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Abstract

Metaheuristic algorithms are derivative-free optimizers designed to estimate the global op-
tima for optimization problems. Keeping balance between exploitation and exploration and
the performance complementarity between the algorithms have led to the introduction of
quite a few metaheuristic methods. In this work, we propose a framework based on Multi-
Armed Bandits (MAB) problem, which is a classical Reinforcement Learning (RL) method,
to intelligently select a suitable optimizer for each optimization problem during the opti-
mization process. This online algorithm selection technique leverages on the convergence
behavior of the algorithms to find the right balance of exploration-exploitation by choosing
the update rule of the algorithm with the most estimated improvement in the solution. By
performing experiments with three armed-bandits being Harris Hawks Optimizer (HHO),
Differential Evolution (DE), and Whale Optimization Algorithm (WOA), we show that the
MAB Optimizer Selection (named as MAB-OS) framework has the best overall performance
on different types of fitness landscapes in terms of both convergence rate and the final
solution.
Keywords: Metaheuristic; Optimization; Multi-Armed Bandits; Reinforcement Learning;
Algorithm Selection; Adaptive Algorithm

1. Introduction

Metaheuristic Optimization algorithms have been developed to solve a wide range of
optimization problems in engineering and science. Due to the intrinsic differences of opti-
mization problems including the type of problem, conditions, and the dimensions, there is
a large quantity of algorithms that cater such needs. The metaheuristic area, in particular,
contain a vast variety of algorithms that are modeled from different sources of inspiration.
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A large group of them are nature-inspired algorithms that get their sources of mathematical
models from the nature.

Nature-inspired algorithms cover a large number of methods that have been roughly cat-
egorized into several classes. Evolutionary Algorithms (EA) are based on natural selection,
and contain mathematical models of mutation and crossover. Genetic Algorithms (GA) [1]
and Differential Evolution (DE) [2] are of the most popular examples in this category. Hu-
man strategies and laws of physics have also been inspiration sources for some algorithms like
Gravitational Search Algorithms (GSA) [3]. At last, swarm-based algorithms or in another
word, Swarm Intelligence (SI) mimic the behavior of a group or swarm of animals. In fact,
the optimization search agents are observed as particles or members of a group. Some of
the well-known SI algorithms include Particle Swarm Optimization (PSO) [4] and Artificial
Bee Colony (ABC).

All of the mentioned metaheuristic categories and sub-categories have common features
that make them suitable for solving many types of problems [5, 6]. These features include the
simplicity and flexibility as well as the effectiveness of these methods to find global optima
via avoiding local optima. More importantly, they are all derivative-free algorithms (often
called black box optimizers) which makes them an appropriate choice when the mathematical
form of objective function or its derivative is either unknown or expensive to be extracted.

The extensive variety of problems has led to the development of a huge number of
algorithms that perform well for different types of problems. Performance complementarity
[7] of the algorithms, also known as No Free Lunch (NFL) theorem [8], provides a logical
explanation for the existence of so many different algorithms. Researchers have been seeking
comprehensive algorithms to cover the efficient solution of different types of problems in a
single algorithms which has made significant recent improvements in the field.

While there is an increasing number of optimization methods being introduced, issues
such as the exploration-exploitation dilemma always remain difficult to be addressed. The
proposed methods have different tendencies to perform exploitation, i.e. using the so far
achieved information, or the exploration, i.e. spending time to gather more information.
Therefore, an algorithm with more exploitation properties can outperform another in rela-
tively simpler problems such as unimodal objective functions, while has the inferior perfor-
mance in more complex multimodal fitness landscapes.

Hybrid methods have been introduced as a possible solution to address the issue of
exploration-exploitation balance by improving the abilities of all of the underlying methods.
For example, an algorithm A with high exploitation capability can be hybridized by another
algorithm say B that explores the search space better. Such hybrid algorithms, however,
are again limited to how they have been combined together. They can use some sub-parts
of algorithms or external operators, such as chaotic maps [9] or lévy flight [10], to devise a
new human-made algorithm.

