
METAHEURISTICS

METAHEURISTICS

FROM DESIGN TO IMPLEMENTATION

El-Ghazali Talbi
University of Lille – CNRS – INRIA

Copyright ©2009 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to

the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,

fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission

should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,

NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in

preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be suitable

for your situation. You should consult with a professional where appropriate. Neither the publisher nor

author shall be liable for any loss of profit or any other commercial damages, including but not limited to

special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our

Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)

572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may

not be available in electronic formats. For more information about Wiley products, visit our web site at

www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Talbi, El-Ghazali, 1965-

Metaheuristics : from design to implementation / El-ghazali Talbi.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-27858-1 (cloth)

1. Mathematical optimization. 2. Heuristic programming. 3. Problem solving–Data processing.

4. Computer algorithms. I. Title.

QA402.5.T39 2009

519.6–dc22

2009017331

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To my wife Keltoum, my daughter Besma, my parents and sisters.

CONTENTS

Preface xvii

Acknowledgments xxiii

Glossary xxv

1 Common Concepts for Metaheuristics 1

1.1 Optimization Models 2

1.1.1 Classical Optimization Models 3

1.1.2 Complexity Theory 9

1.1.2.1 Complexity of Algorithms 9

1.1.2.2 Complexity of Problems 11

1.2 Other Models for Optimization 14

1.2.1 Optimization Under Uncertainty 15

1.2.2 Dynamic Optimization 16

1.2.2.1 Multiperiodic Optimization 16

1.2.3 Robust Optimization 17

1.3 Optimization Methods 18

1.3.1 Exact Methods 19

1.3.2 Approximate Algorithms 21

1.3.2.1 Approximation Algorithms 21

1.3.3 Metaheuristics 23

1.3.4 Greedy Algorithms 26

1.3.5 When Using Metaheuristics? 29

1.4 Main Common Concepts for Metaheuristics 34

1.4.1 Representation 34

1.4.1.1 Linear Representations 36

1.4.1.2 Nonlinear Representations 39

1.4.1.3 Representation-Solution Mapping 40

1.4.1.4 Direct Versus Indirect Encodings 41

1.4.2 Objective Function 43

1.4.2.1 Self-Sufficient Objective Functions 43

vii

viii CONTENTS

1.4.2.2 Guiding Objective Functions 44

1.4.2.3 Representation Decoding 45

1.4.2.4 Interactive Optimization 46

1.4.2.5 Relative and Competitive Objective Functions 47

1.4.2.6 Meta-Modeling 47

1.5 Constraint Handling 48

1.5.1 Reject Strategies 49

1.5.2 Penalizing Strategies 49

1.5.3 Repairing Strategies 52

1.5.4 Decoding Strategies 53

1.5.5 Preserving Strategies 53

1.6 Parameter Tuning 54

1.6.1 Off-Line Parameter Initialization 54

1.6.2 Online Parameter Initialization 56

1.7 Performance Analysis of Metaheuristics 57

1.7.1 Experimental Design 57

1.7.2 Measurement 60

1.7.2.1 Quality of Solutions 60

1.7.2.2 Computational Effort 62

1.7.2.3 Robustness 62

1.7.2.4 Statistical Analysis 63

1.7.2.5 Ordinal Data Analysis 64

1.7.3 Reporting 65

1.8 Software Frameworks for Metaheuristics 67

1.8.1 Why a Software Framework for Metaheuristics? 67

1.8.2 Main Characteristics of Software Frameworks 69

1.8.3 ParadisEO Framework 71

1.8.3.1 ParadisEO Architecture 74

1.9 Conclusions 76

1.10 Exercises 79

2 Single-Solution Based Metaheuristics 87

2.1 Common Concepts for Single-Solution Based Metaheuristics 87

2.1.1 Neighborhood 88

2.1.2 Very Large Neighborhoods 94

2.1.2.1 Heuristic Search in Large Neighborhoods 95

CONTENTS ix

2.1.2.2 Exact Search in Large Neighborhoods 98

2.1.2.3 Polynomial-Specific Neighborhoods 100

2.1.3 Initial Solution 101

2.1.4 Incremental Evaluation of the Neighborhood 102

2.2 Fitness Landscape Analysis 103

2.2.1 Distances in the Search Space 106

2.2.2 Landscape Properties 108

2.2.2.1 Distribution Measures 109

2.2.2.2 Correlation Measures 111

2.2.3 Breaking Plateaus in a Flat Landscape 119

2.3 Local Search 121

2.3.1 Selection of the Neighbor 123

2.3.2 Escaping from Local Optima 125

2.4 Simulated Annealing 126

2.4.1 Move Acceptance 129

2.4.2 Cooling Schedule 130

2.4.2.1 Initial Temperature 130

2.4.2.2 Equilibrium State 131

2.4.2.3 Cooling 131

2.4.2.4 Stopping Condition 133

2.4.3 Other Similar Methods 133

2.4.3.1 Threshold Accepting 133

2.4.3.2 Record-to-Record Travel 137

2.4.3.3 Great Deluge Algorithm 137

2.4.3.4 Demon Algorithms 138

2.5 Tabu Search 140

2.5.1 Short-Term Memory 142

2.5.2 Medium-Term Memory 144

2.5.3 Long-Term Memory 145

2.6 Iterated Local Search 146

2.6.1 Perturbation Method 148

2.6.2 Acceptance Criteria 149

2.7 Variable Neighborhood Search 150

2.7.1 Variable Neighborhood Descent 150

2.7.2 General Variable Neighborhood Search 151

2.8 Guided Local Search 154

x CONTENTS

2.9 Other Single-Solution Based Metaheuristics 157

2.9.1 Smoothing Methods 157

2.9.2 Noisy Method 160

2.9.3 GRASP 164

2.10 S-Metaheuristic Implementation Under ParadisEO 168

2.10.1 Common Templates for Metaheuristics 169

2.10.2 Common Templates for S-Metaheuristics 170

2.10.3 Local Search Template 170

2.10.4 Simulated Annealing Template 172

2.10.5 Tabu Search Template 173

2.10.6 Iterated Local Search Template 175

2.11 Conclusions 177

2.12 Exercises 180

3 Population-Based Metaheuristics 190

3.1 Common Concepts for Population-Based Metaheuristics 191

3.1.1 Initial Population 193

3.1.1.1 Random Generation 194

3.1.1.2 Sequential Diversification 195

3.1.1.3 Parallel Diversification 195

3.1.1.4 Heuristic Initialization 198

3.1.2 Stopping Criteria 198

3.2 Evolutionary Algorithms 199

3.2.1 Genetic Algorithms 201

3.2.2 Evolution Strategies 202

3.2.3 Evolutionary Programming 203

3.2.4 Genetic Programming 203

3.3 Common Concepts for Evolutionary Algorithms 205

3.3.1 Selection Methods 206

3.3.1.1 Roulette Wheel Selection 206

3.3.1.2 Stochastic Universal Sampling 206

3.3.1.3 Tournament Selection 207

3.3.1.4 Rank-Based Selection 207

3.3.2 Reproduction 208

3.3.2.1 Mutation 208

3.3.2.2 Recombination or Crossover 213

3.3.3 Replacement Strategies 221

CONTENTS xi

3.4 Other Evolutionary Algorithms 221

3.4.1 Estimation of Distribution Algorithms 222

3.4.2 Differential Evolution 225

3.4.3 Coevolutionary Algorithms 228

3.4.4 Cultural Algorithms 232

3.5 Scatter Search 233

3.5.1 Path Relinking 237

3.6 Swarm Intelligence 240

3.6.1 Ant Colony Optimization Algorithms 240

3.6.1.1 ACO for Continuous Optimization Problems 247

3.6.2 Particle Swarm Optimization 247

3.6.2.1 Particles Neighborhood 248

3.6.2.2 PSO for Discrete Problems 252

3.7 Other Population-Based Methods 255

3.7.1 Bees Colony 255

3.7.1.1 Bees in Nature 255

3.7.1.2 Nest Site Selection 256

3.7.1.3 Food Foraging 257

3.7.1.4 Marriage Process 262

3.7.2 Artificial Immune Systems 264

3.7.2.1 Natural Immune System 264

3.7.2.2 Clonal Selection Theory 265

3.7.2.3 Negative Selection Principle 268

3.7.2.4 Immune Network Theory 268

3.7.2.5 Danger Theory 269

3.8 P-metaheuristics Implementation Under ParadisEO 270

3.8.1 Common Components and Programming Hints 270

3.8.1.1 Main Core Templates—ParadisEO–EO’s Functors 270

3.8.1.2 Representation 272

3.8.2 Fitness Function 274

3.8.2.1 Initialization 274

3.8.2.2 Stopping Criteria, Checkpoints, and Statistics 275

3.8.2.3 Dynamic Parameter Management and State

Loader/Register 277

3.8.3 Evolutionary Algorithms Under ParadisEO 278

3.8.3.1 Representation 278

3.8.3.2 Initialization 279

3.8.3.3 Evaluation 279

xii CONTENTS

3.8.3.4 Variation Operators 279

3.8.3.5 Evolution Engine 283

3.8.3.6 Evolutionary Algorithms 285

3.8.4 Particle Swarm Optimization Under ParadisEO 286

3.8.4.1 Illustrative Example 292

3.8.5 Estimation of Distribution Algorithm Under ParadisEO 293

3.9 Conclusions 294

3.10 Exercises 296

4 Metaheuristics for Multiobjective Optimization 308

4.1 Multiobjective Optimization Concepts 310

4.2 Multiobjective Optimization Problems 315

4.2.1 Academic Applications 316

4.2.1.1 Multiobjective Continuous Problems 316

4.2.1.2 Multiobjective Combinatorial Problems 317

4.2.2 Real-Life Applications 318

4.2.3 Multicriteria Decision Making 320

4.3 Main Design Issues of Multiobjective Metaheuristics 322

4.4 Fitness Assignment Strategies 323

4.4.1 Scalar Approaches 324

4.4.1.1 Aggregation Method 324

4.4.1.2 Weighted Metrics 327

4.4.1.3 Goal Programming 330

4.4.1.4 Achievement Functions 330

4.4.1.5 Goal Attainment 330

4.4.1.6 ǫ-Constraint Method 332

4.4.2 Criterion-Based Methods 334

4.4.2.1 Parallel Approach 334

4.4.2.2 Sequential or Lexicographic Approach 335

4.4.3 Dominance-Based Approaches 337

4.4.4 Indicator-Based Approaches 341

4.5 Diversity Preservation 343

4.5.1 Kernel Methods 344

4.5.2 Nearest-Neighbor Methods 346

4.5.3 Histograms 347

4.6 Elitism 347

CONTENTS xiii

4.7 Performance Evaluation and Pareto Front Structure 350

4.7.1 Performance Indicators 350

4.7.1.1 Convergence-Based Indicators 352

4.7.1.2 Diversity-Based Indicators 354

4.7.1.3 Hybrid Indicators 355

4.7.2 Landscape Analysis of Pareto Structures 358

4.8 Multiobjective Metaheuristics Under ParadisEO 361

4.8.1 Software Frameworks for Multiobjective Metaheuristics 362

4.8.2 Common Components 363

4.8.2.1 Representation 363

4.8.2.2 Fitness Assignment Schemes 364

4.8.2.3 Diversity Assignment Schemes 366

4.8.2.4 Elitism 367

4.8.2.5 Statistical Tools 367

4.8.3 Multiobjective EAs-Related Components 368

4.8.3.1 Selection Schemes 369

4.8.3.2 Replacement Schemes 370

4.8.3.3 Multiobjective Evolutionary Algorithms 371

4.9 Conclusions and Perspectives 373

4.10 Exercises 375

5 Hybrid Metaheuristics 385

5.1 Hybrid Metaheuristics 386

5.1.1 Design Issues 386

5.1.1.1 Hierarchical Classification 386

5.1.1.2 Flat Classification 394

5.1.2 Implementation Issues 399

5.1.2.1 Dedicated Versus General-Purpose Computers 399

5.1.2.2 Sequential Versus Parallel 399

5.1.3 A Grammar for Extended Hybridization Schemes 400

5.2 Combining Metaheuristics with Mathematical Programming 401

5.2.1 Mathematical Programming Approaches 402

5.2.1.1 Enumerative Algorithms 402

5.2.1.2 Relaxation and Decomposition Methods 405

5.2.1.3 Branch and Cut and Price Algorithms 407

5.2.2 Classical Hybrid Approaches 407

5.2.2.1 Low-Level Relay Hybrids 408

5.2.2.2 Low-Level Teamwork Hybrids 411

xiv CONTENTS

5.2.2.3 High-Level Relay Hybrids 413

5.2.2.4 High-Level Teamwork Hybrids 416

5.3 Combining Metaheuristics with Constraint Programming 418

5.3.1 Constraint Programming 418

5.3.2 Classical Hybrid Approaches 419

5.3.2.1 Low-Level Relay Hybrids 420

5.3.2.2 Low-Level Teamwork Hybrids 420

5.3.2.3 High-Level Relay Hybrids 422

5.3.2.4 High-Level Teamwork Hybrids 422

5.4 Hybrid Metaheuristics with Machine Learning and Data Mining 423

5.4.1 Data Mining Techniques 423

5.4.2 Main Schemes of Hybridization 425

5.4.2.1 Low-Level Relay Hybrid 425

5.4.2.2 Low-Level Teamwork Hybrids 426

5.4.2.3 High-Level Relay Hybrid 428

5.4.2.4 High-Level Teamwork Hybrid 431

5.5 Hybrid Metaheuristics for Multiobjective Optimization 432

5.5.1 Combining Metaheuristics for MOPs 432

5.5.1.1 Low-Level Relay Hybrids 432

5.5.1.2 Low-Level Teamwork Hybrids 433

5.5.1.3 High-Level Relay Hybrids 434

5.5.1.4 High-Level Teamwork Hybrid 436

5.5.2 Combining Metaheuristics with Exact Methods for MOP 438

5.5.3 Combining Metaheuristics with Data Mining for MOP 444

5.6 Hybrid Metaheuristics Under ParadisEO 448

5.6.1 Low-Level Hybrids Under ParadisEO 448

5.6.2 High-Level Hybrids Under ParadisEO 451

5.6.3 Coupling with Exact Algorithms 451

5.7 Conclusions and Perspectives 452

5.8 Exercises 454

6 Parallel Metaheuristics 460

6.1 Parallel Design of Metaheuristics 462

6.1.1 Algorithmic-Level Parallel Model 463

6.1.1.1 Independent Algorithmic-Level Parallel Model 463

6.1.1.2 Cooperative Algorithmic-Level Parallel Model 465

CONTENTS xv

6.1.2 Iteration-Level Parallel Model 471

6.1.2.1 Iteration-Level Model for S-Metaheuristics 471

6.1.2.2 Iteration-Level Model for P-Metaheuristics 472

6.1.3 Solution-Level Parallel Model 476

6.1.4 Hierarchical Combination of the Parallel Models 478

6.2 Parallel Implementation of Metaheuristics 478

6.2.1 Parallel and Distributed Architectures 480

6.2.2 Dedicated Architectures 486

6.2.3 Parallel Programming Environments and Middlewares 488

6.2.4 Performance Evaluation 493

6.2.5 Main Properties of Parallel Metaheuristics 496

6.2.6 Algorithmic-Level Parallel Model 498

6.2.7 Iteration-Level Parallel Model 500

6.2.8 Solution-Level Parallel Model 502

6.3 Parallel Metaheuristics for Multiobjective Optimization 504

6.3.1 Algorithmic-Level Parallel Model for MOP 505

6.3.2 Iteration-Level Parallel Model for MOP 507

6.3.3 Solution-Level Parallel Model for MOP 507

6.3.4 Hierarchical Parallel Model for MOP 509

6.4 Parallel Metaheuristics Under ParadisEO 512

6.4.1 Parallel Frameworks for Metaheuristics 512

6.4.2 Design of Algorithmic-Level Parallel Models 513

6.4.2.1 Algorithms and Transferred Data (What?) 514

6.4.2.2 Transfer Control (When?) 514

6.4.2.3 Exchange Topology (Where?) 515

6.4.2.4 Replacement Strategy (How?) 517

6.4.2.5 Parallel Implementation 517

6.4.2.6 A Generic Example 518

6.4.2.7 Island Model of EAs Within ParadisEO 519

6.4.3 Design of Iteration-Level Parallel Models 521

6.4.3.1 The Generic Multistart Paradigm 521

6.4.3.2 Use of the Iteration-Level Model 523

6.4.4 Design of Solution-Level Parallel Models 524

6.4.5 Implementation of Sequential Metaheuristics 524

6.4.6 Implementation of Parallel and Distributed Algorithms 525

6.4.7 Deployment of ParadisEO–PEO 528

6.5 Conclusions and Perspectives 529

6.6 Exercises 531

xvi CONTENTS

Appendix: UML and C++ 535

A.1 A Brief Overview of UML Notations 535

A.2 A Brief Overview of the C++ Template Concept 536

References 539

Index 587

PREFACE

IMPORTANCE OF THIS BOOK

Applications of optimization are countless. Every process has a potential to be opti-

mized. There is no company that is not involved in solving optimization problems.

Indeed, many challenging applications in science and industry can be formulated as

optimization problems. Optimization occurs in the minimization of time, cost, and

risk or the maximization of profit, quality, and efficiency. For instance, there are many

possible ways to design a network to optimize the cost and the quality of service; there

are many ways to schedule a production to optimize the time; there are many ways

to predict a 3D structure of a protein to optimize the potential energy, and so on.

A large number of real-life optimization problems in science, engineering, eco-

nomics, and business are complex and difficult to solve. They cannot be solved in an

exact manner within a reasonable amount of time. Using approximate algorithms is

the main alternative to solve this class of problems.

Approximate algorithms can further be decomposed into two classes: specific

heuristics and metaheuristics. Specific heuristics are problem dependent; they are

designed and applicable to a particular problem. This book deals with metaheuristics

that represent more general approximate algorithms applicable to a large variety

of optimization problems. They can be tailored to solve any optimization problem.

Metaheuristics solve instances of problems that are believed to be hard in general, by

exploring the usually large solution search space of these instances. These algorithms

achieve this by reducing the effective size of the space and by exploring that space

efficiently. Metaheuristics serve three main purposes: solving problems faster, solving

large problems, and obtaining robust algorithms. Moreover, they are simple to design

and implement, and are very flexible.

Metaheuristics are a branch of optimization in computer science and applied math-

ematics that are related to algorithms and computational complexity theory. The past

20 years have witnessed the development of numerous metaheuristics in various

communities that sit at the intersection of several fields, including artificial intelli-

gence, computational intelligence, soft computing, mathematical programming, and

operations research. Most of the metaheuristics mimic natural metaphors to solve

complex optimization problems (e.g., evolution of species, annealing process, ant

colony, particle swarm, immune system, bee colony, and wasp swarm).

Metaheuristics are more and more popular in different research areas and indus-

tries. One of the indicators of this situation is the huge number of sessions, work-

shops, and conferences dealing with the design and application of metaheuristics. For

xvii

xviii PREFACE

example, in the biannual EMO conference on evolutionary multiobjective optimiza-

tion, there one more or less 100 papers and 200 participants. This is a subset family of

metaheuristics (evolutionary algorithms) applied to a subset class of problems (multi-

objective problems)! In practice, metaheuristics are raising a large interest in diverse

technologies, industries, and services since they proved to be efficient algorithms in

solving a wide range of complex real-life optimization problems in different domains:

logistics, bioinformatics and computational biology, engineering design, networking,

environment, transportation, data mining, finance, business, and so on. For instance,

companies are faced with an increasingly complex environment, an economic pres-

sure, and customer demands. Optimization plays an important role in the imperative

cost reduction and fast product development.

PURPOSE OF THIS BOOK

The main goal of this book is to provide a unified view of metaheuristics. It presents

the main design questions and search components for all families of metaheuristics.

Not only the design aspect of metaheuristics but also their implementation using a

software framework are presented. This will encourage the reuse of both the design

and the code of existing search components with a high level of transparency regarding

the target applications and architectures.

The book provides a complete background that enables readers to design and

implement powerful metaheuristics to solve complex optimization problems in a

diverse range of application domains. Readers learn to solve large-scale problems

quickly and efficiently. Numerous real-world examples of problems and solutions

demonstrate how metaheuristics are applied in such fields as telecommunication,

logistics and transportation, bioinformatics, engineering design, scheduling, and so

on. In this book, the key search components of metaheuristics are considered as a

toolbox for

• Designing efficient metaheuristics for optimization problems (e.g., combinato-

rial optimization, continuous optimization).

• Designing efficient metaheuristics for multiobjective optimization problems.

• Designing hybrid, parallel, and distributed metaheuristics.

• Implementing metaheuristics on sequential and parallel machines.

AUDIENCE

For a practicing engineer, a researcher, or a student, this book provides not only the

materiel for all metaheuristics but also the guidance and practical tools for solving

complex optimization problems.

One of the main audience of this book is advanced undergraduate and graduate

students in computer science, operations research, applied mathematics, control,

PREFACE xix

business and management, engineering, and so on. Many undergraduate courses on

optimization throughout the world would be interested in the contents thanks to the

introductory part of the book and the additional information on Internet resources.

In addition, the postgraduate courses related to optimization and complex problem

solving will be a direct target of the book. Metaheuristics are present in more and more

postgraduate studies (computer science, business and management, mathematical

programming, engineering, control, etc.).

The intended audience is also researchers in different disciplines. Researchers

in computer science and operations research are developing new optimization algo-

rithms. Many researchers in different application domains are also concerned with

the use of metaheuristics to solve their problems.

Many engineers are also dealing with optimization in their problem solving. The

purpose of the book is to help engineers to use metaheuristics for solving real-world

optimization problems in various domains of application. The application part of the

book will deal with many important and strategic domains such as computational

biology, telecommunication, engineering design, data mining and machine learning,

transportation and logistics, production systems, and so on.

The prerequisite knowledge the readers need to have is a basic background in

algorithms. For the implementation part, basic background in programming with

C++ will be a plus.

OUTLINE

The book is organized in the following six different chapters (Fig. P.1):

• Common concepts for metaheuristics: First, this chapter justifies the exis-

tence of the book. The main concepts of optimization models, complexity of

Common concepts for

 metaheuristics

Single-solution based

 metaheuristics

Population-based

 metaheuristics

Parallel metaheuristics Hybrid metaheuristics Metaheuristics for

multi-objective optimization

Chapter 4 Chapter 5

Chapter 2 Chapter 3

Chapter 6

Chapter 1

FIGURE P.1 Relationship between the different chapters of the book. The graph presents

the dependencies between the chapters.

xx PREFACE

algorithms, and optimization methods are outlined. Then, the chapter exposes

the common and basic concepts for metaheuristics (e.g., representation, objec-

tive function, and constraint handling). These concepts are used in designing

any metaheuristic. The encoding (or representation) of a solution and its associ-

ated objective function are one of the most important features in metaheuristics.

They will define the structure of the problem in which metaheuristics will search

“good” solutions. Other important common issues of metaheuristics are detailed:

performance evaluation and parameter tuning. Finally, the software engineering

aspect dealing with frameworks for metaheuristics is presented.

• Single-solution based metaheuristics: In chapter 2, the focus is on the de-

sign and implementation of single-solution based metaheuristics such as local

search, tabu search, simulated annealing, threshold accepting, variable neigh-

borhood search, iterated local search, guided local search, GRASP, and so on.

The common concepts of this class of metaheuristics are outlined (e.g., neigh-

borhood, initial solution, and incremental evaluation). For each metaheuristic,

the specific design and implementation of its search components are exposed.

The parameters of each metaheuristic are analyzed and the relationship between

different algorithms is addressed. Moreover, the convergence aspect of the in-

troduced metaheuristics and many illustrative examples of their implementation

are presented.

• Population-based metaheuristics: Chapter 3 concerns the design and imple-

mentation of population-based metaheuristics such as evolutionary algorithms

(genetic algorithms, evolution strategies, genetic programming, evolutionary

programming, estimation of distribution algorithms, differential evolution,

and coevolutionary algorithms), swarm intelligence-based methods (e.g., ant

colonies, particle swarm optimization), scatter search, bee colony, artificial im-

mune systems, and so on. The common and specific search concepts of this class

of metaheuristics are outlined. Many illustrative examples for their design and

implementation are also presented.

• Metaheuristics for multiobjective optimization: In Chapter 4, the design of

metaheuristics for multiobjective optimization problems is addressed according

to their specific search components (fitness assignment, diversity preservation,

and elitism). Many examples of multiobjective problems and popular meta-

heuristics are illustrated. The performance evaluation aspect is also revisited

for this class of metaheuristics.

• Hybrid metaheuristics: Chapter 5 deals with combining metaheuristics with

mathematical programming, constraint programming, and machine learning ap-

proaches. A general classification, which provides a unifying view, is defined to

deal with the numerous hybridization schemes: low-level and high-level hybrids,

relay and teamwork hybrids, global and partial hybrids, general and specialist

hybrids, and homogeneous and heterogeneous hybrids. Both monoobjective and

multiobjective hybrid optimizations are addressed.

• Parallel and distributed metaheuristics: Parallel and distributed metaheuris-

tics for monoobjective and multiobjective optimization are detailed in Chapter 6.

PREFACE xxi

The unified parallel models for mataheuristics (algorithmic level, iteration level,

solution level) are analyzed in terms of design. The main concepts of paral-

lel architectures and parallel programming paradigms, which interfere with the

implementation of parallel metaheuristics, are also outlined.

Each chapter ends with a summary of the most important points. The evolving

web site http://paradiseo.gforge.inria.fr contains the main material

(tutorials, practical exercises, and problem-solving environment for some optimiza-

tion problems).

Many search concepts are illustrated in this book: more than 170 examples and 169

exercises are provided. Appendix introduces the main concepts of the UML (Unified

Modeling Language) notations and C++ concepts for an easy understanding and use

of the ParadisEO framework for metaheuristics.

