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A B S T R A C T

Nature-inspired optimization algorithms can solve different engineering and scientific problems owing to their
easiness and flexibility. There is no need for structural modifications of optimization problems to apply meta-
heuristic algorithms on them. Recently, meta-heuristic algorithms are becoming powerful methods for solving
NP problems. In this paper, the authors propose a novel meta-heuristic algorithm suitable for continuous
nonlinear optimization problems. The proposed method, Black Widow Optimization Algorithm (BWO), is
inspired by the unique mating behavior of black widow spiders. This method includes an exclusive stage,
namely, cannibalism. Due to this stage, species with inappropriate fitness are omitted from the circle, thus
leading to early convergence. BWO algorithm is evaluated on 51 various benchmark functions to verify
its efficiency in obtaining the optimal solutions for the problems. The obtained results indicate that the
proposed algorithm has numerous advantages in different aspects such as early convergence and achieving
optimized fitness value compared to other algorithms. Also, it has the capability of providing competitive and
promising results. The research also solves three different challenging engineering design problems adopting
BWO algorithm. The outcomes of the real case study problems prove the effectiveness of the proposed algorithm
in solving real-world issues with unknown and challenging spaces.

1. Introduction

Recently, due to the high complexity of real-world problems, the
need for efficient meta-heuristic methods emerges. Metaheuristic meth-
ods on account of their high efficiency and easy implementation be-
come extremely popular. These methods are adopted for solving NP
problems, real-world engineering issues, and obtaining the potential
optimal solutions for them in a given time (Kumar et al., 2014).
The popularity of these algorithms is not limited to the computer or
other engineering domains; they also are applied to economics, holiday
planning, and more other issues. Having the ability to escape from
local optima, the application of meta-heuristic algorithms can be seen
in various fields of industry and science.

Meta-heuristic techniques are categorized into three groups, in-
cluding physical-based, swarm-based, and evolutionary-based methods.
The basic inspiration of the physical-based algorithms is physics rules
such as electromagnetic force, inertia force, gravitational force, and
so forth. Considering these rules, the search agents of the algorithms
communicate and move through the search space. Some algorithms
such as Gravitational Search Algorithm (GSA) (Rashedi et al., 2009),
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Simulated Annealing (SA) (Kirkpatrick et al., 1983), Big-Bang Big-
Crunch (BBBC) (Erol and Eksin, 2006), Charged System Search (CSS)
(Kaveh and Talatahari, 2010a), Galaxy-based Search Algorithm (GbSA)
(Shah-Hosseini, 2011), and Black Hole (BH) (Hatamlou, 2013) algo-
rithm are considered in this group. The algorithms in the second
group, swarm-based, are inspired by the collective manner of social
beings, which refers to the way of interaction among the members of
a swarm and their environment. Particle Swarm Optimization (PSO)
(Poli et al., 2007), Wolf pack search algorithm (Yang et al., 2007),
Bee Collecting Pollen Algorithm (BCPA) (Lu and Zhou, 2008), Dolphin
Partner Optimization (DPO) (Shiqin et al., 2009), Cuckoo Search (CS)
(Yang and Deb, 2009), Firefly Algorithm (FA) (Yang, 2010a), Ant
Colony Optimization (Dorigo et al., 1996) are some of the well-known
algorithms of this group.

The algorithms in the last group are mostly inspired by the nature
and biological evolution like selection, reproduction, combination, and
mutation. These algorithms are derived from the natural selection
theory of Darwin, which is defined as descent with modification, the
idea of changing species over time and generation of new ones (Beddall,
1968). In the process of natural selection, the main heritable traits,
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aiding species to survive and reproduce, become more common in a
population gradually. Almost all of the evolutionary algorithms have
been inspired by the natural selection theory. However, these methods
have some differences in the expression of this theory. These differences
are owing to the fact that each of the algorithms mimics a distinct
creature or habits of the individuals to evolve and generate new descen-
dants. In evolutionary algorithms, a population of possible solutions
attempts to survive with regards to the fitness assessment in a specific
environment. These algorithms randomly accomplish the optimization
process. The initial population of the process of optimization is created
randomly and then modified by predefined operations over a definite
number of generations or iterations. The central structure of almost all
of the population-based algorithms is like this. The distinct mechanisms
of reproducing, moving, and developing the solutions throughout the
optimization process, make these algorithms differ from each other.
One of the most important evolutionary-based algorithms is Genetic
Algorithm (GA) (Holland, 1975). As a matter of fact, majority of the
evolutionary algorithms or population-based algorithms resemble GA;
thus, some researchers call these algorithms as Genetic-type algorithms.
Evolution Strategy (ES) (Beyer and Schwefel, 2002), Forest optimiza-
tion algorithm (Ghaemi and Feizi-Derakhshi, 2014), and so forth are
considered in this group of algorithms.

By and large, most of the population-based algorithms, free from
the structure of the algorithm, illustrate a common characteristic in the
searching procedure with regards to the exploration and exploitation
stages which are two vital features of an algorithm. In order to obtain
high efficiency, meta-heuristic algorithms should keep the balance
between exploration and exploitation stages of the search space. The
exploration phase provides an opportunity for the algorithm to inspect
various potential areas of the search space and produce new solutions
to escape from the local optima problem (Lin and Gen, 2009). The
exploitation refers to the convergence capability of an algorithm nearby
the achieved expected solutions in the exploration stage. Therefore,
a good performance in exploration and exploitation guarantees evade
of local optima and good convergence, respectively. Additionally, an
appropriate balance of these two stages can ensure reaching the global
optima. Although there is a remarkable number of meta-heuristic al-
gorithms, still new algorithms are required. With regards to the fact
that there is not any particular algorithm to obtain the best solution
for almost all optimization problems as No-Free-Lunch (NFL) (Wolpert
et al., 1997) claims, innovating of novel meta-heuristic optimization
algorithms is still an open issue.

During the past few years, Nature-inspired algorithms have been
experiencing extremely breakthrough in the industrial world, where
they have been proven to be very useful in solving real-world opti-
mization problems (Alami and Imrani, 2008). In this paper, we intend
to introduce a novel population-based optimization algorithm enti-
tled Black widow Optimization Algorithm (BWO), which is inspired
by the lifecycle of black widow spiders. The bizarre mating behav-
ior of black widows shapes the fundamentals of this algorithm. This
paper illustrates how the lifecycle of black widows is modeled and
implemented.

Briefly speaking, this research introduces a new metaheuristic op-
timization algorithm entitled Black Widow Optimization (BWO) which
imitates the strange mating behavior of the black widow spiders. The
proposed method has various main differences compared to other
methods. Providing a good performance in exploitation and exploration
stages, the BWO algorithm delivers fast convergence speed and avoids
local optima problem. Moreover, it should be mentioned that BWO has
the ability to maintain the balance between exploitation and explo-
ration. In other words, it is able to inspect a large area to obtain the best
global solution; hence, BWO will be a good choice for solving different
optimization problems with several local optima. The efficiency of the
proposed BWO algorithm is assessed by solving 51 benchmark functions
and three real-world engineering optimization problems. The obtained
results prove the superiority of the proposed algorithm in comparison

with several other meta-heuristic algorithms such as GA, PSO, ABC,
BBO, ALO (Mirjalili, 2015b), MFO (Mirjalili, 2015a), GWO (Mirjalili,
Mirjalili, and Lewis 2014), WOA (Mirjalili and Lewis, 2016), SHO
(Dhiman and Kumar, 2017), MVO (Mirjalili et al., 2016), and HS (Geem
et al., 2001). Briefly, the essential contribution of this paper is like the
following lines:

1. A novel population-based optimization algorithm entitled BWO
which imitates the strange mating behavior of the back widow spiders
was introduced.

2. Several tests are conducted over 51 benchmark functions and three
engineering optimization problems that are adopted for assessing the
effectiveness of the proposed algorithm. The experimental results en-
sure that the BWO algorithm is efficient enough in solving complex
optimization problems.

3. The proposed BWO algorithm is able to escape from local optima
problem and keep the balance between the exploitation and exploration
stages in comparison with other investigated algorithms

The rest of this paper is organized as follows: Section 2 investigates
the spiders called black widow and reviews their peculiar lifecycle. In
Section 3, the Black Widow Optimization Algorithm (BWO) is proposed.
The proposed algorithm is tested with some benchmark functions in
Section 4. Three classical engineering design problems are solved using
the proposed algorithm in Section 5. In Section 6, the discussion of
the research is pointed out, and finally, the conclusion is shown in
Section 7.

2. Black widow spiders (Latrodectus hasselti) and their lifestyle

Spiders (order Araneae) are air-breathing arthropods, which have
eight legs and [chelicerae] with venomous fangs. Among all orders of
organisms, these species are the largest order of arachnids, and they
rank seventh in total species diversity (Sebastian and Peter, 2009). As
of November 2015, taxonomists have recorded approximately 45,700
spider species and 114 families. However, dissension has been arisen
within the scientists as to how all these families should be classified,
more than 20 various taxonomies that have been suggested since
1900 (Foelix, 1996). The spider subfamily Latrodectus comprises the
renowned black widows, infamous due to the excessive potency of
their neurotoxic venom (Andrade, 2003). The subfamily has a general
distribution all over the world and consists of 30 species, which have
been recognized up to now. Latrodectus contains a suite of species
popularly known as black widow spiders, mostly known by the red
‘‘hour-glass’’ sign upon their abdomen, as well as the Australian red-
back spider (Forster, 1995) and the cosmopolitan brown widow (Garb
et al., 2004).

2.1. A brief description of black widows’ lifestyle

The Black widow is mostly nightly, and the female one remains out
of sight during the day, and during the night, she spins her web. Gen-
erally, the female widow lives in the same site for most of her adult life
(Andrade and Banta, 2002). Whenever the female black widow desires
to mate, she marks certain spots of her net with pheromone to attract
the male (Birkhead and Møller, 1998). The first male entering the web
renders females’ web-less attractive to rivals by web reduction (Scott
et al., 2015; Watson, 1986). The female consumes the male during or
post-mating, then she transfers eggs to her egg sock. After hatching
the egg, the offspring engages in sibling cannibalism (Andrade, 1998;
Berning et al., 2012; Elgar and Nash, 1988; Forster, 1992; Fox, 1975;
Gage, 2005; Gaskett, 2007; Jayaweera et al., 2015; Modanu et al., 2014;
Perampaladas et al., 2008; Watson, 1986; Wikipedia, 2016). However,
they stay on their mothers’ web for a short period in which they might
even consume the mother (ENGELHAUPT, 0000). This cycle causes
survival of the fit and strong individuals. The best one is the global
optimum of the objective function. Fig. 1 (Wikipedia, 0000) shows a
female Black Widow on her web and also Fig. 2 (Wikipedia, 0000)
indicates a female Black Widow with her egg sac on her web.
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Fig. 1. Female black widow on her web.

Fig. 2. Female black widow in her web with egg sac.

2.2. Reproduction style and cannibalism

Sexual cannibalism in which a female eats a conspecific male be-
fore, during or immediately after mating (Elgar and Nash, 1988), is
a fascinating behavior exhibited most commonly in invertebrates such
as spiders, scorpions and praying mantis (Andrade and Banta, 2002).
Several female aspects such as body condition, mating status, and
orientation are predicted to impact the likelihood of cannibalism, and
males are expected to respond to these factors by amending their
approach behaviors in ways that minimize the chance of being attacked
(Jayaweera et al., 2015).

The Black widow spider is one of the only two known animals to
which the male actively plays an assistant role and helps the female in
sexual cannibalism (McKeown, 1963). In about two of three cases of the
mating process, the female wholly eats the male while mating continues
(Perampaladas et al., 2008). Males who are not consumed die of their
injuries in a little while after mating (Forster, 1992). It seems that the
sacrifice during mating has conferred the chance of fertilization of more
eggs (Andrade, 1996).

A female black widow may lay 4 to 10 egg sacs (Gray, 0000), each
of which contains averagely around 250 eggs (Australian Museum,
0000), though can be as few as 40 or as many as 500 (Gray, 0000).

Fig. 3. Baby spiders leave their egg sac.

2.3. Sibling cannibalism

Spiderlings hatch from their eggs after almost eight days and also
in 11 days after being laid, they can emerge from the egg sac, although
cooler temperatures can significantly slow their development so that
emergence does not happen for months (Downes, 1986). They spend
near a week inside the egg sac after hatching and feeding on the yolk
and molting once (Modanu et al., 2014). Black widow spiderlings live
together on the maternal web (Fig. 3) for several days to a week, during
which time sibling cannibalism is mostly observed (Modanu et al.,
2014). They then leave by being carried on the wind (Andrade, 1998).

Several factors cause cannibalistic behavior, from among which
being competition among predatory conspecifics and also the potential
for the other possible food source in the lack of prey availability
periods, are the most obvious ones (Mock and Ploger, 1987). Both of
these factors considerably increase in high-density populations. Thus
cannibalism is frequently linked to demography and can have sig-
nificant population-level effects (Schausberger and Hoffmann, 2008).
Population size can be controlled by density-dependent cannibalism
and may be important in black widow spider populations (reviewed
in Fox, 1975; Perry and Roitberg, 2005).

One of the well-documented special cases of cannibalism is sibling
consumption (Guimaraes et al., 2012), but reasons and results are still
not well understood (Baur, 1988). Like other types of cannibalism,
sibling cannibalism can affect the population-level, but with appended
implications for the general fitness of the cannibal and its parents (Baur,
1988; Petersen et al., 2010; Simon, 2008) and these implications may
be different for various behavioral type to another (Berning et al.,
2012). In some cases, consuming a sibling can rise parental fitness, and
the happening of these behaviors is controlled by parents (Mock and
Ploger, 1987; Schausberger and Hoffmann, 2008).

The precise outcome of unselective sibling cannibalism on parental
fitness may affect the development of parental procreative strategies
(Perry and Roitberg, 2005). The cannibalism reduces the number of
surviving spiderlings; however, it may rise parental fitness as well if
survivors have enhanced body condition (Guimaraes et al., 2012). If
sibling cannibalism like other forms follows the same patterns, so the
rates of cannibalism would rise with the number of siblings (Baur,
1988), especially if the possible cannibal is in bad condition (Petersen
et al., 2010). Moreover, in some cases, unfertilized spiderlings eat, their
mother very slowly. During some weeks, she is eaten away until she
falls immobile and is consumed entirely. Spiderlings generally perform
very well in cases of matriphagy, with higher weights and survival rates
than young that do not consume their mom (ENGELHAUPT, 0000).

