwise,
return 0.

F d
i (t+ 1) =

{
1 , if rand() ≤ pd(t+ 1)
0 , otherwise

(26)

2. Elitist (ELT): The best value is assigned if random value is within the prob-
ability, otherwise a zero value is assigned.

F d
i (t+ 1) =

{
F d
best , if rand() ≤ pd(t+ 1)

0 , otherwise
(27)

3. Static probability (STAT): A probability is generated and it is evaluated with
a transfer function.

F d
i (t+ 1) =


0 , if pd(t+ 1) ≤ α
F d
i (t) , if α ≤ pd(t+ 1) ≤ 1

2
(1 + α)

1 , if
1

2
(1 + α) ≤ pd(t+ 1)

(28)
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4. Complement (COMP): If condition is satisfied, the method will return the
complement value.

F d
i (t+ 1) =

{
complement(F d

i (t)) , if rand() ≤ pd(t)
0 , otherwise

(29)

5. Elitist Roulette (ERLT): Also known as Monte Carlo, this method selects
randomly among the best individuals of the population, with a probability
directly proportional to its fitness. The Fnew is the fruit fly selected among
the group of best individuals.

F d
i (t+ 1) =

{
F d
new , if rand() ≤ p(F d

i (t+ 1))
0 , otherwise

(30)

The probability P (Fi) to select a fruit fly Fi is detailed as:

P (Fi) =

1

zi

k∑
j=1

(zj)

k∑
j=1

k∑
i=1

(
zj
zi

) (31)

Where zi is the fitness of the possible solution to be selected represented
by a fruit fly i and k is the number of candidate fruit flies.

6. Experimental Results. The modified BFFOA with the transfer functions pro-
posed has been implemented in Java in a Common KVM processor of 2.66 GHz with
4 GB RAM computer, running Microsoft Windows 7. The parameter tuning for
the algorithm is detailed in table 2.

Table 2. Parameter tuning for BFFOA experiments

Parameter Detail Value

N Population size 50
gen Generations (iterations). 400

S Neighbours for smell-based search. 5
L Bits to flip randomly when generating neighbours. 3
b Coefficient of vision sensitivity. 15

α Static probability 0.2
k Amount of best individuals for Elitist Roulette method 3

All the datasets tested are from Beasley’s OR Library 1. In total, we solved
65 data files; instances 4, 5, 6 are from [1], instances A, B, C, D are from [2] and
instances NRE, NRF, NRG, NRH are the unknown-solution problem set from [3].
Details of datasets are described in table 3.

For each instance, we report the average values obtained after run 30 times each
algorithm.

1http://people.brunel.ac.uk/~mastjjb/jeb/info.html

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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Instance Number of m n Cost Density Optimal
Set Instances Range (%) Solution
4 10 200 1000 [1,100] 2 Known
5 10 200 2000 [1,100] 2 Known
6 5 200 1000 [1,100] 5 Known
A 5 300 3000 [1,100] 2 Known
B 5 300 3000 [1,100] 5 Known
C 5 400 4000 [1,100] 2 Known
D 5 400 4000 [1,100] 5 Known

NRE 5 500 5000 [1,100] 10 Unknown
NRF 5 500 5000 [1,100] 20 Unknown
NRG 5 1000 10000 [1,100] 2 Unknown
NRH 5 1000 10000 [1,100] 5 Unknown

Table 3. Set Covering Instances.

6.1. Comparison of proposed BFFOA with other metaheuristics. The ta-
bles 4, 5, 6, 7, 8, 9, 10 and 11 show the detailed results obtained by different in-
stances of our modified BFFOA. In all of them, the results are presented along with
the transfer function (TF) and discretization method (DM) used in each case, and
compared with other metaheuristics in terms of minimum and maximum number of
optimal founded (ZMIN, ZMAX) and the relative percentage deviation (RPD), which
represents the deviation of the objective value Z (fitness) from ZOPT (equation 32).