ACKNOWLEDGMENTS

Thanks go to

• My former and actual PhD students: V. Bachelet, M. Basseur, J.-C. Boisson,

H. Bouziri, J. Brongniart, S. Cahon, Z. Hafidi, L. Jourdan, N. Jozefowiez,

D. Kebbal, M. Khabzaoui, A. Khanafer, J. Lemesre, A. Liefooghe, T.-V. Luong,

M. Mehdi, H. Meunier, M. Mezmaz, A. Tantar, E. Tantar, and B. Weinberg.

• Former and actual members of my research team OPAC and the INRIA

DOLPHIN team project: C. Canape, F. Clautiaux, B. Derbel, C. Dhaenens, G.

Even, M. Fatene, J. Humeau, T. Legrand, N. Melab, O. Schütze, and J. Tavares.

A special thank to C. Dhaenens and N. Melab for their patience in reading some

chapters of this book.

• Former and current collaborators: E. Alba, P. Bessière, P. Bouvry, D. Duvivier, C.

Fonlupt, J.-M. Geib, K. Mellouli, T. Muntean, A.J. Nebro, P. Preux, M. Rahoual,

D. Robillard, O. Roux, F. Semet, and A. Zomaya.

This book was written during my world scientific tour! This has influenced my

inspiration. In fact, it was written during numerous international visits I made to attend

seminars, training courses, and conferences in the past 2 years: Madrid, Algiers,

Sydney, Dresden, Qatar, Saragossa, Tokyo, Dagstuhl, Gran Canaria, Amsterdam,

Luxembourg, Barcelona, Pragua, Vienna, Hawaii, Porto, Montreal, Tunis, Dubai,

Orlando, Rio de Janeiro, Warsaw, Hong Kong, Auckland, Singapour, Los Angeles,

Tampa, Miami, Boston, Malaga, and (I will not forget it) Lille in France!

Finally, I would like to thank the team at John Wiley & Sons who gave me excellent

support throughout this project.

xxiii

GLOSSARY

ACO Ant colony optimization

ADA Annealed demon algorithm

aiNET Artificial immune network

AIS Artificial immune system

AMS Adaptive multistart

ARMA Autoregression moving average

ART Adaptive reasoning technique

A-Teams Asynchronous teams algorithm

BA Bee algorithm

B&B Branch and bound algorithm

BC Bee colony

BDA Bounded demon algorithm

BOA Bayesian optimization algorithm

BOCTP Biobjective covering tour problem

BOFSP Biobjective flow-shop scheduling problem

CA Cultural algorithms

CC-UMA Cache coherent uniform memory access machine

CC-NUMA Cache coherent nonuniform memory access machine

CEA Coevolutionary algorithms

CIGAR Case-injected genetic algorithm

CLONALG Clonal selection algorithm

CLUMPS Cluster of SMP machines

CMA Covariance matrix adaptation

CMA-ES CMA-evolution strategy

CMST Capacitated minimum spanning tree problem

COSEARCH Cooperative search algorithm

COW Cluster of workstations

CP Constraint programming

CPP Clique partitioning problem

CSP Constraint satisfaction problem

CTP Covering tour problem

xxv

xxvi GLOSSARY

CTSP Colorful traveling salesman problem

CVRP Capacitated vehicle routing problem

CX Cycle crossover

DA Demon algorithm

DACE Design and analysis of computer experiments

DE Differential algorithm

DM Data mining

DOE Design of experiments

DP Dynamic programming

EA Evolutionary algorithm

EC Evolutionary computation

EDA Estimation of distribution algorithm

EMNA Estimation of multivariate normal algorithm

EMO Evolutionary multicriterion optimization

EO Evolving objects

EP Evolutionary programming

ES Evolution strategy

FDC Fitness distance correlation

FPGA Field programming gate arrays

FPTAS Fully polynomial-time approximation scheme

FSP Flow-shop scheduling problem

GA Genetic algorithms

GAP Generalized assignment problem

GBP Graph bipartitioning problem

GCP Graph coloring problem

GDA Great deluge algorithm

GLS Guided local search algorithm

GP Genetic programming

GPP Graph partitioning problem

GPS Global positioning system

GPSO Geometric particle swarm optimization

GPU Graphical processing unit

GRASP Greedy adaptive search procedure

GVNS General variable neighborhood search

HMSTP Hop-constrained minimum spanning tree problem

HTC High-throughput computing

HPC High-performance computing

HRH High-level relay hybrid

GLOSSARY xxvii

HTH High-level teamwork hybrid

IBEA Indicator-based evolutionary algorithm

ILP Integer linear programming

ILS Iterative local search

IP Integer program

JSP Job-shop scheduling problem

LAN Local area network

LOP Linear ordering problem

LP Linear programming

LRH Low-level relay hybrid

LS Local search

LTH Low-level teamwork hybrid

MBO Marriage in honeybees optimization

MCDM Multicriteria decision making

MDO Multidisciplinary design optimization

MIMD Multiple instruction streams—multiple data stream

MIP Mixed integer programming

MISD Multiple instruction streams—single data stream

MLS Multistart local search

MLST Minimum label spanning tree problem

MO Moving objects

MOEO Multiobjective evolving objects

MOEA Multiobjective evolutionary algorithm

MOGA Multiobjective genetic algorithm

MOP Multiobjective optimization

MOSA Multiobjective simulated annealing algorithm

MOTS Multiobjective tabu search

MP Mathematical programming

MPI Message passing interface

MPP Massively parallel processing machine

MSTP Minimum spanning Tree Problem

NFL No free lunch theorem

NLP Nonlinear continuous optimization problem

NM Noisy method

NOW Network of workstations

NSA Negative selection algorithm

NSGA Nondominated sorting genetic algorithm

OBA Old bachelor accepting algorithm

xxviii GLOSSARY

OX Order crossover

PAES Pareto archived evolution strategy

ParadisEO Parallel and distributed evolving objects

PBIL Population-based incremental learning algorithm

PCS Parent centric crossover

PEO Parallel Evolving objects

P-metaheuristic Population-based metaheuristic

PMX Partially mapped crossover

POPMUSIC Partial optimization metaheuristic under special intensification

conditions

PR Path relinking

PSO Particle swarm optimization

PTAS Polynomial-time approximation scheme

PVM Parallel virtual machine

QAP Quadratic assignment problem

RADA Randomized annealed demon algorithm

RBDA Randomized bounded demon algorithm

RCL Restricted candidate list

RMI Remote method invocation

RPC Remote procedural call

RRT Record-to-record travel algorithm

SA Simulated annealing

SAL Smoothing algorithm

SAT Satisfiability problems

SCP Set covering problem

SCS Shortest common supersequence problem

SDMCCP Subset disjoint minimum cost cycle problem

SIMD Single instruction stream—multiple data stream

SISD Single instruction stream—single data stream

SM Smoothing method

S-metaheuristic Single-solution based metaheuristic

SMP Symmetric multiprocessors

SMTWTP Single-machine total-weighted tardiness problem

SPEA Strength Pareto evolutionary algorithm

SPX Simplex crossover

SS Scatter search

SUS Stochastic universal sampling

SVNS Skewed variable neighborhood search

TA Threshold accepting

GLOSSARY xxix

TAPAS Target aiming Pareto search

TS Tabu search

TSP Traveling salesman problem

UMDA Univariate marginal distribution algorithm

UNDX Unimodal normal distribution crossover

VEGA Vector evaluated genetic algorithm

VIP Vote-inherit-promote protocol

VND Variable neighborhood descent

VNDS Variable neighborhood decomposition search

VNS Variable neighborhood search

VRP Vehicle routing problem

WAN Wide area network

CHAPTER 1

Common Concepts for Metaheuristics

Computing optimal solutions is intractable for many optimization problems of in-

dustrial and scientific importance. In practice, we are usually satisfied with “good”

solutions, which are obtained by heuristic or metaheuristic algorithms. Metaheuris-

tics represent a family of approximate1 optimization techniques that gained a lot of

popularity in the past two decades. They are among the most promising and success-

ful techniques. Metaheuristics provide “acceptable” solutions in a reasonable time

for solving hard and complex problems in science and engineering. This explains

the significant growth of interest in metaheuristic domain. Unlike exact optimization

algorithms, metaheuristics do not guarantee the optimality of the obtained solutions.

Instead of approximation algorithms, metaheuristics do not define how close are the

obtained solutions from the optimal ones.

The word heuristic has its origin in the old Greek word heuriskein, which means

the art of discovering new strategies (rules) to solve problems. The suffix meta, also

a Greek word, means “upper level methodology.” The term metaheuristic was intro-

duced by F. Glover in the paper [322]. Metaheuristic search methods can be defined as

upper level general methodologies (templates) that can be used as guiding strategies

in designing underlying heuristics to solve specific optimization problems.

This chapter is organized as follows. Section 1.1 discusses the diverse classical

optimization models that can be used to formulate and solve optimization problems.

It also introduces the basic concepts of algorithm and problem complexities. Some

illustrative easy and hard optimization problems are given. Section 1.2 presents other

models for optimization that are not static and deterministic. Those problems are char-

acterized by dynamicity, uncertainty, or multiperiodicity. Then, Section 1.3 outlines

the main families of optimization methods: exact versus approximate algorithms,

metaheuristic versus approximation algorithms, iterative versus greedy algorithms,

single-solution based metaheuristics versus population-based metaheuristics. Finally,

an important question one might ask is answered: “when use metaheuristics?” Once

the basic material for optimization problems and algorithms are presented, impor-

tant common concepts of metaheuristics are introduced in Section 1.4, such as the

1There is a difference between approximate algorithms and approximation algorithms (see Section 1.3.2).

Metaheuristics: From Design to Implementation, by El-Ghazali Talbi
Copyright © 2009 John Wiley & Sons, Inc.

1

2 COMMON CONCEPTS FOR METAHEURISTICS

representation of solutions and the guiding objective function. Then, Sections 1.5,

1.6, and 1.7 present successively three important topics common to all metaheuris-

tics: constraint handling, parameter tuning, and performance evaluation. Finally in

Section 1.8, the software framework aspect of metaheuristics is discussed and the

ParadisEO framework, which is used to implement the designed metaheuristics, is

detailed.

1.1 OPTIMIZATION MODELS

As scientists, engineers, and managers, we always have to take decisions. Decision

making is everywhere. As the world becomes more and more complex and competi-

tive, decision making must be tackled in a rational and optimal way. Decision making

consists in the following steps (Fig. 1.1):

• Formulate the problem: In this first step, a decision problem is identified. Then,

an initial statement of the problem is made. This formulation may be imprecise.

The internal and external factors and the objective(s) of the problem are outlined.

Many decision makers may be involved in formulating the problem.

• Model the problem: In this important step, an abstract mathematical model

is built for the problem. The modeler can be inspired by similar models in the

literature. This will reduce the problem to well-studied optimization models.

Usually, models we are solving are simplifications of the reality. They involve

approximations and sometimes they skip processes that are complex to represent

in a mathematical model. An interesting question may occur: why solve exactly

real-life optimization problems that are fuzzy by nature?

• Optimize the problem: Once the problem is modeled, the solving procedure

generates a “good” solution for the problem. The solution may be optimal or

suboptimal. Let us notice that we are finding a solution for an abstract model

of the problem and not for the originally formulated real-life problem. There-

fore, the obtained solution performances are indicative when the model is an

accurate one. The algorithm designer can reuse state-of-the-art algorithms on

Formulate Model Optimize Implement
Solution

FIGURE 1.1 The classical process in decision making: formulate, model, solve, and imple-

ment. In practice, this process may be iterated to improve the optimization model or algorithm

until an acceptable solution is found. Like life cycles in software engineering, the life cycle of

optimization models and algorithms may be linear, spiral, or cascade.

OPTIMIZATION MODELS 3

similar problems or integrate the knowledge of this specific application into the

algorithm.

• Implement a solution: The obtained solution is tested practically by the decision

maker and is implemented if it is “acceptable.” Some practical knowledge may

be introduced in the solution to be implemented. If the solution is unacceptable,

the model and/or the optimization algorithm has to be improved and the decision-

making process is repeated.

1.1.1 Classical Optimization Models

As mentioned, optimization problems are encountered in many domains: science,

engineering, management, and business. An optimization problem may be defined by

the couple (S, f), where S represents the set of feasible solutions2, and f : S −→ R

the objective function3 to optimize. The objective function assigns to every solution

s ∈ S of the search space a real number indicating its worth. The objective function

f allows to define a total order relation between any pair of solutions in the search

space.

Definition 1.1 Global optimum. A solution s∗ ∈ S is a global optimum if it

has a better objective function4 than all solutions of the search space, that is,

∀s ∈ S, f (s∗) ≤ f (s).

Hence, the main goal in solving an optimization problem is to find a global optimal

solution s∗. Many global optimal solutions may exist for a given problem. Hence, to

get more alternatives, the problem may also be defined as finding all global optimal

solutions.

Different families of optimization models are used in practice to formulate and

solve decision-making problems (Fig. 1.2). The most successful models are based on

mathematical programming and constraint programming.

A commonly used model in mathematical programming is linear programming

(LP), which can be formulated as follows:

Min c · x

subject to

A · x ≥ b

x ≥ 0

2A solution is also referred to as a configuration or a state. The set S is named search space, configuration

space, or state space.
3Sometimes named cost, utility, or fitness function.
4We suppose without loss of generality a minimization problem. Maximizing an objective function f is

equivalent to minimizing −f .

4 COMMON CONCEPTS FOR METAHEURISTICS

Optimization models

Mathematical programming
 models

Continuous Integer

Linear programming
(LP)

Linear integer
programming (IP or ILP)

Nonlinear continuous
(NLP)

Mixed

Convex quadratic

Combinatorial
 optimization

Nonanalytic
 models

Nonlinear convex

Constraint satisfaction
 models

Linear Nonlinear

Not exclusive partitioning

FIGURE 1.2 Classical optimization models. The different classes are possibly overlapping.

where x is a vector of continuous decision variables, and c and b (resp. A) are constant

vectors (resp. matrix) of coefficients.

In a linear programming optimization problem, both the objective function c · x to

be optimized and the constraints A · x ≤ b are linear functions. Linear programming

is one of the most satisfactory models of solving optimization problems5. Indeed,

for continuous linear optimization problems6, efficient exact algorithms such as the

simplex-type method [174] or interior point methods exist [444]. The efficiency of

the algorithms is due to the fact that the feasible region of the problem is a convex set

and the objective function is a convex function. Then, the global optimum solution

is necessarily a node of the polytope representing the feasible region (see Fig. 1.3).

Moreover, any local optima7 solution is a global optimum. In general, there is no

reason to use metaheuristics to solve LP continuous problems.

Example 1.1 Linear programming model in decision making. A given company

synthesizes two products Prod1 and Prod2 based on two kinds of raw materials M1

and M2. The objective consists in finding the most profitable product mix. Table 1.1

presents the daily available raw materials for M1 and M2, and for each product Prodi the

used amount of raw materials and the profit. The decision variables are x1 and x2 that

5LP models were developed during the second world war to solve logistic problems. Their use was kept

secret until 1947.
6The decision variables are real values.
7See Definition 2.4 for the concept of local optimality.

OPTIMIZATION MODELS 5

TABLE 1.1 Data Associated with the Production Problem

Usage for Prod1 Usage for Prod2 Material Availability

M1 6 4 24

M2 1 2 6

Profit per unit D 5 D 4

represent, respectively, the amounts of Prod1 and Prod2. The objective function consists

in maximizing the profit.

The model of this problem may be formulated as an LP mathematical program:

Max profit = 5x1 + 4x2

subject to the constraints

6x1 + 4x2 ≤ 24

1x1 + 2x2 ≤ 6

x1, x2 ≥ 0

Figure 1.3 illustrates the graphical interpretation of the model. Each constraint can be

represented by a line. The objective function is an infinity of parallel lines. The optimum

solution will always lie at an extreme point. The optimal solution is (x1 = 3, x2 = 1.5)

with a profit of D 21.

x 1

x 2

Feasible solution space

Optimal solution

Objective function (max)

Constraints

FIGURE 1.3 Graphical illustration of the LP model and its resolution.

6 COMMON CONCEPTS FOR METAHEURISTICS

Nonlinear programming models (NLP)8 deal with mathematical programming

problems where the objective function and/or the constraints are nonlinear [72].

A continuous nonlinear optimization problem consists in minimizing a function

f : S ⊂ Rn −→ R in a continuous domain. Nonlinear continuous models are, how-

ever, much more difficult to solve, even if there are many modeling possibilities that

may be used to linearize a model: linearizing a product of variables [321], logical

conditions, ordered set of variables, and so on [31]. Linearization techniques intro-

duce in general extra variables and constraints in the model and in some cases some

degree of approximation [319].

For NLP optimization models, specific simplex-inspired heuristics such as the

Nelder and Mead algorithm may be used [578]. For quadratic and convex continuous

problems, some efficient exact algorithms can be used to solve small or moderate

problems [583]. Unfortunately, some problem properties such as high dimensionality,

multimodality, epistasis (parameter interaction), and nondifferentiability render those

traditional approaches impotent. Metaheuristics are good candidates for this class of

problems to solve moderate and large instances.

Continuous optimization9 theory in terms of optimization algorithms is more de-

veloped than discrete optimization. However, there are many real-life applications

that must be modeled with discrete variables. Continuous models are inappropriate

for those problems. Indeed, in many practical optimization problems, the resources

are indivisible (machines, people, etc.). In an integer program (IP)10 optimization

model, the decision variables are discrete [579].

When the decision variables are both discrete and continuous, we are dealing

with mixed integer programming problems (MIP). Hence, MIP models general-

ize LP and IP models. Solving MIP problems has improved dramatically of late

with the use of advanced optimization techniques such as relaxations and decom-

position approaches, and cutting plane algorithms (see Section 5.2.1). For IP and

MIP models, enumerative algorithms such as branch and bound may be used for

small instances. The size is not the only indicator of the complexity of the prob-

lem, but also its structure. Metaheuristics are one of the competing algorithms for

this class of problems to obtain good solutions for instances considered too com-

plex to be solved in an exact manner. Metaheuristics can also be used to gener-

ate good lower or upper bounds for exact algorithms and improve their efficiency.

Notice that there are some easy problems, such as network flow problems, where

linear programming automatically generates integer values. Hence, both integer pro-

gramming approaches and metaheuristics are not useful to solve those classes of

problems.

A more general class of IP problems is combinatorial optimization problems. This

class of problems is characterized by discrete decision variables and a finite search

space. However, the objective function and constraints may take any form [597].

8Also referred to as global optimization.
9Also called real parameter optimization.

10IP models denote implicitly linear models (integer linear programming: ILP).

OPTIMIZATION MODELS 7

FIGURE 1.4 TSP instance with 52 cities.

The popularity of combinatorial optimization problems stems from the fact that

in many real-world problems, the objective function and constraints are of dif-

ferent nature (nonlinear, nonanalytic, black box, etc.) whereas the search space is

finite.

Example 1.2 Traveling salesman problem. Perhaps the most popular combinato-

rial optimization problem is the traveling salesman problem (TSP). It can be for-

mulated as follows: given n cities and a distance matrix dn,n, where each element

dij represents the distance between the cities i and j, find a tour that minimizes the

total distance. A tour visits each city exactly once (Hamiltonian cycle) (Figs. 1.4

and 1.5). The size of the search space is n! Table 1.2 shows the combinatorial

explosion of the number of solutions regarding the number of cities. Unfortunately,

enumerating exhaustively all possible solutions is impractical for moderate and large

instances.

Another common approach to model decision and optimization problems is con-

straint programming (CP), a programming paradigm that integrates richer modeling

tools than the linear expressions of MIP models. A model is composed of a set of

variables. Every variable has a finite domain of values. In the model, symbolic and

TABLE 1.2 Effect of the Number of Cities on

the Size of the Search Space

Number of Cities n Size of the Search Space

5 120

10 3, 628, 800

75 2.5 × 10109

8 COMMON CONCEPTS FOR METAHEURISTICS

FIGURE 1.5 TSP instance with 24,978 cities.

mathematical constraints related to variables may be expressed. Global constraints

represent constraints that refer to a set of variables. Hence, the CP paradigm models

the properties of the desired solution. The declarative models in CP are flexible and

are in general more compact than in MIP models.

Example 1.3 Assignment problem within constraint programming. The goal is

to assign n objects {o1, o2, . . . , on} to n locations {l1, l2, . . . , ln} where each object is

placed on a different location. Using constraint programming techniques, the model will

be the following:

all different(y1, y2, . . . , yn)

where yi represents the index of the location to which the object oi is assigned. The global

constraint all different(y1, y2, . . . , yn) specifies that all variables must be different.

If this problem is modeled using an IP model, one has to introduce the following decision

variables:

xij =
{

1 if object oi is assigned to location lj

0 otherwise

Hence, much more variables (n2 instead of n) are declared.

However, it does not mean that solving the problem will be more efficient within

constraint programming than using mathematical programming. Solving the problem

is another story. The advantage of MIP solvers is that they use relaxations of the prob-

lem to prune the search tree, while in CP they use constraint propagation techniques to

OPTIMIZATION MODELS 9

reduce the variable domains (see Section 5.3.1). The efficiency of the solvers depends

mainly on the structure of the target problem and its associated model. The modeling

step of the problem is then very important. In general, CP techniques are less suitable

for problems with a large number of feasible solutions, such as the assignment prob-

lem shown in the previous example. They are usually used for “tight” constrained

problems such as timetabling and scheduling problems.

There are often many ways to formulate mathematically an optimization problem.

The efficiency obtained in solving a given model may depend on the formulation

used. This is why a lot of research is directed on the reformulation of optimization

problems. It is sometimes interesting to increase the number of integer variables

and constraints. For a more comprehensive study of mathematical programming ap-

proaches (resp. constraint programming techniques), the reader may refer to Refs

[37,300,686] (resp. [34,287,664]).

For many problems arising in practical applications, one cannot expect the avail-

ability of analytical optimization models. For instance, in some applications one has

to resort to simulation or physical models to evaluate the objective function. Math-

ematical programming and constraint programming approaches require an explicit

mathematical formulation that is impossible to derive in problems where simulation

is relevant [288].

1.1.2 Complexity Theory

This section deals with some results on intractability of problem solving. Our focus

is the complexity of decidable problems. Undecidable problems11 could never have

any algorithm to solve them even with unlimited time and space resources [730]. A

popular example of undecidable problems is the halting problem [782].

1.1.2.1 Complexity of Algorithms An algorithm needs two important re-

sources to solve a problem: time and space. The time complexity of an algorithm

is the number of steps required to solve a problem of size n. The complexity is

generally defined in terms of the worst-case analysis.

The goal in the determination of the computational complexity of an algorithm

is not to obtain an exact step count but an asymptotic bound on the step count. The

Big-O notation makes use of asymptotic analysis. It is one of the most popular nota-

tions in the analysis of algorithms.

Definition 1.2 Big-O notation. An algorithm has a complexity f (n) = O(g(n)) if

there exist positive constants n0 and c such that ∀n > n0, f (n) ≤ c · g(n).

In this case, the function f (n) is upper bounded by the function g(n). The Big-O

notation can be used to compute the time or the space complexity of an algorithm.

11Also called noncomputable problems.

10 COMMON CONCEPTS FOR METAHEURISTICS

Definition 1.3 Polynomial-time algorithm. An algorithm is a polynomial-time

algorithm if its complexity is O(p(n)), where p(n) is a polynomial function of n.

A polynomial function of degree k can be defined as follows:

p(n) = ak · nk + · · · + aj · nj + · · · + a1 · n + a0

where ak > 0 and aj ≥ 0, ∀1 ≤ j ≤ k − 1. The corresponding algorithm has a poly-

nomial complexity of O(nk).

Example 1.4 Complexity of shortest path algorithms. Given a connected graph

G = (V, E), where V represents the set of nodes and E the set of edges. Let D =
(dij) be a distance matrix where dij is the distance between the nodes i and j (we

assume dij = dji > 0). The shortest path problem consists in finding the path from a

source node i to a destination node j. A pathπ(i, j) from i to j can be defined as a sequence

(i, i1, i2, . . . , ik, j), such that (i, i1) ∈ E, (ik, j) ∈ E, (il, il+1) ∈ E, ∀1 ≤ l ≤ k − 1. The

length of a path π(i, j) is the sum of the weights of its edges:

length(π(i, j)) = dii1 + dikj +
k−1∑

l=1

dilil+1

Let us consider the well-known Dijkstra algorithm to compute the shortest path be-

tween two nodes i and j [211]. It works by constructing a shortest path tree from the

initial node to every other node in the graph. For each node of the graph, we have to

consider all its neighbors. In the worst-case analysis, the number of neighbors for a

node is in the order of n. The Dijkstra algorithm requires O(n2) running time where n

represents the number of nodes of the graph. Then, the algorithm requires no more

than a quadratic number of steps to find the shortest path. It is a polynomial-time

algorithm.

Definition 1.4 Exponential-time algorithm. An algorithm is an exponential-time

algorithm if its complexity is O(cn), where c is a real constant strictly superior to 1.

Table 1.3 illustrates how the search time of an algorithm grows with the size of

the problem using different time complexities of an optimization algorithm. The table

shows clearly the combinatorial explosion of exponential complexities compared to

polynomial ones. In practice, one cannot wait some centuries to solve a problem. The

problem shown in the last line of the table needs the age of universe to solve it in an

exact manner using exhaustive search.

Two other notations are used to analyze algorithms: the Big-� and the Big-�

notations.

Definition 1.5 Big-� notation. An algorithm has a complexity f (n) = �(g(n))

if there exist positive constants n0 and c such that ∀n > n0, f (n) ≥ c · g(n). The

complexity of the algorithm f (n) is lower bounded by the function g(n).