3. The proposed black widow optimization algorithm

Fig. 4 shows the flowchart of the proposed algorithm. Like other
evolutionary algorithms, the proposed algorithm starts with an initial
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Fig. 4. Flowchart of the black widow optimization algorithm.

population of spiders, so that each spider represents a potential solu-
tion. These initial spiders, in pairs, try to reproduce the new generation.
Female black widow eats the male during or after mating. Then she
carries stored sperms in her sperm thecae and releases them into egg
sacs. As early as 11 days after being laid, spiderlings come out of the
egg sacs. They cohabit on the maternal web for several days to a week,
during which time sibling cannibalism is observed. They then leave by
being carried on the wind.

3.1. Initial population

In order to solve an optimization problem, the values of problem
variables must form as an appropriate structure for the solution of the
current issue. In GA and PSO terminologies, this structure is called
‘‘Chromosome’’ and ‘‘Particle position’’, respectively, but here in black
widow optimization algorithm (BWO) it is called ‘‘widow’’. In Black
widow Optimization Algorithm (BWO), the potential solution to each
problem has been considered as a Black widow spider. Each Black
widow spider shows the values of the problem variables. In this pa-
per, in order to solve benchmark functions, the structure should be
considered as an array.

In a Nvar –dimensional optimization problem, a widow is an array of
1 × Nvar representing the solution of the problem. This array is defined
as follows:

Widow = [𝑥1, 𝑥2,…, 𝑥Nvar
],

Each of the variable values (𝑥1, 𝑥2, . . . , 𝑥Nvar
) is floating-point

number. The fitness of widow is obtained by evaluation of fitness
function f at a widow of (𝑥1, 𝑥2, . . . , 𝑥Nvar

). So

Fitness = 𝑓 (widow) = 𝑓 (𝑥1, 𝑥2,…, 𝑥Nvar
),

To start the optimization algorithm, a candidate widow matrix of
size Npop × Nvar is generated with an initial population of spiders. Then
pairs of parents randomly are selected to perform the procreating step
by mating, in which the male black widow is eaten by the female during
or after that.

3.2. Procreate

Since the pairs are independent of each other, they start to mate in
order to reproduce the new generation, in parallel, as well in nature,
each pair mate in its web, separately from the others. In real-world,
approximately 1000 eggs are produced in each mating, but finally,
some of the spider babies are survived, which are stronger. Now, here in
this algorithm in order to reproduce, an array called alpha should also
be created as long as widow array with random numbers containing,
then offspring is produced by using 𝛼 with the following equation
(equation1) in which 𝑥1 and 𝑥2 are parents, 𝑦1 and 𝑦2 are offspring.
{

𝑦1 = 𝛼 × 𝑥1 + (1 − 𝛼) × 𝑥2
𝑦2 = 𝛼 × 𝑥2 + (1 − 𝛼) × 𝑥1

(1)

This process is repeated for Nvar/2 times, while randomly selected
numbers should not be duplicated. Finally, the children and mom are
added to an array and sorted by their fitness value, now according to
cannibalism rating, some of the best individuals are added to the newly
generated population. These steps apply to all pairs.

3.3. Cannibalism

Here we have three kinds of cannibalism. The first one is sexual
cannibalism, in which the female black widow eats her husband during
or after mating. In this algorithm, we could recognize female and male
by their fitness values.

Another kind is sibling cannibalism in which the strong spiderlings
eat their weaker siblings. In this algorithm, we set a cannibalism rating
(CR) according to which the number of survivors is determined. In some
cases, the third kind of cannibalism is often observed in which the baby
spiders eat their mother. We use the fitness value to determine strong
or weak spiderlings.
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Fig. 5. Pseudo code of black widow optimization algorithm.

Fig. 6. Mutation.

3.4. Mutation

In this stage, we randomly select Mutepop number of individuals
form population. As Fig. 6 illustrates, each of the chosen solutions
randomly exchanges two elements in the array. Mutepop is calculated
by the mutation rate.

3.5. Convergence

Like other evolutionary algorithms, three stop conditions can be
considered: (a) a predefined number of iterations. (B) Observance of
no change in the fitness value of the best widow for several iterations.
(C) Reaching to the specified level of accuracy.
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The main stages of BWO are summarized in a pseudo-code shown
in Fig. 5. In the next section, BWO will be applied to some benchmark
optimization problems. As optimal solutions are known for benchmark
functions in advanced, so reaching a specified level of accuracy is
considered as determination of accuracy level for the experimental
algorithms. Also, the maximum number of iteration is set as a stop
condition in the experiments of Section 4.

3.6. Parameter setting

In the proposed BWO algorithm, there are some parameters which
are essential for obtaining better results. These parameters include
procreating rate (PP), cannibalism rate (CR), and mutation rate (PM).
The selected values for these parameters in this paper are shown in
Table 2. The parameters should be appropriately adjusted to improve
the successfulness of the algorithm in finding superior solutions. The
better tuning the amount of the parameters, the higher the chance for
jumping out of any local optimum and higher ability to explore the
search space globally as well. Hence, the right amount of parameters
can ensure the controlling of the balance between exploitation and
exploration stages. The proposed algorithm equipped with three vital
controlling parameters, including PP, CR, and PM. PP is the percentage
of procreating, which determines how many individuals should be
participated in procreate. This parameter by controlling the production
of various offspring provides further diversification and gives more
opportunity to explore the search space more precisely. CR is the
controlling parameter of the cannibalism operator, which omits the in-
appropriate individuals from the population. Adjusting the proper value
for this parameter can ensure high performance for the exploitation
stage by transferring the search agents from local to the global stage
and vice versa. PM is the percentage of the individuals participating
in mutation. Right value for this parameter can ensure the balance
between exploitation and exploration stage. This parameter can control
the transferring of the search agents from the global stage to local and
propel them toward the best solution as well.

4. Benchmarks on black widow optimization algorithm and exper-
imental results

In this section, the Black Widow Optimization Algorithm (BWO)
is tested with 51 benchmark functions, all of which are minimization
functions. Since the global optimum of the benchmark functions is
known in advance so, reaching to the specified level of accuracy is
shown the accurateness level of the proposed algorithm. To evaluate
the performance of the proposed algorithm, the maximum number of
iteration considered as the stop conditions of the experiments in this
section. The first 45 benchmark functions are the classical functions em-
ployed by various researchers (Digalakis and Margaritis, 2001; Mirjalili
and Lewis, 2013; Mirjalili et al., 2014b; Molga and Smutnicki, 2005;
Yang, 2010b; Yao et al., 1999). Rest of them are six composite bench-
mark functions chosen from a CEC 2005 special session (Liang et al.,
2005). These functions are expanded, shifted, rotated, and combined
various of the classical benchmark functions that provide the highest
complexity among the existing functions (Suganthan et al., 2005). The
CEC 2005 test functions are listed in Table 8. The simulations have
been implemented using Matlab 2015b on a Core i5, 2.50 GHz Samsung
laptop with 6 GB of RAM.

4.1. Classical functions

In spite of the fact that the classical benchmark functions are simple
to implement, these test functions have been chosen, aiming to compare
the results of BWO to those of the existing meta-heuristics. Table 1 lists
these benchmark functions. In order to make a comparison, the stan-
dard form of GA with roulette wheel selection and also standard PSO,
BBO (Simon, 2008) and ABC algorithms are applied to the benchmark
functions, and the results of the BWO are compared with all of them.

Fig. 7. Convergence of F4 (n = 10).

4.1.1. Test functions
The test functions that we have used to validate our experiments

are summarized in Table 1, some of which are chosen from Molga and
Smutnicki (2005), Jamil and Yang (2013), Qu et al. (2016) and others
from benchmark function of CEC2015 (Liang et al., 2014). The global
minimum value of the functions are zero, excluding F36, F37, F38,
F40 which have global minimum values of ‘‘−2.02181’’, ‘‘1’’, ‘‘−200’’,
‘‘−18.5547’’ respectively. A thorough description of the functions is
accessible in the mentioned references.

In Table 1 functions’ names, equations and ranges have been
brought and also in the last column, their characteristics are mentioned
as M, U, C, S, N which stand for Multi-modal, Uni-modal, Composition,
Separable, Non-separable respectively.

4.1.2. Results of the experiments on benchmark functions
The results which are reported in Table 3, have been obtained by

over 30 runs for each algorithm with 10, 20, and 50 dimensions and
also multiple population sizes and different numbers of iterations. BWO
provides better results than the other experimental algorithms for most
of the functions, especially in high dimensions. ‘‘Best’’ denotes the best
result fitness value in 30 runs, ‘‘Mean’’ and ‘‘Median’’ respectively refer
to mean and median of the fitness values in 30 runs. The parameters
of the algorithms are set as in Table 2.

In the case of uni-modal functions, the convergence rate of the
search algorithm is more significant than the final results, because
there are other methods which are specially designed to optimize uni-
modal functions. The largest difference in performance between the
experimental algorithms occurs with the uni-modal functions, which is
due to the significant power of BWO in fast convergence and obtaining
desirable results. Moreover, the good convergence rate of BWO could
be concluded from Figs. 7, 8, 15, and 16. According to these figures,
BWO tends to find the global optimum faster than other algorithms and
hence has a higher convergence rate (Rashedi et al., 2009).

Multimodal functions have various local optima and almost are
too difficult to optimize. For multimodal functions, the final results
are more important since they return the ability of the algorithm in
escaping from poor local minima and placed a near-global optimum
(Rashedi et al., 2009).

According to the results achieved for functions F2, F19, F21, F25,
F28 and F43, and additionally F22, although BBO and PSO have better
results in 10-dimensional problems respectively, BWO appears better
than the others in 20 and 50 dimensions. About F10 in 10 and 20-
dimensional problem, PSO has represented better results, and also in
F45 in both 10, and 20-dimensional BBO has reached better results,
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Fig. 8. (a) Convergence of F4 (n = 50) (b) Zoom to Figure (a).

Fig. 9. (a) Convergence of F5 (n = 10), (b) Zoom to figure a.

but in 50 dimensional, BWO has prevailed over them. It seems that by
increasing the dimension of the problems, the results’ quality of BWO
still has stayed in an acceptable state. Furthermore, the results have
had better values, compared to the other algorithms. In F31, BWO,
PSO, and ABC have provided better results compared to other cases,
respectively in dimensions of 10, 20, and 50. It seems that the increase
in the problem scale in this function has led to weak resulting of BWO.

Due to the global minima of F36 which has a value of ‘‘−2.0218’’,
ABC has acted better than the others. It has achieved the exact global
optima value in all dimension of the problem even for ‘‘Best’’, ‘‘mean’’,
and ‘‘median’’. Also, PSO has obtained an appropriate result only in
the dimension of 50. Although BWO looks a bit weaker in case of this
test function, the difference between its results and the optimal value
is negligible, especially in the dimension of 50.

Considering the optimal value of F40, which is ‘‘−18.5547’’, all
of the algorithms excluding PSO have reached to the global optima
in all dimensions. To highlight the superiority, the value of ‘‘mean’’,
‘‘Median’’, and ‘‘std’’. also have been compared. Hence it can be found
that BWO has resulted better than the other algorithms, and also it

seems that by increasing the number of population, BWO still can
obtain relevant results.

Due to the results obtained for the test function F38, it can be seen
that all of the experimental algorithms have been able to find the exact
value of global minima which has the value of ‘‘−200’’ but ‘‘mean’’,
‘‘median’’ and also ‘‘std’’. values have been compared to show the
superiority of BWO over the other algorithms. It should be mentioned
that this function is not applicable on GA.

About F23, in the dimension of 10, GA, BBO and BWO, all have
reached the global optima but in dimension of 20 although BBO
achieved the global optima, ‘‘mean’’, and ‘‘median’’ could not obtain
acceptable results. In the dimension of 50, both BWO and GA have
reached the global minima.

About F27, in the dimension of 10, BWO outperforms other algo-
rithms. Also, in the dimension of 20, three inclusive algorithms of GA,
PSO and BWO have reached the exact global optimal values. In the
dimension of 50, PSO cannot obtain acceptable values for ‘‘mean’’ and
‘‘median’’.
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Table 1
Test functions adopted for our experiments.