RPD =
100(ZMIN − ZBKS)

ZBKS
(32)

For comparison purposes, we consider the values reported in [33] for Binary
Cuckoo Search (BCS) and Binary Black Hole (BBH); also, we have taken results for
Binary Cat Swarm Optimization (BCSO) [12], Binary Firefly Optimization (BFO)
[11], Binary Shuffled Frog Leap Algorithm (BSFLA) [13], Binary Electromagnetism-
like Algorithm (BELA) [32] and Binary Artificial Bee Colony (BABC) [16].

Table 4 presents the results obtained from instance set 4. In this case our al-
gorithm was better to all others in comparison, as it reached optimal values in all
instances; BCSO, BSFLA, BELA and BABC are unable to achieve optimal values
and BFO reached only two. The closest methods in comparison were BCS with
eight optimal and BBH with five.

Table 5 describes the results from instance set 5. Once again, our algorithm
got the best results along with BCS and BBH. Algorithms BCSO and BELA are
unable to solve optimally any instance, BABC found only two optimal values, BFO
reached three and BSFLA got four.

Table 6 illustrates the results from instance sets 6 and A. Our algorithm per-
formed well, reaching eight optimal values (the whole set 6 and 3 from set A). BBH
was slightly better than BCS this time, BCSO and BELA are unable to optimally
solve any instance, BABC is capable to find only two optimal values (one in each
set), BFO reached three and BSFLA got four.

Table 7 shows the results from instance set B and C. In case of set B, our
algorithm had a very good performance, reaching all the optimal values, just like
BCS and BBH. For instance set C, situation is similar, as BFFOA reached four out
of five optimal values, outperforming all other methods.
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Table 4. Computational results for instance set 4

Instance 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10
Zopt 429 512 516 494 512 560 430 492 641 514

Our approach

BFFOA

Zmin 429 512 516 494 512 560 430 492 641 514
Zavg 431.57 512 516 495.53 514.2 560.87 430.67 494.2 646.83 514.1
RPD 0 0 0 0 0 0 0 0 0 0
TF S2 S4 S4 S4 S4 S3 S3 S4 V4 S3
DM STD STD ELT ELT STD STD STD STD ELT STD

Other approaches

BCS
Zmin 430 512 517 494 512 560 430 492 641 514
Zavg 432 516 519 503 516 563 431 495 645 526
RPD 0.23 0 0.19 0 0 0 0 0 0 0

BBH
Zmin 430 512 516 495 514 560 430 493 644 514
Zavg 430 512 517 501 519 562 432 495 648 517
RPD 0.23 0 0 0.2 0.39 0 0 0.2 0.46 0

BCSO
Zmin 459 570 590 547 545 637 462 546 711 537
Zavg 480 594 607 578 554 650 467 567 725 552
RPD 7 11.3 14.3 10.7 6.4 13.8 7.4 11 10.9 4.5

BFO
Zmin 429 517 519 495 514 563 430 497 655 519
Zavg 430 517 522 497 515 565 430 499 658 523
RPD 0 0.97 0.58 0.2 0.39 0.53 0 1.01 2.18 0.97

BSFLA
Zmin 430 516 520 501 514 563 431 497 656 518
Zavg 430 518 520 504 514 563 432 499 656 519
RPD 0.23 0.78 0.78 1.42 0.39 0.54 0.23 1.02 2.34 0.78

BELA
Zmin 447 559 537 527 527 607 448 509 682 571
Zavg 448 559 539 530 529 608 449 512 682 571
RPD 4.20 9.18 4.07 6.68 2.93 8.39 4.19 3.46 6.40 11.09

BABC
Zmin 430 513 519 495 514 561 431 493 649 517
Zavg 430 513 521 496 517 565 434 494 651 519
RPD 0.23 0.20 0.58 0.20 0.39 0.18 0.23 0.20 0.93 0.58

Table 5. Computational results for instance set 5

Instance 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10
Zopt 253 302 226 242 211 213 293 288 279 265