OPTIMIZATION MODELS 11

TABLE 1.3 Search Time of an Algorithm as a Function of the Problem Size Using

Different Complexities (from [299])

Complexity Size = 10 Size = 20 Size = 30 Size = 40 Size = 50

O(x) 0.00001 s 0.00002 s 0.00003 s 0.00004 s 0.00005 s

O(x2) 0.0001 s 0.0004 s 0.0009 s 0.0016 s 0.0025 s

O(x5) 0.1 s 0.32 s 24.3 s 1.7 mn 5.2 mn

O(2x) 0.001 s 1.0 s 17.9 mn 12.7 days 35.7 years

O(3x) 0.059 s 58.0 mn 6.5 years 3855 centuries 2 × 108 centuries

Definition 1.6 Big-� notation. An algorithm has a complexity f (n) = �(g(n)) if

there exist positive constants n0, c1, and c2 such that ∀n > n0, c1 · g(n) ≤ f (n) ≤
c2 · g(n). The complexity of the algorithm f (n) is lower bounded by the function g(n).

It is easier to find first the Big-O complexity of an algorithm, then derive suc-

cessively the Big-� and Big-� complexities. The Big-� notation defines the exact

bound (lower and upper) on the time complexity of an algorithm.

The asymptotic analysis of algorithms characterizes the growth rate of their time

complexity as a function of the problem size (scalability issues). It allows a theoretical

comparison of different algorithms in terms of the worst-case complexity. It does not

specify the practical run time of the algorithm for a given instance of the problem.

Indeed, the run time of an algorithm depends on the input data. For a more complete

analysis, one can also derive the average-case complexities, which is a more difficult

task.

1.1.2.2 Complexity of Problems The complexity of a problem is equivalent to

the complexity of the best algorithm solving that problem. A problem is tractable (or

easy) if there exists a polynomial-time algorithm to solve it. A problem is intractable

(or difficult) if no polynomial-time algorithm exists to solve the problem.

The complexity theory of problems deals with decision problems. A decision

problem always has a yes or no answer.

Example 1.5 Prime number decision problem. A popular decision problem

consists in answering the following question: is a given number Q a prime number?

It will return yes if the number Q is a prime one, otherwise the no answer is returned.

An optimization problem can always be reduced to a decision problem.

Example 1.6 Optimization versus decision problem. The optimization problem

associated with the traveling salesman problem is “find the optimal Hamiltonian tour

that optimizes the total distance,” whereas the decision problem is “given an integer D,

is there a Hamiltonian tour with a distance less than or equal to D?”

12 COMMON CONCEPTS FOR METAHEURISTICS

NP-complete problems

 NP class

P class

FIGURE 1.6 Complexity classes of decision problems.

An important aspect of computational theory is to categorize problems into com-

plexity classes. A complexity class represents the set of all problems that can be solved

using a given amount of computational resources. There are two important classes of

problems: P and NP (Fig. 1.6).

The complexity class P represents the set of all decision problems that can be

solved by a deterministic machine in polynomial time. A (deterministic) algorithm

is polynomial for a decision problem A if its worst12 complexity is bounded by a

polynomial function p(n) where n represents the size of the input instance I. Hence,

the class P represents the family of problems where a known polynomial-time algo-

rithm exists to solve the problem. Problems belonging to the class P are then relatively

“easy” to solve.

Example 1.7 Some problems of class P. Some classical problems belonging to class

P are minimum spanning tree, shortest path problems, maximum flow network, maxi-

mum bipartite matching, and linear programming continuous models13. In the book of

Garey and Johnson, a more exhaustive list of easy and hard class P problems can be

found [299].

The complexity class NP represents the set of all decision problems that can be

solved by a nondeterministic algorithm14 in polynomial time. A nondeterministic

algorithm contains one or more choice points in which multiple different continuations

are possible without any specification of which one will be taken. It uses the primitives:

choice that proposes a solution (oracle), check that verifies in polynomial time if

a solution proposal (certificate) gives a positive or negative answer, success when

the algorithm answers yes after the check application, and fail when the algorithm

12We take into account the worst-case performance and not the average one.
13Linear programming continuous problems belong to class P, whereas one of the most efficient algorithms

to solve LP programs, the simplex algorithm, has an exponential complexity.
14In computer science, the term algorithm stands for a deterministic algorithm.

OPTIMIZATION MODELS 13

does not respond “yes.” Then, if the choice primitive proposes a solution that gives

a “yes” answer and the oracle has the capacity to do it, then the computing complexity

is polynomial.

Example 1.8 Nondeterministic algorithm for the 0–1 knapsack problem. The 0–1

knapsack decision problem can be defined as follows. Given a set of N objects. Each

object O has a specified weight and a specified value. Given a capacity, which is the

maximum total weight of the knapsack, and a quota, which is the minimum total value

that one wants to get. The 0–1 knapsack decision problem consists in finding a subset

of the objects whose total weight is at most equal to the capacity and whose total value

is at least equal to the specified quota.

Let us consider the following nondeterministic algorithm to solve the knapsack

decision problem:

Algorithm 1.1 Nondeterministic algorithm for the knapsack problem.

Input OS : set of objects ; QUOTA : number ; CAPACITY : number.

Output S : set of objects ; FOUND : boolean.

S = empty ; total value = 0 ; total weight = 0 ; FOUND = false ;

Pick an order L over the objects ;

Loop

Choose an object O in L ; Add O to S ;

total value = total value + O.value ;

total weight = total weight + O.weight ;

If total weight > CAPACITY Then fail

Else If total value ≥ QUOTA

FOUND = true ;

succeed ;

Endif Endif

Delete all objects up to O from L ;

Endloop

The question whether P = NP15 is one of the most important open questions

due to the wide impact the answer would have on computational complexity theory.

Obviously, for each problem in P we have a nondeterministic algorithm solving it.

Then, P ⊆ NP (Fig. 1.6). However, the following conjecture P ⊂ NP is still an open

question.

A decision problem A is reduced polynomially to a decision problem B if, for

all input instances IA for A, one can always construct an input instance IB for B in

polynomial-time function to the size L(IA) of the input IA, such that IA is a positive

instance of A if and only if IB is a positive instance of B.

15The question is one of the millennium problems with a prize of US$ 1,000,000 for a first-found solution.

14 COMMON CONCEPTS FOR METAHEURISTICS

A decision problem A ∈ NP is NP-complete if all other problems of class NP are

reduced polynomially to the problem A. Figure 1.6 shows the relationship between

P, NP, and NP-complete problems. If a polynomial deterministic algorithm exists

to solve an NP-complete problem, then all problems of class NP may be solved in

polynomial time.

NP-hard problems are optimization problems whose associated decision problems

are NP-complete. Most of the real-world optimization problems are NP-hard for which

provably efficient algorithms do not exist. They require exponential time (unless P =

NP) to be solved in optimality. Metaheuristics constitute an important alternative to

solve this class of problems.

Example 1.9 Some NP-hard problems. Cook (1971) was the first to prove that the

satisfiability problem (SAT) is NP-complete. The other NP-complete problems are at

least as hard as the SAT problem. Many academic popular problems are NP-hard among

them:

• Sequencing and scheduling problems such as flow-shop scheduling, job-shop

scheduling, or open-shop scheduling.

• Assignment and location problems such as quadratic assignment problem (QAP),

generalized assignment problem (GAP), location facility, and the p-median

problem.

• Grouping problems such as data clustering, graph partitioning, and graph

coloring.

• Routing and covering problems such as vehicle routing problems (VRP), set cov-

ering problem (SCP), Steiner tree problem, and covering tour problem (CTP).

• Knapsack and packing/cutting problems, and so on.

Many of those optimization problems (and others) will be introduced in the book in

a progressive manner to illustrate the design of search components of metaheuristics.

Those optimization problems are canonical models that can be applied to different real-

life applications. Integer programming models belong in general to the NP-complete

class. Unlike LP models, IP problems are difficult to solve because the feasible region

is not a convex set.

Example 1.10 Still open problems. Some problems have not yet been proved

to be NP-hard. A popular example is the graph isomorphism problem that determines

if two graphs are isomorphic. Whether the problem is in P or NP-complete is an open

question. More examples may be found in Ref. [299].

1.2 OTHER MODELS FOR OPTIMIZATION

The rest of the book focuses mainly on solving static and deterministic problems.

Demand is growing to solve real-world optimization problems where the data are noisy

or the objective function is changing dynamically. Finding robust solutions for some

design problems is another important challenge in optimization. A transformation to

OTHER MODELS FOR OPTIMIZATION 15

deterministic and static problems is often proposed to solve such problems. Moreover,

some adaptations may be proposed for metaheuristics in terms of intensification and

diversification of the search to tackle this class of problems [414]. Chapter 4 deals

with another class of optimization problems characterized by multiple objectives: the

multiobjective optimization problems (MOP) class.

1.2.1 Optimization Under Uncertainty

In many concrete optimization problems, the input data are subject to noise. There

are various sources of noise. For instance, the use of a stochastic simulator or an

inherently noisy measurement device such as sensors will introduce an additive noise

in the objective function. For a given solution x in the search space, a noisy objective

function can be defined mathematically as follows:

fnoisy(x) =
∫ +∞

−∞
[f (x) + z]p(z)dz

where p(z) represents the probability distribution of the additive noise z. The additive

noise z is mostly assumed to be normally distributed N(0, σ) with zero mean and a

σ variance [414]. Non-Gaussian noise can also be considered, such as the Cauchy

distribution. For the same solution x, different values of the objective function fnoisy

may be obtained by multiple evaluations. Unlike dynamic optimization, the function

fnoisy is time invariant.

In practice, the objective function fnoisy is often approximated by the function

f ′
noisy, which is defined by the mean value on a given number of samples:

f ′
noisy(x) =

∑N
i=1 [f (x) + zi]

N

where zi represents the noise associated with the sample i and N is the number of

samples.

Example 1.11 Uncertainty in routing and scheduling problems. Uncertainty may

be present in different components of routing problems. In vehicle routing problems,

stochastic demands or stochastic transportation times between locations may be con-

sidered as sources of uncertainty. In scheduling problems, uncertainty can occur from

many sources such as variable processing and release times or due date variations.

The simplest approach to handle uncertainty is to estimate the mean value of each

parameter and solve a deterministic problem. The domain of stochastic programming

has the goal to solve some limited range of optimization problems under uncertainty

[442,674]. Hence, metaheuristics for solving deterministic optimization problems can

help solve problems with uncertainty.

16 COMMON CONCEPTS FOR METAHEURISTICS

1.2.2 Dynamic Optimization

Dynamic Optimization problems represent an important challenge in many real-life

applications. The input elements of the problem change over time. In dynamic opti-

mization problems, the objective function is deterministic at a given time but varies

over the time [414]:

fdynamic(x) = ft(x)

where t represents the time at which the objective function is evaluated. In that case,

the optimal solution of the problem changes as well. Unlike optimization with uncer-

tainty, the function f is deterministic. At a given time, the multiple evaluations of the

objective function always give the same values.

Example 1.12 Dynamic routing problems. In many routing problems such as

traveling salesman and vehicle routing problems, the properties of the input graph can

change over time concurrently with the search process. For the TSP, some cities may

be added or deleted during the tour. For the VRP, one can expect a new demand (new

customer) to be handled in the problem. A solution might be regarded as a global optimal

solution at a given time and may not be optimal in the next time.

The main issues in solving dynamic optimization problems are [91,564]

• Detect the change in the environment when it occurs. For most of real-life prob-

lems, the change is smooth rather than radical.

• Respond to the change in the environment to track the new global optimal

solution. Hence, the search process must adapt quickly to the change of the

objective function. The goal is to track dynamically the changing optimal solu-

tion as close as possible. The main challenge is to reuse information on previ-

ous searches to adapt to the problem change instead of re-solving the problem

from scratch. Some forecasting strategies may also be used to predict the future

scenarios.

The main question in designing a metaheuristic for dynamic optimization problems

is what information during the search must be memorized and how this information

will be used to guide the search and maintain adaptability to changes [91].

1.2.2.1 Multiperiodic Optimization In multiperiodic problems, the input data

change periodically. It is a class of dynamic optimization problems where the change

is known a priori. So, one has to take into account the planning horizon in optimizing

those models. In general, static models taking into account the whole horizon are used

to tackle this class of problems.

Example 1.13 Multiperiodic planning problem. An example of multiperiodic prob-

lems may be the planning of mobile telecommunication networks. One can design

OTHER MODELS FOR OPTIMIZATION 17

the network by taking into account all the periods. For instance, each period

is characterized by a given traffic or new incoming technology. In designing the net-

work at a given period, the telecommunication operator must take into account the

future evolutions to make the implemented solution more flexible for the future peri-

ods. Optimizing the static models in sequence for each period may produce a solution

that is not optimal over the whole planning horizon. For instance, the optimal plan-

ning for a period i may not be well adapted to a future period i + k with a higher

traffic in a given region. A multiperiodic model must integrate all the data associ-

ated with all periods to find the sequence of optimal solutions over the successive

periods.

1.2.3 Robust Optimization

In many optimization problems, the decision variables or the environmental variables

are perturbed or subject to change after a final solution has been obtained and imple-

mented for the problem. Hence, in solving the problem we have to take into account

that a solution should be acceptable with respect to slight changes of the decision

variable values. The term robust qualifies those solutions. Robust optimization may

be seen as a specific kind of problem with uncertainties.

Example 1.14 Robustness in multidisciplinary design optimization and engineer-

ing design. Robust optimization is of great importance in many domains such as in

engineering design. The growing interest is driven by engineering demands to produce

extremely robust solutions. Indeed, in this class of problems, the implemented solution

must be insensitive to small variation in the design parameters. This variation may be

caused by production tolerances, or parameter drifts during operation [74]. Another im-

portant application of robust optimization is in multidisciplinary design optimization,

where multiple teams associated with different disciplines design a complex system by

independently optimizing subsystems. For complexity reasons (time and/or cost), each

team will optimize its own subsystem without a full and precise information on the

output of other subsystems.

There are many possible ways to deal with robustness. The most used measure

is to optimize the expected objective function given a probability distribution of the

variation. The expected objective function to optimize in searching robust solutions

may be formulated as follows:

frobust(x) =
∫ +∞

−∞
f (x + δ)p(δ)dδ

where p(δ) represents the probability distribution of the decision variable disturbance.

In general, the distribution takes a normal distribution. Usually, this effective objective

function is not available. Hence, it is approximated, for instance, by a Monte Carlo

18 COMMON CONCEPTS FOR METAHEURISTICS

Optimization methods

Exact methods Approximate methods

Heuristic algorithms Approximation
 algorithms

Problem-specific
 heuristics

Metaheuristics

Single-solution based
 metaheuristics

Population-based
 metaheuristics

Branch and X Constraint
programming

 Dynamic
programming

Branch and
 bound

Branch and
 cut

Branch and
 price

A*, IDA*

FIGURE 1.7 Classical optimization methods.

integration:

f ′
robust(x) =

∑N
i=1 f (x + δi)

N

Robust optimization has to find a trade-off between the quality of solutions and their

robustness in terms of decision variable disturbance. This problem may be formulated

as a multiobjective optimization problem (see Chapter 4) [415]. Unlike optimiza-

tion under uncertainty, the objective function in robust optimization is considered as

deterministic.

The introduced different variants of optimization models are not exclusive. For

instance, many practical optimization problems include uncertainty as well as robust-

ness and/or multiperiodicity. Thus, uncertainty, robustness, and dynamic issues must

be jointly considered to solve this class of problems.

1.3 OPTIMIZATION METHODS

Following the complexity of the problem, it may be solved by an exact method or an

approximate method (Fig. 1.7). Exact methods16 obtain optimal solutions and guaran-

tee their optimality. For NP-complete problems, exact algorithms are nonpolynomial-

time algorithms (unless P = NP). Approximate (or heuristic) methods generate high-

quality solutions in a reasonable time for practical use, but there is no guarantee of

finding a global optimal solution.

16In the artificial intelligence community, those algorithms are also named complete algorithms.

OPTIMIZATION METHODS 19

1.3.1 Exact Methods

In the class of exact methods one can find the following classical algorithms: dynamic

programming, branch and X family of algorithms (branch and bound, branch and

cut, branch and price) developed in the operations research community, constraint

programming, and A∗ family of search algorithms (A∗, IDA∗—iterative deepening

algorithms) [473] developed in the artificial intelligence community [673]. Those

enumerative methods may be viewed as tree search algorithms. The search is carried

out over the whole interesting search space, and the problem is solved by subdividing

it into simpler problems.

Dynamic programming is based on the recursive division of a problem into simpler

subproblems. This procedure is based on the Bellman’s principle that says that “the

subpolicy of an optimal policy is itself optimal” [68]. This stagewise optimization

method is the result of a sequence of partial decisions. The procedure avoids a total

enumeration of the search space by pruning partial decision sequences that cannot

lead to the optimal solution.

The branch and bound algorithm and A∗ are based on an implicit enumeration of

all solutions of the considered optimization problem. The search space is explored by

dynamically building a tree whose root node represents the problem being solved and

its whole associated search space. The leaf nodes are the potential solutions and the

internal nodes are subproblems of the total solution space. The pruning of the search

tree is based on a bounding function that prunes subtrees that do not contain any

optimal solution. A more detailed description of dynamic programming and branch

and bound algorithms may be found in Section 5.2.1.

Constraint programming is a language built around concepts of tree search and

logical implications. Optimization problems in constraint programming are modeled

by means of a set of variables linked by a set of constraints. The variables take their

values on a finite domain of integers. The constraints may have mathematical or

symbolic forms. A more detailed description of constraint programming techniques

may be found in Section 5.3.1.

Exact methods can be applied to small instances of difficult problems. Table 1.4

shows for some popular NP-hard optimization problems the order of magnitude of the

maximal size of instances that state-of-the-art exact methods can solve to optimality.

Some of the exact algorithms used are implemented on large networks of workstations

TABLE 1.4 Order of Magnitude of the Maximal Size of Instances that

State-of-the-Art Exact Methods can Solve to Optimality

Optimization Quadratic Flow-Shop Graph Capacitated

Problems Assignment Scheduling (FSP) Coloring Vehicle Routing

Size of the 30 objects 100 jobs 100 nodes 60 clients

instances 20 machines

For some practical problems, this maximum size may be negligible. For the TSP problem, an instance of

size 13,509 has been solved to optimality [32].

20 COMMON CONCEPTS FOR METAHEURISTICS

TABLE 1.5 The Impact of the Structure on the Size of Instances (i.e., Number of

Nodes for SOP and GC, Number of Objects for QAP) that State-of-the-Art Exact

Methods can Solve to Optimality (SOP: Sequential Ordering Problem;

QAP: Quadratic Assignment Problem; GC: Graph Coloring)

Optimization Problem SOP QAP GC

Size of some unsolved instances 53 30 125

Size of some solved instances 70 36 561

(grid computing platforms) composed of more than 2000 processors with more than

2 months of computing time [546]!

The size of the instance is not the unique indicator that describes the difficulty of

a problem, but also its structure. For a given problem, some small instances cannot

be solved by an exact algorithm while some large instances may be solved exactly by

the same algorithm. Table 1.5 shows for some popular optimization problems (e.g.,

SOP17: sequential ordering problem; QAP18: quadratic assignment problem; GC19:

graph coloring) small instances that are not solved exactly and large instances solved

exactly by state-of-the-art exact optimization methods.

Example 1.15 Phase transition. In many NP-hard optimization problems, a phase

transition occurs in terms of the easiness/hardness of the problem; that is, the difficulty

to solve the problem increases until a given size n, and beyond this value the problem

is easier to solve [126]. Then, the hardest problems tend to be in the phase transition

boundary. Let us consider the number partitioning problem, a widely cited NP-hard

problem. Given a bag S of N positive integers {a1, a2, . . . , an}, find a partition of the

numbers into two equally disjoint bags S1 and S2 of cardinality n/2 that minimizes the

absolute value of the difference of their sums:

f =
∣

∣

∣

∣

∣

∑

i∈S1

ai −
∑

i∈S2

ai

∣

∣

∣

∣

∣

For the number partitioning problem, the phase transition has been identified around the

problem size of n = 35 [310,474].

Phase transition phenomena have also been identified in various problems such as

graph coloring [126], SAT (propositional satisfiability) [558], CSP (constraint satis-

faction problems) [706], traveling salesman problems [312], independent set problems

[311], and Hamiltonian circuits [126].

In solving SAT problems, instances before the phase transition are easy to solve

and those after the phase transition are mostly unsatisfiable [151]. The phase tran-

sition is formulated by the ratio between the number of clauses l and the number

17See http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.
18See http://www.seas.upenn.edu/qaplib/inst.html.
19See http://mat.gsia.cmu.edu/COLOR/instances.html.

OPTIMIZATION METHODS 21

of variables n. In a problem with k variables per clause, the phase transition can be

estimated as [311]

l

n
≈ ln(2)

ln(1 − 1

2k)

For instance, for 3-SAT problems, the phase transition has been found experimentally

around 4.3 [151].

1.3.2 Approximate Algorithms

In the class of approximate methods, two subclasses of algorithms may be distin-

guished: approximation algorithms and heuristic algorithms. Unlike heuristics, which

usually find reasonably “good” solutions in a reasonable time, approximation algo-

rithms provide provable solution quality and provable run-time bounds.

Heuristics find “good” solutions on large-size problem instances. They allow to

obtain acceptable performance at acceptable costs in a wide range of problems. In

general, heuristics do not have an approximation guarantee on the obtained solutions.

They may be classified into two families: specific heuristics and metaheuristics. Spe-

cific heuristics are tailored and designed to solve a specific problem and/or instance.

Metaheuristics are general-purpose algorithms that can be applied to solve almost any

optimization problem. They may be viewed as upper level general methodologies that

can be used as a guiding strategy in designing underlying heuristics to solve specific

optimization problems.

1.3.2.1 Approximation Algorithms In approximation algorithms, there is a

guarantee on the bound of the obtained solution from the global optimum [380]. An

ǫ-approximation algorithm generates an approximate solution a not less than a factor

ǫ times the optimum solution s [793].

Definition 1.7 ǫ-Approximation algorithms. An algorithm has an approximation

factor ǫ if its time complexity is polynomial and for any input instance it produces a

solution a such that20

a ≤ ǫ · s if ǫ > 1

ǫ · s ≤ a if ǫ < 1

where s is the global optimal solution, and the factor ǫ defines the relative performance

guarantee. The ǫ factor can be a constant or a function of the size of the input instance.

20In a minimization context.

22 COMMON CONCEPTS FOR METAHEURISTICS

An ǫ-approximation algorithm generates an absolute performance guarantee21 ǫ,

if the following property is proven:

(s − ǫ) ≤ a ≤ (s + ǫ)

Example 1.16 ǫ-Approximation for the bin packing problem. The bin packing

problem is an NP-hard combinatorial optimization problem. Given a set of objects of

different size and a finite number of bins of a given capacity. The problem consists in

packing the set of objects so as to minimize the number of used bins. Approximation

algorithms are generally greedy heuristics using the principle “hardest first, easiest last.”

The first fit greedy heuristic places each item into the first bin in which it will fit. The

complexity of the first fit algorithm is �(n · log(n)). An example of a good approximation

algorithm for the bin packing problem is obtained by the first fit descending heuristic

(FFD), which first sorts the objects into decreasing order by size:

11

9
opt + 1

where opt is the number of bins given by the optimal solution. Without the sorting

procedure, a worst bound is obtained within less computational time:

17

10
opt + 2

NP-hard problems differ in their approximability. A well-known family of approx-

imation problems is the PTAS class, where the problem can be approximated within

any factor greater than 1.

Definition 1.8 PTAS (polynomial-time approximation scheme). A problem is

in the PTAS class if it has polynomial-time (1 + ǫ)-approximation algorithm for any

fixed ǫ > 0.

Definition 1.9 FPTAS (fully polynomial-time approximation scheme). A pro-

blem is in the FPTAS class if it has polynomial-time (1 + ǫ)-approximation algorithm

in terms of both the input size and 1/ǫ for any fixed ǫ > 0.

Some NP-hard problems are impossible to approximate within any constant factor

(or even polynomial, unless P = NP)22.

Example 1.17 PTAS for the 0–1 knapsack problem. Some problems such as

Euclidean TSP, knapsack, and some scheduling problems are in the PTAS class. The

21Also referred to as bounded error.
22At http://www.nada.kth.se/∼viggo/wwwcompendium/, there is a continuously updated

catalog of approximability results for NP optimization problems.

OPTIMIZATION METHODS 23

0–1 knapsack problem has an FPTAS with a time complexity of O(n3/ǫ). Problems

such as the Max-SAT and vertex cover are much harder and are not members of the

PTAS class.

The goal in designing an approximation algorithm for a problem is to find tight

worst-case bounds. The study of approximation algorithms gives more knowledge

on the difficulty of the problem and can help designing efficient heuristics. However,

approximation algorithms are specific to the target optimization problem (problem

dependent). This characteristic limits their applicability. Moreover, in practice,

attainable approximations are too far from the global optimal solution, making those

algorithms not very useful for many real-life applications.

1.3.3 Metaheuristics

Unlike exact methods, metaheuristics allow to tackle large-size problem instances by

delivering satisfactory solutions in a reasonable time. There is no guarantee to find

global optimal solutions or even bounded solutions. Metaheuristics have received

more and more popularity in the past 20 years. Their use in many applications shows

their efficiency and effectiveness to solve large and complex problems. Application

of metaheuristics falls into a large number of areas; some them are

• Engineering design, topology optimization and structural optimization in elec-

tronics and VLSI, aerodynamics, fluid dynamics, telecommunications, auto-

motive, and robotics.

• Machine learning and data mining in bioinformatics and computational biology,

and finance.

• System modeling, simulation and identification in chemistry, physics, and biol-

ogy; control, signal, and image processing.

• Planning in routing problems, robot planning, scheduling and production prob-

lems, logistics and transportation, supply chain management, environment, and

so on.

Optimization is everywhere; optimization problems are often complex; then meta-

heuristics are everywhere. Even in the research community, the number of sessions,

workshops, and conferences dealing with metaheuristics is growing significantly!