Function Equation Range Characteristic

F1:Powell Sum (Some of different
powers)

𝑓1 (𝑥) =
𝑛
∑

𝑖=1

|

|

𝑥𝑖||
𝑖+1 −5.12 ≤ 𝑥𝑖 ≤ 5.12 U

F2:Cigar 𝑓2 (𝑥) = 𝑥21 + 106
𝑛
∑

𝑖=2
𝑥2𝑖 −5.12 ≤ 𝑥𝑖 ≤ 5.12 N/A

F3:Discus 𝑓3 (𝑥) = 106𝑥21 +
𝑛
∑

𝑖=2
𝑥2𝑖 −5.12 ≤ 𝑥𝑖 ≤ 5.12 N/A

F4:Rosenbrock 𝑓4 (𝑥) =
𝑛−1
∑

𝑖=1
(100

(

𝑥2𝑖 − 𝑥𝑖+1
)2 + (𝑥𝑖 − 1)2) −30 ≤ 𝑥𝑖 ≤ 30 U

F5:Ackley 𝑓5 (𝑥) = −20 exp

(

−0.2

√

1
𝑛

𝑛
∑

𝑖=1
𝑥2𝑖

)

− exp

(

1
𝑛

𝑛
∑

𝑖=1
cos(2𝜋𝑥𝑖)

)

+ 20 + 𝑒 −35 ≤ 𝑥𝑖 ≤ 35 MN

F6:Weierstrass 𝑓6 (𝑥) =
𝑛
∑

𝑖=1

(𝑘𝑚𝑎𝑥
∑

𝑘=0

[

𝑎𝑘 cos(2𝜋𝑏𝑘(𝑥𝑖 + 0.5))
]

)

− 𝑛
𝑘𝑚𝑎𝑥
∑

𝑘=0
[𝑎𝑘 cos(2𝜋𝑏𝑘 .0.5)] a=0.5 , b=3 ,

kmax=20

−10 ≤ 𝑥𝑖 ≤ 10 M

F7:Griewank 𝑓7 (𝑥) =
𝑛
∑

𝑖=1

𝑥2𝑖
4000

−
𝑛

∏

𝑖=1
cos

(

𝑥𝑖
√

𝑖

)

+ 1 −100 ≤ 𝑥𝑖 ≤ 100 MN

F8:Rastrigin 𝑓8 (𝑥) =
𝑛
∑

𝑖=1
(𝑥2𝑖 − 10 cos

(

2𝜋𝑥𝑖
)

+ 10) −5.12 ≤ 𝑥𝑖 ≤ 5.12 MS

F9:Modified Schwefel 𝑓9 (𝑥) = 418.9829 × 𝑛 −
𝑛
∑

𝑖=1
𝑔
(

𝑧𝑖
)

, 𝑧𝑖 = 𝑥𝑖 + 4.209687462275036𝑒 + 002

𝑔
(

𝑧𝑖
)

=
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑧𝑖 sin
(

|

|

𝑧𝑖||
1∕2) 𝑖𝑓 |

|

𝑧𝑖|| ≤ 500

(

500 − 𝑚𝑜𝑑
(

𝑧𝑖 , 500
))

sin
(

√

|

|

|

500 − 𝑚𝑜𝑑
(

𝑧𝑖 , 500
)

|

|

|

)

−

(

𝑧𝑖 − 500
)2

10000𝑛
𝑖𝑓 𝑧𝑖 > 500

(

𝑚𝑜𝑑
(

|

|

𝑧𝑖|| , 500
)

− 500
)

sin
(

√

|

|

|

𝑚𝑜𝑑
(

|

|

𝑧𝑖|| , 500
)

− 500||
|

)

−

(

𝑧𝑖 + 500
)2

10000𝑛
𝑖𝑓 𝑧𝑖 < −500

−100 ≤ 𝑥𝑖 ≤ 100 C

F10:Katsuura 𝑓10 (𝑥) =
10
𝑛2

𝑛
∏

𝑖=1
(1 + 𝑖

32
∑

𝑗=1

|

|

2𝑗𝑥𝑖 − 𝑟𝑜𝑢𝑛𝑑(2𝑗𝑥𝑖)||
2𝑗

)
10
𝑛1.2 − 10

𝑛2
0 ≤ 𝑥𝑖 ≤ 10 N/A

F11:HappyCat 𝑓11(𝑥) =
|

|

|

|

|

𝑛
∑

𝑖=1
𝑥2𝑖 − 𝑛

|

|

|

|

|

1
4
+ (0.5

∑𝑛
𝑖=1 𝑥

2
𝑖 +

∑𝑛
𝑖=1 𝑥𝑖 )∕𝑛+0.5 −5.12 ≤ 𝑥𝑖 ≤ 5.12 N/A

F12: HGBat 𝑓12 (𝑥) =
|

|

|

|

|

(
𝑛
∑

𝑖=1
𝑥2𝑖 )

2 − (
𝑛
∑

𝑖=1
𝑥𝑖)2

|

|

|

|

|

1
2
+ (0.5

∑𝑛
𝑖=1 𝑥

2
𝑖 +

∑𝑛
𝑖=1 𝑥𝑖 )∕𝑛+0.5 −5.12 ≤ 𝑥𝑖 ≤ 5.12 N/A

F13: Expanded Griwank’s plus
Rosenbrock

𝑓13 (𝑥) = 𝑓7
(

𝑓4
(

𝑥1 , 𝑥2
))

+ 𝑓7
(

𝑓4
(

𝑥2 , 𝑥3
))

+⋯ + 𝑓7
(

𝑓4
(

𝑥𝑛−1 , 𝑥𝑛
))

+ 𝑓7
(

𝑓4
(

𝑥𝑛 , 𝑥1
))

−5.12 ≤ 𝑥𝑖 ≤ 5.12 C

f14:Expanded Scaffer’s f6 Scaffer’s f6 Function : 𝑔 (𝑥, 𝑦) = 0.5 +

(

sin2
(

√

𝑥2 + 𝑦2
)

− 0.5
)

(1 + 0.001(𝑥2 + 𝑦2))2
𝑓14 (𝑥) = 𝑔

(

𝑥1 , 𝑥2
)

+g
(

𝑥2 , 𝑥3
)

+. . .+ g
(

𝑥𝑛−1 , 𝑥𝑛
)

+g
(

𝑥𝑛 , 𝑥1
)

−5.12 ≤ 𝑥𝑖 ≤ 5.12 C

f15: Some of different powers 𝑓15 = 1 − 1
𝑛

𝑛
∑

𝑖=1
cos(𝑘𝑥𝑖)𝑒

−𝑥2𝑖
2 −𝜋 ≤ 𝑥𝑖 ≤ 𝜋 MS

F16:Sphere 𝑓16 =
𝑛
∑

𝑖=1
𝑥2𝑖 −5.12 ≤ 𝑥𝑖 ≤ 5.12 US

F17: penalized 𝑓17 =
𝜋
𝑛

{

10 sin2
(

𝜋𝑦1
)

+
𝑛−1
∑

𝑖=1

(

𝑦𝑖 − 1
)2 [1 + 10 sin2

(

𝜋𝑦𝑖+1
)]

+
(

𝑦𝑛 − 1
)2
}

+

𝑛
∑

𝑖=1
𝑢
(

𝑥𝑖 , 10, 100, 4
)

𝑦𝑖 = 1 + 𝑥𝑖+1
4

𝑢
(

𝑥𝑖 , 𝑎, 𝑘, 𝑚
)

=

⎧

⎪

⎨

⎪

⎩

𝑘
(

𝑥𝑖 − 𝑎
)𝑚 𝑥𝑖 > 𝑎

0 −𝑎 < 𝑥𝑖 < 𝑎
𝑘
(

−𝑥𝑖 − 𝑎
)𝑚 𝑥𝑖 < −𝑎

⎫

⎪

⎬

⎪

⎭

−50 ≤ 𝑥𝑖 ≤ 50 MN

F18: penalized2 𝑓18(𝑥) = 0.1

{

sin2
(

3𝜋𝑥1
)

+
𝑛−1
∑

𝑖=1
(𝑥𝑖 − 1)2

[

1 + sin2(3𝜋𝑥𝑖+1)
]

+ (𝑥𝑛 − 1)2
[

1 + sin2(2𝜋𝑥𝑛)
]

}

+

𝑛
∑

𝑖=1
𝑢(𝑥𝑖 , 5, 100, 4)

−50 ≤ 𝑥𝑖 ≤ 50 MN

F19:Quartic 𝑓19(𝑥) =
𝑛
∑

𝑖=1
𝑖𝑥4𝑖 + 𝑟𝑎𝑛𝑑𝑜𝑚[0, 1) −1.28 ≤ 𝑥𝑖 ≤ 1.28 US

F20: Schwefel 1.2 𝑓20(𝑥) =
𝑛
∑

𝑖=1

( 𝑖
∑

𝑗=1
𝑥𝑗

)2

−100 ≤ 𝑥𝑖 ≤ 100 UN

F21: Schwefel 2.21 𝑓21 (𝑥) = 𝑚𝑎𝑥𝑖
{

|

|

𝑥𝑖|| , 1 ≤ 𝑖 ≤ 𝑛
}

−100 ≤ 𝑥𝑖 ≤ 100 UN

F22: Schwefel 2.22 𝑓22 (𝑥) =
𝑛
∑

𝑖=1

|

|

𝑥𝑖|| +
𝑛

∏

𝑖=1

|

|

𝑥𝑖|| −10 ≤ 𝑥𝑖 ≤ 10 UN

F23: Step 2 𝑓23 (𝑥) =
𝑛
∑

𝑖=1
(⌊𝑥𝑖 +0.5⌋)2 −200 ≤ 𝑥𝑖 ≤ 200 U

F24: Alpine1 𝑓24 (𝑥) =
𝑛
∑

𝑖=1

|

|

|

𝑥𝑖 sin
(

𝑥𝑖
)

+ 0.1𝑥𝑖
|

|

|

−10 ≤ 𝑥𝑖 ≤ 10 M

F25: Csendes 𝑓25 (𝑥) =
𝑛
∑

𝑖=1
𝑥6𝑖

(

2 + sin 1
𝑥𝑖

)

−1 ≤ 𝑥𝑖 ≤ 1 M

(continued on next page)
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Table 1 (continued).
Function Equation Range Characteristic

F26: Rotated Ellipse 𝑓26 (𝑥) = 7𝑥21 − 6
√

3𝑥1𝑥2 + 13𝑥22 −500 ≤ 𝑥𝑖 ≤ 500 U
F27:Rotated Ellipse2 𝑓27 (𝑥) = 𝑥21 − 𝑥1𝑥2 + 𝑥22 −500 ≤ 𝑥𝑖 ≤ 500 U

F28: Schwefel 2.4 𝑓28 (𝑥) =
𝑛
∑

𝑖=1

(

𝑥𝑖 − 1
)2 +

(

𝑥1 − 𝑥2𝑖
)2 0 ≤ 𝑥𝑖 ≤ 10 M

F29: Sum Squares 𝑓29 (𝑥) =
𝑛
∑

𝑖=1
𝑖𝑥2𝑖 −10 ≤ 𝑥𝑖 ≤ 10 U

F30: Step 𝑓30 (𝑥) =
𝑛
∑

𝑖=1

(⌊

|

|

𝑥𝑖||
⌋)

−100 ≤ 𝑥𝑖 ≤ 100 US

F31: Schewefel 𝑓31 (𝑥) =
𝑛
∑

𝑖=1
418.9829 − 𝑥𝑖 sin

(

√

|

|

𝑥𝑖||

)

−500 ≤ 𝑥𝑖 ≤ 500 M

F32: Xin-She Yang1
𝑓45 (𝑥) =

𝑛
∑

𝑖=1
𝜖𝑖 ||𝑥𝑖||

𝑖

𝑊 ℎ𝑒𝑟𝑒 𝜖𝑖 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 [0, 1]

−5 ≤ 𝑥𝑖 ≤ 5 S

F33: Schaffer 𝑓33 (𝑥) = 0.5 +
sin2(𝑥21 − 𝑥22)

2 − 0.5

1 + 0.001
(

𝑥21 + 𝑥22
)2

−100 ≤ 𝑥𝑖 ≤ 100 UN

F34 𝑓34 (𝑥) = 𝑥.𝑠𝑔𝑛 (𝑥) −1.0 ≤ 𝑥𝑖 ≤ 2.0

F35 𝑓35 (𝑥) =
𝑛
∑

𝑖=1

[

𝑥𝑖
]

−5.12 ≤ 𝑥𝑖 ≤ 5.12

F36: Adjiman 𝑓36 (𝑥) = cos
(

𝑥1
)

sin
(

𝑥2
)

−
𝑥1

(

𝑥22 + 1
)

−1 ≤ 𝑥1 ≤ 2

−1 ≤ 𝑥2 ≤ 1
M

F37: Bartels Conn 𝑓37 (𝑥) =
|

|

|

𝑥21 + 𝑥22 + 𝑥1𝑥2
|

|

|

+ |

|

|

sin
(

𝑥1
)

|

|

|

+ |

|

|

cos
(

𝑥2
)

|

|

|

−500 ≤ 𝑥𝑖 ≤ 500 M

F38: Ackley 2 𝑓38 (𝑥) = −200𝑒−0.02
√

𝑥21+𝑥
2
2 −500 ≤ 𝑥𝑖 ≤ 500 U

F39: eggcrate 𝑓39 (𝑥, 𝑦) = 𝑥2 + 𝑦2 + 25(sin2 𝑥 + cos2 𝑦) (𝑥, 𝑦) ∈
[−2𝜋, 2𝜋] ×
[−2𝜋, 2𝜋]

M

F40 𝑓13 (𝑥, 𝑦) = 𝑥 sin(4𝑥) + 1.1𝑦 sin(2𝑦) 0 ≤ 𝑥, 𝑦 ≤ 10

F41:Powell Singular 2 𝑓41 (𝑥) =
𝑛−2
∑

𝑖=1

(

𝑥𝑖−1 + 10𝑥𝑖
)2 + 5

(

𝑥𝑖+1 − 𝑥𝑖+2
)2 +

(

𝑥𝑖 − 2𝑥𝑖+1
)4 + 10

(

𝑥𝑖−1 − 𝑥𝑖+2
)4 −4 ≤ 𝑥𝑖 ≤ 5 UN

F42: Quintic 𝑓42 (𝑥) =
𝑛
∑

𝑖=1

|

|

|

𝑥5𝑖 − 3𝑥4𝑖 + 4𝑥3𝑖 + 2𝑥2𝑖 − 10𝑥𝑖 − 4||
|

−10 ≤ 𝑥𝑖 ≤ 10 MS

F43:Qing 𝑓43 (𝑥) =
𝑛
∑

𝑖=1
(𝑥2𝑖 − 𝑖)2 −500 ≤ 𝑥𝑖 ≤ 500 MS

F44: Salomon 𝑓44 (𝑥) = 1 − cos

(

2𝜋

√

𝑛
∑

𝑖=1
𝑥2𝑖

)

+ 0.1

√

𝑛
∑

𝑖=1
𝑥2𝑖 −100 ≤ 𝑥𝑖 ≤ 100 MN

F45: Dixon & Price 𝑓45 (𝑥) = (𝑥1 − 1)2 +
𝑛
∑

𝑖=1
𝑖(2𝑥2𝑖 − 𝑥𝑖−1)2 −10 ≤ 𝑥𝑖 ≤ 10 UN

Fig. 10. (a) Convergence of F5 (n = 50), (b) Zoom to figure a.
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Fig. 11. (a) Convergence of F7 (n = 10), (b) Zoom to figure a.

Table 2
Parameters values.