As mentioned in the above discussion, the performance of algorithms significantly de-
pends on the problem. However, the majority of the algorithms do not intend to rely on
the feedback from the type of problem or its landscape. Adaptive algorithms have been
known as another solution by adjusting the parameters in the algorithm based on the his-
tory of the data gathered throughout the optimization such as the features extracted from
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its fitness landscape. Another view of employing multiple algorithms is to use algorithm
selection techniques in order to select the suitable choice of optimizer based on the problem
condition. Features from the landscape, such as its complexity or modality, can be extracted
and used to select an algorithm update rule among a set of algorithms in a portfolio [7, 11].
For example, selecting the favorable parameters or operators based on these features have
been effective in reaching better solutions in GA [12, 13] and Differential Evolution (DE)
[14, 15].

Such methods try to remedy the exploration balance issue, yet they are limited in some
aspects. The hybrid methods do not use any feedback from the optimization process, and
have to be devised manually and independently from the problem. While the fitness adaptive
methods generally provide better solutions to this issue, they are dependent on the definition
of a meaningful feature and its extraction during the optimization. This is, however, not
always readily accessible since the features may not always be good representatives for the
problem. Therefore, making decision or planning strategy based on the extracted feature can
be misleading in some cases. Another major limitation of the algorithm selection methods
is that most of these methods select a single algorithm among several options to perform
the whole optimization process. This makes the selected strategy to be at most as best
as the current algorithms and never outperform them. Online algorithm selection during
the course of optimization, however, can provide us with the opportunity to use the merits
of different algorithms and reach an outstanding performance that is better than all of the
algorithm choices.

Reinforcement learning (RL) techniques have shown promising results in many appli-
cations such as optimization problems [16, 17]. RL could be combined with metaheuristic
optimization in different ways. For instance, the agent can seek the best strategy in a
continuous or discrete space of strategies or parameters to adjust the exploration rate [18].
Multi-Armed Bandits (MAB) problem, as a classical RL algorithm, has also been considered
in the context of optimization [19]. The algorithm selection problem can be viewed as an
MAB problem [20] where the goal is to let the agent find the best algorithm via interactive
trials based on the feedback from the optimization and its learning curve [21]. MABs have
been used to search for the operators in the Evolutionary Algorithms (EA) [22, 23] where dif-
ferent types of problems and reward definitions are analyzed to select the best operators [24].
These dynamic MABs, however, are limited to the defined operators on the evolutionary
algorithms like GA. More importantly, they seek tuning the parameters in those algorithms
in an attempt to find the suitable sets of parameters or operators for an algorithm.

In this work, we propose a framework where multi-armed bandits problem is applied
for algorithm selection to learn the best algorithm online during the optimization. In this
framework, each metaheuristic algorithm’s update rule is viewed as an armed bandit with
non-stationary setting, i.e. dynamic rewards, and the agent looks for the best algorithm
in the current status of optimization based on the achieved rewards. We showcase the
effectiveness of the framework by evaluating its performance on obtaining the good solutions
and having high convergence rate when three metaheuristic algorithms are considered.

The structure of this work is as follows: We review the Multi-Armed Bandit (MAB)
approach and its optimization methodology in the context of algorithm selection in Section

3



2. Then, the base algorithms and the experiments designed to show the performance of the
framework are elaborated upon in Section 3. Section 4 discusses some of the observations
from the experiments and makes conclusions about the current and future possible directions
of the work.

2. Method

2.1. Multi-Armed Bandits Problem
Multi-Armed Bandits (MAB) is a classical problem in Reinforcement Learning (RL)

where the balance between exploitation and exploration plays a key role. In this problem,
N armed bandits with different utility properties are considered. At the beginning, there is
usually no prior information on these bandits. The resource, which can be observed in terms
of computation time, is fixed and limited. The goal is to maximize the gain or equivalently
minimize the regret when we allocate the resources to the bandits. More interaction with
the bandits would reveal more information on their properties. In the classic static MAB
problem, the underlying value of the bandits are constant over time, meaning that there is
a single best bandit that can maximize the reward. In many problems such as optimization,
however, the problem is dynamic, and the best operator can be variable based on the problem
situation.