Figure 1.8 shows the genealogy of the numerous metaheuristics. The heuristic con-

cept in solving optimization problems was introduced by Polya in 1945 [619]. The

simplex algorithm, created by G. Dantzig in 1947, can be seen as a local search algo-

rithm for linear programming problems. J. Edmonds was first to present the greedy

heuristic in the combinatorial optimization literature in 1971 [237]. The original ref-

erences of the following metaheuristics are based on their application to optimization

and/or machine learning problems: ACO (ant colonies optimization) [215], AIS (arti-

ficial immune systems) [70,253], BC (bee colony) [689,835], CA (cultural algorithms)

[652], CEA (coevolutionary algorithms) [375,397], CMA-ES (covariance matrix

24 COMMON CONCEPTS FOR METAHEURISTICS

Greedy heuristic (71)

TS (86)

SA (83)

Time

1977

1983

1986

LS (47)

SS (77)

GA (62)

VNS (95)

ACO (92)1992

1990 TA (90)
ILS (91)

GDA (93)1993

GRASP (89)

1995 GLS (95)

ES (65)

1973

EDA, CA (94)

GP (92)

PSO (95)

EP (62)1962

1965

DE (94)

SM (86)

NM (93)

1996 BC (96)

AIS (86)

CMA-ES (96)

CEA (90)

1947

FIGURE 1.8 Genealogy of metaheuristics. The application to optimization and/or machine

learning is taken into account as the original date.

adaptation evolution strategy) [363], DE (differential evolution) [626,724], EDA (es-

timation of distribution algorithms) [47], EP (evolutionary programming) [272], ES

(evolution strategies) [642,687], GA (genetic algorithms) [383,384], GDA (great del-

uge) [229], GLS (guided local search) [805,807], GP (genetic programming) [480],

GRASP (greedy adaptive search procedure) [255], ILS (iterated local search) [531],

NM (noisy method) [124], PSO (particle swarm optimization) [457], SA (simulated

annealing) [114,464], SM (smoothing method) [326], SS (scatter search) [320], TA

(threshold accepting) [228], TS (tabu search) [322,364], and VNS (variable neigh-

borhood search) [561].

In designing a metaheuristic, two contradictory criteria must be taken into account:

exploration of the search space (diversification) and exploitation of the best solutions

found (intensification) (Fig. 1.9). Promising regions are determined by the obtained

“good” solutions. In intensification, the promising regions are explored more thor-

oughly in the hope to find better solutions. In diversification, nonexplored regions

Diversification Intensification

Random search Local searchSingle-solution based
 metaheuristics

Design space of a metaheuristic

Population-based
 metaheuristics

FIGURE 1.9 Two conflicting criteria in designing a metaheuristic: exploration (diversifica-

tion) versus exploitation (intensification). In general, basic single-solution based metaheuristics

are more exploitation oriented whereas basic population-based metaheuristics are more explo-

ration oriented.

OPTIMIZATION METHODS 25

must be visited to be sure that all regions of the search space are evenly explored and

that the search is not confined to only a reduced number of regions. In this design

space, the extreme search algorithms in terms of the exploration (resp. exploitation)

are random search (resp. iterative improvement local search). In random search, at

each iteration, one generates a random solution in the search space. No search mem-

ory is used. In the basic steepest local search algorithm, at each iteration one selects

the best neighboring solution that improves the current solution.

Many classification criteria may be used for metaheuristics:

• Nature inspired versus nonnature inspired: Many metaheuristics are inspired

by natural processes: evolutionary algorithms and artificial immune systems

from biology; ants, bees colonies, and particle swarm optimization from swarm

intelligence into different species (social sciences); and simulated annealing

from physics.

• Memory usage versus memoryless methods: Some metaheuristic algorithms

are memoryless; that is, no information extracted dynamically is used during

the search. Some representatives of this class are local search, GRASP, and

simulated annealing. While other metaheuristics use a memory that contains

some information extracted online during the search. For instance, short-term

and long-term memories in tabu search.

• Deterministic versus stochastic: A deterministic metaheuristic solves an op-

timization problem by making deterministic decisions (e.g., local search, tabu

search). In stochastic metaheuristics, some random rules are applied during the

search (e.g., simulated annealing, evolutionary algorithms). In deterministic al-

gorithms, using the same initial solution will lead to the same final solution,

whereas in stochastic metaheuristics, different final solutions may be obtained

from the same initial solution. This characteristic must be taken into account in

the performance evaluation of metaheuristic algorithms.

• Population-based search versus single-solution based search: Single-solution

based algorithms (e.g., local search, simulated annealing) manipulate and trans-

form a single solution during the search while in population-based algorithms

(e.g., particle swarm, evolutionary algorithms) a whole population of solutions is

evolved. These two families have complementary characteristics: single-solution

based metaheuristics are exploitation oriented; they have the power to inten-

sify the search in local regions. Population-based metaheuristics are exploration

oriented; they allow a better diversification in the whole search space. In the

next chapters of this book, we have mainly used this classification. In fact,

the algorithms belonging to each family of metaheuristics share many search

mechanisms.

• Iterative versus greedy: In iterative algorithms, we start with a complete solu-

tion (or population of solutions) and transform it at each iteration using some

search operators. Greedy algorithms start from an empty solution, and at each

step a decision variable of the problem is assigned until a complete solution is

obtained. Most of the metaheuristics are iterative algorithms.

26 COMMON CONCEPTS FOR METAHEURISTICS

1.3.4 Greedy Algorithms

In greedy or constructive algorithms23, we start from scratch (empty solution) and

construct a solution by assigning values to one decision variable at a time, until a

complete solution is generated.

In an optimization problem, where a solution can be defined by the presence/

absence of a finite set of elements E = {e1, e2, . . . , en}, the objective function may

be defined as f : 2E → R, and the search space is defined as F ⊂ 2E. A partial

solution s may be seen as a subset {e1, e2, . . . , ek} of elements ei from the set

of all elements E. The set defining the initial solution is empty. At each step, a

local heuristic is used to select the new element to be included in the set. Once an

element ei is selected to be part of the solution, it is never replaced by another element.

There is no backtracking of the already taken decisions. Typically, greedy heuristics

are deterministic algorithms. Algorithm 1.2 shows the template of a greedy algorithm.

Algorithm 1.2 Template of a greedy algorithm.

s = {} ; /∗ Initial solution (null) ∗/
Repeat

ei = Local-Heuristic(E\{e/e ∈ s}) ;

/∗ next element selected from the set E minus already selected elements ∗/
If s ∪ ei ∈ F Then /∗ test the feasibility of the solution ∗/

s = s ∪ ei ;

Until Complete solution found

Greedy algorithms are popular techniques as they are simple to design. Moreover,

greedy algorithms have in general a reduced complexity compared to iterative algo-

rithms. However, in most of optimization problems, the local view of greedy heuristics

decreases their performance compared to iterative algorithms.

The main design questions of a greedy method are the following:

• The definition of the set of elements: For a given problem, one has to identify

a solution as a set of elements. So, the manipulated partial solutions may be

viewed as subsets of elements.

• The element selection heuristic: At each step, a heuristic is used to select the

next element to be part of the solution. In general, this heuristic chooses the best

element from the current list in terms of its contribution in minimizing locally

the objective function. So, the heuristic will calculate the profit for each element.

Local optimality does not implicate a global optimality. The heuristic may be

static or dynamic. In static heuristics, the profits associated with the elements

do not change, whereas in dynamic heuristics, the profits are updated at each

step.

23Also referred to as successive augmentation algorithms.

OPTIMIZATION METHODS 27

Greedy final solution : A – E – B – C – D – A

with cost = 33

Better solution : A – E – C – B – D – A

with cost = 19

B

A E C

D

1 2

1

10

2

5

3

23

8

B

A E C

D

1 2

1

10

2

5

3

23

8

FIGURE 1.10 Illustrating a greedy algorithm for the TSP using a static heuristic. An element

is associated with an edge of the graph, and the local heuristic consists in choosing the nearest

neighbor. The obtained solution is (A − E − B − C − D − A) with a total cost of 33, whereas

a better solution with a cost of 19 is given (right).

Example 1.18 Static greedy algorithm for the TSP. In the TSP problem, the set

E is defined by the set of edges. The set F of feasible solutions is defined by the

subsets of 2E that forms Hamiltonian cycles. Hence, a solution can be considered as a

set of edges. A heuristic that can be used to select the next edge may be based on the

distance. One possible local heuristic is to select the nearest neighbor. Figure 1.10 (left)

illustrates the application of the nearest-neighbor greedy heuristic on the graph beginning

from the node A. The local heuristic used is static; that is, the distances of the edges are

not updated during the constructive process.

Greedy heuristics can be designed in a natural manner for many problems. Below

are given some examples of well-known problems.

Example 1.19 Greedy algorithm for the knapsack problem. In the knapsack prob-

lem, the set E is defined by the set of objects to be packed. The set F represents all

subsets of E that are feasible solutions. A local heuristic that can be used to solve the

problem consists in choosing the object minimizing the ratio wi/ui where wi (resp. ui)

represents the weight (resp. utility) of the object i. Figure 1.11 illustrates this greedy

heuristic for a given instance of the knapsack problem.

Example 1.20 Greedy algorithm for the minimum spanning tree problem. There

is a well-known optimal greedy algorithm for the spanning tree problem, the Kruskal

algorithm. The minimum spanning tree problem belongs to class P, in terms of com-

plexity. Given a connected graph G = (V, E). With each edge e ∈ E is associated a

cost ce. The problem is to find a spanning tree T = (V, T) in graph G that mini-

mizes the total cost f (T) =
∑

e∈T
ce. For this problem, set E is defined by the edges

and set F is defined by all subsets of E that are trees. The local heuristic used con-

sists in choosing first the least costly edges. In case of equality, an edge is randomly

28 COMMON CONCEPTS FOR METAHEURISTICS

Knapsack with a
capacity of 15

w
1
=5

u
1
=3

w
2
=4

u
2
=3

w
3
=5

u
3
= 7

w
4
= 3

u
4
= 2

w
5
=5

u
5
= 6

w
6
= 8

u
6
= 7

w
7
= 5

u
7
= 5

w
8
= 9

u
8
= 8

Constructed solution = (3,5,7)

1
2

3

4
5

6

7

8

Knapsack

FIGURE 1.11 Illustrating a greedy algorithm for the knapsack problem. An element is as-

sociated with an object, and the local heuristic consists in choosing an element minimizing the

ratio wi/ui. The final solution may not be optimal.

picked. Figure 1.12 illustrates this greedy heuristic for a given instance of the spanning

tree problem. This algorithm always generates optimal solutions. Its time complexity is

O(m · log(m)) where m represents the number of edges of the graph.

Greedy heuristics are in general myopic in their construction of a solution. Some

greedy heuristics (e.g., pilot method) include look-ahead features where the future

consequences of the selected element are estimated [38,803].

A C

G I

B

D E F

H

16

10 25

19 15

4

8

14

5

3

6

Constructed solution

13

(B,E), (C,F), (D,G), (E,H), (F,I), (E,D), (A,B), (H,I)

FIGURE 1.12 Illustrating a greedy algorithm for the spanning tree problem. The edge (A,

D) has not been selected even if it is less costly than the edge (H, I) because it generates a

nonfeasible solution (a cycle).

OPTIMIZATION METHODS 29

1.3.5 When Using Metaheuristics?

This section addresses the legitimate in using metaheuristics to solve an optimiza-

tion problem. The complexity of a problem gives an indication on the hardness

of the problem. It is also important to know the size of input instances the algo-

rithm is supposed to solve. Even if a problem is NP-hard, small instances may be

solved by an exact approach. Moreover, the structure of the instances plays an im-

portant role. Some medium- or even large-size instances with a specific structure

may be solved in optimality by exact algorithms. Finally, the required search time

to solve a given problem is an important issue in the selection of an optimization

algorithm.

It is unwise to use metaheuristics to solve problems where efficient exact algorithms

are available. An example of this class of problems is the P class of optimization

problems. In the case where those exact algorithms give “acceptable” search time to

solve the target instances, metaheuristics are useless. For instance, one should not use

a metaheuristic to find a minimum spanning tree or a shortest path in a graph. Known

polynomial-time exact algorithms exist for those problems.

Hence for easy optimization problems, metaheuristics are seldom used. Unfortu-

nately, one can see many engineers and even researchers solving polynomial opti-

mization problems with metaheuristics! So the first guideline in solving a problem

is to analyze first its complexity. If the problem can be reduced to a classical or an

already solved problem in the literature, then get a look at the state-of-the art best

known optimization algorithms solving the problem. Otherwise, if there are related

problems, the same methodology must be applied.

Example 1.21 Metaheuristics and LP continuous models. Polynomial-time pro-

blems such as linear programming models are very easy to solve with actual commer-

cial (e.g., CPLEX, Lindo, XPRESS-MP, OSL) or free solvers (e.g., LP-solver) that are

based on the simplex or interior methods. Some large-scale linear continuous problems

having hundreds of thousands variables can be solved by those solvers using advanced

algorithms such as the efficient manipulation of sparse matrices. However, for some very

large polynomial problems or some specific problem structures, we may need the use

of heuristics even if the complexity of this class of problems is polynomial. In an LP

model, the number of vertices (extreme points) of the polytope representing the feasible

region may be very large. Let us consider the n × n assignment problem, which includes

2n linear constraints and n2 nonnegativity constraints. The polytope is composed of n!

vertices!

Even for polynomial problems, it is possible that the power of the polynomial

function representing the complexity of the algorithm is so large that real-life instances

cannot be solved in a reasonable time (e.g., a complexity of O(n5000)). In addition

to the complexity of the problem, the required search time to solve the problem is

another important parameter to take into account. Indeed, even if the problem is

polynomial, the need of using metaheuristic may be justified for real-time search

constraints.

30 COMMON CONCEPTS FOR METAHEURISTICS

Example 1.22 Real-time metaheuristics for polynomial dynamic problems. As an

example of justifying the use of metaheuristics for polynomial problems, let us consider

the shortest path in a graph of a real-life application that consists in finding a path between

any two locations using GPS (Global Positioning System) technology. This graph has

a huge number of nodes, and the search time is constrained as the customer has to

obtain an answer in real time. In practice, even if this problem is polynomial, softwares

in GPS systems are actually using heuristics to solve this problem. For those large

instances, the use of polynomial algorithms such as the Dijkstra algorithm will be time

consuming.

Many combinatorial optimization problems belong to the NP-hard class of prob-

lems. This high-dimensional and complex optimization class of problems arises in

many areas of industrial concern: telecommunication, computational biology, trans-

portation and logistics, planning and manufacturing, engineering design, and so on.

Moreover, most of the classical optimization problems are NP-hard in their general

formulation: traveling salesman, set covering, vehicle routing, graph partitioning,

graph coloring, and so on [299].

For an NP-hard problem where state-of-the-art exact algorithms cannot solve the

handled instances (size, structure) within the required search time, the use of meta-

heuristics is justified. For this class of problems, exact algorithms require (in the

worst case) exponential time. The notion of “required time” depends on the target

optimization problem. For some problems, an “acceptable” time may be equivalent

to some seconds whereas for other problems it is equal to some months (production

versus design problems). The fact that a problem is not in the P class does not imply

that all large instances of the problem are hard or even that most of them are. The

NP-completeness of a problem does not imply anything about the complexity of a

particular class of instances that has to be solved.

Metaheuristics and IP/MIP problems: Despite the advances in reformulating IP

and MIP models, and the development of new efficient procedures such as cutting

planes and column generation, IP and MIP problems remain difficult to solve for

moderate and large instances in a reasonable time. Let us notice that moderate and

even large instances of some structured IP problems may be solved optimally.

Metaheuristics and CP: As for MIP models, constraint programming techniques

enable to solve small instances of CP models in an optimal manner within a reasonable

period of time. For very “tight” constrained problems, those strategies may solve

moderate instances.

For nonlinear continuous (NLP) optimization, metaheuristics should be applied, if

derivative-based methods, for example quasi-Newton method or conjugate gradient,

fail due to a rugged search landscape (e.g., discontinuous, nonlinear, ill-conditioned,

noisy, multimodal, nonsmooth, and nonseparable). The function f must be at least of

moderate dimensionality (considerably greater than three variables). Those properties

characterize many real-world problems. For easy problems, such as purely convex-

quadratic functions, quasi-Newton method is typically faster by a factor of about 10

(in terms of computation time to attain a target value for the objective function) over

one of the most efficient metaheuristics.

OPTIMIZATION METHODS 31

FIGURE 1.13 The Griewangk multimodal continuous function.

Example 1.23 Griewangk multimodal continuous function. This example shows

a multimodal function to minimize the Griewangk function [774]:

f (�x) = 1 +
n∑

i=1

x2
i

4000
−

n∏

i=1

cos

(

xi√
i

)

(1.1)

where �x = {x1, x2, . . . , xN}, with xi ∈ (−600, 600). Figure 1.13 illustrates the landscape

associated with the function. The optimal solution for this function is the null vector

x∗ = (0, . . . , 0) with f (x∗) = 0.

Unlike mathematical programming, the main advantage of using metaheuris-

tics is a restrictive assumption in formulating the model. Some optimization prob-

lems cannot be formulated with an unambiguous analytical mathematical no-

tation. Indeed, the objective function may be a black box [448]. In a black

box optimization, no analytical formulation of the objective exists (Fig. 1.14).

Typical examples of optimization problems involving a black box scenario are

shape optimization, model calibration (physical or biological), and parameter cali-

bration.

Example 1.24 Optimization by simulation. Many problems in engineering such as

in logistics, production, telecommunications, finance, or computational biology (e.g.,

structure prediction of proteins, molecular docking) are based on simulation to evaluate

the quality of solutions. For instance, in risk analysis, Monte Carlo simulations are used

32 COMMON CONCEPTS FOR METAHEURISTICS

f (x)x

Black box

Metaheuristic

Quality

FIGURE 1.14 Black box scenario for the objective function.

to estimate the objective function of a portfolio investment that is represented by the

average rate of return and its variance.

A function f : X −→ R is called a black box function iff

• the domain X is known,

• it is possible to know f for each point of X according to a simulation, and

• no other information is available for the function f .

Very expensive experiments in terms of time and cost are associated with those

problems. In general, a simulation must hold to evaluate the solution.

Another example of nonanalytical models of optimization is interactive optimiza-

tion24 that involves a human interaction to evaluate a solution. Usually, human eval-

uation is necessary when the form of the objective function is not known. Interactive

optimization can concurrently accept evaluations from many users. Many real-life ex-

amples fit into the class of interactive optimization problems where the result should

fit particular user preferences:

• Visual appeal or attractiveness [104,183].

• Taste of coffee [372] or color set of the user interface.

• Evolving images [705], 3D animated forms, music composition, various artistic

designs, and forms to fit user aesthetic preferences [476,789].

Metaheuristics will gain more and more popularity in the future as optimization

problems are increasing in size and in complexity. Indeed, complex problem models

are needed to develop more accurate models for real-life problems in engineering

and science (e.g., engineering design, computational biology, finance engineering,

logistics, and transportation).

Let us summarize the main characteristics of optimization problems justifying the

use of metaheuristics:

24Aesthetic selection in evolutionary algorithms.

OPTIMIZATION METHODS 33

• An easy problem (P class) with very large instances. In this case, exact

polynomial-time algorithms are known but are too expensive due to the size

of instances.

• An easy problem (P class) with hard real-time constraints (online algorithms). In

real-time optimization problems, metaheuristics are widely used. Indeed, in this

class of problems, we have to find a “good solution” online. Even if efficient exact

algorithms are available to solve the problem, metaheuristics are used to reduce

the search time. Dynamic optimization problems represent another example of

such problems.

• A difficult problem (NP-hard class) with moderate size and/or difficult structures

of the input instances.

• Optimization problems with time-consuming objective function(s) and/or con-

straints. Some real-life optimization problems are characterized by a huge com-

putational cost of the objective function(s).

• Nonanalytic models of optimization problems that cannot be solved in an ex-

haustive manner. Many practical problems are defined by a black box scenario

of the objective function.

• Moreover, those conditions may be amplified by nondeterministic models of op-

timization: problems with uncertainty and robust optimization. For some noisy

problems, uncertainty and robustness cannot be modeled analytically. Some

complex simulations (e.g., Monte Carlo) must be carried out that justify the

use of metaheuristics. The ambiguity of the model does not encourage attempt-

ing to solve it with exact algorithms. As the data are fuzzy, this class of problems

does not necessarily need the optimal solution to be found.

Example 1.25 Design versus control problems. The relative importance of the two

main performance measures, quality of solutions and search time, depends on the char-

acteristics of the target optimization problem. Two extreme problems may be considered

here:

• Design problems: Design problems are generally solved once. They need a

very good quality of solutions whereas the time available to solve the prob-

lem is important (e.g., several hours, days, months). In this class of problems,

one can find the strategic problems (long-term problems), such as telecommu-

nication network design and processor design. These problems involve an im-

portant financial investment; any imperfection will have a long-time impact on

the solution. Hence, the critical aspect is the quality of solutions rather than

the search time (Fig. 1.15). If possible, exact optimization algorithms must be

used.

• Control problems: Control problems represent the other extreme where the prob-

lem must be solved frequently in real time. This class of operational problems

involves short-term decisions (e.g., fractions of a second), such as routing mes-

sages in a computer network and traffic management in a city. For operational

decision problems, very fast heuristics are needed; the quality of the solutions is

less critical.

34 COMMON CONCEPTS FOR METAHEURISTICS

Search time

Quality of solutions

 Design problems

(strategic, long-term)

 Control problems

(operational, short-term)

 Planning problems

(tactical, medium-term)

FIGURE 1.15 Different classes of problems in terms of the trade-off between quality of

solutions and search time: design (strategic, long-term), planning (tactical, medium-term),

control (operational, short-term).

Between these extremes, one can find an intermediate class of problems represented

by planning problems and tactical problems (medium-term problems). In this class of

problems, a trade-off between the quality of solution and the search time must be opti-

mized. In general, exact optimization algorithms cannot be used to solve such problems.

The development cost of solving an optimization problem is also an important is-

sue. Indeed, metaheuristics are easy to design and implement. Open-source and free

software frameworks such as ParadisEO allow the efficient design and implementa-

tion of metaheuristics for monoobjective and multiobjective optimization problems,

hybrid metaheuristics, and parallel metaheuristics. Reusing existing designs and codes

will contribute to reducing the development cost.

1.4 MAIN COMMON CONCEPTS FOR METAHEURISTICS

There are two common design questions related to all iterative metaheuristics: the

representation of solutions handled by algorithms and the definition of the objective

function that will guide the search.

1.4.1 Representation

Designing any iterative metaheuristic needs an encoding (representation) of a solu-

tion25. It is a fundamental design question in the development of metaheuristics. The

encoding plays a major role in the efficiency and effectiveness of any metaheuristic

25In the evolutionary computation community, the genotype defines the representation of a solution. A

solution is defined as the phenotype.

MAIN COMMON CONCEPTS FOR METAHEURISTICS 35

and constitutes an essential step in designing a metaheuristic. The encoding must be

suitable and relevant to the tackled optimization problem. Moreover, the efficiency of

a representation is also related to the search operators applied on this representation

(neighborhood, recombination, etc.). In fact, when defining a representation, one has

to bear in mind how the solution will be evaluated and how the search operators will

operate.

Many alternative representations may exist for a given problem. A representation

must have the following characteristics:

• Completeness: One of the main characteristics of a representation is its com-

pleteness; that is, all solutions associated with the problem must be represented.

• Connexity: The connexity characteristic is very important in designing any

search algorithm. A search path must exist between any two solutions of the

search space. Any solution of the search space, especially the global optimum

solution, can be attained.

• Efficiency: The representation must be easy to manipulate by the search oper-

ators. The time and space complexities of the operators dealing with the repre-

sentation must be reduced.

Many straightforward encodings may be applied for some traditional families

of optimization problems (Fig. 1.16). There are some classical representations that

Binary encoding Vector of discrete values

1 0 0 0 1 1 0 1 1 1 0 1 5 7 6 6 4 3 8 4 2

- Knapsack problem

- SAT problem

- 0/1 IP problems

- Location problem

- Assignment problem

PermutationVector of real values

1 . 2 3 5 . 6 5 9 . 4 5 4 . 7 6 8 . 9 6 1 4 8 9 3 6 5 2 7

- Continuous optimization

- Parameter identification

- Global optimization

f (x) = 2x + 4x.y - 2x.z

- Sequencing problems

- Traveling salesman problem

- Scheduling problems

FIGURE 1.16 Some classical encodings: vector of binary values, vector of discrete values,

vector of real values, and permutation.

36 COMMON CONCEPTS FOR METAHEURISTICS

are commonly used to solve a large variety of optimization problems. Those repre-

sentations may be combined or underlying new representations. According to their

structure, there are two main classes of representations: linear and nonlinear.

1.4.1.1 Linear Representations Linear representations may be viewed as

strings of symbols of a given alphabet.

In many classical optimization problems, where the decision variables denote the

presence or absence of an element or a yes/no decision, a binary encoding may

be used. For instance, satisfiability problems and {0, 1}-linear programs are repre-

sentative of such problems. The binary encoding consists in associating a binary

value for each decision variable. A solution will be encoded by a vector of binary

variables.

Example 1.26 Binary encoding for knapsack problems. For a 0/1-knapsack prob-

lem of n objects, a vector s of binary variables of size n may be used to represent a

solution:

∀i, si =
{

1 if object i is in the knapsack

0 otherwise

The binary encoding uses a binary alphabet consisting in two different symbols. It

may be generalized to any discrete values based encoding using an n-ary alphabet. In

this case, each variable takes its value over an n-ary alphabet. The encoding will be a

vector of discrete values. This encoding may be used for problems where the variables

can take a finite number of values, such as combinatorial optimization problems.

Example 1.27 Discrete encoding for generalized assignment problems. Many

real-life optimization problems such as resource allocation may be reduced to assign-

ment problems. Suppose a set of k tasks is to be assigned to m agents to maximize the

total profit. A task can be assigned to any agent. A classical encoding for this class of

problems may be based on a discrete vector s of size k, where s[i] represents the agent

assigned to the task i.

s[i] = j if the agent j is assigned to task i

Many sequencing, planning, and routing problems are considered as permutation

problems. A solution for permutation problems, such as the traveling salesman prob-

lem and the permutation flow-shop scheduling problem, may be represented by a

permutation π = (π1, π2, . . . , πn). Any element of the problem (cities for the TSP,

jobs for the FSP) must appear only once in the representation.