Algorithm Parameter Value Parameter Value

GA pc = crossover rate 0.67 Mutation rate 0.33
PSO Inertia weight 2 Best global experience 2.2

Best personal experience 2.4 w-damp 0.98
BWO pp = procreate rate 0.6 Pm = mutation rate 0.4

CR = cannibalism rate 0.44
ABC The number of food sources Popsize/2 Limit 15
BBO Rate of keeping habitat 0.6 Absorption coefficient 0.9

Mutation rate 0.4

In functions F30, F33, F34, F37 and F39, BWO and some of the
experimental algorithms have obtained the global optima, but in some
cases the ‘‘Best’’ values of the algorithms are equal, the values of
‘‘mean’’ and ‘‘median’’ have been compared in order to select the
best-operated algorithm.

4.1.3. Statistical experiments
Table 4 demonstrates the statistical comparison of some well-known

benchmark functions for dimensional of 10 with the population size of
200 and also in Table 5 the experimental algorithms are investigated
for the dimension of 50 with a population size of 300. Both of the
experiments have the maximum iteration number of 2000 and the best
results of over 30 times running, have been recorded in mentioned ta-
bles. ‘‘Best’’, ‘‘mean’’, ‘‘median’’, ‘‘worst’’ and ‘‘std’’. respectively denote
the best, mean, median, the worst and standard deviation values in
over 30 runs. The mean and standard deviation metrics demonstrate
the stability of the algorithm. Considering the stochastic feature of
algorithms, it is still needed for conducting more statistical tests (Der-
rac et al., 2011). Only the overall performance of algorithms can be
compared by the mean and standard deviation metrics. But, a statistical
test by considering the outcomes of each run verifies that the outcomes
are statistically remarkable. In this regard, this research conducted the
Wilcoxon rank-sum test (Derrac et al., 2011; Mirjalili and Lewis, 2013),
which is a non-parametric test in statics. Technically speaking, this test
returns p-values parameters. Any 𝑝-value less than 0.05 indicates the
remarkable statistical superiority of outcomes. The p-values in Table 6
proves the statistically impressive superiority of the BWO algorithm.

As it is obvious from the comparison of mentioned tables, by in-
creasing the dimension of the problems, and the population size, the
performance of BWO algorithm is much considerable in comparison

to the other experimental algorithms. In the dimension of 10 (see
Table 4) the performance of BWO is a little bit weaker in F1 and
F31 in the case of ‘‘Best’’ value, but in F7 and F8 it has reached to
the exact global optimum value. In the case of ‘‘mean’’, ‘‘worst’’, and
‘‘std’’. values, the proposed algorithm has appeared poor except for F7
and F8. About ‘‘Median’’ values, it can be said that the performance
of BWO is acceptable in all cases except for F31. In the dimension of
50 (see Table 5) the performance of BWO in the case of ‘‘Best’’ value is
outstanding in all of the test functions. Due to the increasing dimension
and population size in Table 5, F7 and F8 still have achieved the exact
global optima, especially in F8 with the ‘‘std’’. value of zero which is
so phenomenal.

4.1.4. High dimensional experiments
In Table 7, the performance of BWO is compared with other exper-

imental algorithms for high dimensional problems with some famous
benchmark functions. The algorithms are conducted over 30 runs for
each test function, and the simulation results indicate that BWO has
obtained remarkable performance in the accuracy of the solution for
global optimization.

4.1.5. Convergence experiments
Figs. 7–16 depict the fitness minimization plot of all experimental

algorithms for test functions F4, F5, F7, F8, and F16. To make the
results obvious, the exact numbers, which have been obtained from the
simulations, are shown in Table 8. The most interesting point seen in
these figures is the fast convergence of Black widow optimization.

To perform the convergence tests, each of the algorithms has been
executed once for each dimension. In dimension 10 tests, the number
of maximum iteration and the population size are set to 500 and 200
and also in 50-dimensional tests maximum iteration number, and the
population size is considered 1000 and 500 respectively. As can be
seen from Table 8, in most of the cases, BWO results are significantly
better than other algorithms, especially in the case of F7 and F8
(50-dimensional tests) which have obtained the exact optimal solution.
Moreover, the figures clearly show the fast convergence feature of black
widow optimization algorithm in comparison to the others.

Furthermore, in order to more illustration of the convergence speed
of the proposed method, the convergence point of the experiments
as mentioned earlier have been depicted in Figs. 17 and 18 for 10D
and 50D experiments respectively; also, the maximum iteration of the
experiments was considered 500 and 1000 correspondingly. With re-
gards to these figures, it can be concluded that the proposed method

10
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Table 3
Comparing the results in different dimensions with some well-known optimization algorithms.

f F1 F2 F3

nvar 10 20 50 10 20 50 10 20 50
npop 100 150 200 100 150 200 100 150 200
Maxiter 500 1000 1500 500 1000 1500 500 1000 1500

GA Best
Mean
Median

4.09E−24
1.68E−09
2.60E−11

3.32E−33
3.05E−13
1.39E−18

6.82E−17
3.73E−11
3.17E−13

1.11E−01
8.24E−01
6.17E−01

3.81E−01
1.39E+00
1.34E+00

1.87E+01
2.66E+01
2.63E+01

1.50E−08
4.36E−03
1.19E−03

1.02E−06
4.42E−03
6.50E−04

2.85E−05
1.10E−02
3.18E−03

PSO Best
Mean
Median

1.12E−18
1.21E−12
4.13E−14

7.47E−15
1.78E−09
3.83E−11

3.79E−09
1.66E−04
2.67E−05

9.07E−04
16.6E+00
26.2E+00

5.88E+00
2.12E+02
1.01E+02

3.76E+05
1.65E+06
1.54E+06

1.10E−04
1.79E−02
6.18E−03

1.40E−06
2.18E+01
2.62E+01

9.04E+00
9.15E+01
8.53E+01

BWO Best
Mean
Median

1.58E−28
1.03E−12
2.28E−15

2.00E−36
5.93E−17
1.43E−18

1.13E−32
3.09E−17
8.87E−21

7.60E−03
1.81E−01
9.85E−02

3.44E−02
2.60E−01
2.50E−01

4.22E−01
1.78E+00
1.61E+00

1.13E−08
6.90E−04
9.16E−05

3.12E−07
6.77E−04
2.44E−04

2.98E−07
3.43E−03
3.45E−04

ABC Best
Mean
Median

3.35E−12
4.55E−09
9.34E−10

9.34E−10
2.14E−07
9.09E−08

3.63E−06
2.40E−04
1.74E−04

2.29E−02
6.67E−01
5.97E−01

4.26E+00
1.44E+01
1.14E+01

7.78E+01
1.17E+03
8.62E+02

3.63E−06
1.08E−03
3.97E−04

7.58E−05
3.09E−03
2.44E−03

2.31E−03
7.42E−02
3.83E−02

BBO Best
Mean
Median

3.12E−22
1.81E−16
2.44E−17

5.70E−21
5.98E−18
7.98E−19

1.64E−18
1.86E−13
1.02E−14

1.84E−04
2.98E−01
4.79E−02

4.24E+02
2.71E+03
2.01E+03

1.12E+05
2.11E+05
1.93E+05

1.26E−07
1.31E−06
6.69E−07

5.57E−02
2.62E−01
1.88E−01

1.19E+00
2.31E+00
2.22E+00

The best result BWO BWO BWO BBO BWO BWO BWO BWO BWO

F F4 F5 F6

Nvar 10 20 50 10 20 50 10 20 50
Npop 100 150 200 100 150 200 100 150 200
Maxiter 500 1000 1500 500 1000 1500 500 1000 1500

GA Best
Mean
Median

4.45E−01
1.02E+01
7.40E+00

4.07E+00
3.87E+01
1.82E+01

3.89E+01
1.38E+02
1.51E+02

4.82E−05
4.97E−02
1.22E−02

3.40E−07
1.05E−01
2.05E−02

2.92E−12
4.62E−02
1.76E−02

1.20E−05
7.62E−02
4.15E−02

6.87E−03
2.37E−01
1.70E−01

7.57E−04
5.82E−01
3.91E−01

PSO Best
Mean
Median

9.12E−01
2.38E+02
1.61E+01

2.18E+01
9.70E+03
2.49E+02

5.90E+04
2.08E+05
1.95E+05

8.44E−05
4.43E−03
2.68E−03

9.86E−01
2.50E+00
2.52E+00

7.10E+00
1.01E+01
1.02E+02

5.72E−02
1.98E−01
1.89E−01

8.17E−01
2.55E+00
2.18E+00

2.06E+01
2.79E+01
2.64E+01

BWO Best
Mean
Median

3.54E−01
7.90E+00
7.22E+00

2.64E+00
2.47E+01
1.71E+01

2.21E+01
1.13E+02
1.01E+02

2.78E−13
3065E−03
4.53E−05

7.99E−15
8.84E−05
6.33E−11

2.93E−14
3.70E−14
3.29E−14

1.17E−11
5.01E−03
8.42E−04

0
4.10E−03
7.81E−04

0
7.57E−03
1.07E−03

ABC Best
Mean
Median

4.52E+00
1.38E+01
1.14E+01

2.68E+01
5.10E+01
5.09E+01

1.00E+02
3.18E+02
3.09E+02

1.17E−01
3.23E−01
2.72E−01

1.41E+00
2.27E+00
2.31E+00

9.19E+00
1.15E+01
1.16E+01

3.01E−01
5.86E−01
5.63E−01

1.88E+00
2.73E+00
2.72E+00

6.55E+00
9.07E+00
9.30E+00

BBO Best
Mean
Median

6.52E−01
5.39E+00
4.68E+00

1.42E+01
8.03E+01
5.68E+01

5.32E+02
2.19E+03
2.11E+03

1.45E−03
1.89E−01
1.95E−03

3.05E−03
2.89E−01
4.55E−03

8.20E−03
2.48E−01
9.75E−03

2.46E−02
3.37E−02
3.39E−02

6.67E−02
9.70E−02
7.55E−02

2.81E−01
4.90E−01
4.30E−01

The best result by BWO BWO BWO BWO BWO BWO BWO BWO BWO

F F7 F8 F9

Nvar 10 20 50 10 20 50 10 20 50
Npop 100 150 200 100 150 200 100 150 200
Maxiter 500 1000 1500 500 1000 1500 500 1000 1500

GA Best
Mean
Median

7.33E−08
4.29E−02
3.43E−02

2.44E−10
4.96E−02
1.41E−02

2.59E−12
5.68E−02
2.05E−04

4.81E−10
5.73E−01
7.90E−03

3.29E−08
4.94E−02
1.75E−03

4.01E−06
1.12E−01
5.97E−02

1.30E−04
1.78E−04
1.75E−04

2.65E−04
3.16E−04
3.13E−04

1.49E−03
1.97E−03
2.03E−03

PSO Best
Mean
Median

1.22E−01
5.48E−01
5.61E−01

3.68E−01
8.43E−01
8.83E−01

1.17E+00
1.67E+00
1.55E+00

2.03E−01
7.90E+00
6.09E+00

1.75E+01
5.11E+01
5.80E+01

1.56E+02
3.28E+02
3.43E+02

1.27E−04
1.40E−04
1.30E−04

9.80E−02
7.45E−01
4.49E−01

1.11E+02
4.29E+02
4.52E+02

BWO Best
Mean
Median

0
6.99E−03
1.95E−05

0
1.33E−03
3.85E−16

0
2.48E−02
2.78E−16

0
2.27E−02
1.93E−04

0
2.89E−03
3.13E−06

0
0
0

1.27E−04
1.38E−04
1.34E−04

2.58E−04
2.69E−04
2.68E−04

6.59E−04
6.96E−04
6.90E−04

ABC Best
Mean
Median

5.19E−02
1.51E−01
1.61E−01

2.31E−01
4.15E−01
4.31E−01

8.98E−01
1.10E+00
1.09E+00

1.30E+01
2.90E+01
2.92E+01

8.68E+01
1.14E+02
1.17E+02

1.19E+02
1.51E+02
1.53E+02

1.22E+00
2.92E+01
2.79E+01

1.80E+02
6.35E+02
6.35E+02

3.62E+03
5.59E+03
5.57E+03

BBO Best
Mean
Median

7.40E−03
7.12E−02
6.02E−02

1.02E−05
2.56E−03
1.60E−05

6.30E−05
1.32E−03
9.31E−05

1.99E+00
5.87E+00
5.47E+00

9.85E+00
2.26E+01
2.20E+01

6.70E+01
1.02E+02
1.03E+02

1.29E−04
1.30E−04
1.29E−04

2.07E−02
2.89E−01
1.80E−01

3.35E+00
9.42E+00
9.12E+00

(continued on next page)

achieves the minimum convergence point in the majority of the ex-
periments and only in 2 of them the proposed method cannot over-
come other algorithms. As a result, it can be claimed that the pro-
posed method in 80% of experiments can converge with high speed
in comparison with other algorithms.