Our approach

BFFOA

Zmin 253 304 226 242 211 213 293 288 279 265
Zavg 255.6 305.67 227.73 242.03 211 213.5 294.03 288.87 279.8 265.07
RPD 0 0.66 0 0 0 0 0 0 0 0
TF S3 S4 S3 S2 V4 V4 S4 S3 S4 S4
DM STD STD STD COMP COMP COMP ELT STD STD STD

Other approaches

BCS
Zmin 253 304 226 242 212 213 293 288 279 265
Zavg 256 307 227 243 213 215 294 290 280 266
RPD 0 0.66 0 0 0.47 0 0 0 0 0

BBH
Zmin 253 305 228 242 211 213 293 288 279 265
Zavg 256 307 230 242 211 213 294 289 280 267
RPD 0 0.99 0.88 0 0 0 0 0 0 0

BCSO
Zmin 279 339 247 251 230 232 332 320 295 285
Zavg 287 340 251 253 230 243 338 330 297 287
RPD 10.3 12.3 9.3 3.7 9 8.9 13.3 11.1 5.7 7.5

BFO
Zmin 257 309 229 242 211 213 298 291 284 268
Zavg 260 311 233 242 213 213 301 292 284 270
RPD 1.58 2.31 1.32 0 0 0 1.7 1.04 1.79 1.13

BSFLA
Zmin 254 307 228 242 211 213 297 291 281 265
Zavg 255 307 230 242 213 214 299 293 283 266
RPD 0.4 1.66 0.88 0 0 0 1.37 1.04 0.72 0

BELA
Zmin 280 318 242 251 225 247 316 315 314 280
Zavg 281 321 240 252 227 248 317 317 315 282
RPD 10.67 5.30 7.08 3.72 6.64 15.96 7.85 9.38 12.54 5.66

BABC
Zmin 254 309 229 242 211 214 298 289 280 267
Zavg 255 309 233 245 212 214 301 291 281 270
RPD 0.40 2.32 1.33 0 0 0.47 1.71 0.35 0.36 0.75

Table 8 shows the results from instance set D. Here, the BFFOA and BBH (3
optimal values each one) could not reach results of BCS. However, we can still say
this is an acceptable result, considering that all other approaches got less than 30%
of optimal values.
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Table 6. Computational results for instance set 6 and A

Instance 6.1 6.2 6.3 6.4 6.5 A.1 A.2 A.3 A.4 A.5
Zopt 138 146 145 131 161 253 252 232 234 236

Our approach

BFFOA

Zmin 138 146 145 131 161 253 254 233 234 236
Zavg 140.07 148.93 146.7 131 162.3 254.8 258.9 234.8 234.77 236.4
RPD 0 0 0 0 0 0 0.79 0.43 0 0
TF S2 S3 S4 S3 S3 S1 S4 S3 S3 V4
DM COMP STD ELT STD STD COMP STD STD ELT ELT

Other approaches

BCS
Zmin 140 146 145 131 161 254 256 233 237 236
Zavg 141 147 146 133 163 254 257 235 239 237
RPD 0.14 0 0 0 0 0.34 0.16 0.43 0.13 0

BBH
Zmin 140 147 145 131 161 253 253 233 234 236
Zavg 142 150 147 131 164 255 254 234 234 237
RPD 1.45 0.68 0 0 0 0 0.39 0.43 0 0

BCSO
Zmin 151 152 160 138 169 286 274 257 248 244
Zavg 160 157 164 142 173 287 276 263 251 244
RPD 9.4 4.1 10.3 5.3 5 13 8.7 10.8 6 3

BFO
Zmin 138 147 147 131 164 255 259 238 235 236
Zavg 140 149 150 131 157 256 261 240 237 237
RPD 0 0.68 1.37 0 1.86 0.79 2.77 2.58 0.42 0

BSFLA
Zmin 140 147 147 131 166 255 260 237 235 236
Zavg 141 147 148 133 169 258 260 239 238 239
RPD 1.45 0.68 1.38 0 3.11 0.79 3.17 2.16 0.43 0