Example 1.28 Permutation encoding for the traveling salesman problem. For a

TSP problem with n cities, a tour may be represented by a permutation of size n. Each

permutation decodes a unique solution. The solution space is represented by the set of

all permutations. Its size is |S| = (n − 1)! if the first city of the tour is fixed.

MAIN COMMON CONCEPTS FOR METAHEURISTICS 37

Example 1.29 Reducing the representation space. In this example, we will see

how a given problem can be made simpler by choosing a suitable representation. The

N-Queens puzzle is the problem of putting N chess queens on an N × N chessboard

such that none of them is able to capture any other using the standard chess queens

moves. Any queen is assumed to be able to attack any other. The 8-Queens problem was

originally defined by the chess player Max Bezzel in 1848.

A solution for this problem represents an assignment of the eight queens on the

chessboard. First, let us encode a solution by a vector of eight Cartesian positions

x = (p1, p2, . . . , p8) where pi = (xi, yi) represents the Cartesian position of the queen i.

The number of possibilities (size of the search space) is 648 that is over 4 billion so-

lutions. If we prohibit more than one queen per row, so that each queen is assigned

to a separate row, the search space will have 88 solutions that is over 16 million pos-

sibilities. Finally, if we forbid two queens to be both in the same column or row, the

encoding will be reduced to a permutation of the n queens. This encoding will reduce

the space to n! solutions, which is only 40,320 possibilities for the 8-Queens problem.

Figure 1.17 shows a solution for a 8-Queens problem. This example shows how the

representation plays a major role in defining the space a given metaheuristic will have to

explore.

For continuous optimization problems, the natural encoding is based on real

values. For instance, this encoding is commonly used for nonlinear continuous

optimization problems, where the most usual encoding is based on vectors of real

values.

FIGURE 1.17 A solution for the 8-Queens problem represented by the permutation

(6,4,7,1,8,2,5,3).

38 COMMON CONCEPTS FOR METAHEURISTICS

Random key: 0.41 0.16 0.28 0.67 0.84

5Decoded as permutation: 2 3 1 4

Ascending order: 0.16 0.28 0.41 0.67 0.84

FIGURE 1.18 Random-key encoding and decoding.

Example 1.30 Mixed encodings in parameter optimization. Many optimization

problems in engineering sciences consist in finding the best parameters in designing a

given component. This class of problems is known as parameter optimization problems.

Some parameters may be associated with real values while others are associated with

discrete ones. Hence, a solution may be represented by a vector x of mixed values, where

x[i] represents the real or discrete value of parameter i. The size of the vector is equal

to the number of parameters of the system.

Other “nontraditional” linear representations may be used. Some of them have

been defined in the evolutionary computation community:

• Random-key encoding: The random-key representation uses real-valued encod-

ing to represent permutations. Random-key encoding is useful for permutation-

based representations, where the application of classical variation operators (e.g.,

crossover) presents feasibility problems [62]. In the random-key encoding, to

each object is assigned a random number generated uniformly from [0,1[. The

decoding is applied as follows: the objects are visited in an ascending order and

each element is decoded by its rank in the sequence (Fig. 1.18).

• Messy representations: In linear representations of fixed length, the semantics

of the values26 is tied to its position in the string. In messy representations, the

value associated with a variable is independent of its position [329]. Then, each

element of the representation is a couple composed of the variable and its value.

This encoding may have a variable length. It has been introduced to improve the

efficiency of genetic operators by minimizing their disruption.

• Noncoding regions: Some representation may introduce noncoding regions

(introns) in the representation [501,828]. This biological inspired representa-

tion has the form

x1|intron|x2| · · · |intron|xn

where xi (resp. intron) represents the coding (resp. noncoding) part of the en-

coding. Noncoding regions are regions of the representation that provide no

26In evolutionary algorithms, the value is defined as an allele.

MAIN COMMON CONCEPTS FOR METAHEURISTICS 39

contribution to the objective (quality) of the solution. As in messy representa-

tions, this encoding has an impact on recombination search operators.

• Diploid representations: Diploid representations include multiple values for

each position of the encoding. This representation requires a decoding procedure

to determine which value will be associated with a given position. This encoding

was first introduced for a quicker adaptation of solutions in solving dynamic

cyclic problems [332].

• Quantum representations: In quantum computing systems, the smallest unit

of information is the qubit. Unlike the classical bit, the qubit can be in the

superposition of the two values at the same time. The state of a qubit can be

represented as

|�〉 = α|0〉 + β|1〉

where |�〉 denotes a function wave in Hilbert space, |0〉 and |1〉 represent, re-

spectively, the classical bit values 0 and 1, and α and β are complex numbers that

satisfy the probability amplitudes of the corresponding states27. If a superposi-

tion is measured with respect to the basis {|0〉, |1〉}, the probability to measure

|0〉 is α2 and the probability to measure |1〉 is β2 [818].

A quantum encoding of n qubits can represent 2n states at the same time. This

means that one can represent an exponential amount of information. Using this

probabilistic binary-based representation, one needs to design a decoder to gen-

erate and evaluate solutions [356].

Solutions in some optimization problems are encoded by mixed representations.

The most popular mixed representation is the continuous/integer one, to solve MIP

problems. Here, a solution is represented by a vector of mixed values (reals, binary

values, and integers).

In control problems, decision variables represent values that are control variables

taken in time (or frequency). In general, a discretization of time domain is real-

ized. The representation generally used is x = (c(t1), . . . , c(ti), . . .), where c(ti) rep-

resents the value of the control variable x at time t. If the sequence of values is

monotonic, the following incremental representation may be used:

x1 = c(t1), xi = (c(ti) − c(ti−1))

1.4.1.2 Nonlinear Representations Nonlinear encodings are in general more

complex structures. They are mostly based on graph structures. Among the traditional

nonlinear representations, trees are the most used.

The tree encoding is used mainly for hierarchical structured optimization problems.

In tree encoding, a solution is represented by a tree of some objects. For instance,

27α2 + β2 = 1.

40 COMMON CONCEPTS FOR METAHEURISTICS

Solutions of the problem

Encodings of solutions

One-to-manyOne-to-one Many-to-one

FIGURE 1.19 Mapping between the space of solutions and the space of encodings.

this structure is used in genetic programming. The tree may encode an arithmetic

expression, a first-order predicate logic formula, or a program.

Example 1.31 Tree encoding for regression problems. Given some input and output

values, regression problems consist in finding the function that will give the best (closest)

output to all inputs. Any S-expression can be drawn as a tree of functions and terminals.

These functions and terminals may be defined in various manners. For instance, the

functions may be add, sub, sine, cosine, and so on. The terminals (leaves) represent

constants or variables.

Other nonlinear representations can be used such as finite-state machines and

graphs.

1.4.1.3 Representation-Solution Mapping The representation-solution

mapping function transforms the encoding (genotype) to a problem solution

(phenotype). The mapping between the solution space and the encoding space

involves three possibilities [251] (Fig. 1.19):

• One-to-one: This is the traditional class of representation. Here, a solution is

represented by a single encoding and each encoding represents a single solu-

tion. There is no redundancy and no reduction of the original search space. For

some constrained optimization problems, it is difficult to design such one-to-one

mapping.

• One-to-many: In the one-to-many mapping, one solution may be represented

by several encodings. The redundancy of the encoding will enlarge the size of

the search space and may have an impact on the effectiveness of metaheuristics.

Example 1.32 Symmetry in partitioning problems. Partitioning problems, or

clustering or grouping problems, represent an important class of problems. Prob-

lems such as clustering in data mining, graph partitioning problems (GPP), graph

MAIN COMMON CONCEPTS FOR METAHEURISTICS 41

TABLE 1.6 Partitioning Problems with Their Associated Constraints and

Objective Functions

Problem Constraint Objective

Graph coloring Adjacent nodes do not have

the same color

Min. number of colors

Bin packing Sum of elements sizes in

any group is less than C

Min. number of groups

Data clustering Fixed number of clusters Max. intercluster distance

Graph partitioning Groups of equal size Min. number of edges

between partitions

Assembly line balancing Cycle time Min. number of workstations

All of them are NP-hard problems.

coloring problem (GCP), and bin packing are well-known examples of grouping

problems [251]. Grouping problems consist in partitioning a set S of elements

into mutually disjoint subsets si, where ∪si = S and si ∩ sj = ⊘. The different

grouping problems differ in their associated constraints and the objective function

to optimize (see Table 1.6).

A straightforward representation associates with each element its group. For

instance, the encoding BAAB assigns the first element to group B, the second to

group A, the third element to group A, and the last one to group B. The first and

the last elements (resp. second and third) are then assigned to the same group. The

encoding ABBA represents the same solution. Hence, this representation belongs

to the one-to-many class of encodings and is highly redundant. The number of

different representations encoding the same solution grows exponentially with the

number of partitions.

• Many-to-one: In this class, several solutions are represented by the same en-

coding. In general, those encodings are characterized by a lack of details in the

encoding; some information on the solution is not explicitly represented. This

will reduce the size of the original search space. In some cases, this will improve

the efficiency of metaheuristics. This class of representation is also referred to

as indirect encoding.

1.4.1.4 Direct Versus Indirect Encodings When using an indirect represen-

tation, the encoding is not a complete solution for the problem. A decoder is required

to express the solution given by the encoding. According to the information that is

present in the indirect encoding, the decoder has more or less work to be able to derive

a complete solution. The decoder may be nondeterministic. Indirect encodings are

popular in optimization problems dealing with many constraints such as scheduling

problems. For instance, the constraints associated with the optimization problem are

handled by the decoder and will guarantee the validity of the solution that is derived.

42 COMMON CONCEPTS FOR METAHEURISTICS

Example 1.33 Indirect encodings for the job-shop scheduling problem (JSP). The

simple job-shop scheduling problem may be defined as follows. Given a set of j jobs.

Each job is composed of M operations to be realized on M machines. Each operation

must be realized on a single machine. Each job has an operation that has to be per-

formed on each machine. A schedule indicates at each time slot and on each machine,

the operation being processed. The objective function to minimize is the makespan

(total completion time). Let us denote Em(x) as the completion time of the last oper-

ation performed on machine m according to the schedule x. Then, the makespan can

be defined as Cmax(x) = max1≤m≤M Em(x). The following constraints must be fulfilled:

a machine can perform only one operation at a time, the operations should be per-

formed in a predefined order (the operations of a job cannot be executed concurrently

on two different machines), and there is only one machine that is able to perform any

operation.

A solution should represent a feasible schedule of occupation of the machines that

indicates for each time slot of any machine if it is free or which operation of which job

is being performed. A direct representation may be defined as the list of machines and

the time slots that are used to perform the operations (Fig. 1.20a). For instance, the job i

is composed of the operations Op7 and Op3. The operation Op7 is executed on machine

m2 from time 1 to 3. The operation Op3 is performed on machine m3 from time 13 to

17, and so on. The assignment of an operation consists in the association of a machine

and time slot taking in consideration precedence constraints. The order of execution of

operations is defined at the level of operations.

Various indirect representations may be designed for the JSP problem. Such an in-

direct representation may be simply a permutation of j jobs (Fig. 1.20b). The search

space is limited to the set of permutations of j integers, that is, of size j!. An encoding

mechanism is used to transform the permutation into a complete and feasible sched-

ule. The decoder has a very limited set of information and shall derive much more to

obtain valid schedules. Various decoders may be imagined, with a variable degree of

stochasticity. A very simple one would consider the permutation as a priority list and

would derive a schedule that always gives priority to operations belonging to the highest

priority jobs.

A second more rich indirect encoding is an array of J × M entries. Each job

is assigned a class of markers, all associated with one job having the same tag

(job number). The markers are then shuffled in the array. Figure 1.20c illustrates such an

(a) Direct encoding (b) First indirect encoding

job i job k

(c) Second indirect encoding

1 j

Permutation of jobs

. . .

7pO

2m

1 , 3

6pO

2m

2 0 , 2 2

3pO

3m

1 3 , 1 7

4pO

4m

3 4 , 3 6

1pO

1m

5 1 , 5 5

.. .

. . .

.

. . .

. . .

Matrix of J ×M elements

Job j

Job i

1 M

0 1 3 1 0 2 3 2 1 0 3 1 2 2 3 0

1 1 6
Array of J × M elements

FIGURE 1.20 Direct and indirect encodings for the job-shop scheduling problem.

MAIN COMMON CONCEPTS FOR METAHEURISTICS 43

encoding for a 4 × 4 JSP. The decoder considers this array from the “left to the right.”

For each entry, it then schedules as soon as possible the next not-yet scheduled operation

of the job associated with the marker that has been found.

Let us notice that the representation has an interaction with search operators and

the objective function. Then, finding a suitable representation cannot be completely

done without the specification of the search operators and the objective function. For

instance, in the relationship between the representation and the search operators, an

ideal encoding should have the proximity property: similar solutions in terms of their

representations (genotypes) must be similar in the phenotype space. The similarity is

defined relatively to the performed search operators.

Example 1.34 Encoding of real numbers. Let us consider an encoding for real

numbers based on binary vectors. In many evolutionary algorithms such as genetic

algorithms, this encoding is chosen to solve continuous optimization problems. Let us

consider two consecutive integers, 15 and 16. Their binary representation is, respec-

tively, 01111 and 10000. In the phenotype space, 15 is neighbor to 16, while in the

genotype space, 5 bits must be flipped to obtain 16 from 15! Using variation operators

based on the flip operator, this disparity between the genotype and the phenotype spaces

may generate nonefficient metaheuristics. Gray code encoding solves this problem by

mapping two neighbors in the genotype space (one-flip operation) to neighbors in the

phenotype space. The main drawback of gray codes is still their ability to deal with

dynamic ranges.

1.4.2 Objective Function

The objective function28 f formulates the goal to achieve. It associates with each

solution of the search space a real value that describes the quality or the fitness of

the solution, f : S → R. Then, it represents an absolute value and allows a complete

ordering of all solutions of the search space. As shown in the previous section, from the

representation space of the solutions R, some decoding functions d may be applied,

d : R → S, to generate a solution that can be evaluated by the function f .

The objective function is an important element in designing a metaheuristic. It will

guide the search toward “good” solutions of the search space. If the objective function

is improperly defined, it can lead to nonacceptable solutions whatever metaheuristic

is used.

1.4.2.1 Self-Sufficient Objective Functions For some optimization prob-

lems, the definition of the objective function is straightforward. It specifies the origi-

nally formulated objective function.

Example 1.35 Straightforward guiding objective function. In many routing prob-

lems such as TSP and vehicle routing problems, the formulated objective is to minimize

28Also defined as the cost function, evaluation function, and utility function.

44 COMMON CONCEPTS FOR METAHEURISTICS

a given global distance. For instance, in the TSP, the objective corresponds to the total

distance of the Hamiltonian tour:

f (s) =
n−1∑

i=1

dπ(i),π(i+1) + dπ(n),π(1)

where π represents a permutation encoding a tour and n the number of cities.

For continuous (linear and nonlinear) optimization problems, the guiding function

to optimize by a metaheuristic is simply the target objective function. In those families

of optimization problems, the guiding objective function used in the search algorithm

is generally equal to the objective function that has been specified in the problem

formulation.

1.4.2.2 Guiding Objective Functions For other problems, the definition of

the objective function is a difficult task and constitutes a crucial question. The objective

function has to be transformed for a better convergence of the metaheuristic. The new

objective function will guide the search in a more efficient manner.

Example 1.36 Objective function to satisfiability problems. Let us formulate an

objective function to solve satisfiability problems. SAT problems represent fundamental

decision problems in artificial intelligence. The k-SAT problem can be defined as follows:

given a function F of the propositional calculus in a conjunctive normal form (CNF).

The function F is composed of m clauses Ci of k Boolean variables, where each clause

Ci is a disjunction. The objective of the problem is to find an assignment of the k Boolean

variables such as the value of the function F is true. Hence, all clauses must be satisfied.

F = (x1 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x4)

∧ (x2 ∨ x4) ∧ (x2 ∨ x3)

A solution for the problem may be represented by a vector of k binary variables.

A straightforward objective function is to use the original F function:

f =
{

0 if is F false

1 otherwise

If one considers the two solutions s1 = (1, 0, 1, 1) and s2 = (1, 1, 1, 1), they will have

the same objective function, that is, the 0 value, given that the function F is equal to

false. The drawback of this objective function is that it has a poor differentiation between

solutions. A more interesting objective function to solve the problem will be to count

the number of satisfied clauses. Hence, the objective will be to maximize the number

of satisfied clauses. This function is better in terms of guiding the search toward the

optimal solution. In this case, the solution s1 (resp. s2) will have a value of 5 (resp. 6).

This objective function leads to the MAX-SAT model.

MAIN COMMON CONCEPTS FOR METAHEURISTICS 45

1.4.2.3 Representation Decoding The design questions related to the defini-

tion of the representation and the objective function may be related. In some problems,

the representation (genotype) is decoded to generate the best possible solution (phe-

notype). In this situation, the mapping between the representation and the objective

function is not straightforward; that is, a decoder function must be specified to gener-

ate from a given representation the best solution according to the objective function.

Example 1.37 Let us illustrate the relationship between the representation and the

objective function within the Steiner tree problem. It is a combinatorial optimization

problem with many applications in telecommunication (network design) and biology

(phylogenetics). Given a nonoriented weighted graph G = (V, E) where V represents

the nodes of the graph and E represents the edges of the graph. The weights associated

with the edges are all positive. Let T be a subset of vertices identified as terminals. The

goal is to find a minimum-weight connected subgraph that includes all the terminals. The

resulting subgraph is obviously a tree. This problem is NP-hard whereas the minimum-

weight spanning tree problem is polynomial; that is, the Kruskal or Prim algorithms are

well-known efficient algorithms to solve the problem.

A solution of the Steiner tree problem may be characterized by the list of nonterminal

nodes X. It is then represented by a vector of binary values. The size of the vector is the

number of nonterminal nodes. The Steiner tree associated with a solution is equivalent

to the minimum spanning tree of the set T ∪ X. This is easily obtained by a polynomial

algorithm such as the Kruskal algorithm. Figure 1.21 represents an example on an input

graph instance, where the terminals are represented by T = {A, B, C, D}. The optimal

solution is s∗ = {1, 3, 5}, which is represented in Fig. 1.22.

A B

C D

1

2 3 4

5

1 1

2 2

1 1

2

2

2

2

1

1

FIGURE 1.21 Instance for the Steiner tree problem: T = {A, B, C, D}.

46 COMMON CONCEPTS FOR METAHEURISTICS

A B

C D

1

2 3 4

5

1 1

2 2

1 1

2

2

2

2

1

1

FIGURE 1.22 Optimal solution represented by the set {1, 3, 5}.

1.4.2.4 Interactive Optimization In interactive optimization, the user is in-

volved online in the loop of a metaheuristic. There are two main motivations for

designing interactive metaheuristics:

• The user intervention to guide the search process: In this case, the user can

interact with the search algorithm to converge faster toward promising regions.

The objective here is to improve the search process online by introducing dynam-

ically some user knowledge. For example, the user can suggest some promising

solutions from a graphical representation of solutions. The user can also suggest

the update of the metaheuristic parameters.

This strategy is widely used in multicriteria decision making in which an in-

teraction is performed between the decision maker and the solver to converge

toward the best compromise solution (see Chapter 4).

• The user intervention to evaluate a solution: Indeed, in many design prob-

lems, the objective function requires subjective evaluation depending on human

preferences (e.g., taste of coffee). For some problems, the objective function

cannot be formulated analytically (e.g., visual appeal or attractiveness). This

strategy is widely used in art design (music, images, forms, etc.) [745]. Some

applications may involve many users.

In designing a metaheuristic, the limited number of carried evaluations must be

taken into account. Indeed, multiple evaluations of solutions will cause the user

MAIN COMMON CONCEPTS FOR METAHEURISTICS 47

fatigue. Moreover, the evaluation by the user of a solution may be slow and expensive.

Hence, the metaheuristic is supposed to converge toward a good solution in a lim-

ited number of iterations and using a limited size of population if a population-based

metaheuristic is used.

1.4.2.5 Relative and Competitive Objective Functions In some problems,

it is impossible to have an objective function f that associates an absolute value

with all solutions. For instance, those problems arise in game theory [175], coop-

erative or competitive coevolution [620], and learning classifier systems [821]. For

instance, in a game the strategy A may be better than B, B better than C, and C better

than A.

There are two alternatives to this class of problems: using relative or competitive

objective functions. The relative fitness associates a rank with the individual in the

population. In competitive fitness, a competition is applied over a subpopulation of

solutions. Three different types of competition can be used: bipartite, tournament, and

full. Bipartite competition compares two solutions s1 and s2 to determine the better

one, whereas in case of full competition, all solutions are considered.

Population-based metaheuristics are well suited to this situation. In fact, in

population-based metaheuristics, the selection strategies need only the relative or

competitive fitness. Hence, the absolute quality of a solution is not necessary to

evolve the population.

1.4.2.6 Meta-Modeling It is well known that most of the time, in metaheuris-

tics, the time-intensive part is the evaluation of the objective function. In many

optimization problems, the objective function is quite costly to compute. The al-

ternative to reduce this complexity is to approximate the objective function and

then replace the original objective function by its approximation function. This

approach is known as meta-modeling29. Moreover, for some problems, an analyti-

cal objective function is not available. In this case, the objective function may be

approximated using a sample of solutions generated by physical experiments or

simulations.

Example 1.38 Extremely expensive objective functions. A classical example of ex-

tremely expensive objective function deals with structural design optimization [52,341].

For instance, in a three-dimensional aerodynamic design optimization, the evalua-

tion of a structure consists in executing a costly CFD (computational fluid dynam-

ics) simulation. A single simulation may take more than 1 day even on a paral-

lel machine. In some problems such as telecommunication network design [752]

or molecular docking [766], a time-consuming simulation must be used to evalu-

ate the quality of the generated solutions. It is unimaginable to conduct physical

29Also known as surrogates or fitness approximation.

48 COMMON CONCEPTS FOR METAHEURISTICS

experiments for each potential solution. Moreover, meta-modeling is important in

stochastic and robust optimization where additional objective function evaluations are

necessary.

Many meta-modeling techniques may be employed for expensive objective func-

tions. They are based on constructing an approximate model from a properly selected

sample of solutions:

• Neural networks: Neural Network models such as multilayer perceptrons [644]

and radial basis function [622] are the commonly used strategies.

• Response surface methodologies: This class is based on polynomial approx-

imation of the objective function to create a response surface [571]. The most

known methods belonging to this class are the least square method (quadratic

polynomials) of Box and Wilson [90] and design of experiments (DOE) of

Taguchi [668].

• Other candidate models in approximating objective functions are Kriging models

[164], DACE (design and analysis of computer experiments) [679], Gaussian

processes [316], and machine learning techniques such as SVM (support vector

machines) [791].

The model selection problem is far from being a simple one [101]. There is a

trade-off between the complexity of the model and its accuracy. To solve the classical

bias and variance dilemma, the use of multiple models is encouraged. Constructing

multiple local models instead of a global model can also be beneficial. The reader

may refer to Ref. [413] for a more comprehensive survey.

Once the meta-model is constructed, it can be used in conjunction with the

original objective function [413]. An alternative use of the original model and the

approximated one can also be realized using different management strategies of meta-

models30 (Fig. 1.23) [208]. The trade-off here is the use of an expensive accurate

evaluation versus a cheap erroneous evaluation of the objective function.

1.5 CONSTRAINT HANDLING

Dealing with constraints in optimization problems is another important topic for the

efficient design of metaheuristics. Indeed, many continuous and discrete optimization

problems are constrained, and it is not trivial to deal with those constraints. The con-

straints may be of any kind: linear or nonlinear and equality or inequality constraints.

In this section, constraint handling strategies, which mainly act on the representa-

tion of solutions or the objective function, are presented. They can be classified as

reject strategies, penalizing strategies, repairing strategies, decoding strategies, and

preserving strategies. Other constraint handling approaches using search components

30Known as evolution control in evolutionary algorithms.

CONSTRAINT HANDLING 49

 Original optimization problem

decision variables, objective function, constraints

Meta-model

 Optimization problem

 using the meta-modelBest solution

Metaheuristic

(1)

(2)

(3)

(3)

Cheap evaluation

Accurate evaluation

FIGURE 1.23 Optimization using a meta-model. Once the model is constructed (1), the

metaheuristic can use either the meta-model (2) or the alternative between the two models

(original and approximate) for a better compromise between accuracy and efficiency (3).

not directly related to the representation of solutions or the objective function may

also be used, such as multiobjective optimization and coevolutionary models.

1.5.1 Reject Strategies

Reject strategies31 represent a simple approach, where only feasible solutions are kept

during the search and then infeasible solutions are automatically discarded.

This kind of strategies are conceivable if the portion of infeasible solutions of

the search space is very small. Moreover, reject strategies do not exploit infeasible

solutions. Indeed, it would be interesting to use some information on infeasible solu-

tions to guide the search toward global optimum solutions that are in general on the

boundary between feasible and infeasible solutions. In some optimization problems,

feasible regions of the search space may be discontinuous. Hence, a path between

two feasible solutions exists if it is composed of infeasible solutions.

1.5.2 Penalizing Strategies

In penalizing strategies, infeasible solutions are considered during the search process.

The unconstrained objective function is extended by a penalty function that will

penalize infeasible solutions. This is the most popular approach. Many alternatives

may be used to define the penalties [304].

For instance, the objective function f may be penalized in a linear manner:

f ′(s) = f (s) + λc(s)

31Also named “death penalty.”

50 COMMON CONCEPTS FOR METAHEURISTICS

where c(s) represents the cost of the constraint violation and λ the aggregation weights.

The search enables sequences of the type (st, st+1, st+2) where st and st+2 represent

feasible solutions, st+1 is an infeasible solution, and st+2 is better than st .