4.2. Evaluation of composite functions

Shifted, rotated, combined, and biased form of other uni-modal and
multi-modal benchmark functions are known as composite functions
(Digalakis and Margaritis, 2001; Yang, 2010b; Yao et al., 1999)s which

11
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Table 3 (continued).
f F1 F2 F3

The best result BWO BWO BWO BWO BWO BWO BWO BWO BWO

F F10 F11 F12

Nvar 10 20 50 10 20 50 10 20 50
Npop 100 150 200 100 150 200 100 150 200
Maxiter 500 1000 1500 500 1000 1500 500 1000 1500

GA Best
Mean
Median

3.90E−04
2.97E−03
2.77E−03

3.15E−04
1.11E−03
1.02E−03

3.86E−04
6.36E−04
6.08E−04

3.85E−02
1.18E−01
9.99E−02

1.28E−01
2.17E−01
2.16E−01

3.34E−01
5.17E−01
5.07E−01

1.51E−01
3.74E−01
4.07E−01

3.41E−01
4.39E−01
4.39E−01

4.03E−01
5.30E−01
4.61E−01

PSO Best
Mean
Median

1.67E−08
2.89E−01
9.07E−02

1.59E−05
3.57E−02
2.38E−02

3.86E−04
3.30E−03
2.50E−03

1.39E−01
2.61E−01
2.55E−01

3.65E−01
5.90E−01
5.94E−01

4.96E−01
8.02E−01
7.99E−01

1.64E−01
3.00E−01
2.78E−01

2.30E−01
6.04E−01
4.25E−01

3.15E−01
7.39E−01
6.72E−01

BWO Best
Mean
Median

2.63E−04
2.45E−03
2.08E−03

2.62E−04
6.60E−04
5.68E−04

1.73E−04
1.44E−03
1.10E−03

1.21E−02
3.25E−02
3.36E−02

4.18E−02
7.37E−02
7.07E−02

1.71E−01
2.60E−01
2.60E−01

1.47E−01
3.72E−01
4.09E−01

2.10E−01
4.31E−01
4.21E−01

3.33E−01
4.80E−01
4.56E−01

ABC Best
Mean
Median

1.07E−02
4.37E−02
4.08E−02

2.97E−02
7.05E−02
6.66E−02

8.29E−02
1.54E−01
1.40E−01

3.35E−01
6.78E−01
7.18E−01

9.84E−01
1.79E+00
1.74E+00

4.31E+00
5.09E+00
5.08E+00

2.34E−01
6.53E−01
5.74E−01

2.08E+00
1.28E+01
1.35E+01

1.09E+02
1.54E+02
1.56E+02

BBO Best
Mean
Median

1.49E−03
7.82E−03
2.80E−03

2.26E−02
9.79E−02
8.38E−02

6.17E−02
1.77E−01
1.56E−01

4.16E−02
1.06E−01
9.85E−02

1.10E−01
1.90E−01
1.87E−01

2.82E−01
5.47E−01
5.48E−01

1.70E−01
4.41E−01
4.59E−01

3.18E−01
4.32E−01
4.22E−01

3.75E−01
4.83E−01
4.72E−01

The best result PSO PSO BWO BWO BWO BWO BWO BWO BWO

F F13 F14 F15

Nvar 10 20 50 10 20 50 10 20 50
Npop 100 150 200 100 150 200 100 150 200
Maxiter 500 1000 1500 500 1000 1500 500 1000 1500

GA Best
Mean
Median

1.16E−01
2.48E−01
2.41E−01

4.19E−01
5.63E−01
5.67E−01

6.91E−01
7.59E−01
7.70E−01

7.79E−02
1.93E−01
9.76E−02

1.58E−01
4.11E−01
3.25E−01

6.53E−01
1.10E+00
1.01E+00

5.62E−13
6.45E−03
4.18E−04

3.98E−10
1.89E−03
3.49E−04

5.87E−10
1.20E−03
2.56E−04

PSO Best
Mean
Median

9.10E−02
4.16E−01
3.72E−01

7.06E−01
1.59E+00
1.20E+00

2.24E+01
3.76E+02
1.47E+02

9.65E−02
3.71E−01
3.72E−01

5.78E−01
1.33E+00
1.37E+00

3.23E+00
6.38E+00
6.45E+00

1.19E−01
2.32E−01
2.32E−01

3.66E−01
4.50E−01
4.53E−01

5.56E−01
6.79E−01
6.88E−01

BWO Best
Mean
Median

5.93E−02
2.35E−01
2.07E−01

3.37E−01
5.45E−01
5.62E−01

6.60E−01
7.46E−01
7.56E−01

5.83E−02
1.03E−01
4.72E−02

1.57E−01
3.04E−01
3.16E−01

4.18E−01
9.31E−01
8.48E−01

2.66E−15
1.79E−04
4.99E−06

0
1.89E−04
4.76E−08

0
2.30E−06
2.22E−16

ABC Best
Mean
Median

7.33E−01
1.05E+00
1.07E+00

1.27E+00
3.91E+00
2.82E+00

7.05E+02
1.27E+05
1.19E+05

2.40E−01
5.06E−01
4.91E−01

1.30E+00
2.38E+00
2.48E+00

3.03E+00
4.77E+00
4.86E+00

5.94E−02
1.04E−01
1.06E−01

1.79E−01
2.14E−01
2.14E−01

3.45E−01
3.87E−01
3.86E−01

BBO Best
Mean
Median

1.60E−01
2.87E−01
2.75E−01

3.72E−01
7.40E−01
7.29E−01

1.00E+00
1.09E+00
1.08E+00

7.78E−02
1.31E−01
9.72E−02

2.66E−01
8.41E−01
7.48E−01

3.67E+00
5.50E+00
5.21E+00

5.33E−02
1.22E−01
1.08E−01

6.21E−02
1.69E−01
1.57E−01

1.77E−01
2.90E−01
2.90E−01

The best result BWO BWO BWO BWO BWO BWO BWO BWO BWO

F F16 F17 F18

Nvar 10 20 50 10 20 50 10 20 50
Npop 100 150 200 100 150 200 100 150 200
Maxiter 500 1000 1500 500 1000 1500 500 1000 1500

GA Best
Mean
Median

1.30E−11
6.15E−04
7.90E−06

5.86E−15
6.82E−04
1.77E−05

1.39E−15
6.46E−04
2.23E−05

1.14E−14
3.02E−03
1.41E−04

1.22E−11
1.32E−03
9.58E−05

1.02E−05
1.53E−05
1.36E−05

6.38E−07
1.72E−05
1.48E−05

4.48E−05
5.43E−02
2.91E−02

5.45E−10
2.21E−01
3.28E−02

PSO Best
Mean
Median

8.33E−05
8.60E−03
3.72E−03

2.75E−03
1.33E−02
7.55E−03

9.66E−01
3.52E+00
3.39E+00

1.06E−07
1.33E−02
8.27E−06

9.25E−01
6.72E+00
6.02E+00

1.50E+01
1.94E+04
4.58E+03

2.00E−06
3.29E−03
1.26E−03

4.07E−01
6.56E+00
2.47E+00

8.23E+02
1.36E+05
4.98E+04

BWO Best
Mean
Median

2.35E−30
2.45E−07
6.10E−12

3.41E−75
8.90E−08
1.36E−46

2.57E−44
4.25E−39
2.03E−43

5.28E−17
3.13E−06
2.20E−09

2.36E−32
1.96E−06
1.35E−09

1.64E−07
1.86E−06
7.03E−07

1.81E−07
1.70E−05
6.71E−06

1.35E−32
1.45E−03
2.80E−05

1.35E−32
1.98E−07
6.02E−28

ABC Best
Mean
Median

4.82E−05
6.54E−04
4.38E−04

2.85E−03
8.89E−03
8.18E−03

4.76E−02
2.17E−01
1.89E−01

1.96E−04
2.14E−03
1.89E−03

1.06E−03
7.05E−03
6.43E−03

3.67E−02
1.63E−01
1.51E−01

3.83E−04
1.91E−03
1.62E−03

7.97E−04
1.70E−02
1.49E−02

1.32E−01
4.78E−01
4.23E−01

BBO Best
Mean
Median

5.70E−08
1.69E−07
1.71E−07

2.63E−07
4.67E−07
4.86E−07

3.57E−06
4.94E−06
4.99E−06

1.13E−07
2.12E−07
2.17E−07

3.56E−07
5.18E−03
5.33E−07

1.86E−06
2.00E−02
2.93E−06

2.25E−07
7.34E−04
9.14E−07

3.79E−06
8.80E−03
1.10E−02

4.48E−05
2.57E−02
1.10E−02

(continued on next page)

are listed in Table 9. In this table, Dim states dimension of the function,
𝑓min indicates the optimum value of the function, and Range shows the

function’s search space boundary. As shown in Fig. 19 (Dhiman and
Kumar, 2017; Mirjalili and Lewis, 2016; Mirjalili et al., 2016; Mirjalili,

12
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Table 3 (continued).
f F1 F2 F3

The best result BWO BWO BWO BWO BWO BWO BWO BWO BWO

F F19 F20 F21

Nvar 10 20 50 10 20 50 10 20 50
Npop 100 150 200 100 150 200 100 150 200
Maxiter 500 1000 1500 500 1000 1500 500 1000 1500

GA Best
Mean
Median

1.24E+00
1.54E+00
1.52E+00

4.20E+00
4.59E+00
4.55E+00

1.37E+01
1.59E+01
1.61E+01

3.04E−09
6.43E+00
1.07E−01

2.91E−03
5.05E−03
4.00E−03

1.14E−04
2.62E+02
1.42E+02

5.65E−02
1.38E−01
1.35E−01

1.84E−01
2.66E−01
2.64E−01

6.81E−01
9.25E−01
9.17E−01

PSO Best
Mean
Median

1.38E+00
2.28E+00
2.30E+00

5.99E+00
6.99E+00
6.94E+00

2.50E+01
3.01E+01
3.05E+01

3.10E−05
7.61E−03
3.23E−03

1.44E+00
7.25E+02
4.17E+01

1.46E+04
8.87E+04
7.88E+04

7.04E−02
6.39E−01
4.97E−01

7.83E+00
1.51E+01
1.55E+01

4.45E+01
5.31E+01
5.37E+01

BWO Best
Mean
Median

2.30E+00
1.33E+00
1.34E+00

3.63E+00
4.17E+00
4.18E+00

1.22E+01
1.38E+01
1.39E+01

8.34E−11
1.34E−02
2.91E−04

4.38E−23
2.10E−10
1.15E−10

3.55E−10
3.28E−08
5.16E−08

2.75E−02
7.74E−02
8.63E−02

1.05E−01
1.58E−01
1.53E−01

3.88E−01
4.74E−01
4.77E−01

ABC Best
Mean
Median

2.02E+00
2.77E+00
2.80E+00

7.48E+00
9.02E+00
8.95E+00

3.74E+01
5.29E+01
5.29E+01

5.34E−03
2.23E−01
1.95E−01

1.89E+00
5.11E+00
4.30E+00

6.73E+01
1.14E+03
9.07E+02

1.41E+01
2.44E+01
2.48E+01

3.38E+01
5.05E+01
5.14E+01

7.16E+01
7.72E+01
7.73E+01

BBO Best
Mean
Median

1.11E+00
1.47E+00
1.50E+00

3.68E+00
4.49E+00
4.53E+00

1.38E+01
1.58E+01
1.60E+01

3.50E−05
1.04E−04
1.00E−04

4.19E−04
7.56E−04
7.20E−04

1.88E−02
9.67E−02
3.44E−02

1.69E−03
2.91E−03
3.02E−03

8.03E−01
2.97E+00
2.95E+00

4.48E+00
7.42E+00
6.69E+00

The best result BBO BWO BWO BWO BWO BWO BBO BWO BWO

F F22 F23 F24

Nvar 10 20 50 10 20 50 10 20 50
Npop 100 150 200 100 150 200 100 150 200
Maxiter 500 1000 1500 500 1000 1500 500 1000 1500

GA Best
Mean
Median

7.11E−04
2.22E−03
2.22E−03

1.34E−03
3.78E−03
3.60E−03

1.90E−02
2.89E−02
3.04E−02

0
0
0

0
0
0

0
0
0

4.68E−05
3.91E−04
1.30E−04

1.19E−04
4.27E−04
2.49E−04

1.26E−03
1.95E−03
1.72E−03

PSO Best
Mean
Median

4.72E−05
2.18E−03
9.24E−03

5.73E−02
4.01E−01
3.67E−01

4.50E+00
1.65E+01
1.60E+01

0.00E+00
2.33E−01
0.00E+00

6.00E+00
4.39E+01
2.85E+01

2.89E+03
6.49E+03
5.48E+03

1.00E−04
4.77E−02
3.40E−03

2.31E−02
8.31E−01
4.19E−01

2.27E+00
2.09E+01
1.71E+01

BWO Best
Mean
Median

3.22E−04
1.54E−04
1.37E−04

8.25E−04
1.92E−03
1.79E−03

3.41E−03
6.05E−03
5.74E−03

0
0
0

0
0
0

0
0
0

1.62E−05
5.85E−05
5.69E−05

4.72E−05
1.10E−04
1.04E−04

1.69E−04
3.29E−04
3.41E−04

ABC Best
Mean
Median

2.31E−02
8.13E−02
7.49E−02

2.78E−01
5.75E−01
5.79E−01

4.45E+00
7.20E+00
7.16E+00

0.00E+00
1.93E+00
2.00E+00

2.00E+00
1.47E+01
1.45E+01

1.63E+02
1.05E+03
8.33E+02

9.88E−03
7.99E−02
6.34E−02

3.66E−01
8.28E−01
8.32E−01

6.00E+00
9.82E+00
9.92E+00

BBO Best
Mean
Median

7.34E−04
9.50E−04
9.46E−04

4.63E−02
2.08E−01
2.00E−01

2.40E+00
3.47E+00
3.43E+00

0
0
0

0
8.23E+00
5.00E+00

1.72E+02
3.29E+02
3.20E+02

6.76E−05
1.17E−04
1.08E−04

2.42E−03
2.06E−02
1.29E−02

1.71E+00
3.46E+00
3.46E+00

The best result PSO BWO BWO GA–BWO–
BBO

GA–BWO GA–BWO BWO BWO BWO

F F25 F26 F27

Nvar 10 20 50 2 2 2 2 2 2
Npop 100 150 200 100 150 500 100 200 500
Maxiter 500 1000 1500 500 1000 2000 500 1500 1500