BELA
Zmin 152 160 160 140 184 261 279 252 250 241
Zavg 152 161 163 142 187 264 281 253 252 243
RPD 10.14 9.59 10.34 6.87 14.29 3.16 10.71 8.62 6.84 2.12

BABC
Zmin 142 147 148 131 165 254 257 235 236 236
Zavg 143 150 149 133 167 254 259 238 237 238
RPD 2.90 0.68 2.07 0 2.48 0.40 1.98 1.29 0.85 0

Table 7. Computational results for instance sets B and C

Instance B.1 B.2 B.3 B.4 B.5 C.1 C.2 C.3 C.4 C.5
Zopt 69 76 80 79 72 227 219 243 219 215

Our approach

BFFOA

Zmin 69 76 80 79 72 227 219 247 219 215
Zavg 70.67 76.27 80.17 80.1 72 230.77 221.57 254.27 223.07 216.8
RPD 0 0 0 0 0 0 0 1.65 0 0
TF S2 S3 S1 V3 S1 V3 S4 S3 S3 V4
DM COMP ELT COMP COMP COMP COMP ELT STD ELT ELT

Other approaches

BCS
Zmin 69 76 80 79 72 228 221 247 221 216
Zavg 70 79 80 81 73 230 223 249 223 217
RPD 0 0 0 0 0 0.44 0.9 1.62 0.9 0.46

BBH
Zmin 69 76 80 79 72 229 219 245 219 215
Zavg 70 77 81 81 73 231 220 246 219 216
RPD 0 0 0 0 0 0.88 0 0.82 0 0

BCSO
Zmin 79 86 85 89 73 242 240 277 250 243
Zavg 79 89 85 89 73 242 241 278 250 244
RPD 14.5 13.2 6.3 12.7 1.4 6.6 9.6 14 12.3 13

BFO
Zmin 71 78 80 80 72 230 223 253 225 217
Zavg 72 78 80 81 73 232 224 254 227 219
RPD 2.89 2.63 0 1.26 0 1.32 1.82 4.11 2.73 0.93

BSFLA
Zmin 70 76 80 79 72 229 223 253 227 217
Zavg 70 77 80 80 73 231 225 253 228 218
RPD 1.45 0 0 0 0 0.88 1.83 4.12 3.65 0.93

BELA
Zmin 86 88 85 84 78 237 237 271 246 224
Zavg 87 88 87 88 81 238 239 271 248 225
RPD 24.64 15.79 6.25 6.33 8.33 4.41 8.22 11.52 12.33 4.19

BABC
Zmin 70 78 80 80 72 231 222 254 231 216
Zavg 70 79 80 81 74 233 223 255 233 217
RPD 1.45 2.63 0 1.27 0 1.76 1.37 4.53 5.48 0.47

For the NRE and NRF sets described in table 9, only two RPD = 0 per set are
reached by the BFFOA algorithm. Other approaches fail in general to find optimum
values as the instance set becomes harder. Only BCS and BBH are closer to our
results. BSFLA and BABC achieve one optimum for the instances belonging to set
NRF, while BBH and BCS reach three.