According to the difference between feasible and infeasible solutions, different

penalty functions may be used [656]:

• Violated constraints: A straightforward function is to count the number of

violated constraints. No information is used on how close the solution is to the

feasible region of the search space. Given m constraints, the penalized function

fp(x) of f (x) is defined as follows:

fp(x) = f (x) +
m

∑

i=1

wiαi

where αi = 1 if constraint i is violated and αi = 0 otherwise, and wi is the

coefficient associated with each constraint i.

For a problem with few and tight constraints, this strategy is useless.

• Amount of infeasibility or repairing cost: Information on how close a solution

is to a feasible region is taken into account. This will give an idea about the cost

of repairing the solution.

For instance, more efficient approaches consist in including a distance to feasibil-

ity for each constraint. Considering q inequality constraints and m − q equality

constraints, the penalized function fp(x) will be formulated as follows:

fp(x) = f (x) +
m

∑

i=1

wid
k
i

where di is a distance metric for the constraint i, di = αigi(x) for i = 1, . . . , q

and di = |hi(x)| for i = q + 1, . . . , m. k is a user-defined constant (in general

k = 0, 1), the constraints 1, . . . , q are inequality constraints and the constraints

q + 1, . . . , m are equality constraints.

When solving a constrained problem using a penalizing strategy, a good com-

promise for the initialization of the coefficient factors wi must be found. Indeed, if

wi is too small, final solutions may be infeasible. If the coefficient factor wi is too

high, we may converge toward nonoptimal feasible solutions. The penalizing function

used may be

• Static: In static strategies, a constant coefficient factor is defined for the whole

search. The drawback of the static strategies is the determination of the coefficient

factors wi.

CONSTRAINT HANDLING 51

• Dynamic: In dynamic strategies, the coefficients factors wi will change during

the search. For instance, the severity of violating constraints may be increased

with time. It means that when the search progresses, the penalties will be more

strong, whereas in the beginning of the search highly infeasible solutions are

admissible [423].

Hence, a dynamic penalty function will take into account the time (e.g., num-

ber of iterations, generations, and number of generated solutions). Using a dis-

tance metric, the objective function may be formulated as follows:

fp(x, t) = f (x) +
m

∑

i=1

wi(t)d
k
i

where wi(t) is a decreasing monotonic function with t. More advanced functions

such as annealing [547] or nonmonotonic functions (see Section 2.4.2) may be

used.

It is not simple to define a good dynamic penalty function. A good compromise

for the initialization of the function wi(t) must be found. Indeed, if wi(t) is too

slow decreasing, longer search is needed to find feasible solutions. Otherwise

if wi(t) is too fast decreasing, we may converge quickly toward a nonoptimal

feasible solution.

• Adaptive: The previously presented penalty functions (static and dynamic) do

not exploit any information of the search process. In adaptive penalty functions,

knowledge on the search process is included to improve the efficiency and the

effectiveness of the search.

The magnitude of the coefficient factors is updated according to the memory

of the search [350]. The search memory may contain the best found solutions,

last generated solutions, and so on. For instance, an adaptive strategy may consist

in decreasing the coefficient factors when many feasible solutions are generated

during the search, while increasing those factors if many infeasible solutions are

generated.

Example 1.39 Adaptive penalization. Let us consider the capacitated vehicle routing

problem (CVRP)32. An adaptive penalizing strategy may be applied to deal with the

demand and duration constraints in a metaheuristic [308]:

f ′(s) = f (s) + αQ(s) + βD(s)

Q(s) measures the total excess demand of all routes and D(s) measures the excess

duration of all routes. The parameters α and β are self-adjusting. Initially, the two

parameters are initialized to 1. They are reduced (resp. increased) if the last µ visited

32The CVRP problem is defined in Exercise 1.11.

52 COMMON CONCEPTS FOR METAHEURISTICS

solutions are all feasible (resp. all infeasible), where µ is a user-defined parameter. The

reduction (resp. increase) may consist in dividing (resp. multiplying) the actual value

by 2, for example.

1.5.3 Repairing Strategies

Repairing strategies consist in heuristic algorithms transforming an infeasible solu-

tion into a feasible one. A repairing procedure is applied to infeasible solutions to

generate feasible ones. For instance, those strategies are applied in the case where

the search operators used by the optimization algorithms may generate infeasible

solutions.

Example 1.40 Repairing strategy for the knapsack problem. In many combinato-

rial optimization problems, such as the knapsack problem, repairing strategies are used

to handle the constraints. The knapsack problems represent an interesting class of prob-

lems with different applications. Moreover, many classical combinatorial optimization

problems generate underlying knapsack problems. In the 0–1 knapsack problem, one

have n different articles with weight wi and utility ui. A knapsack can hold a weight of at

most w. The objective is to maximize the utility of the articles included in the knapsack

satisfying the weight capacity of the knapsack. The decision variable xj is defined as

follows:

xj =
{

1 if the article is included

0 otherwise

The problem consists in optimizing the objective function

Max f (x) =
n∑

j=1

xjuj

subject to the constraint

n∑

j=1

wjxj ≤ w

The following repairing procedure may be applied to infeasible solutions (see Al-

gorithm 1.3). It consists in extracting from the knapsack some elements to satisfy the

capacity constraint.

CONSTRAINT HANDLING 53

Algorithm 1.3 Repairing procedure for the knapsack.

Input: a nonfeasible solution s.

s
′ = s ;

While s
′

nonfeasible (i.e.,
∑n

j=1
wjxj > w) Do

Remove an item ei from the knapsack: the element ei maximizes the ratio ui

wi
;

s
′

= s
′\ei ;

Endo

Output: a feasible solution s
′
.

The repairing heuristics are, of course, specific to the optimization problem at hand.

Most of them are greedy heuristics. Then, the success of this strategy will depend on

the availability of such efficient heuristics.

1.5.4 Decoding Strategies

A decoding procedure may be viewed as a function R → S that associates with

each representation r ∈ R a feasible solution s ∈ S in the search space. This strategy

consists in using indirect encodings (see Section 1.4.1.4). The topology of the search

space is then transformed using the decoding function. The decoding function must

have the following properties [179]:

• For each solution r ∈ R, corresponds a feasible solution s ∈ S.

• For each feasible solution s ∈ S, there is a representation r ∈ R that corresponds

to it.

• The computational complexity of the decoder must be reduced.

• The feasible solutions in S must have the same number of corresponding solu-

tions in R.

• The representation space must have the locality property in the sense that distance

between solutions in R must be positively correlated with the distance between

feasible solutions in S.

1.5.5 Preserving Strategies

In preserving strategies for constraint handling, a specific representation and operators

will ensure the generation of feasible solutions. They incorporate problem-specific

knowledge into the representation and search operators to generate only feasible

solutions and then preserve the feasibility of solutions.

This efficient class of strategies is tailored for specific problems. It cannot be

generalized to handle constraints of all optimization problems. Moreover, for some

problems such as the graph coloring problem, it is even difficult to find feasible initial

solution or population of solutions to start the search.

54 COMMON CONCEPTS FOR METAHEURISTICS

Parameter initialization

Off-line initialization Online initialization

Design of experiments

 (DOE)
Meta-optimization Dynamic Adaptive

Self-adaptive

FIGURE 1.24 Parameter initialization strategies.

1.6 PARAMETER TUNING

Many parameters have to be tuned for any metaheuristic. Parameter tuning may allow a

larger flexibility and robustness, but requires a careful initialization. Those parameters

may have a great influence on the efficiency and effectiveness of the search. It is not

obvious to define a priori which parameter setting should be used. The optimal values

for the parameters depend mainly on the problem and even the instance to deal with and

on the search time that the user wants to spend in solving the problem. A universally

optimal parameter values set for a given metaheuristic does not exist.

There are two different strategies for parameter tuning: the off-line33 parame-

ter initialization (or meta-optimization) and the online34 parameter tuning strategy

(Fig. 1.24). In off-line parameter initialization, the values of different parameters are

fixed before the execution of the metaheuristic, whereas in the online approach, the

parameters are controlled and updated dynamically or adaptively during the execution

of the metaheuristic.

1.6.1 Off-Line Parameter Initialization

As previously mentioned, metaheuristics have a major drawback; they need some

parameter tuning that is not easy to perform in a thorough manner. Those pa-

rameters are not only numerical values but may also involve the use of search

components.

Usually, metaheuristic designers tune one parameter at a time, and its optimal

value is determined empirically. In this case, no interaction between parameters

is studied. This sequential optimization strategy (i.e., one-by-one parameter) do

not guarantee to find the optimal setting even if an exact optimization setting is

performed.

33Also called endogenous strategy parameters [53].
34Also called exogenous strategy parameters.

PARAMETER TUNING 55

Meta-level

Base level

Solution x = (parameters, decision)

Objective function fm = best solution obtained by the metaheuristic 2

. . .

Metaheuristic 2 (x
1
)

Objective function fb of the problem

Solution y of the problem

Metaheuristic 2 (x
k
)

Objective function fb of the problem

Solution y of the problem

Metaheuristic 1 at meta-level

Metaheuristic 2 at base level Metaheuristic 2 at base level

x1 xk

FIGURE 1.25 Meta-optimization using a meta-metaheuristic.

To overcome this problem, experimental design35 is used [88]. Before using an

experimental design approach, the following concepts must be defined:

• Factors36 that represent the parameters to vary in the experiments.

• Levels that represent the different values of the parameters, which may be quan-

titative (e.g., mutation probability) or qualitative (e.g., neighborhood).

Let us consider n factors in which each factor has k levels, a full factorial design

needs nk experiments. Then, the “best” levels are identified for each factor. Hence,

the main drawback of this approach is its high computational cost especially when

the number of parameters (factors) and their domain values are large, that is, a very

large number of experiments must be realized [683]. However, a small number of

experiments may be performed by using Latin hypercube designs [536], sequential

design, or fractional design [562].

Other approaches used in machine learning community such as racing algorithms

[530] may be considered [76].

In off-line parameter initialization, the search for the best tuning of parameters

of a metaheuristic in solving a given problem may be formulated as an opti-

mization problem. Hence, this meta-optimization approach may be performed by

any (meta)heuristic, leading to a meta-metaheuristic (or meta-algorithm) approach.

Meta-optimization may be considered a hybrid scheme in metaheuristic design (see

Section 5.1.1.2) (Fig. 1.25).

This approach is composed of two levels: the meta-level and the base level. At the

meta-level, a metaheuristic operates on solutions (or populations) representing the pa-

rameters of the metaheuristic to optimize. A solution x at the meta-level will represent

35Also called design of experiments [266].
36Also named design variables, predictor variables, and input variables.

56 COMMON CONCEPTS FOR METAHEURISTICS

all the parameters the user wants to optimize: parameter values such as the size of the

tabu list for tabu search, the cooling schedule in simulated annealing, the mutation and

crossover probabilities for an evolutionary algorithm, and the search operators such

as the type of selection strategy in evolutionary algorithms, the type of neighborhood

in local search, and so on. At the meta-level, the objective function fm associated

with a solution x is generally the best found solution (or any performance indicator)

by the metaheuristic using the parameters specified by the solution x. Hence, to each

solution x of the meta-level will correspond an independent metaheuristic in the base

level. The metaheuristic of the base level operates on solutions (or populations) that

encode solutions of the original optimization problem. The objective function fb used

by the metaheuristic of the base level is associated with the target problem. Then, the

following formula holds:

fm(x) = fb(Meta(x))

where Meta(x) represents the best solution returned by the metaheuristic using the

parameters x.

1.6.2 Online Parameter Initialization

The drawback of the off-line approaches is their high computational cost, particularly

if this approach is used for each input instance of the problem. Indeed, the optimal

values of the parameters depend on the problem at hand and even on the various

instances to solve. Then, to improve the effectiveness and the robustness of off-line

approaches, they must be applied to any instance (or class of instances) of a given

problem. Another alternative consists in using a parallel multistart approach that uses

different parameter settings (see Chapter 6).

Another important drawback of off-line strategies is that the effectiveness of a

parameter setting may change during the search; that is, at different moments of the

search different optimal values are associated with a given parameter. Hence, online

approaches that change the parameter values during the search must be designed.

Online approaches may be classified as follows:

• Dynamic update: In a dynamic update, the change of the parameter value is

performed without taking into account the search progress. A random or deter-

ministic update of the parameter values is performed.

• Adaptive update: The adaptive approach changes the values according to the

search progress. This is performed using the memory of the search.

A subclass, referred to as self-adaptive37 approach, consists in “evolving” the

parameters during the search. Hence, the parameters are encoded into the repre-

sentation and are subject to change as the solutions of the problem.

37Largely used in the evolutionary computation community.

PERFORMANCE ANALYSIS OF METAHEURISTICS 57

In the rest of the book, many illustrative examples dealing with the off-line or online

parameters initialization of each metaheuristic or search component are presented.

1.7 PERFORMANCE ANALYSIS OF METAHEURISTICS

Performance analysis of metaheuristics is a necessary task to perform and must be

done on a fair basis. A theoretical approach is generally not sufficient to evaluate a

metaheuristic [53]. This section addresses some guidelines of evaluating experimen-

tally a metaheuristic and/or comparing metaheuristics in a rigorous way.

To evaluate the performance of a metaheuristic in a rigorous manner, the following

three steps must be considered (Fig. 1.26):

• Experimental design: In the first step, the goals of the experiments, the selected

instances, and factors have to be defined.

• Measurement: In the second step, the measures to compute are selected. After

executing the different experiments, statistical analysis is applied to the obtained

results. The performance analysis must be done with state-of-the-art optimization

algorithms dedicated to the problem.

• Reporting: Finally, the results are presented in a comprehensive way, and an

analysis is carried out following the defined goals. Another main issue here is to

ensure the reproducibility of the computational experiments.

1.7.1 Experimental Design

In the computational experiment of a metaheuristic, the goals must be clearly defined.

All the experiments, reported measures, and statistical analysis will depend on the

purpose of designing the metaheuristic. Indeed, a contribution may be obtained for

different criteria such as search time, quality of solutions, robustness in terms of the

instances, solving large-scale problems, parallel scalability in terms of the number of

processors, easiness of implementation, easiness to combine with other algorithms,

flexibility to solve other problems or optimization models, innovation using new

nature-inspired paradigms, automatic tuning of parameters, providing a tight approx-

imation to the problem, and so on. Moreover, other purposes may be related to outline

the contribution of a new search component in a given metaheuristic (representation,

objective function, variation operators, diversification, intensification, hybrid models,

parallel models, etc.).

Experimental design Measurement Reporting

- Define the goals
- Select the instances

- Define the metrics
- Statistical analysis
- Ordinal analysis

- Report the results
- Visualization
- Data analysis
- Reproducibility

FIGURE 1.26 Different steps in the performance analysis of a metaheuristic: experimental

design, measurement, and reporting.

58 COMMON CONCEPTS FOR METAHEURISTICS

Once the goals and factors are defined, methods from DOE can be suggested to

conduct computational tests to ensure a rigorous statistical analysis [562]. It consists

in selecting a set of combinations of values of factors to experiment (see Section 1.6.1).

Then, the effect of a parameter (factor) p will be the change in the results obtained

by the modification of the values of the parameter.

Once the goals are defined, the selection of the input instances to perform the

evaluation must be carefully done. The structure associated with the input instances

may influence significantly the performance of metaheuristics. Two types of instances

exist:

• Real-life instances: They represent practical instances of the problem to be

solved. If available, they constitute a good benchmark to carry out the perfor-

mance evaluation of a metaheuristic.

For some problems, it is difficult to obtain real-life instances for confidentiality

reasons. In fact, most of the time, those data are proprietary and not public. For

other problems, it is difficult to obtain a large number of real-life instances for

financial reasons. For instance, in computational biology and bioinformatics, the

generation of some genomic or proteomic data has a large cost. Also, collecting

some real-life instances may be time consuming.

• Constructed instances: Many public libraries of “standard” instances are avail-

able on Internet [339]. They contain well-known instances for global opti-

mization, combinatorial optimization, and mixed integer programs such as

OR-Library38, MIPLIB39, DIMACS challenges40, SATLIB for satisfiability

problems, and the TSPLIB41 (resp. QAPLIB) for the traveling salesman problem

[646] (resp. the quadratic assignment problem).

In addition to some real-life instances, those libraries contain in general syn-

thetic or randomly generated instances. A disadvantage of random instances is

that they are often too far from real-life problems to reflect their structure and

important characteristics. The advantage of synthetic data is that they preserve

the structure of real-life instances. Using a synthetic program, different instances

in size and structure may be generated. Evaluating the performances of a given

metaheuristic using only random instances may be controversial. For instance,

the structure of uniformly generated random instances may be completely dif-

ferent from real-life instances of the problem, and then the effectiveness of the

metaheuristic will be completely different in practice (see Section 2.2).

Example 1.41 Random instances may be controversial. Let us consider the sym-

metric TSP problem with n cities where the distance matrix is generated as follows: each

element dij, i /= j, of the distance matrix is independently generated between [0, 20] us-

ing a uniform distribution. Any randomly generated tour represents a good solution. For

38http://people.brunel.ac.uk/∼mastjjb/jeb/info.html.
39http://www.caam.rice.edu/∼bixby/miplib/miplib.html.
40http://dimacs.rutgers.edu/Challenges/.
41http://softlib.rice.edu/softlib/tsplib/.

PERFORMANCE ANALYSIS OF METAHEURISTICS 59

TABLE 1.7 Some Classical Continuous Functions Used in

Performance Evaluation of Metaheuristics

Function Formulation

Sphere f (x) =
∑D

i=1
x2

i

Griewank f (x) = 1
4000

∑D

i=1
x2

i −
∏D

i=1
cos

(

xi√
i

)

+ 1

Schaffer’s f6 f (x) = 0.5 −

(

sin

√

(

x2
1
+x2

2

)

)2

−0.5

(

1+0.001

(

x2
1
+x2

2

))2

Rastrigin f (x) =
∑D

i=1
(x2

i − 10 cos(2πxi) + 10)

Rosenbrock f (x) =
∑D−1

i=1
(100(xi+1 − x2

i)2 + (xi − 1)2)

D represents the number of dimensions associated with the problem.

example, for an instance of 5000 cities, it has been shown that the standard deviation

is equal to 408 (σ
√

n) and the average cost is 50, 000 (10 · n) [637]. According to the

central limit theorem, almost any tour will have a good quality (i.e., cost of ±3(408)

of 50, 000). Hence, evaluating a metaheuristic on such instances is a pitfall to avoid.

This is due to the independent random generation of the constants. Some correlation and

internal consistency must be introduced for the constants.

Example 1.42 Continuous functions. In continuous optimization, some well-known

functions are used to evaluate the performances of metaheuristics42: Schaffer, Griewank,

Ackley, Rastrigin, Rosenbrock, and so on (see Table 1.7) [685]. These functions have

different properties: for instance, the Sphere and Rastrigin are uncorrelated. The most

studied dimensions are in the range [10–100]. Selected functions for metaheuristics must

contain nonseparable, nonsymmetric, and nonlinear functions. Surprisingly, many used

instances are separable, symmetric, or linear. Large dimensions are not always harder

to solve. For instance, the Griewank function is easier to solve for large dimensions

because the number of local optima decreases with the number of dimensions [815].

The selection of the input instances to evaluate a given metaheuristic may be chosen

carefully. The set of instances must be diverse in terms of the size of the instances, their

difficulties, and their structure. It must be divided into two subsets: the first subset will

be used to tune the parameters of the metaheuristic and the second subset to evaluate

the performance of the search algorithms. The calibration of the parameters of the

metaheuristics is an important and tricky task. Most metaheuristics need the tuning of

42Test problems for global optimization may be found at http://www2.imm.dtu.dk/∼km/

GlobOpt/testex/.

60 COMMON CONCEPTS FOR METAHEURISTICS

various parameters that influence the quality of the obtained results. The values of the

parameters associated with the used metaheuristics must be same for all instances. A

single set of the parameter values is determined to solve all instances. No fine-tuning

of the values is done for each instance unless the use of an automatic off-line or online

initialization strategy (see Section 1.6). Indeed, this will cause an overfitting of the

metaheuristic in solving known and specific instances. The parameter values will be

excellent to solve the instances that serve to calibrate the parameters and very poor to

tackle other instances. The robustness of the metaheuristic will be affected to solve

unknown instances. Otherwise, the time to determine the parameter values of the

metaheuristic to solve a given instance must be taken into account in the performance

evaluation. Different parameter values may be adapted to different structures and sizes

of the instances.

1.7.2 Measurement

In the second step, the performance measures and indicators to compute are selected.

After executing the different experiments, some statistical analysis will be applied to

the obtained results.

In exact optimization methods, the efficiency in terms of search time is the main

indicator to evaluate the performances of the algorithms as they guarantee the global

optimality of solutions. To evaluate the effectiveness of metaheuristic search methods,

other indicators that are related to the quality of solutions have to be considered.

Performance indicators of a given metaheuristic may be classified into three groups

[51]: solution quality, computational effort, and robustness. Other qualitative criteria

such as the development cost, simplicity, ease of use, flexibility (wide applicability),

and maintainability may be used.

1.7.2.1 Quality of Solutions Performance indicators for defining the quality

of solutions in terms of precision are generally based on measuring the distance or the

percent deviation of the obtained solution to one of the following solutions (Fig. 1.27):

• Global optimal solution: The use of global optimal solutions allows a more

absolute performance evaluation of the different metaheuristics. The absolute

Lower bound Optimal solution Best known solution Solution found

Objective
 function

Gap to optimize

 Requirement

Improvement compared to requirements
 or already implemented solution

FIGURE 1.27 Performance assessment of the quality of the solutions. We suppose a mini-

mization problem.

PERFORMANCE ANALYSIS OF METAHEURISTICS 61

difference may be defined as |f (s) − f (s∗)| or |f (s) − f (s∗)|/f (s∗), where s is

the obtained solution and s∗ is the global optimal solution. Since those measures

are not invariant under different scaling of the objective function, the follow-

ing absolute approximation may be used: |f (s) − f (s∗)|/|fworst − f (s∗)| [838]

or |f (s) − f (s∗)|/|Eunif (f) − f (s∗)| [849], where fworst represents the worst

objective cost for the tackled instance43, and Eunif (f)44 denotes expectation

with respect to the uniform distribution of solutions.

The global optimal solution may be found by an exact algorithm or may be

available using “constructed” instances where the optimal solution is known a

priori (by construction) [36]. Built-in optimal solutions have been considered for

many academic problems [637]: traveling salesman problem [615], graph parti-

tioning problem [483], Steiner tree problem [461], vertex packing, and maximum

clique [677]. Also, for some problems, the optimal quality is known intrinsically.

For example, in robot path planning, we have to optimize the distance between

the actual position and the final one, and then the optimal solution has a null

distance. Unfortunately, for many complex problems, global optimal solutions

could not be available. There are also some statistical estimation techniques of

optimal values in which a sample of solutions is used to predict the global optimal

solution [209].

• Lower/upper bound solution: For optimization problems where the global

optimal solution is not available, tight lower bounds45 may be considered as an

alternative to global optimal solutions. For some optimization problems, tight

lower bounds are known and easy to obtain.

Example 1.43 Simple lower bound for the TSP. The Held–Karp (HK) 1-tree

lower bound for the symmetric TSP problem is quick and easy to compute [371].

Given an instance (V, d) where V is the set of n cities and d the distance matrix.

A node v0 ∈ V is selected. Let r be the total edge length of a minimum spanning

tree over the n − 1 cities (v ∈ V − {v0}). The lower bound t is represented by the

r value plus the two cheapest edges incident on v0.

t = r + min{d(v0, x) + d(v0, y) : x, y ∈ V − {v0}, x /= y}

Indeed, any TSP tour must use two edges e and f incident on the node v0. Removing

these two edges and the node v0 from the tour yields a spanning tree of V − {v0}.
Typically, the lower bound t is 10% below the global optimal solution.

Different relaxation techniques may be used to find lower bounds such as the

classical continuous relaxation and the Lagrangian relaxation. In continuous

relaxation for IP problems, the variables are supposed to be real numbers instead

43For some problems, it is difficult to find the worst solution.
44This value can be efficiently computed for many problems. The expected error of a random solution is

equal to 1.
45Lower bounds for minimization problems and upper bounds for maximization problems.

62 COMMON CONCEPTS FOR METAHEURISTICS

of integers. In Lagrangian relaxation, some constraints multiplied by Lagrange

multipliers are incorporated into the objective function (see Section 5.2.1.2).

If the gap between the obtained solution and the lower bound is small, then the

distance of the obtained solution to the optimal solution is smaller (see Fig. 1.27).

In the case of null distance, the global optimality of the solution is proven. In the

case of a large gap (e.g., > 20%), it can be due to the bad quality of the bound

or the poor performance of the metaheuristic.

• Best known solution: For many classical problems, there exist libraries of stan-

dard instances available on the Web. For those instances, the best available so-

lution is known and is updated each time an improvement is found.

• Requirements or actual implemented solution: For real-life problems, a de-

cision maker may define a requirement on the quality of the solution to obtain.

This solution may be the one that is currently implemented. These solutions may

constitute the reference in terms of quality.

1.7.2.2 Computational Effort The efficiency of a metaheuristic may be

demonstrated using a theoretical analysis or an empirical one. In theoretical analysis,

the worst-case complexity of the algorithm is generally computed (see Section 1.1.2).

In general, reporting the asymptotic complexity is not sufficient and cannot tell the

full story on computational performances of metaheuristics [419]. The average-case

complexity, if it is possible to compute46, is more practical [93].

In empirical analysis, measures related to the computation time of the metaheuristic

used to solve a given instance are reported. The meaning of the computation time must

be clearly specified: CPU time or wall clock time, with or without input/output and

preprocessing/postprocessing time.

The main drawback of computation time measure is that it depends on the com-

puter characteristics such as the hardware (e.g., processor, memories: RAM and cache,

parallel architecture), operating systems, language, and compilers on which the meta-

heuristic is executed. Some indicators that are independent of the computer system

may also be used, such as the number of objective function evaluations. It is an accept-

able measure for time-intensive and constant objective functions. Using this metric

may be problematic for problems where the evaluation cost is low compared to the rest

of the metaheuristics or is not time constant in which it depends on the solution evalu-

ated and time. This appears in some applications with variable length representations

(genetic programming, robotics, etc.) and dynamic optimization problems.