GA Best
Mean
Median

8.93E−23
1.03E−20
2.79E−21

2.19E−21
1.73E−20
1.62E−20

2.85E−17
7.01E−17
6.52E−17

7.26E−196
1.14E−23
1.33E−188

6.29E−312
4.29E−143
5.36E−308

4.96E−312
2.47E−96
2.47E−126

4.38E−201
5.55E−25
4.35E−194

0
0
0

0
0
0

PSO Best
Mean
Median

2.13E−20
3.23E−14
9.45E−15

3.04E−10
2.05E−07
4.72E−08

2.73E−04
1.07E−03
8.00E−04

6.36E−05
4.58E−04
2.74E−05

5.23E−05
2.83E−03
3.42E−05

3.26E−08
4.08E−06
2.76E−06

4.99E−45
1.49E−43
2.73E−44

0
0
0

0
4.31E−04
4.78E−05

BWO Best
Mean
Median

1.03E−24
2.02E−22
2.88E−23

4.37E−24
6.02E−23
2.83E−23

7.56E−21
2.06E−20
2.06E−20

1.56E−246
9.38E−24
2.53E−224

2.47E−325
1.36E−155
2.47E−323

2.47E−323
2.47E−123
2.47E−172

7.78E−250
5.33E−28
8.27E−238

0
0
0

0
0
0

ABC Best
Mean
Median

1.77E−19
8.66E−17
3.37E−17

1.14E−12
7.64E−11
4.15E−11

3.12E−07
1.14E−05
5.43E−06

8.64E−04
2.19E−02
1.29E−02

9.25E−09
4.36E−03
3.35E−03

1.27E−05
3.27E−04
1.77E−04

7.18E−06
1.42E−03
5.78E−04

1.47E−10
4.13E−09
2.59E−09

7.88E−07
3.71E−05
2.72E−05

BBO Best
Mean
Median

1.11E−27
7.32E−27
4.07E−27

1.28E−12
1.01E−09
2.39E−10

3.44E−08
2.01E−07
1.25E−07

1.06E−22
2.13E−11
1.23E−12

1.20E−36
2.59E−13
3.22E−15

3.25E−316
1.97E−20
8.92E−167

3.29E−84
1.49E−10
2.13E−26

3.00E−303
7.39E−17
1.30E−109

0
1.51E−108
0

(continued on next page)

2015a,b), these functions provide a huge number of local optima and
different forms for various areas of the search domain; thus, they are

able to mimic difficulties of real search spaces. Keeping the balance
between exploitation and exploration to estimate the global optima of

13
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Table 3 (continued).
f F1 F2 F3

The best result BBO BWO BWO PSO PSO PSO BWO GA–BWO–
PSO

GA–BWO

F F28 F29 F30

Nvar 10 20 50 10 20 50 10 20 50
Npop 100 150 200 100 150 200 100 150 200
Maxiter 500 1000 1500 500 1000 1500 500 1000 1500

GA Best
Mean
Median

5.17E−03
2.42E−02
2.33E−02

9.34E−02
2.05E−01
2.18E−01

3.13E+01
4.06E+01
4.10E+01

9.05E−10
1.10E−01
5.20E−03

3.84E−06
5.45E−05
5.17E−05

7.04E−06
1.47E+00
8.70E−01

0
0
0

0
0
0

0
3.363E−02
0.01E+00

PSO Best
Mean
Median

7.45E+01
2.43E+03
2.17E+03

4.03E+03
1.03E+04
1.10E+04

3.19E+04
4.29E+04
4.26E+04

1.51E−07
1.76E−04
2.20E−05

2.64E−02
1.18E+01
5.20E−01

9.22E+01
7.76E+02
5.88E+02

0
0
0

0.00E+00
2.23E+00
1.00E+00

6.40E+01
1.62E+02
1.62E+02

BWO Best
Mean
Median

2.65E−04
4.09E−04
4.10E−04

7.04E−04
1.05E−03
1.05E−03

8.92E−02
9.88E−02
9.92E−02

1.18E−18
9.21E−04
4.65E−07

4.69E−17
5.74E−13
1.18E−13

1.71E−10
2.73E−01
1.53E−01

0
0
0

0
0
0

0
3.33E−02
0.00E+00

ABC Best
Mean
Median

5.58E−02
2.34E−01
2.13E−01

4.24E−01
1.52E+00
1.53E+00

8.61E+00
2.23E+01
2.22E+01

1.03E−03
3.33E−03
3.01E−03

1.19E−02
5.87E−02
4.94E−02

1.18E+00
1.60E+01
1.02E+01

0.00E+00
6.67E−01
1.00E+00

5.00E+00
1.05E+01
1.10E+01

7.70E+01
1.31E+02
1.36E+02

BBO Best
Mean
Median

1.12E−06
6.70E−03
1.20E−03

2.20E+02
3.83E+02
3.70E+02

3.13E+03
3.83E+03
3.78E+03

3.50E−07
1.04E−06
9.67E−07

1.20E−02
2.01E−01
1.60E−01

1.46E−04
1.04E−03
4.20E−04

0
0
0

0.00E+00
6.67E−02
0.00E+00

2.00E+00
9.77E+00
9.00E+00

The best result BBO BWO BWO BWO BWO BWO Except ABC GA–BWO GA–BWO

F F31 F32 F33

Nvar 10 20 50 10 20 50 2 2 2
Npop 100 150 200 100 150 200 100 200 500
Maxiter 500 1000 1500 500 1000 1500 500 1500 2000

GA Best
Mean
Median

6.64E+00
4.01E+02
3.61E+02

2.68E+03
3.40E+03
3.31E+03

7.88E+03
9.45E+03
9.29E+03

1.09E−14
2.99E−08
9.76E−11

1.13E−14
1.58E−08
4.65E−11

9.33E−11
2.77E−05
3.03E−08

0
5.91E−03
0

0
9.59E−04
0

0
2.90E−04
0

PSO Best
Mean
Median

1.18E+02
9.92E+02
9.54E+02

9.92E+02
2.33E+03
2.15E+03

6.55E+03
8.23E+03
7.98E+03

2.41E−04
2.48E−02
4.74E−03

1.90E−02
6.91E+00
1.60E+00

1.30E+07
3.27E+11
4.87E+09

0
8.47E−07
0

0
2.52E−12
0

0
0
0

BWO Best
Mean
Median

1.06E+00
1.81E+02
1.27E+02

2.35E+03
2.30E+03
2.06E+03

8.57E+03
1.02E+04
1.00E+04

2.59E−15
7.34E−09
1.86E−11

3.62E−15
9.31E−11
4.29E−11

1.17E−12
5.14E−09
8.99E−10

0
1.88E−07
0

0
0
0

0
0
0

ABC Best
Mean
Median

1.56E+02
5.13E+02
5.22E+02

2.10E+03
2.73E+03
2.78E+03

6.36E+03
7.21E+03
7.29E+03

3.09E−02
5.05E−01
4.36E−01

1.00E+01
4.85E+02
4.70E+02

1.68E+14
7.89E+16
4.48E+16

1.35E−10
1.91E−06
3.01E−07

2.04E−11
1.80E−07
9.96E−09

5.57E−13
1.57E−09
3.67E−10

BBO Best
Mean
Median

5.13E+02
1.17E+03
1.19E+03

2.52E+03
3.24E+03
3.16E+03

8.33E+03
1.09E+04
1.11E+04

2.57E−09
7.45E−06
1.30E−07

5.08E−10
1.36E−05
1.65E−07

1.05E−08
5.99E−04
3.71E−06

0
4.88E−03
0

0
5.18E−17
0

0
0
0

The best result BWO PSO ABC BWO BWO BWO BWO BWO BWO–PSO–
BBO

F F34 F35 F36

Nvar 1 1 1 10 20 50 1 1 1
Npop 100 200 500 100 150 200 100 200 500
Maxiter 500 1500 1500 500 1000 1500 500 1500 2000

GA Best
Mean
Median

3.19E−146
7.98E−142
1.14E−143

0
0
0

0
0
0

3.29E+01
2.71E+01
1.70E+01

1.00E+02
9.26E+01
9.45E+01

2.28E+02
2.07E+02
2.04E+02

−2.0164
−1.9698
−1.9809

−2.0217
−1.9917
−2.0021

−2.021
−2.0092
−2.0106

PSO Best
Mean
Median

1.16E−145
1.57E−136
1.41E−141

0
0
0

0
0
0

6.00E+01
6.00E+01
6.00E+01

1.20E+01
1.20E+01
1.20E+01

3.00E+02
2.94E+02
3.00E+02

−2.0218
−2.0204
−2.0216

−2.0218
−2.0209
−2.0216

−2.0218
−2.0218
−2.0218

BWO Best
Mean
Median

8.38E−157
8.88E−152
5.94E−153

0
0
0

0
0
0

3.00E−01
2.27E−01
3.00E−01

1.08E−01
2.07E+00
2.53E+00

2.00E+00
1.77E+00
1.83E+00

−2.0202
−1.9722
−1.9798

−2.0196
−1.9973
−2.0024

−2.0217
−2.0058
−2.0083

ABC Best
Mean
Median

1.06E−21
1.46E−15
6.48E−17

1.50E−21
1.75E−16
2.77E−18

4.85E−20
2.59E−17
6.18E−18

–
–
–

–
–
–

– −2.0218
−2.0218
−2.0218

−2.0218
−2.0218
−2.0218

−2.0218
−2.0218
−2.0218

BBO Best
Mean
Median

1.75E−156
1.54E−24
5.40E−151

0
1.43E−17
0

0
1.27E−40
0

5.09E+01
5.26E+01
7.20E+01

8.70E+01
8.17E+01
8.20E+01

1.73E+02
1.63E+02
1.64E+02

−2.8831
−2.8185
−2.822

−4.6072
−4.538
−4.5425

−5.648
−5.5841
−5.5818

(continued on next page)
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Table 3 (continued).
f F1 F2 F3

The best result BWO Except ABC Except ABC – – – ABC ABC ABC

F F37 F38 F39

Nvar 2 2 2 2 2 2 1 1 1
Npop 100 200 500 100 200 500 100 200 500
Maxiter 500 1500 1500 500 1500 2000 500 1500 2000

GA Best
Mean
Median

1
1
1

1
1
1

1
1
1

–
–
–

–
–
–

–
–
–

1.04E−160
1.42E−33
5.15E−105

0
0
0

0
0
0

PSO Best
Mean
Median

1
1.00001E+00
1

1
1
1

1
1
1

−200
−200
−200
0

−200
–
−199.9999
−200
std:5.63E−04

−200
−200
−200
0

4.87E−178
3.00E−02
1.19E−02

0
0
0

0
0
0

BWO Best
Mean
Median

1
1
1

1
1
1

1
1
1

−200
−200
−200
0

−200
−200
−200
std:0

−200
−200
−200
0

1.48E−187
7.75E−48
2.59E−107

0
0
0

0
0
0

ABC Best
Mean
Median

1.00E+00
1.01E+00
1.01E+00

1.00E+00
1.00E+00
1.00E+00

1.00E+00
1.00E+00
1.00E+00

−200
−200
−200
4.18E−10

−200
−200
−200
std:5.92E−11

−200
−200
−200
1.06E−09

4.37E−15
4.04E−09
1.37E−10

2.48E−12
1.43E−09
6.91E−10

9.49E−12
5.75E−09
3.27E−09

BBO Best
Mean
Median

1
1
1

1
1
1

1
1
1

−199.99
−199.99
−199.99
2.06E−04

−200
−200
−200
std:4.18E−07

−200
−200
−200
2.20E−06

3.34E−174
4.69E−15
3.51E−44

0
0
0

0
0
0

The best result Except ABC Except ABC Except ABC PSO–BWO BWO PSO–BWO BWO Except ABC Except ABC

F F40 F41 F42

Nvar 1 1 1 10 20 50 10 20 50
Npop 100 200 500 100 150 200 100 150 200
Maxiter 500 1000 2000 500 1000 1500 500 1000 1500

GA Best
Mean
Median

−18.5547
−17.7399
−18.5531

−18.5547
−18.4496
−18.5547

−18.5547
−18.5547
−18.5547

1.41E−05
4.71E−02
7.47E−03

5.16E−04
1.15E+00
2.71E−01

7.13E−02
4.72E+00
3.10E+00

2.19E−07
1.17E+00
2.75E−01

4.28E−01
5.87E+00
5.05E+00

4.80E+00
2.27E+01
2.11E+01

PSO Best
Mean
Median

−18.4961
−15.1205
−14.8086

−18.5133
−16.8102
−16.9989

−18.4897
−17.7351
−17.8868

3.07E+00
1.74E+01
1.62E+01

9.22E+01
4.28E+02
3.91E+02

2.62E+03
6.62E+03
6.54E+03

1.93E+01
7.67E+01
5.02E+01

9.48E+01
2.56E+03
2.45E+03

3.28E+04
7.26E+04
7.45E+04

BWO Best
Mean
Median

−18.5547
−18.5547
−18.5547

−18.5547
−18.5547
−18.5547

−18.5547
−18.5547
−18.5547

3.80E−08
7.32E−03
1.29E−04

1.38E−05
4.32E−03
3.57E−03

6.09E−03
4.65E−01
2.84E−01

1.82E−08
2.19E−03
2.34E−04

1.14E−03
6.17E−01
3.15E−02

8.93E−05
7.26E−01
3.76E−01

ABC Best
Mean
Median

−18.5547
−18.5547
−18.5547

−18.5547
−18.5547
−18.5547

−18.5547
−18.5547
−18.5547

8.95E−03
6.48E−02
5.76E−02

7.65E−02
3.35E−01
3.42E−01

5.50E+00
1.46E+01
1.12E+01

6.38E−01
1.02E+00
1.02E+00

1.78E+00
3.03E+00
3.12E+00

1.16E+01
1.83E+01
1.83E+01

BBO Best
Mean
Median

−18.5547
−17.0587
−16.9847

−18.5547
−17.8118
−18.5547

−18.5547
−18.45
−18.5547

1.35E−06
2.09E−02
9.96E−03

4.01E−05
5.36E−03
5.30E−03

7.72E−03
3.93E−02
3.17E−02

7.01E−03
1.26E−02
1.17E−02

2.55E−02
7.04E−01
8.52E−02

6.52E+00
1.95E+01
1.85E+01

The best result BWO BWO BWO BWO BWO BWO BWO BWO BWO

F F43 F44 F45

Nvar 10 20 50 10 20 50 10 20 50
Npop 100 150 200 100 150 200 100 150 200
Maxiter 500 1000 1500 500 1000 1500 500 1000 1500

GA Best
Mean
Median

1.18E+00
2.00E+02
5.33E+00

9.92E+00
7.71E+01
2.93E+01

4.98E+01
1.77E+02
1.09E+02

9.99E−02
1.53E−01
9.99E−02

9.99E−02
1.97E−01
2.00E−01

2.00E−01
3.53E−01
3.00E−01

4.40.E−01
7.23.E−01
6.95.E−01

8.68.E−01
3.73.E+00
2.86.E+00

2.51.E+00
1.78.E+01
1.93.E+01

PSO Best
Mean
Median

1.04E+01
1.38E+02
7.04E+01

1.35E+05
2.08E+06
1.44E+06

1.26E+08
7.91E+08
6.83E+08

2.11E+00
3.66E+00
3.77E+00

4.96E+00
8.79E+00
8.80E+00

1.47E+01
2.22E+01
2.27E+01

4.97.E−03
9.46.E+00
9.46.E+00

1.17.E+00
9.11.E+01
1.95.E+01

1.23.E+03
1.84.E+04
5.13.E+03

BWO Best
Mean
Median

1.99E−01
2.83E+00
2.18E+00

2.75E−02
1.49E+01
8.09E+00

8.54E−01
9.84E+02
1.00E+01

9.99E−02
1.03E−01
9.99E−02

9.99E−02
1.13E−01
9.99E−02

9.98E−02
1.76E−01
1.99E−01

4.37.E−01
3.26.E−01
4.77.E−01

6.71.E−01
1.12.E+00
6.65.E−01

6.03.E−01
3.27.E−01
3.56.E−01

(continued on next page)

such test functions is one of the vital features of an algorithm. Hence,
this group of test functions is able to benchmark the exploitation and
exploration combination.