BINARIZATION METHODS FOR FRUIT FLY OPTIMIZATION 15

Table 8. Computational results for instance set D

Instance D.1 D.2 D.3 D.4 D.5
Zopt 60 66 72 62 61

Our approach

BFFOA

Zmin 60 67 73 62 61
Zavg 60 67.73 75.7 63.37 62.63
RPD 0 1.52 1.39 0 0
TF S1 S3 S4 S2 S3
DM ERLT ELT ELT COMP ELT

Other approaches

BCS
Zmin 60 66 73 62 61
Zavg 60 66 74 62 62
RPD 0 0 0.14 0 0

BBH
Zmin 60 67 73 62 61
Zavg 60 68 74 62 62
RPD 0 1.51 1.38 0 0

BCSO
Zmin 65 70 79 64 65
Zavg 66 70 81 67 66
RPD 8.3 6.1 9.7 3.2 6.6

BFO
Zmin 60 68 75 62 63
Zavg 61 68 77 62 63
RPD 0 3.03 4.16 0 3.27

BSFLA
Zmin 60 67 75 63 63
Zavg 62 68 77 65 66
RPD 0 1.52 4.17 1.61 3.28

BELA
Zmin 62 73 79 67 66
Zavg 62 74 81 69 67
RPD 3.33 10.61 9.72 8.06 8.20

BABC
Zmin 60 68 76 63 63
Zavg 61 68 77 65 66
RPD 0 3.03 5.56 1.61 3.28

Table 9. Computational results for instance set of NRE and NRF

Instance NRE.1 NRE.2 NRE.3 NRE.4 NRE.5 NRF.1 NRF.2 NRF.3 NRF.4 NRF.5
Zopt 29 30 27 28 28 14 15 14 14 13

Our approach

BFFOA

Zmin 29 30 28 29 28 14 15 15 15 14
Zavg 29 32.13 28.7 29.63 28.93 15 15.9 16.73 15.03 15.1
RPD 0 0 3.7 3.57 0 0 0 7.14 7.14 7.69
TF S3 S3 S4 S4 V4 V4 S4 S4 V1 V3
DM ELT ELT ELT ELT ELT ELT ELT ERLT ERLT ELT

Other approaches

BCS
Zmin 29 31 28 30 28 14 15 15 15 14
Zavg 30 32 29 31 30 14 17 16 15 15
RPD 0 0.32 0.36 0.67 0 0 0 0.67 0.67 0.71

BBH
Zmin 29 31 28 29 28 14 15 16 15 14
Zavg 30 31 29 31 29 15 16 16 16 15
RPD 0 3.33 3.7 3.57 0 0 0 4.28 7.14 7.69

BCSO
Zmin 29 34 31 32 30 17 18 17 17 15
Zavg 30 34 32 33 30 17 18 17 17 16
RPD 0 13.3 14.8 14.3 7.1 21.4 20 21.4 21.4 15.4

BFO
Zmin 29 32 29 29 29 15 16 16 15 15
Zavg 31 32 30 31 29 17 16 17 18 19
RPD 0 6.66 7.4 3.57 3.57 7.14 6.66 14.28 7.14 15.38

BSFLA
Zmin 29 31 28 29 28 15 15 16 15 15
Zavg 29 32 28 30 31 15 15 17 16 17
RPD 0 3.33 3.7 3.57 0 7.14 0 14.29 7.14 15.38

BELA
Zmin 30 35 34 33 30 17 18 17 17 16
Zavg 31 35 34 34 31 17 18 18 19 17
RPD 3.45 16.67 25.93 17.86 7.14 21.43 20 21.43 21.43 23.08

BABC
Zmin 29 32 29 29 29 14 16 16 15 15
Zavg 33 32 31 30 32 15 16 17 17 16
RPD 0 6.67 7.41 3.57 3.57 0 6.67 14.29 7.14 15.38

Finally, for the hardest instance sets NRG and NRH (see Tables 10 and 11),
we observe that the RPD obtained by the proposed BBFOA is good enough to
compete with the approaches like BCS and BBH, as in the three cases, they could
only reached one optimal value.



16 B. CRAWFORD ET AL.

Table 10. Computational results for instance set NRG

Instance NRG.1 NRG.2 NRG.3 NRG.4 NRG.5
Zopt 176 154 166 168 168

Our approach

BFFOA

Zmin 178 159 170 170 173
Zavg 180.3 160.43 171.57 172.2 175
RPD 1.14 3.25 2.41 1.19 2.98
TF S4 V4 S4 V4 S4
DM ELT ELT ELT ELT ELT

Other approaches

BCS
Zmin 176 156 169 170 170
Zavg 177 157 170 171 171
RPD 0 0.13 0.77 0.12 0.12

BBH
Zmin 179 158 169 170 168
Zavg 181 160 169 171 169
RPD 1.7 2.59 1.8 1.19 0

BCSO
Zmin 190 165 187 179 181
Zavg 193 166 188 183 184
RPD 8 7.1 20.6 6.5 7.7

BFO
Zmin 185 161 175 176 177
Zavg 191 163 177 176 181
RPD 5.11 4.54 5.42 4.76 5.35