Different stopping criteria may be used: time to obtain a given target solution,

time to obtain a solution within a given percentage from a given solution (e.g., global

optimal, lower bound, best known), number of iterations, and so on.

1.7.2.3 Robustness There is no commonly acceptable definition of robustness.

Different alternative definitions exist for robustness. In general, robustness is insen-

sitivity against small deviations in the input instances (data) or the parameters of

46It needs a probability distribution of the input instances.

PERFORMANCE ANALYSIS OF METAHEURISTICS 63

Instances

 Normality conditions:
more than 30 experiments

Yes oN

Parametric analysis:
- Student’s t-test,
- ANOVA: more than 2

Nonparametric analysis:
- Wilcoxon
- Sign test, permutation test
- Boostrap
- McNemar (categorical variables)
- More than two algorithms: Friedman
- More than two criteria: multivariate ANOVA

Kolmogorov–Smirnov test
or Khi2 test

FIGURE 1.28 Statistical analysis of the obtained results.

the metaheuristic. The lower the variability of the obtained solutions the better the

robustness [562].

In the metaheuristic community, robustness also measures the performance of

the algorithms according to different types of input instances and/or problems. The

metaheuristic should be able to perform well on a large variety of instances and/or

problems using the same parameters. The parameters of the metaheuristic may be

overfitted using the training set of instances and less efficient for other instances.

In stochastic algorithms, the robustness may also be related to the average/deviation

behavior of the algorithm over different runs of the algorithm on the same instance.

1.7.2.4 Statistical Analysis Once the experimental results are obtained for

different indicators, methods from statistical analysis47 can be used to conduct the

performance assessment of the designed metaheuristics [192]. While using any per-

formance indicator (e.g., the quality of solutions ci obtained by different metaheuris-

tics Mi or their associated computational efforts ti), some aggregation numbers that

summarize the average and deviation tendencies must be considered. Then, different

statistical tests may be carried out to analyze and compare the metaheuristics. The sta-

tistical tests are performed to estimate the confidence of the results to be scientifically

valid (i.e., determining whether an obtained conclusion is due to a sampling error).

The selection of a given statistical hypothesis testing tool is performed according to

the characteristics of the data (e.g., variance, sample size) [562] (Fig. 1.28).

Under normality conditions, the most widely used test is the paired t-test. Oth-

erwise, a nonparametric analysis may be realized such as the Wilcoxon test and the

permutation test [337]. For a comparison of more than two algorithms, ANOVA models

are well-established techniques to check the confidence of the results [146]. Multi-

variate ANOVA models allow simultaneous analysis of various performance mea-

sures (e.g., both the quality of solutions and the computation time). Kolmogorov–

Smirnov test can be performed to check whether the obtained results follow a normal

47Many commercial (e.g., SAS, XPSS) and free softwares (e.g., R) are available to conduct such an analysis.

64 COMMON CONCEPTS FOR METAHEURISTICS

(Gaussian) distribution. Moreover, the Levene test can be used to test the homogeneity

of the variances for each pair of samples. The Mann–Whitney statistical test can be

used to compare two optimization methods. According to a p-value and a metric under

consideration, this statistical test reveals if the sample of approximation sets obtained

by a search method S1 is significantly better than the sample of approximation sets

obtained by a search method S2, or if there is no significant difference between both

optimization methods.

These different statistical analysis procedures must be adapted for nondeterministic

(or stochastic) algorithms [740]. Indeed, most of the metaheuristics belong to this class

of algorithms. Many trials (at least 10, more than 100 if possible) must be carried out

to derive significant statistical results. From this set of trials, many measures may be

computed: mean, median, minimum, maximum, standard deviation, the success rate

that the reference solution (e.g., global optimum, best known, given goal) has been

attained, and so on. The success rate represents the number of successful runs over

the number of trials.

success rate = number of successful runs

total number of runs

The performance rate will take into account the computational effort by consid-

ering the number of objective function evaluations.

performance rate = number of successful runs

number of function evaluations × total number of runs

When the number of trials n is important, the random variable associated with

the average of the results found by a given metaheuristic over those trials tend to

follow a Gaussian law of parameters m0 and σ0/
√

n, where m0 (resp. σ0) represents

the average (resp. standard deviation) of the random variable associated with one

experiment.

Confidence intervals (CI) can be used to indicate the reliability of the experi-

ments. The confidence interval is an interval estimate of the set of experimental

values. In practice, most confidence intervals are stated at the 95% level. It represents

the probability that the experimental value is located in the interval m − 1.96σ/
√

n,

m + 1.96σ/
√

n. A result with small CI is more reliable than results with a large CI.

1.7.2.5 Ordinal Data Analysis In comparing n metaheuristics for a given num-

ber of m experiments (instances, etc.), a set of ordinal values ok (1 ≤ k ≤ m) are

generated for each method. For a given experiment, each ordinal value ok denotes the

rank of the metaheuristic compared to the other ones (1 ≤ ok ≤ n). Some ordinal data

analysis methods may be applied to be able to compare the different metaheuristics.

Those ordinal methods aggregate m linear orders Ok into a single linear order O so

that the final order O summarizes the m orders Ok.

PERFORMANCE ANALYSIS OF METAHEURISTICS 65

Factor 2
(e.g., population size)

Factor 1

(e.g., mutation probability)

Perf. indicator 2
(e.g., quality of solutions, robustness)

Perf. indicator 1

(e.g., search time)

(a) Interaction plots (b) Trade -off scatter plots

(e.g., average quality)

pop. size = 100

pop. size = 20

FIGURE 1.29 (a) Interaction plots analyze the effect of two factors (parameters, e.g., mu-

tation probability, population size in evolutionary algorithms) on the obtained results (e.g.,

solution quality, time). (b) Scatter plots analyze the trade-off between the different perfor-

mance indicators (e.g., quality of solutions, search time, robustness).

The commonly used ordinal aggregation methods are

• Borda count voting method: This method was proposed in 1770 by the French

mathematician Jean-Charles de Borda. A method having a rank ok is given ok

points. Given the m experiments, each method sums its points ok to compute its

total score. Then, the methods are classified according to their scores.

• Copeland’s method: The Copeland method selects the method with the largest

Copeland index. The Copeland index σ is the number of times a method beats

other methods minus the number of times that method loses against other meth-

ods when the methods are considered in pairwise comparisons. For instance,

let m and m′ be two metaheuristics and cmm′ the number of orders in which

the metaheuristic m beats the metaheuristic m′. The Copelan index for the meta-

heuristic m will be σm = ∑

m′ cmm′ − cm′m. Then, the metaheuristics are ordered

according to the decreasing values of the Copeland index σ.

1.7.3 Reporting

The interpretation of the results must be explicit and driven using the defined goals

and considered performance measures. In general, it is not sufficient to present the

large amount of data results using tables. Some visualization tools to analyze the data

are welcome to complement the numerical results [780]. Indeed, graphical tools such

as deviation bars (confidence intervals, box plots) and interaction plots allow a better

understanding of the performance assessment of the obtained results.

Interaction plots represent the interaction between different factors and their effect

on the obtained response (performance measure) (Fig. 1.29). Box plots48 illustrate the

48Box plots were invented by the statistician John Tukey in 1977 [781].

66 COMMON CONCEPTS FOR METAHEURISTICS

Standard deviation bars

Performance indicator (e.g., solution quality)

Experiments

Confidence interval
Mean

Different instances, parameters, and metaheuristics.

Box plots

Smallest value (nonoutlier)

Largest value (nonoutlier)

Lower quartile

Upper quartile

Median

FIGURE 1.30 Some well-known visualization tools to report results: deviation bars, confi-

dence intervals.

distribution of the results through their five-number summaries: the smallest value,

lower quartile (Q1), median (Q2), upper quartile (Q3), and largest value (Fig. 1.30)

[117]. They are useful in detecting outliers and indicating the dispersion and the

skewness of the output data without any assumptions on the statistical distribution of

the data.

Moreover, it is important to use scatter plots to illustrate the compromise between

various performance indicators. For instance, the plots display quality of solutions

versus time, or time versus robustness, or robustness versus quality (Fig. 1.29). Other

plots measure the impact of a given factor on a performance indicator: time versus

instance size and quality versus instance size. Indeed, analyzing the relationship be-

tween the quality of solution, the search time, the robustness, and the size/structure of

instances must be performed in a comprehensive way. Other visualization tools may

be used such as half-normal plots and histograms.

It would also be interesting to report negative results on applying a given meta-

heuristic or a search component to solve a given instance, problem, or class of prob-

lems. Indeed, most of the time only positive results are reported in the literature. From

negative results, one may extract useful knowledge.

For a given experimental evaluation of a metaheuristic, confidence intervals may

be plotted by a segment indicating the confidence interval at 95% level (Fig. 1.30).

The middle of the segment shows the average of the experimental values.

More information on the behavior of a stochastic metaheuristic may be obtained by

approximating the probability distribution for the time to a target solution value. To

plot the empirical distribution for an algorithm and an instance, the i-smallest running

time ti may be associated with the probability pi = (i − (1/2))/n, where n is the num-

ber of independent runs (n ≥ 100), and plots the points zi = (ti, pi) for i = [1, . . , n].

A metaheuristic must be well documented to be reproduced. The program must

be described in detail to allow its reproduction. If possible, making available the

SOFTWARE FRAMEWORKS FOR METAHEURISTICS 67

program, the instances, and the obtained results (complete solutions and the different

measures) on the Web will be a plus. The different used parameters of the metaheuristic

must be reported. Using different parameters in solving the different instances must

also be reported. The use of software frameworks makes better the reproducibility,

reusability, and extension of metaheuristics. In fact, if the competing metaheuristics

are implemented using the same software framework, the performance metrics such

as the search time are less biased to the programming skills and the computing system,

and then the comparison is more fair and rigorous.

1.8 SOFTWARE FRAMEWORKS FOR METAHEURISTICS

In this section, the motivations for using a software framework for metaheuristics are

outlined. Then, the main characteristics a framework should have are detailed. Finally,

the ParadisEO framework that serves to design and implement various metaheuristics

(e.g., S-metaheuristics, P-metaheuristics, hybrid, and parallel metaheuristics) in the

whole book is presented.

1.8.1 Why a Software Framework for Metaheuristics?

Designing software frameworks for metaheuristics is primordial. In practice, there is

a large diversity of optimization problems. Moreover, there is a continual evolution

of the models associated with optimization problems. The problem may change or

need further refinements. Some objectives and/or constraints may be added, deleted,

or modified. In general, the efficient solving of a problem needs to experiment many

solving methods, tuning the parameters of each metaheuristic, and so on. The meta-

heuristic domain in terms of new algorithms is also evolving. More and more increas-

ingly complex metaheuristics are being developed (e.g., hybrid strategies, parallel

models, etc.).

There is a clear need to provide a ready-to-use implementation of metaheuris-

tics. It is important for application engineers to choose, implement, and apply the

state-of-the art algorithms without in-depth programming knowledge and expertise

in optimization. For optimization experts and developers, it is useful to evaluate and

compare fairly different algorithms, transform ready-to-use algorithms, design new

algorithms, and combine and parallelize algorithms.

Three major approaches are used for the development of metaheuristics:

• From scratch or no reuse: Nowadays, unfortunately this is the most popular

approach. The basic idea behind the from scratch-oriented approach is the ap-

parent simplicity of metaheuristic code. Programmers are tempted to develop

themselves their codes. Therefore, they are faced with several problems: the de-

velopment requires time and energy, and it is error prone and difficult to maintain

and evolve.

Numerous metaheuristics and their implementation (program codes) have been

proposed, and are available on the Web. They can be reused and adapted to a

68 COMMON CONCEPTS FOR METAHEURISTICS

user problem. However, the user has to deeply examine the code and rewrite its

problem-specific sections. This task is often tedious, error prone, takes a long

time, and makes harder the produced code maintenance.

• Only code reuse: it consists of reusing third-party code available on the Web

either as free individual programs or as libraries. Reusability may be defined as

the ability of software components to build many different applications [262].

An old third-party code has usually application-dependent sections that must be

extracted before the new application-dependent code can be inserted. Changing

these sections is often time consuming and error prone.

A better way to reuse the code of existing metaheuristics is through libraries

[804]. The code reuse through libraries is obviously better because these libraries

are often well tried, tested, and documented, thus more reliable. They allow a

better maintainability and efficiency. Nowadays, it is recognized that the object-

oriented paradigm is well-suited to develop reusable libraries. However, libraries

allow code reuse but they do not permit the reuse of complete invariant part of

algorithms. Libraries do not allow the reuse of design. Therefore, the coding

effort using libraries remains important.

• Both design and code reuse: The objective of both code and design reuse

approaches is to overcome this problem, that is, to redo as little code as possible

each time a new optimization problem is dealt with. The basic idea is to capture

into special components the recurring (or invariant) part of solution methods to

standard problems belonging to a specific domain. These special components

are called design patterns [293]. A pattern can be viewed as a programming

language-independent description of a solution to a general design problem that

must be adapted for its eventual use [523]. Useful design patterns related to a

specific domain (e.g., metaheuristics) are in general implemented as frameworks.

A framework approach is devoted to the design and code reuse of a metaheuristic

[422]. A framework may be object oriented and defined as a set of classes that

embody an abstract design for solutions to a family of related metaheuristics.

Frameworks are well known in the software engineering literature. Frameworks

can thus be viewed as programming language-dependent concrete realizations

of patterns that facilitate direct reuse of design and code. They allow the reuse

of the design and implementation of a whole metaheuristic. They are based on

a strong conceptual separation of the invariant (generic) part of metaheuristics

and their problem-specific part. Therefore, they allow the user to redo very little

code, and it improves the quality and the maintainability of the metaheuristics.

Moreover, unlike libraries, frameworks are characterized by the inverse control

mechanism for the interaction with the application code. In a framework, the

provided code calls the user-defined one according to the Hollywood property

“do not call us, we call you." Therefore, frameworks provide the full control

structure of the invariant part of the algorithms, and the user has to supply only

the problem-specific details. To meet this property, the design of a framework

must be based on a clear conceptual separation between the solution methods

and the problems they tackle.

SOFTWARE FRAMEWORKS FOR METAHEURISTICS 69

This separation requires a solid understanding of the application domain. The

domain analysis results in a model of the domain to be covered by reusable classes

with some constant and variable aspects. The constant part is encapsulated in

generic/abstract classes or skeletons that are implemented in the framework [22].

The variable part is problem specific, it is fixed in the framework but implemented

by the user. This part consists of a set of holes or hot spots [624] that serve to fill

the skeletons provided by the framework when building specific applications.

It is recommended to use object-oriented composition rather than inheritance

to perform this separation [660]. The reason is that classes are easier to reuse

than individual methods. Another and completely different way to perform this

separation may be used [81]. It provides a ready-to-use module for each part,

and the two modules communicate through text files. This allows less flexibility

than the object-oriented approach. Moreover, it induces an additional overhead,

even if this is small. Nevertheless, this approach is multilanguage allowing more

code reuse.

1.8.2 Main Characteristics of Software Frameworks

According to the openness criterion, two types of frameworks can be distinguished:

white or glass box frameworks and black box (opaque) frameworks. In black box

frameworks, one can reuse components by plugging them together through static pa-

rameterization and composition, and not worrying about how they accomplish their

individual tasks [422]. In contrast, white box frameworks require an understanding

of how the classes work so that correct subclasses (inheritance based) can be devel-

oped. Therefore, they allow more extendability. Frameworks often start as white box

frameworks; these are primarily customized and reused through classes specializa-

tion. When the variable part has stabilized or been realized, it is often appropriate to

evolve to black box frameworks [262].

Nowadays, the white box approach is more suited to metaheuristics. It is composed

of adaptable software components intended to be reused to solve specific optimization

problems. Unless the automatic or quasi-automatic design of a metaheuristic for a

given problem is not solved, the designer must tailor a given metaheuristic to solve the

problem. The source code level must be provided to the user to adapt his algorithm. The

black box approach can be adapted to some families of optimization problems such as

nonlinear continuous optimization problems where the same search components can

be used (representation, search operators, etc.). In other families such as combinatorial

optimization, the representation and search operators are always tailored to solve a

problem using programming languages such as C++ or Java. For instance, the black

box approach is used for linear programming optimization solvers (e.g., Cplex, Lindo,

XPRESS-MP) that use a modeling language based on mathematical programming,

such as the AMPL49, GAMS,50 or MPL51 languages.

49www.ampl.com.
50www.gams.com.
51www.maximal-usa.com.

70 COMMON CONCEPTS FOR METAHEURISTICS

A framework is normally intended to be exploited by as many users as possible.

Therefore, its exploitation could be successful only if some important user criteria

are satisfied. The following are the major criteria of them and constitute the main

objectives of the used framework in this book:

• Maximum design and code reuse: The framework must provide for the user

a whole architecture design of his/her metaheuristic approach. Moreover, the

programmer may redo as little code as possible. This objective requires a clear

and maximal conceptual separation between the metaheuristics and the prob-

lems to be solved, and thus a deep domain analysis. The user might therefore

develop only the minimal problem-specific code. It will simplify considerably

the development of metaheuristics and reduce the development time.

• Flexibility and adaptability: It must be possible for the user to easily add new

features/metaheuristics or change existing ones without implicating other com-

ponents. Furthermore, as in practice existing problems evolve and new others

arise, these have to be tackled by specializing/adapting the framework compo-

nents.

• Utility: The framework must allow the user to cover a broad range of metaheuris-

tics, problems, parallel distributed models, hybridization mechanisms, multi-

objective optimization, and so on. To design optimization methods for hard

problems, a lot of metaheuristics exist. Nevertheless, the scientist does not have

necessarily the time and the capability to try all of them. Furthermore, to gain

effective method, the parameters often need to be tuned. So a platform that

can facilitate the design of optimization methods and their test is necessary to

produce high-quality results.

• Transparent and easy access to performance and robustness: As the opti-

mization applications are often time consuming, the performance issue is crucial.

Parallelism and distribution are two important ways to achieve high-performance

execution. To facilitate its use, it is implemented so that the user can deploy

his/her parallel metaheuristic in a transparent manner. Moreover, the execution of

the algorithms must be robust to guarantee the reliability and the quality of the re-

sults. The hybridization mechanism allows to obtain robust and better solutions.

• Portability: To satisfy a large number of users, the framework must support

different material architectures (sequential, parallel, or distributed architecture)

and their associated operating systems (Windows, Unix, MacOs).

• Easy to use and efficiency: The framework must be easy to use and does

not incorporate an additional cost in terms of time or space complexity. The

framework must preserve the efficiency of a special-purpose implementation.

On the contrary, as the framework is normally developed by “professional”

and knowledgeable software engineers and is largely tested by many users, it

will be less error prone than ad-hoc special-purpose developed metaheuristics.

Moreover, it is well known that the most intensive computational part in

a metaheuristic is generally the evaluation of the objective function that is

specified by the user to solve his specific problem.

SOFTWARE FRAMEWORKS FOR METAHEURISTICS 71

Several frameworks for metaheuristics have been proposed in the literature. Most

of them have the following limitations:

• Metaheuristics: most of the exiting frameworks focus only on a given meta-

heuristic or family of metaheuristics such as evolutionary algorithms (e.g., GAlib

[809]), local search (e.g., EasyLocal++ [301], Localizer [550]), and scatter search

(e.g., OPTQUEST). Only few frameworks are dedicated on the design of both

families of metaheuristics. Indeed, a unified view of metaheuristics must be done

to provide a generic framework.

• Optimization problems: most of the software frameworks are too narrow, that

is, they have been designed for a given family of optimization problems: non-

linear continuous optimization (e.g., GenocopIII), combinatorial optimization

(e.g., iOpt), monoobjective optimization (e.g., BEAGLE), multiobjective opti-

mization (e.g., PISA [81]), and so on.

• Parallel and hybrid metaheuristics: Moreover, most of the existing frame-

works either do not provide hybrid and parallel metaheuristics at all (Hotframe

[262]) or supply just some parallel models: island model for evolutionary al-

gorithms (e.g., DREAM [35], ECJ [819], JDEAL, distributed BEAGLE [291]),

independent multistart and parallel evaluation of the neighborhood (e.g., TS

[79]), or hybrid metaheuristics (iOpt [806]).

• Architectures: Finally, seldom a framework is found that can target many types

of architectures: sequential and different types of parallel and distributed ar-

chitectures, such as shared-memory (e.g., multicore, SMP), distributed-memory

(e.g., clusters, network of workstations), and large-scale distributed architectures

(e.g., desktop grids and high-performance grids). Some software frameworks are

dedicated to a given type of parallel architectures (e.g., MALLBA [22], MAFRA

[481], and TEMPLAR [426,427]).

Table 1.8 illustrates the characteristics of the main software frameworks for meta-

heuristics52. For a more detailed review of some software frameworks and libraries

for metaheuristics, the reader may refer to Ref. [804].

1.8.3 ParadisEO Framework

In this book, we will use the ParadisEO53 framework to illustrate the design and

implementation of the different metaheuristics. The ParadisEO platform honors the

criteria mentioned before, and it can be used both by no-specialists and by optimization

method experts. It allows the design and implementation of

• Single-solution based and population-based metaheuristics in a unifying way

(see Chapters 2 and 3).

52We do not claim an exhaustive comparison.
53ParadisEO is distributed under the CeCill license.

72 COMMON CONCEPTS FOR METAHEURISTICS

TABLE 1.8 Main Characteristics of Some Software Frameworks for Metaheuristics

Framework Optimization Parallel Communication

or Library Metaheuristic Problems Models Systems

EasyLocal++ S-meta Mono - -

Localizer++ S-meta Mono - -

PISA EA Multi - -

MAFRA LS, EA Mono - -

iOpt S-meta, GA, CP Mono, COP - -

OptQuest SS Mono - -

GAlib GA Mono Algo-level PVM

Ite-level

GenocopIII EA Mono, Cont - -

DREAM EA Mono Algo-level Peer-to-peer

sockets

MALLBA LS Mono Algo-level MPI

EA Ite-level Netstream

Hotframe S-meta, EA Mono - -

TEMPLAR LS, SA, GA Mono, COP Algo-level MPI, threads

JDEAL GA, ES Mono Ite-level Sockets

ECJ EA Mono Algo-level Threads, sockets

Dist. BEAGLE EA Mono Algo-level Sockets

Ite-level

ParadisEO S-meta Mono, Multi Algo-level MPI, threads

P-meta COP, Cont Ite-level Condor

Sol-level Globus

[S-meta: S-metaheuristics; P-meta: P-metaheuristics; COP: combinatorial optimization; Cont: continuous

optimization; Mono: Monoobjective optimization; Multi: multiobjective optimization, LS: local search;

ES: evolution strategy; SS: scatter search; EA: evolutionary algorithms; GA: genetic algorithms; Algo-

level: algorithmic level of parallel model; Ite-level: iteration level of parallel models; Sol-level: solution

level of parallel models. Unfortunately, only a few of them are maintained and used!.]

• Metaheuristics for monoobjective and multiobjective optimization problems (see

Chapter 4).

• Metaheuristics for continuous and discrete optimization problems.

• Hybrid metaheuristics (see Chapter 5).

• Parallel and distributed metaheuristics (see Chapter 6).

ParadisEO is a white box object-oriented framework based on a clear conceptual

separation of the metaheuristics from the problems they are intended to solve. This

separation and the large variety of implemented optimization features allow a maxi-

mum code and design reuse. The separation is expressed at implementation level by

splitting the classes into two categories: provided classes and required classes. The

provided classes constitute a hierarchy of classes implementing the invariant part of

the code. Expert users can extend the framework by inheritance/specialization. The

SOFTWARE FRAMEWORKS FOR METAHEURISTICS 73

required classes coding the problem-specific part are abstract classes that have to be

specialized and implemented by the user.

The classes of the framework are fine-grained and instantiated as evolving objects

embodying one and only one method. This is a particular design choice adopted in

ParadisEO. The heavy use of these small-size classes allows more independence and

thus a higher flexibility compared to other frameworks. Changing existing components

and adding new ones can be easily done without impacting the rest of the application.

Flexibility is enabled through the use of the object-oriented technology. Templates are

used to model the metaheuristic features: coding structures, transformation operators,

stopping criteria, and so on. These templates can be instantiated by the user according

to his/her problem-dependent parameters. The object-oriented mechanisms such as

inheritance, polymorphism, and so on are powerful ways to design new algorithms

or evolve existing ones. Furthermore, ParadisEO integrates several services making

it easier to use, including visualization facilities, online definition of parameters,

application checkpointing, and so on.

ParadisEO is one of the rare frameworks that provides the most common paral-

lel and distributed models. These models concern the three main parallel models:

algorithmic level, iteration level, and solution level. They are portable on different

types of architectures: distributed-memory machines and shared-memory multipro-

cessors as they are implemented using standard libraries such as message passing

interface (MPI), multithreading (Pthreads), or grid middlewares (Condor or Globus).

The models can be exploited in a transparent way, one has just to instantiate their

associated ParadisEO components. The user has the possibility to choose by a sim-

ple instantiation for the communication layer. The models have been validated on

academic and industrial problems. The experimental results demonstrate their ef-

ficiency. The experimentation also demonstrates the high reuse capabilities as the

results show that the user redo little code. Furthermore, the framework provides the

most common hybridization mechanisms. They can be exploited in a natural way to

make cooperating metaheuristics belonging either to the same family or to different

families.

ParadisEO is a C++ LGPL open-source framework (STL-Template)54. It is

portable on Windows, Unix-like systems such as Linux and MacOS. It includes the

following set of modules (Fig. 1.31):

• Evolving objects (EO): The EO library was developed initially for evolutionary

algorithms (genetic algorithms, evolution strategies, evolutionary programming,

genetic programming, and estimation distribution algorithms) [453]. It has been

extended to population-based metaheuristics such as particle swarm optimization

and ant colony55 optimization.