To verify the results of BWO, we adopt two famous algorithms: PSO
(Poli et al., 2007) as the best swarm-based algorithm and GA (Holland,
1975) as the best evolutionary technique. Moreover, BWO algorithm
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Table 3 (continued).
f F1 F2 F3

ABC Best
Mean
Median

5.44E−01
5.85E+00
4.30E+00

2.59E+01
1.17E+02
1.06E+02

2.30E+03
4.13E+04
2.92E+04

1.41E+00
2.30E+00
2.30E+00

5.37E+00
7.87E+00
8.28E+00

2.21E+01
2.61E+01
2.64E+01

2.39.E−01
5.72.E−01
5.55.E−01

1.03.E+00
2.56.E+00
2.50.E+00

1.91.E+01
4.50.E+01
4.67.E+01

BBO Best
mean
Median

2.44E−02
4.85E−02
4.78E−02

1.32E−01
2.16E−01
2.12E−01

4.53E+00
6.94E+00
6.87E+00

9.99E−02
2.53E−01
2.00E−01

2.00E−01
4.37E−01
4.50E−01

1.10E+00
1.56E+00
1.50E+00

6.23.E−06
5.78.E−01
6.67.E−01

3.24.E−03
6.67.E−01
6.68.E−01

6.67.E−01
1.36.E+00
7.06.E−01

The best result BBO BWO BWO BWO BWO BWO BBO BBO BWO

Table 4
Statistical comparison of some famous benchmark functions (n = 10, MaxIter = 2000, popsize = 200, execution = 30 times).

is compared with several recent algorithms such as ALO (Mirjalili,
2015b), MFO (Mirjalili, 2015a), GWO (Mirjalili et al., 2014a), WOA

(Mirjalili and Lewis, 2016), SHO (Dhiman and Kumar, 2017), MVO
(Mirjalili et al., 2016), and HS (Geem et al., 2001). To conduct the
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Table 5
Statistical comparison of some famous benchmark functions (n = 50, MaxIter = 2000, popsize = 300, execution = 30 times).

Table 6
p-values of the Wilcoxon rank-sum test over some benchmark functions.

F BWO ABC BBO GA PSO

𝐹5 0.000181 0.472676 0.000178 0.000183 0.002827
𝐹7 0.000098 0.000448 0.000197 0.000183 0.002245
𝐹8 0.000098 0.000265 0.000368 0.000183 0.000313
𝐹16 0.000181 0.017257 0.000178 0.000183 0.000148
𝐹20 0.000221 0.002827 0.000178 0.000228 0.000202
𝐹31 0.000181 0.000178 0.000183 0.021134 0.000183

comparison, results of MFO, GWO, SHO, MVO, PSO, GA, and HS have
been taken from (Dhiman and Kumar, 2017). In addition, the results
of ALO and WOA have been taken from Mirjalili (2015b) and Mirjalili
and Lewis (2016) respectively. Similar to the mentioned papers, BWO
is run on each of the benchmark functions 30 times, and finally, in the
last iteration, the average, and standard deviation of the best-estimated
solution is reported.

Keeping a balance between exploitation and exploration that can
prevented from getting stuck in the local optima, is very competitive
task; thus, using composite benchmark functions in testing optimization
algorithms is important. Owing to the massive number of local optima
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Fig. 12. (a) Convergence of F7 (n = 50), (b) Zoom to figure a.

Table 7
Comparing BWO with some well-known optimization algorithms in high dimension problems.

in these test functions, the feature of escaping from local optima of an
algorithm can be verified by testing the algorithm with these functions.

Considering Table 10, it can be observed that the BWO algorithm
has proved its superiority in all cases except F46, in which our proposed
algorithm acted very competitive. Fig. 20 shows the convergence curves
of BWO to display the convergence rate of the BWO algorithm. It
should be mentioned that the best score refers to the mean of the best
solution achieved over 30 runs in each iteration. Moreover, Table 11
demonstrates the p-Values which verify that superiority is remarkable
in almost all of the functions. This superiority can prove the high
exploration capability of the proposed algorithm, which helps it to
search for the promising areas of the search domain.

5. BWO for classical engineering problems

In this section, we adopt pressure vessel designs, welded beam,
and tension/compression spring problems, which are constrained en-
gineering design problems and have some equality and inequality
limitations. Thus, in order to optimize constrained problems by BWO,
it should be equipped with a method to be able to deal with con-
straints as well. In order to prove the superiority of the proposed
algorithm, similar to the previous section, we have compared the results
of BWO with some classic famous algorithms and also with some recent
ones. Aiming to conduct the comparison, results of MFO, GWO, SHO,
MVO, PSO, GA, and HS have been taken from Dhiman and Kumar
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Table 8
The results of convergence experiments.

Table 9
Composite benchmark functions.

Function Dimension Range 𝑓min

𝐹46 (𝐶𝐹1) ∶
𝑓1 , 𝑓2 , 𝑓3 ,… , 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
[

𝛿1 , 𝛿2 , 𝛿3 ,… , 𝛿10
]

= [1, 1, 1,… , 1]
[

𝜆1 , 𝜆2 , 𝜆3 ,… , 𝜆10
]

=
[

5∕100, 5∕100, 5∕100,… , 5∕100
]

10 [−5, 5] 0

𝐹47 (𝐶𝐹2) ∶
𝑓1 , 𝑓2 , 𝑓3 ,… , 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′ 𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
[

𝛿1 , 𝛿2 , 𝛿3 ,… , 𝛿10
]

= [1, 1, 1,… , 1]
[

𝜆1 , 𝜆2 , 𝜆3 ,… , 𝜆10
]

=
[

5∕100, 5∕100, 5∕100,… , 5∕100
]

10 [−5, 5] 0

𝐹48 (𝐶𝐹3) ∶
𝑓1 , 𝑓2 , 𝑓3 ,… , 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′ 𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
[

𝛿1 , 𝛿2 , 𝛿3 ,… , 𝛿10
]

= [1, 1, 1,… , 1]
[

𝜆1 , 𝜆2 , 𝜆3 ,… , 𝜆10
]

= [1, 1, 1,… , 1]

10 [−5, 5] 0

𝐹49 (𝐶𝐹4) ∶
𝑓1 , 𝑓2 = 𝐴𝑐𝑘𝑙𝑒𝑦′ 𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓3 , 𝑓4 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′ 𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓5 , 𝑓6 = 𝑊 𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓7 , 𝑓8 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′ 𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓9 , 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
[

𝛿1 , 𝛿2 , 𝛿3 ,… , 𝛿10
]

= [1, 1, 1,… , 1]
[

𝜆1 , 𝜆2 , 𝜆3 ,… , 𝜆10
]

=
[

5∕32, 5∕32, 1, 1, 5∕0.5, 5∕0.5, 5∕100, 5∕100, 5∕100, 5∕100
]

10 [−5, 5] 0

𝐹50 (𝐶𝐹5) ∶
𝑓1 , 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′ 𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓3 , 𝑓4 = 𝑊 𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓5 , 𝑓6 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′ 𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓7 , 𝑓8 = 𝐴𝑐𝑘𝑙𝑒𝑦′ 𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓9 , 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
[

𝛿1 , 𝛿2 , 𝛿3 ,… , 𝛿10
]

= [1, 1, 1,… , 1]
[

𝜆1 , 𝜆2 , 𝜆3 ,… , 𝜆10
]

=
[

1∕5, 1∕5, 5∕0.5, 5∕0.5, 5∕100, 5∕100, 5∕32, 5∕32, 5∕100, 5∕100
]

10 [−5, 5] 0

𝐹51 (𝐶𝐹6) ∶
𝑓1 , 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′ 𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓3 , 𝑓4 = 𝑊 𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓5 , 𝑓6 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′ 𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓7 , 𝑓8 = 𝐴𝑐𝑘𝑙𝑒𝑦′ 𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓9 , 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
[

𝛿1 , 𝛿2 , 𝛿3 ,… , 𝛿10
]

= [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
[

𝜆1 , 𝜆2 , 𝜆3 ,… , 𝜆10
]

= [0.1 ∗ 1∕5, 0.2 ∗ 1∕5, 0.3 ∗ 5∕0.5, 0.4 ∗ 5∕0.5, 0.5 ∗ 5∕100,
0.6 ∗ 5∕100, 0.7 ∗ 5∕32, 0.8 ∗ 5∕32, 0.9 ∗ 5∕100, 1 ∗ 5∕100]

10 [−5, 5] 0

(2017). In addition, the results WOA have been taken from Mirjalili
and Lewis (2016) directly. Various kinds of penalty functions such as

annealing, co-evolutionary, dynamic, static, and death penalty are used
in constrained optimization problems (Wang et al., 2011).
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Table 10
Results of composite benchmark functions.

Fig. 13. Convergence of F8 (n = 10).

5.1. Pressure vessel design

This problem aims to reduce the total cost of a cylinder-shaped
pressure vessel which is shown in Fig. 21 (Dong et al., 2014) including
material, welding, and forming. The head of the vessel is in the shape of
a hemispherical whereas both ends of it are capped. The optimization
variable consists of the thickness of the head (Th), the thickness of the
shell (Ts), the length of the cylindrical section without considering the
head (L), the inner radius (R). There are four optimization constraints
and is formulated as follows:

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 �⃗� =
[

𝑥1 𝑥2 𝑥3 𝑥4
]

=
[

𝑇𝑠 𝑇ℎ 𝑅 𝐿
]

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓
(

�⃗�
)

= 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥23 + 3.1661𝑥21𝑥4 + 19.84𝑥21𝑥3
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜∶ 𝑔1

(

�⃗�
)

= −𝑥1 + 0.0193𝑥3 ≤ 0,

𝑔2
(

�⃗�
)

= −𝑥3 + 0.00954𝑥3 ≤ 0,

𝑔3
(

�⃗�
)

= −𝜋𝑥23𝑥4 −
4
3
𝜋𝑥33 + 1,296,000 ≤ 0,

𝑔4
(

�⃗�
)

= 𝑥4 − 240 ≤ 0,

𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑅𝑎𝑛𝑔𝑒∶ 0 ≤ 𝑥1 ≤ 99,

Table 11
p-Values of the Wilcoxon rank-sum test over composite benchmark functions.

F BWO MFO ALO GWO MVO GA PSO

F46 0.000163 N/A N/A 0.001315 0.064022 0.000172 0.000172
F47 0.000163 0.002202 N/A 0.000583 0.472676 0.000183 0.677585
F48 0.000163 N/A N/A 0.005877 0.064022 0.000183 0.000181
F49 0.000172 0.000186 N/A 0.007285 0.045155 0.000189 0.088973
F50 0.000172 N/A N/A 0.384673 0.021134 0.000183 0.045155
F51 0.000163 0.241322 N/A 0.088973 0.01133 N/A 0.088973

0 ≤ 𝑥2 ≤ 99,

10 ≤ 𝑥3 ≤ 200,

10 ≤ 𝑥4 ≤ 200,

Many researchers have solved this test case using various meta-
heuristic techniques such as GA (Coello and Montes, 2002; Coello,
2000; Deb, 1997), PSO (He and Wang, 2007), DE (Li et al., 2007), ACO
(Kaveh and Talatahari, 2010b), improved HS (Mahdavi et al., 2007),
and ES (Mezura-Montes and Coello Coello, 2008). Moreover, some have
applied mathematical techniques such as branch-and-bound (Sandgren,
1990) and Lagrangian multiplier (Kannan and Kramer, 1994). The
comparison of the best optimal solutions for BWO and methods as
mentioned earlier are represented in Table 12. Considering this table,
it could be concluded that BWO can reach the optimal design with the
lowest amount of cost. Table 13 presents the statistical results of resolv-
ing the pressure design problem by those algorithms. According to the
results, BWO outperforms all other algorithms in terms approaching to
the optimal solution.

5.2. Welded beam design

In this problem, the objective is minimizing the production cost of
the welded beam presented in Fig. 22 (Dong et al., 2014). Optimization
variables of this test problem including the thickness of the bar (b),
the thickness of weld (h), the height of the bar (t), and length of
the clamped bar (l). There are four optimization constraints on shear
stress (𝜏 ), and bending stress in the beam (𝜃), end deflection of the
beam (𝛿), buckling load (Pc). The optimization problem is formulated
mathematically as follows:

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 �⃗� =
[

𝑥1 𝑥2 𝑥3 𝑥4
]

= [ℎ 𝑙 𝑡 𝑏] ,

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓
(

�⃗�
)

= 1.10471𝑥21𝑥2 + 0.04811𝑥3𝑥4
(

14.0 + 𝑥2
)

,
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Fig. 14. (a) Convergence of F8 (n = 50), (b) Zoom to figure a.

Table 12
Comparison results for pressure vessel design problem.