BSFLA
Zmin 182 161 173 173 174
Zavg 183 161 174 177 174
RPD 3.41 4.55 4.22 2.98 3.57

BELA
Zmin 194 176 184 196 198
Zavg 196 176 185 197 199
RPD 10.23 14.29 10.84 16.67 17.86

BABC
Zmin 183 162 174 175 179
Zavg 184 163 175 177 181
RPD 3.98 5.19 4.82 4.17 6.55

Table 11. Computational results for instance set NRH

Instance NRH.1 NRH.2 NRH.3 NRH.4 NRH.5
Zopt 63 63 59 58 55

Our approach

BFFOA

Zmin 66 66 61 63 55
Zavg 67.47 66 63 63.5 58.07
RPD 4.76 4.76 3.39 3.39 0
TF S3 S3 S4 S3 S4
DM ELT ELT ELT ELT ELT

Other approaches

BCS
Zmin 64 64 62 59 56
Zavg 64 64 63 60 57
RPD 0.16 0.16 0.48 0.17 0.18

BBH
Zmin 66 67 65 63 62
Zavg 67 68 65 64 62
RPD 4.76 6.34 10.16 8.62 12.72

BCSO
Zmin 70 67 68 66 61
Zavg 71 67 70 67 62
RPD 11.1 6.3 15.3 13.8 10.9

BFO
Zmin 69 66 65 63 59
Zavg 70 66 67 65 60
RPD 9.52 4.76 10.16 6.77 7.27

BSFLA
Zmin 68 66 62 63 59
Zavg 69 66 63 64 61
RPD 7.94 4.76 5.08 8.62 7.27

BELA
Zmin 70 71 68 70 69
Zavg 71 71 70 72 69
RPD 11.11 12.70 15.25 20.69 25.45

BABC
Zmin 70 69 66 64 60
Zavg 71 72 67 64 61
RPD 11.11 9.52 11.86 10.34 9.09
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7. Conclusion. This article proposes several variations to BFFOA (39 to be pre-
cise), created by adding to the original BFFOA different transfer functions and
discrete methods in order to improve the solutions obtained. All of these BBFOA-
variations were tested into 65 SCP instances and the values reported correspond
to the algorithm with the best performance. From our results, we conclude that
variations presented are robust enough to compete with other algorithms as we were
able to find many optimal solutions with a little parameter tuning.

We observed that best combinations of transfer functions and discretization
methods depend on the instance size. For small instances (4, 5, 6, A, B, C, D)
best results were achieved with transfer functions pS3 and pS4 plus the Standard
discretization; whereas for huge instances (NRE, NRF, NRG, NRH) the best com-
binations are the same transfer functions pS3 and pS4, but with the Elitist method.
A point to remark is that the use of the Elitist discretization is not exclusive for
this algorithm and problem; other articles like [19] report good results with it.

In the future, we are interested in the hybridization of BFFOA with other meta-
heuristics or apply an hyper-heuristics version. In the short term, we expect to
test our algorithms on other SCP libraries, such like the Unicost (available at OR-
Library website) or Italian railways [8] benchmarks. Due to the good results and the
simplicity of this algorithm, it could be used to solve other combinatorial problems.
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[15] B. Crawford, R. Soto, G. Astorga, J. Garćıa, C. Castro and F. Paredes Putting Continuous

Metaheuristics to Work in Binary Search Spaces, Complexity, 2017 (2017).

[16] R. Cuesta, B. Crawford, R. Soto and F. Paredes, An Artificial Bee Colony Algorithm for the
Set Covering Problem, Advances in Intelligent Systems and Computing, (2014), 53–63.

[17] M. Fisher and P. Kedia, Optimal solution of set covering/partitioning problems using dual

heuristics, Management Science, 36 (1990), 674–688.
[18] J. Garćıa, B. Crawford, R. Soto and P. Garćıa, A multi dynamic binary black hole algorithm
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