The information about the bandits is stored in a vector of values Q that is updated as
we get more feedback by interacting with bandits. This interaction feedback appears in
terms of a reward that is defined as the outcome of selecting a specific bandit. At each
iteration, we select one bandit based on the Q values and by following some exploration
strategy. Selection of the best Q leads to a greedy, fully exploiting strategy. To allow
other underestimated bandits to have more chance, exploration mechanisms like ε-greedy,
optimistic initialization, and using Upper Confidence Bound (UCB) bandit selection can be
integrated to the strategy. Dynamic systems, like selecting the best optimizer, require even
more exploration since the suitable bandit can change itself over time.

Formally speaking, for a non-stationary multi-armed bandits problem where the reward,
values, and therefore estimated values are functions of time, we can define the true action-
value q as:

q∗(t, a) := E [R(t)|A(t) = a] (1)
where A(t) = a denotes the selection of action a in the iteration t, and R(t) is the

corresponding reward as the consequence of this action. However, since q(t, a) is unknown,
we estimate it by Q(t, a) ∝ q(t, a), and the greedy action would be A∗(t) = argmaxaQ(t, a).
If the optimal action at time t is a∗(t), then the optimal value is defined as:

v∗(t) := q(a∗, t) = max
a∈A

q(a, t) (2)

and the total regret is described as the opportunity loss throughout the process as follows:

LT = E

[
T∑
t=1

(v∗(t)− q(a(t), t))

]
(3)
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The goal of MAB is to minimize the total regret, or equivalently maximize the total
gained rewards. Since we estimate the true values, the regret is inevitable as we cannot
always select the optimal action. We expect the estimation to get more accurate over time
if the changes in the system are smooth. The estimation of the value of action a is updated
whenever the action is selected and a reward is collected. By setting Nt(a) as the number of
times that action or operator a is selected, we can write it as Q(t, a) = f(R1, R2, ..., RNt(a)).
In a stationary problem where the rewards contain the same amount of information on
the current status of the system, Q can be calculated as a simple average of the achieved
rewards, i.e. Q(t, a) =

∑Nt(a)
i=1 Ri/Nt(a). In general, whether stationary or non-stationary,

we can write the estimation with incremental updates as follows:

Q(t+ 1, a) = (α)Q(t, a) + (1− α)R(t) (4)

where α is a hyperparameter that we can choose. Lower values of α result in more
concentration on the recent rewards and are more suitable for the dynamic systems.

2.2. Action Selection
One of the major concerns of this problem that is known to be the most important aspect

of MAB is to keep balance between exploitation of the current uncertain estimations and
exploration to obtain better estimations with the possible cost of increased regret. It is shown
that employing the upper confidence bound (UCB) [25] of the estimation for action selection
can be a good strategy that alleviates the greedy exploitation issue. In this approach, in
addition to estimating the expected value, the uncertainty of the actions are also taken into
account. The UCB is defined as:

UCB(t, a) = Q(t, a) + cU(t, a) = Q(t, a) + c

√
ln(t)

Nt(a)
(5)

where c is a hyperparameter that determines the effect of upper bound of confidence to
the final estimation. Note that the U(t, a) of action a shrinks over time, i.e. less uncertainty,
as we have more trials (Nt(a)) with a specific action. Small values of c reduce the effect of
uncertainties until it will have no effect in case of c = 0. Large values of c, on the other
hand, can overemphasize the uncertainties that would fade the effect of Q values. Based on
this, a balance is required for the selection of this value.

Based on the estimation of the value and the upper confidence bound, we expect that
higher Q values correspond to better actions. To softly select the action based on the UCB
value, we employ softmax sampling:

P (A = a) = softmax(UCB(a)) =
exp [UCB(a)]∑
a∈A exp [UCB(a)]

(6)

2.3. Optimizer Selection
In the context of metaheuristics, we apply the multi-armed bandits problem to the online

selection of optimizers among a set of multiple options. In fact, operators are observed as
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bandits and the action is to use a specific update rule for the positions of the search agents.
This problem is highly dynamic since the optimization process includes a dynamic landscape
and the agents start from exploring the space toward convergence to the optima. Therefore,
different optimizers can be the optimal choice at different stages of the optimization.