• Moving objects (MO): It includes single-solution based metaheuristics such as

local search, simulated annealing, tabu search, and iterated local search.

54Downloadable at http://paradiseo.gforge.inria.fr.
55The model implemented is inspired by the self-organization of Pachycondyla apicalis ant species.

74 COMMON CONCEPTS FOR METAHEURISTICS

ParadisEO-PEO

ParadisEO-EO

ParadisEO-MO ParadisEO-MOEO

 Multi-objective

 metaheuristics

(NSGA-II, SPEA2,

IBEA, etc.)

 Parallel, distributed,

 and hybrid metaheuristics

Population-based metaheuristics

(evolutionary algorithms,

particle swarm optimization, ant colony,

estimation of distribution algorithms,

differential evolution, etc.)

Single-solution based metaheuristics

(local search, simulated annealing,

tabu search, iterated local search,

variable neighborhood search,

threshold accepting, etc.)

FIGURE 1.31 The different unified modules of the ParadisEO framework.

• Multiobjective evolving objects (MOEO): It includes the search mechanisms

to solve multiobjective optimization problems such as fitness assignment, diver-

sification, and elitism. From this set of mechanisms, classical algorithms such

as NSGA-II, SPEA2, and IBEA have been implemented and are available.

• Parallel evolving objects (PEO): It includes the well-known parallel and dis-

tributed models for metaheuristics and their hybridization.

1.8.3.1 ParadisEO Architecture The architecture of ParadisEO is multi-

layered and modular allowing to achieve the objectives quoted above (Fig. 1.32).

Runners

Required
helpers

Hill
climbing

Simulated
annealing

Tabu
search

Genetic
algorithms

Genetic
programming

Hybrid
solvers

Evaluation
function

Solution
initialization

Variation
operators

Move
exploration

Move
incr. funtion

Provided
helpers

...

Selection replacement
Stopping
criterion

Move
selection

Stopping
criterion

Cooling
schedule

Local searchesEvolutionary algorithms

Common helpers

High level Relay/coevolution

FIGURE 1.32 Architecture of the ParadisEO framework.

SOFTWARE FRAMEWORKS FOR METAHEURISTICS 75

This allows particularly a high genericity, flexibility, and adaptability, an easy hy-

bridization, and code and design reuse. The architecture has three layers identifying

three major classes: Solvers, Runners, and Helpers.

• Helpers: Helpers are low-level classes that perform specific actions related to

the search process. They are split into two categories: population helpers (PH)

and single-solution helpers (SH). Population helpers include mainly the trans-

formation, selection, and replacement operations, the evaluation function, and

the stopping criterion. Solution helpers can be generic such as the neighborhood

explorer class, or specific to the local search metaheuristic such as the tabu list

manager class in the tabu search solution method. On the other hand, there are

some special helpers dedicated to the management of parallel and distributed

models, such as the communicators that embody the communication services.

Helpers cooperate between them and interact with the components of the upper

layer, that is, the runners. The runners invoke the helpers through function pa-

rameters. Indeed, helpers do not have not their own data, but they work on the

internal data of the runners.

• Runners: The Runners layer contains a set of classes that implement the meta-

heuristics themselves. They perform the run of the metaheuristics from the initial

state or population to the final one. One can distinguish the population runners

(PR) such as genetic algorithms, evolution strategies, particle swarm, and so

on and single-solution runners (SR) such as tabu search, simulated annealing,

and hill climbing. Runners invoke the helpers to perform specific actions on

their data. For instance, a PR may ask the fitness function evaluation helper to

evaluate its population. An SR asks the movement helper to perform a given

movement on the current state. Furthermore, runners can be serial or parallel

distributed.

• Solvers: Solvers are devoted to control the search. They generate the initial state

(solution or population) and define the strategy for combining and sequencing

different metaheuristics. Two types of solvers can be distinguished: single meta-

heuristic solvers (SMS) and multiple-metaheuristic solvers (MMS). SMS are

dedicated to the execution of a single metaheuristic. MMS are more complex

as they control and sequence several metaheuristics that can be heterogeneous.

They use different hybridization mechanisms. Solvers interact with the user by

getting the input data and by delivering the output (best solution, statistics, etc.).

According to the generality of their embedded features, the classes of the architec-

ture are split into two major categories: provided classes and required classes. Provided

classes embody the factored out part of the metaheuristics. They are generic, imple-

mented in the framework, and ensure the control at run time. Required classes are

those that must be supplied by the user. They encapsulate the problem-specific aspects

of the application. These classes are fixed but not implemented in ParadisEO. The

programmer has the burden to develop them using the object-oriented specialization

mechanism.

76 COMMON CONCEPTS FOR METAHEURISTICS

At each layer of the ParadisEO architecture, a set of classes is provided (Fig. 1.32).

Some of them are devoted to the development of metaheuristics for monoobjective and

multiobjective optimization, and others are devoted to manage transparently parallel

and distributed models for metaheuristics and their hybridization.

There are two programming mechanisms to extend built-in classes: function sub-

stitution and subclassing. By providing some methods, any class accepts that the

user specifies his own function as a parameter that will be used instead of the

original function. This will avoid the use of subclassing, which is a more com-

plex task. The user must at least provide the objective function associated with his

problem.

1.9 CONCLUSIONS

When identifying a decision-making problem, the first issue deals with modeling the

problem. Indeed, a mathematical model is built from the formulated problem. One

can be inspired by similar models in the literature. This will reduce the problem to

well-studied optimization models. One has also to be aware of the accuracy of the

model. Usually, models we are solving are simplifications of the reality. They involve

approximations and sometimes they skip processes that are complex to represent in

a mathematical model.

Once the problem is modeled, the following roadmap may constitute a guideline

in solving the problem (Fig.1.33).

First, whether it is legitimate to use metaheuristics for solving the problem must be

addressed. The complexity and difficulty of the problem (e.g., NP-completeness, size,

and structure of the input instances) and the requirements of the target optimization

problem (e.g., search time, quality of the solutions, and robustness) must be taken

into account. This step concerns the study of the intractability of the problem at

hand. Moreover, a study of the state-of-the-art optimization algorithms (e.g., exact

and heuristic algorithms) to solve the problem must be performed. For instance, the

use of exact methods is preferable if the best known exact algorithm can solve in

the required time the input instances of the target problem. Metaheuristic algorithms

seek good solutions to optimization problems in circumstances where the complexity

of the tackled problem or the search time available does not allow the use of exact

optimization algorithms.

At the time the need to design a metaheuristic is identified, there are three common

design questions related to all iterative metaheuristics:

• Representation: A traditional (e.g., linear/nonlinear, direct/indirect) or a spe-

cific encoding may be used to represent the solutions of the problem. Encoding

plays a major role in the efficiency and effectiveness of any metaheuristic and

constitutes an essential step in designing a metaheuristic. The representation

must have some desired properties such as the completeness, connexity, and ef-

ficiency. The encoding must be suitable and relevant to the tackled optimization

problem. Moreover, the efficiency of a representation is also related to the search

CONCLUSIONS 77

Model of the problem

When using metaheuristics?

- Common concepts for metaheuristics:

 - Representation

 - Guiding objective function

 - Constraint handling

- Single-solution based metaheuristic (see Chapter 2)

- Population-based metaheuristic (see Chapter 3)

 - Experimental design

 - Measurements

 - Reporting

 Complexity and difficulty of the problem

 (e.g., NP-completeness, size, structure)
 Requirements of the application

 (e.g., search time, quality of solutions, robustness)

 State-of-the-art

optimization algorithms

Design of a metaheuristic

Implementation of the metaheuristic

 - From scratch or no reuse (nondesirable)

 - Code reuse

 - Design and code reuse (e.g., software

 framework ParadisEO)

Performance evaluationParameter tuning

 - Off-line (e.g., design of experiments,

 meta-optimization)

 - Online (dynamic, adaptive,

 self-adaptive)

FIGURE 1.33 Guidelines for solving a given optimization problem.

operators applied to this representation (e.g., generation of the neighborhood,

recombination of solutions). In fact, when defining a representation, one has to

bear in mind how the solution will be evaluated and how the search operators

will operate.

• Objective function: The objective function is an important element in designing

a metaheuristic. It will guide the search toward “good” solutions of the search

space. The guiding objective function is related to the goal to achieve. For ef-

ficiency and effectiveness reasons, the guiding function may be different from

the objective function formulated by the model.

• Constraint handling: Dealing with constraints in optimization problems is an-

other important aspect of the efficient design of metaheuristics. Indeed, many

continuous and discrete optimization problems are constrained, and it is not

trivial to deal with those constraints. Most of the constraint handling strate-

gies act on the representation of solutions or the objective function (e.g., reject,

penalizing, repairing, decoding, and preserving strategies).

78 COMMON CONCEPTS FOR METAHEURISTICS

If the representation, the objective function, and the constraints are improperly han-

dled, solving the problem can lead to nonacceptable solutions whatever metaheuristic

is used.

Software frameworks are essential in the implementation of metaheuristics. These

frameworks enable the application of different metaheuristics (S-metaheuristics, P-

metaheuristics) in a unified way to solve a large variety of optimization problems

(monoobjective/multiobjective, continuous/discrete) as well as to support the exten-

sion and adaptation of the metaheuristics for continually evolving problems. Hence,

the user will focus on high-level design aspects. In general, the efficient solving of a

problem needs to experiment many solving methods, tuning the parameters of each

metaheuristic, and so on. The metaheuristic domain in terms of new algorithms is

also evolving. More and more increasingly complex metaheuristics are being devel-

oped. Moreover, it allows the design of complex hybrid and parallel models that can

be implemented in a transparent manner on a variety of architectures (sequential,

shared-memory, distributed-memory, and large-scale distributed architecture).

Hence, there is a clear need to provide a ready-to-use implementation of meta-

heuristics. It is important for application engineers to choose, implement, and apply

the state-of-the-art algorithms without in-depth programming knowledge and exper-

tise in optimization. For optimization experts and developers, it is useful to evaluate

and compare fairly different algorithms, transform ready-to-use algorithms, design

new algorithms, and combine and parallelize algorithms. Frameworks may provide

default implementation of classes. The user has to replace the defaults that are inap-

propriate for his application.

Many parameters have to be tuned for any metaheuristic. Parameter tuning may

allow a larger flexibility and robustness but requires a careful initialization. Those

parameters may have a great influence on the efficiency and effectiveness of the search.

It is not obvious to define a priori which parameter setting should be used. The optimal

values for the parameters depend mainly on the problem and even the instance to deal

with and on the search time that the user wants to spend in solving the problem. A

universally optimal parameter values set for a given metaheuristic does not exist.

The performance evaluation of the developed metaheuristic is the last step of the

roadmap. Worst-case and average-case theoretical analyses of metaheuristics present

some insight into solving some traditional optimization models. In most of the cases,

an experimental approach must be realized to evaluate a metaheuristic. Performance

analysis of metaheuristics is a necessary task to perform and must be done on a fair

basis. A theoretical approach is generally not sufficient to evaluate a metaheuristic. To

evaluate the performance of a metaheuristic in a rigorous manner, the following three

steps must be considered: experimental design (e.g., goals of the experiments, selected

instances, and factors), measurement (e.g., quality of solutions, computational effort,

and robustness), and reporting (e.g., box plots, interaction plots). The performance

analysis must be done with the state-of-the-art optimization algorithms dedicated to

the problem according to the defined goals. Another main issue here is to ensure the

reproducibility of the computational experiments.

In the next two chapters, we will focus on the main search concepts for designing

single-solution based metaheuristics and population-based metaheuristics. Each class

EXERCISES 79

of algorithms shares some common concepts that can be unified in the description and

the design of a metaheuristic. This classification provides a clearer presentation of

hybrid metaheuristics, parallel metaheuristics, and metaheuristics for multiobjective

optimization.

1.10 EXERCISES

Exercise 1.1 Related problems to maximum clique. Given an undirected graph

G = (V, E). A clique Q of the graph G is a subset of V where any two vertices in Q

are adjacent:

∀i, j ∈ Q × Q, (i, j) ∈ E

A maximum clique is a clique with the largest cardinality. The problem of finding the

maximum clique is NP-hard. The clique number is the cardinality of the maximum

clique. Given the following problems:

• The subset I ⊆ V of maximum cardinality such as the set of edges of the subgraph

induced by I is empty.

• Graph coloring.

Find the relationships between the formulated problems and the maximum clique

problem. How these problems are identified in the literature?

Exercise 1.2 Easy versus hard optimization problem. Let us consider the set

bipartitioning problem. Given a set X of n positive integers e1, e2, . . . , en where n is

an even value. The problem consists in partitioning the set X into two subsets Y and

Z of equal size. How many possible partitions of the set X exist?

Two optimization problems may be defined:

• Maximum set bipartitioning that consists in maximizing the difference between

the sums of the two subsets Y and Z.

• Minimum set bipartitioning that consists in minimizing the difference between

the sums of the two subsets Y and Z.

To which complexity class the two optimization problems belong? Let us consider

the minimum set bipartitioning problem. Given the following greedy heuristic: sort

the set X in decreasing order. For each element of X[i] with i = 1 to n, assign it to the

set with the smallest current sum. What is the time complexity of this heuristic?

Exercise 1.3 PTAS class of approximation. Can the maximum clique problem be

approximated by any constant factor?

80 COMMON CONCEPTS FOR METAHEURISTICS

Exercise 1.4 Size of an instance versus its structure. The size of an instance

is not the unique indicator that describes the difficulty of a problem, but also its

structure. For a given problem, small instances cannot be solved to optimality while

large instances may be solved exactly. Show for some classical optimization problems

(e.g., satisfiability, knapsack, bin packing, vehicle routing, and set covering) that

some small instances are not solved exactly while some large instances are solved to

optimality by the state-of-the-art exact optimization methods.

Exercise 1.5 2-Approximation for the vertex covering problem. The vertex

cover problem consists in finding the minimal vertex cover in a given graph. A vertex

cover for an undirected graph G = (V, E) is a subset S of its vertices such that each

edge has at least one end point in S. For each edge (i, j) in E, one of i or j must

be an element of S. Show that it is very easy to find a simple greedy heuristic that

guarantees a 2-approximation factor. The complexity of the heuristic must be in the

order of O(m) where m is the number of edges.

Exercise 1.6 Specific heuristic. Let us consider the number partitioning problem

presented in Example 1.15. Propose a specific heuristic to solve this problem. Consider

the difference of number pairs in a decreasing order until only one number remains.

For instance, if the input instance is (16, 13, 11, 10, 5), the first pair to consider will

be (16, 13). Then, their difference is included in the input instance, that is, (3,11,10,5),

where 3 represents the partition {16} and {13}.

Exercise 1.7 Representation for constrained spanning tree problems. Given a

connected graph G = (V, E), a spanning tree is a minimum size connected and maxi-

mum size acyclic subgraph of G spanning all the vertices of V . The large numbers of

applications have required the study of variants of the well-known minimum spanning

tree problem (MSTP). Given a connected graph G = (V, E), with n = |V |, m = |E|,
a spanning tree is a connected and acyclic subgraph of G spanning all the vertices of

V with n − 1 edges. Although the MSTP, the more studied problem involving span-

ning tree, can be solved in polynomial time, the outstanding importance of spanning

trees in telecommunication or integrated circuit network design, biology, or computer

science has required the development of more complex problems and often NP-hard

variants. Indeed, adding some constraints (e.g., node degree, graph diameter) to the

MSTP problem makes it NP-hard.

For instance, in the hop-constrained minimum spanning tree problem (HMSTP),

the unique path from a specified root node, node 0, to any other node has no more

than H hops (edges). Propose an encoding for the HMSTP problem.

Exercise 1.8 Indirect encoding for the bin packing problem. We consider in

this exercise the bin packing problem (see Example 1.16). Let us consider an indirect

encoding based on permutations. Propose a decoding function of permutations that

generates feasible solutions to the bin packing problem. This representation belongs

to the one-to-many class of encodings. Analyze the redundancy of this encoding. How

the degree of redundancy grows with the number of bins?

EXERCISES 81

Exercise 1.9 Encoding for the equal piles problem. Given a set of n one-

dimensional objects of different sizes xi (i = 1, . . . , n), the objective is to distribute

the objects into k piles Gl (l = 1, . . . , k) such that the heights of the piles are as

similar as possible:

f =
k

∑

l=1

|sl − S|

where sl = ∑

j∈Gl
xj is the sum of sizes for a given subset l and S = ∑n

i=1 xi/k

is the average size of a subset. The problem is NP-hard even for k = 2. Propose a

representation of solutions to tackle this problem.

Exercise 1.10 Greedy heuristic for the knapsack problem. In Example 1.40, a

greedy heuristic for the 0–1 knapsack problem has been proposed. What will be the

characteristic of the algorithm if the order of the elements when sorted by increasing

weight is the same compared to their utilities when sorted by decreasing value?

Exercise 1.11 Greedy algorithms for vehicle routing problems. Vehicle routing

problems represent very important applications in the area of logistics and trans-

portation [775]. VRP are some of the most studied problems in the combinatorial

optimization domain. The problem was introduced more than four decades ago by

Dantzig and Ramser. The basic variant of the VRP is the capacitated vehicle routing

problem. CVRP can be defined as follows: Let G = (V, A) be a graph where V the set

of vertices represents the customers. One vertex represents the depot with a fleet of

m identical vehicles of capacity Q. We associate with each customer vi a demand qi

and with each edge (vi, vj) of A a cost cij (Fig. 1.34). We have to find a set of routes

where the objective is to minimize the total cost and satisfy the following constraints:

• For each vehicle, the total demand of the assigned customers does not exceed

its capacity Q.

Depot Depot

(a) (b)

Customers

Routes

FIGURE 1.34 The capacitated vehicle routing problem. (a) From the depot, we serve a set

of customers. (b) A given solution for the problem.

82 COMMON CONCEPTS FOR METAHEURISTICS

• Each route must begin and end at the depot node.

• Each customer is visited exactly once.

Define one or more greedy algorithms for the CVRP problem. Give some examples

of constraints or more general models encountered in practice. For instance, one can

propose

• Multiple depot VRP (MDVRP) where the customers get their deliveries from

several depots.

• VRP with time windows (VRPTW), in case a time window (start time, end time,

and service time) is associated with each customer.

• Periodic VRP (PVRP) in which a customer must be visited a prescribed number

of times within the planning period. Each customer specifies a set of possible

visit day combinations.

• Split delivery VRP (SDVRP) where several vehicles serve a customer.

• VRP with backhauls (VRPB) in which the vehicle must pick something up from

the customer after all deliveries are carried out.

• VRP with pick ups and deliveries (VRPPS) if the vehicle picks something up

and delivers it to the customer.

Exercise 1.12 Greedy algorithms for the Steiner tree problem. The goal of this

exercise is to design a greedy heuristic for the Steiner tree problem. Hints: (a) Con-

struct a graph where the nodes are terminals. The weight associated with an edge

connecting two terminals represents the value of the shortest path between those ter-

minals in the original graph. (b) Generate a spanning tree from this graph using the

Kruskal algorithm. (c) From the edges obtained from the spanning tree, redesign the

original graph using those selected edges and find the Steiner tree.

Exercise 1.13 Greedy algorithms for the bin packing problem. The bin packing

problem is a well-known combinatorial problem with many applications such as

container or pellet loading, loading trucks with weight capacity, and creating file

backup in removable media. Objects of different volumes must be packed into a finite

number of bins of capacity C in a way that minimizes the number of bins used. There

are many variations of this problem such as 3D or 2D packing, linear packing, pack

by volume, and pack by weight.

Let us solve the one-dimensional bin packing problem (Fig. 1.35). Given a finite

collection of n weights w1, w2, w3, . . . , wn and a collection of identical bins with

capacity C (which exceeds the largest of the weights), the problem is to find the

minimum number k of bins into which the weights can be placed without exceeding

the bin capacity C. An example of a greedy algorithm is the first fit algorithm that

places each item into the first bin in which it will fit. It requires �(n log n) time.

Propose some improvements of this greedy algorithm. Hint: For example, a sorting

of the elements may be done before the packing.

EXERCISES 83

Bins and items have the same width

w1

w2

w3

w4

w5
Items to pack

Bin capacity C

FIGURE 1.35 The one-dimensional bin packing problem.

Exercise 1.14 Random permutation. Design an efficient procedure for the gen-

eration of a random permutation.

Exercise 1.15 Generalized TSP problem. The generalized traveling salesman

problem (GTSP) is a generalization of the well-known traveling salesman problem.

Given an undirected complete graph G = (V, E), where V represents the set of cities.

In the GTSP, the set of nodes V is partitioned into m groups W1, W2, . . . , Wm where

0 < m ≤ n and W1 ∪ W2 ∪ · · · ∪ Wn = V . Each city vi ∈ V belongs to one and only

one group. The groups are disjoint, that is, ∀i /= j, Wi ∩ Wj = ∅. The objective is

to find a minimum tour in terms of distance containing exactly one node from each

group Wi. Propose a representation for the problem.

Exercise 1.16 Indirect encoding for the JSP. The job-shop scheduling problem

has been defined in Example 1.33. Given the following indirect encoding: an array of

j elements, each one being composed of a list of allocations of machines on which the

operations are to be executed (Fig 1.36). Propose a decoder that generates a feasible

schedule.

84 COMMON CONCEPTS FOR METAHEURISTICS

Op7

m2

Op6

m2

Op3

m3

Op4

m4

Op1

m1

...

......

...

...

......

Array of J elements

Job i

Job j

M1

FIGURE 1.36 Indirect encoding for the JSP problem.

Exercise 1.17 Objective function for the vehicle routing problem. For the ve-

hicle routing problem, a solution s may be represented by the assignment of the

customers to the vehicles. A neighborhood may be defined as the move of one cus-

tomer from one vehicle to another. Show that computing the incremental objective

function consisting in minimizing the total distance is a difficult procedure.

Exercise 1.18 Objective function for the feature selection problem within clas-

sification. The feature selection problem has a large variety of applications in many

domains such as data mining. In the feature selection problem, the objective is to

find a subset of features such that a classification algorithm using only those selected

feature provides the best performances. Any supervised classification algorithm may

be used such as the support vector machines, decision trees, or naive Bayes. Given

a set of instances I. Each instance is characterized by a large number of d features

F = {f1, f2, . . . , fd}. Each instance is labeled with the class it belongs to. The prob-

lem consists in finding the optimal subset S ⊆ F . Propose an objective function for

this problem.

Exercise 1.19 Domination analysis of metaheuristics. In combinatorial opti-

mization problems, the domination analysis of a metaheuristic is defined by the

number of solutions of the search space S that are dominated by the solution ob-

tained by the metaheuristic. Suppose a metaheuristic H that generates the solution

sH from the search space S. The dominance associated with the metaheuristic H is

the cardinality of the set {s ∈ S : f (s) ≥ f (sH)}. If the metaheuristic has obtained the

global optimal solution s∗, the dominance dom(H) = |S|. Give a critical analysis of

this performance indicator.

Exercise 1.20 Performance evaluation in dynamic optimization problems. To

evaluate a metaheuristic in a dynamic problem, using classical measures such as the

best found solution is not sufficient. Indeed, the concept of solution quality is changing

EXERCISES 85

over time. Propose a performance measure to deal with the quality of solutions in

dynamic optimization problems with an a priori known time of the environment

change ti, i ∈ [1, . . . , n].

Exercise 1.21 Constraint handling. Given an objective function f to minimize

and m constraints to satisfy. The new objective function f ′ that handles the constraints

is defined as follows:

f ′(x) =
{

f (x) if x is a feasible solution

K − ∑s
i=1

K
m

otherwise

where x is a solution to the problem, s is the number of satisfied constraints, and K

is a very large constant value (e.g., K = 109). To which class of constraint handling

strategies this approach belongs? Perform a critical analysis of this approach.

Exercise 1.22 Evaluation of metaheuristics as multiobjective optimization.

Many quantitative and qualitative criteria can be considered to evaluate the perfor-

mance of metaheuristics: efficiency, effectiveness, robustness, simplicity, flexibility,

innovation, and so on. Let us consider only two quantitative criteria: efficiency and

effectiveness. Figure 1.37 plots for two metaheuristics, Meta1 and Meta2, the evolu-

tion in time of the quality of best found solutions. According to each criterion, which

Meta2

Meta1

Objective function

to minimize

Times2

s1

t1 t2

FIGURE 1.37 Efficiency versus effectiveness in the performance evaluation of meta-

heuristics. In terms of Pareto dominance optimality, no metaheuristic dominates the other

one.

86 COMMON CONCEPTS FOR METAHEURISTICS

metaheuristic may be considered the best one? No metaheuristic dominates the other

one for the two criteria. Propose some aggregations of the two criteria that generate

a total ordering of metaheuristics. How can we deal with the qualitative criteria?

Exercise 1.23 Theoretical versus experimental evaluation. In comparing the the-

oretical and the experimental approach of the performance evaluation of a metaheuris-

tic, one can make the following two statements:

• The theoretical approach gives more certain conclusions than the experimental

approach.

• The experimental approach gives more certain conclusions than the theoretical

approach.

Show that the two statements may be correct.

Exercise 1.24 Black box versus white box for metaheuristic software. Explain

why the black box approach for software frameworks is not yet well suited for meta-

heuristics to solve general optimization problems. For which class of optimization

problems, the black box approach may be appropriate for metaheuristics? Compare

with the field of continuous linear programming (mathematical programming) and

constraint programming.

Exercise 1.25 Software for metaheuristics. Analyze the following software for

metaheuristics: ParadisEO, MATLAB optimization module, PISA, Localizer++, Hot-

Frame, GAlib, CMA-ES, ECJ, BEAGLE, GENOCOP III, OpTech, Templar, iOpt,

Mozart/Oz, GPC++, and EasyLocal++ in terms of target optimization problems, avail-

able metaheuristic algorithms, available hybrid metaheuristics, parallel models of

metaheuristics, target architectures, software characteristics (program code, callable

black box package, and object-oriented white box library). Which of the previously

cited softwares can be considered as a software framework rather than a program or

a callable package or library?