Algorithms Optimum variables Optimum cost

Ts Th R L

BWO 0.777821 0.373174 39.9973587 199.93614
GA 0.752362 0.399540 40.452514 198.00268 5890.3279
PSO 0.778961 0.384683 40.320913 200.00000 5891.3879
MFO 0.835241 0.409854 43.578621 152.21520 6055.6378
MVO 0.845719 0.418564 43.816270 156.38164 6011.5148
GWO 0.779035 0.384660 40.327793 199.65029 5889.3689
SHO 0.778210 0.384889 40.315040 200.00000 5885.5773
WOA 0.812500 0.437500 42.0982699 176.638998 6059.7410
HS 1.099523 0.906579 44.456397 179.65887 6550.0230

Fig. 15. Convergence of F16 (n = 10).

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑔1
(

�⃗�
)

= 𝜏
(

�⃗�
)

− 𝜏𝑚𝑎𝑥 ≤ 0,

𝑔2
(

�⃗�
)

= 𝜎
(

�⃗�
)

− 𝜎𝑚𝑎𝑥 ≤ 0,

𝑔3
(

�⃗�
)

= 𝛿
(

�⃗�
)

− 𝛿𝑚𝑎𝑥 ≤ 0,

𝑔4
(

�⃗�
)

= 𝑥1 − 𝑥4 ≤ 0,

𝑔5
(

�⃗�
)

= 𝑃 − 𝑃𝑐
(

�⃗�
)

≤ 0,

𝑔6
(

�⃗�
)

= 0.125 − 𝑥1 ≤ 0,

𝑔7
(

�⃗�
)

= 1.10471𝑥21 + 0.04811𝑥3𝑥4
(

14.0 + 𝑥2
)

− 5.0 ≤ 0,

𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒∶ 0.05 ≤ 𝑥1 ≤ 2.00,

0.25 ≤ 𝑥2 ≤ 1.30,

2.00 ≤ 𝑥3 ≤ 15.0,

Best solution attained by BWO and other algorithms mentioned
above are compared in Table 14. The results indicate that the best
design is obtained by BWO. Table 15 presents the statistical comparison
results for those algorithms. It demonstrates that BWO achieves better
results in all cases and also aiming to reach to the best optimal solution,
it needs less amount of investigates.

5.3. Tension/compression spring design problem

Minimizing the weight of a tension/compression spring shown in
Fig. 23 (Dong et al., 2014), is the goal of this design problem. There
are three constraints in the process of minimization, including surge
frequency, minimum deflection, and shear stress. This issue has some
variables such as mean coil diameter (D), the number of active coils
(N), and wire diameter (d). The problem is formulated mathematically
as follows:

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 �⃗� =
[

𝑥1 𝑥2 𝑥3 𝑥4
]

= [𝑑 𝐷 𝑁] ,

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓
(

�⃗�
)

=
(

𝑥3 + 2
)

𝑥2𝑥
2
1,

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜∶ 𝑔1
(

�⃗�
)

= 1 −
𝑥32𝑥3

71785𝑥41
≤ 0,

𝑔2
(

�⃗�
)

=
4𝑥22 − 𝑥1𝑥2

12566
(

𝑥2𝑥31 − 𝑥41
)
+ 1

5108𝑥21
≤ 0,

𝑔3
(

�⃗�
)

= 1 −
140.45𝑥1
𝑥22𝑥3

≤ 0,

𝑔4
(

�⃗�
)

=
𝑥1 + 𝑥2
1.5

− 1 ≤ 0

Various optimization methods, such as GA, PSO, GWO, MFO, MVO,
SHO, WOA, and HS, have investigated this problem. Table 16 demon-
strates the result of the comparison for the best optimal solution
attained by these algorithms. The superiority of BWO in achieving the
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Fig. 16. (a) Convergence of F16 (n = 50), (b) Zoom to figure a.

Fig. 17. The convergence point of the experimental algorithms in 10D experiments.

Fig. 18. The convergence point of the experimental algorithms in 50D experiments.
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Table 13
Comparison of BWO statistical for the pressure vessel design problem.

AlgorithmsBest Mean Worst Std. Dev. Median

BWO
GA 5890.3279 6264.0053 7005.7500 496.128 6112.6899
PSO 5891.3879 6531.5032 7394.5879 534.119 6416.1138
MFO 6055.6378 6360.6854 7023.8521 365.597 6302.2301
MVO 6011.5148 6477.3050 7250.9170 327.007 6397.4805
GWO 5889.3689 5891.5247 5894.6238 013.910 5890.6497
SHO 5885.5773 5887.4441 5892.3207 002.893 5886.2282
WOA 6059.7410 6068.05 N/A 65.6519 N/A
HS 6550.0230 6643.9870 8005.4397 657.523 7586.0085

Fig. 19. 2-D versions of composite benchmark functions.

Table 14
Comparison results for welded beam design.

Algorithms Optimum variables Optimum cost

h t l b

BWO 0.198694 3.421708 9.028637 0.200138
GA 0.164171 4.032541 10.00000 0.223647 1.873971
PSO 0.197411 3.315061 10.00000 0.201395 1.820395
MFO 0.203567 3.443025 9.230278 0.212359 1.732541
MVO 0.205611 3.472103 9.040931 0.205709 1.725472
GWO 0.205678 3.475403 9.036964 0.206229 1.726995
SHO 0.205563 3.474846 9.035799 0.205811 1.725661
WOA 0.205396 3.484293 9.037426 0.206276 1.730499
HS 0.206487 3.635872 10.00000 0.203249 1.836250

optimal solution can be concluded from the results shown in Table 16.
Besides, Table 17 presents the results of the statistical comparison

of tension/compression spring design applied to the aforementioned
optimization methods. The results prove that BWO attains better results
and needs less amount of examines aiming to reach to the best optimal
design.

5.4. Summary of classical engineering problems’ experiments

In this subsection, we select three algorithms to show the summary
of the classical engineering problems’ experiments. In Table 18, three
above-mentioned design problems, three selected algorithms, and their
relevant results are illustrated. It is crystal clear that the proposed BWO
algorithm outperforms the other three algorithms including GA, PSO,
and MVO.

6. Discussion

Large numbers of bio-inspired meta-heuristic algorithms have been
proposed for different optimization problems. This paper introduced

Table 15
Comparison of BWO statistical for the welded beam design problem.

AlgorithmsBest Mean Worst Std. Dev. Median

BWO
GA 1.873971 2.119240 2.320125 0.034820 2.097048
PSO 1.820395 2.230310 3.048231 0.324525 2.244663
MFO 1.732541 1.775231 1.802364 0.012397 1.812453
MVO 1.725472 1.729680 1.741651 0.004866 1.727420
GWO 1.726995 1.727128 1.727564 0.001157 1.727087
SHO 1.725661 1.725828 1.726064 0.000287 1.725787
WOA 1.730499 1.7320 N/A 0.0226 N/A
HS 1.836250 1.363527 2.035247 0.139485 1.9357485

23



V. Hayyolalam and A.A. Pourhaji Kazem Engineering Applications of Artificial Intelligence 87 (2020) 103249

Fig. 20. Convergence curves of BWO obtained in composite benchmark problems.

a new bio-inspired meta-heuristic algorithm, called BWO, which is
inspired by the mating behavior of black widow spiders. Experimental
results of BWO have been investigated in various scales and have been
compared to the four well-known algorithms including GA (Genetic
Algorithm), PSO (Particle Swarm Optimization), ABC (Artificial Bee
Colony) and BBO (Biography Based Optimization) and some recent
ones such as ALO, WOA, MFO, GWO, SHO, MVO. Table 3 shows the
results of 10, 20, and 50-dimensional experiments, each of which has
been run 30 times. According to the results of Table 3, it is clearly
seen that in most of the cases BWO has been able to overcome other
algorithms and also it has reached to almost the global minima of the
test functions. In other words, BWO has spectacularly outperformed and
also has obtained an excellent estimation of the exact global optima.
BWO has found the exact global optima with acceptable accuracy in 13

different inclusive test functions F6, F7, F8, F15, F23, F27, F30, F33,
F34, F37, F38, F39, and F40. Moreover, almost acceptable results were
obtained in other functions.

Tables 4, 5 represent the results of statistical experiments in dimen-
sions 10 and 50, respectively. According to the results, it seems that
increasing problems’ scale and also the population size did not reduce
the quality of BWO’s results. Table 7 demonstrates the comparison of
the proposed algorithm with other experimental algorithms for large-
scale problems in which BWO is performed remarkably well. Then all of
the experimental algorithms are compared in the case of convergence
with different well-known benchmark functions, and the results are
depict in Table 8 and also some other Figures. All of these results show
that BWO can be employed for various optimization problems.
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Table 16
Comparison results for Tension/compression spring design problem.

Algorithms Optimum variables Optimum cost

d D N

BWO 0.051066 0.342967 12.091428
GA 0.05010 0.310111 14.0000 0.013036251
PSO 0.05000 0.310414 15.0000 0.013192580
MFO 0.05000 0.313501 14.03279 0.012753902
MVO 0.05000 0.315956 14.22623 0.012816930
GWO 0.050178 0.341541 12.07349 0.012678321
SHO 0.051144 0.343751 12.0955 0.012674000
WOA 0.051207 0.345215 12.004032 0.0126763
HS 0.05025 0.316351 15.23960 0.012776352

Fig. 21. Pressure vessel design problem.

Fig. 22. Welded beam design problem.

Additionally, BWO is applied to some composite benchmark func-
tions which are shown in Table 9. The results are compared to the other
algorithms. Table 10 presents the results. By observing this table, it can
be concluded that the BWO algorithm performs the others except in the
case of F46.

Fig. 23. Tension/compression spring design problem.

Due to the results, it seems that BWO is capable of finding almost
the exact optima solutions for most of the benchmark functions even
in large-scale problems. Considering the acceptable results in differ-
ent benchmark functions, it can be applied to various optimization
problems.

Moreover, three classical engineering problems are solved using
BWO algorithm. The results of BWO were compared to two well-known
and some of the recent algorithms in the literature. This comparison
points out that the BWO algorithm has the potential of handling dif-
ferent combinatorial optimization problems and is able to optimize the
real problems with unknown search space as well.

Since the proposed algorithm is an evolutionary algorithm, it will
involve the discussing of new generation production. Keeping this fact
in mind, the similarity between the BWO and GA will not be an unex-
pected case, since GA is a base structure for most of the evolutionary
algorithms. However, there are remarkable differences between BWO
and GA. In the process of producing a new generation in the BWO
algorithm, the number of offspring is equal to Nvar/2, while in GA, only
two descendants are generated. The higher the number of offspring, the
more chance of discovering a larger amount of the search space, which
will ensure the obtaining of high performance for the exploration stage,
and as a result, the proposed algorithm will be able to escape from the
local optima problem. Furthermore, the cannibalism operator provides
the ability to eliminate improper solutions immediately. Consequently,
the next generation will be reproduced by the better parents, which
guarantees the fast convergence of the solutions nearby the optimal
solutions. This feature is known as exploitation. The proposed BWO
provides a proper balance between exploration and exploitation stages,
which is one of the most critical features of the meta-heuristic algo-
rithms. Considering the argument above, the proposed algorithm is able
to obtain outstanding results in comparison with other experimental
algorithms, especially compared to GA.

The proposed BWO algorithm can be applied to various kind of en-
gineering optimization problems such as feature selection (Abualigah,
2019), information retrieval (Abualigah and Hanandeh, 2015), text
clustering (Abualigah and Khader, 2017), hybrid clustering analysis
(Abualigah et al., 2018c), text document clustering analysis (Abualigah
et al., 2018a), document clustering (Abualigah et al., 2018b), clustering
techniques (Abualigah et al., 2017), optimization in cloud computing

Table 17
Comparison of BWO statistical for the Tension/compression spring design problem.

AlgorithmsBest Mean Worst Std. Dev. Median

BWO
GA 0.013036251 0.014036254 0.016251423 0.002073 0.013002365
PSO 0.013192580 0.014817181 0.017862507 0.002272 0.013192580
MFO 0.012753902 0.014023657 0.017236590 0.001390 0.013896512
MVO 0.012816930 0.014464372 0.017839737 0.001622 0.014021237
GWO 0.012678321 0.012697116 0.012720757 0.000041 0.012699686
SHO 0.012674000 0.012684106 0.012715185 0.000027 0.012687293
WOA 0.0126763 0.0127 N/A 0.0003 N/A
HS 0.012776352 0.013069872 0.015214230 0.000375 0.012952142
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Table 18
The summary of classical engineering problems’ experiments.

The problem name BWO GA PSO MVO

Pressure vessel design 5796.0389 5890.3279 5891.3879 6011.5148
Welded beam design 1.663761 1.873971 1.820395 1.725472
Tension/compression spring design problem 0.012602915 0.013036251 0.013192580 0.012816930

(Hayyolalam and Pourhaji Kazem, 2018), optimization in IoT (Pourghe-
bleh and Hayyolalam, 2019; Pourghebleh and Navimipour, 2017), and
so forth.

Briefly speaking, with regards to the outcomes of this research, the
following cases can be concluded:

• Randomly selecting the parents for procreate step ensures the
exploration of the search domain.

• Producing numerous offspring in procreate step put emphasis on
the exploration of the search domain as well.

• The procreate step helps the BWO algorithm to overcome the local
optima trap.

• Escaping from local optima is remarkable in the BWO algorithm
since it adopts numerous search agents to estimate the global
optima.

• Cannibalism step by omitting the improper solutions aids the
BWO algorithm to move toward the best solution very fast.

• The cannibalism step guarantees the high performance for the
exploitation, which ensures the fast convergence of the BWO
algorithm.

• The mutation step confirms the balance between the exploitation
and exploration stages.

7. Conclusions

This paper proposed a novel meta-heuristic optimization algorithm,
which was inspired by the bizarre mating behavior of black widow
spiders. The Special characteristic of black widows in mating and
reproducing new generation had been the main motivation for the
development of this new algorithm. The proposed algorithm was in-
vestigated by 51 benchmark functions and also three real engineering
design problems in order to illustrate the performance of the introduced
algorithm. The comparison of BWO with some other well-known or
recent indicated that BWO has remarkably high performance in finding
the real global optima with a high level of accuracy and with fast
convergence. However, it should be mentioned that although BWO
has an outstanding performance for these 51 benchmark functions and
three engineering problems as well, it does not mean that BWO is the
best optimization algorithm ever developed. It can be considered as an
appropriate and suitable algorithm for various optimization problems.
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