One of the most important aspects of reinforcement learning and multi-armed bandits is
the reward definition. The defined reward has to be meaningful and representative of the task
that we are seeking to do. For metaheuristic optimization, the goodness of the optimization
is determined by the function values. In the case that we want to train a model to find a
single best algorithm from a portfolio to perform the whole optimization, the final obtained
solution at the end of optimization can be considered as a sparse reward. It should be noted
that such a stochastic value depends on a lot of parameters. Here, however, this is not the
case since in this work we are looking for an online method that can select the update rules
during the optimization, assuming that we have a limited computational resources.

The improvements of the fitness values over the course of optimization, for example after
K iterations, can be a good representation of the performance of the algorithm. Better
algorithms are able to achieve more improvements in the same amount of time. Therefore,
we can consider this improvement as the reward during the optimization (Equation 7a).
Moreover, since the problem is fully non-stationary, we do not want to rely on old Q values,
and thus we increase the weight of recent rewards compared to the previous values. To this
end, we choose α = 0.5 to involve the most recent reward to high extent into the estimated
values (Equation 7b).

R(t) = F ∗t−K − F ∗t (7a)

Q(t+ 1, a) = 0.5Q(t, a) + 0.5R(t) (7b)

Another important point about multi-armed bandits problem is the effect of number of
armed-bandits, i.e. algorithms in this work, on the solution. In a stationary open-ended trial
scheme, adding a new armed-bandit may result in better asymptotic result since the new
option can have better inherent value. In the optimization problem considered in this work,
the time, or equivalently number of fitness evaluations, is limited. Hence, while considering
more options can bring about better limiting behavior but also requires spending the time
budget on the evaluation of the new options. Therefore, a balance should be kept for the
number of algorithms in the framework. We argue that choosing competitive algorithms
as the base armed-bandits helps the framework to exploit their merits compared to a case
where one algorithm outperforms the other in the majority of the problems. Algorithm
1 elaborates upon the steps taken in the MAB framework using a set of base algorithms
A = {A1, A2, ..., Am}.

To showcase the performance of framework, we select three successful metaheuristic
algorithms as base armed-bandits. Based on a primary observation on the performances of
a set of optimizers on the objective functions (convergence curves are provided in Appendix
A), we select Harris Hawks Optimizer (HHO) [26], Differential Evolution (DE) [2], and
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Algorithm 1: Multi-Armed Bandit Metaheuristic Algorithm Selection
Input: Update rules of Metaheuristic Algorithms A1, A2, ..., Am
Initialize the population Xi (i = 1, 2, ..., N) and maximum number of iterations T
Set interval (K), and evaluate initial fitness values
Take each action (algorithm) for a K-iteration period and update Q values using
Eqn.(7) for every iteration (K=1 in equation (7a)).

while t ≤ T do
if t % K = 0 then

Select algorithm Ai = a with soft sampling based on Q values using Eqn. (6)
Use algorithm Ai update rule

return X∗, F ∗

Whale Optimization Algorithm (WOA) [27] as the options in the framework. Therefore, at
each stage of the optimization, the positions of agents gets updated based on one of these
algorithms that is selected based on UCB of Q values (Figure 1). The algorithms of HHO,
DE, and WOA are also provided in Appendix B for review.

DEHHO WOA

𝑄

HHO DE WOA

reward

Soft sampling
Action

Figure 1: The scheme of Multi-Armed Bandits (MAB) problem on the optimization with HHO, DE, and
WOA as base algorithms viewed as armed-bandits. The collected rewards update the Q values, and the
action is softly sampled based on the Upper Confidence Bound (UCB) of bandits.

As shown in the figure 1 and explained in the algorithm 1, the algorithms are selected
and used for some iterations during the optimization. Hence, there is a caveat for using the
proposed framework that the selected base algorithms have to be able to communicate with
each other in some way. By communication, we point to the information exchange between
the algorithms. For example, the iteration, the best solution, and the position matrix of
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agents should be shared among all of the algorithms so that they can be updated using each
of the update rules easily. This feature is not easily and readily available for every choices
of metaheuristic algorithms.

First, some algorithms require additional computation or features that may not be pro-
vided with other algorithms. The storage of personal best scores in Particle Swarm Op-
timization (PSO) [4] is a good example of this extra computation. To address this issue,
we have to keep track of these parameters globally for all of the algorithms. Second, there
is a need for the effective implementation of the main united optimization with different
subroutines to perform the update rules.

3. Experiments

In this section, the experimental setup and methodology are first discussed. The con-
vergence analysis of the proposed method on several test cases are then covered in details.
Finally, the statistical analysis and comparison with other algorithms are provided.

3.1. Experiments Environment
We test the performance of algorithms as well as the Multi-Armed Bandits Operator

Selection (MAB-OS) on a set of benchmark functions containing unimodal, multimodal
[28, 29], and composite functions from CEC-2017 [30]. The details and two-dimensional
landscapes (if applicable) of these 33 functions are tabulated and depicted in the tables and
figures in Appendix C. The metaheuristic algorithms are based on stochastic calculations
which affects the results of each run. Therefore, the optimizers and algorithms are evaluated
multiple times on each benchmark function and the average and standard deviation of the
performances are reported. As a result, the obtained solution and convergence curve of each
pair of algorithm-function is extracted over 30 independent runs.

As mentioned before, several metaheuristic algorithms, and especially recent swarm-
based methods, have gone through a primary examination to select the base algorithms for
the framework. We use Python and the implementation of the algorithms are based on
EvoloPy package [31, 32]. In addition to HHO, DE, and WOA that are selected, we also
considered algorithms like Grey Wolf Optimizer (GWO) [29], Moth-Flame Optimization Al-
gorithm (MFO) [33], Multi-verse Optimizer (MVO) [34], Salp Swarm Algorithm (SSA) [35],
and Sine Cosine Algorithm (SCA) [36].Note that the convergence curves of these methods on
some benchmark functions are provided in Appendix A. It is especially observed that HHO
performs better on unimodal functions than low dimensional multimodal or composite func-
tions. On the other hand, DE has an outstanding performance on these types of landscapes.
This observation is also aligned with the previous studies on these algorithms [37, 38]. DE is
equipped with exploration operators that make it a capable method for complex landscapes.
On the other hand, HHO has excellent built-in local search strategies that result in its good
performance in simpler unimodal functions.

Before discussing the effectiveness of the framework in obtaining good final solutions for
the optimization problems, we need to discuss its efficiency in terms of computation time
and fitness evaluations. The time budget for the optimization problems is considered to
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Table 1: The details of the parameters used for the optimization of each of the algorithms in the experiments.

Algorithm Parameters Value

HHO E Linear from 2 to 0
LF β 1.5

DE Mutation Factor (F) 0.5
Crossover Ratio (CR) 0.7

WOA a Linear from 2 to 0
a2 Linear from -1 to -2

MAB
K 50
c 1
α 0.5

All Algorithms
Max. Iteration (T ) 1000

No. search agents (N) 50
Dimension∗ (D) 30

∗ For the variable dimensional benchmark functions

be limited and the aim of these methods usually is to provide fast convergence to good
enough solutions. In the context of algorithm selection, spending time on the examination
and selection of algorithms would reduce the time for the optimization itself. Hence, we are
usually in need for examination and selection methods that are not too time-consuming.
There is no change in the number of fitness evaluations with the MAB-OS framework as it
does not require any extra evaluation.

We analyzed the wall-clock run time for the base algorithms and the proposed imple-
mentation of MAB-OS, and noticed that the extra operations including the computation of
Q values and algorithm selection do not cause any significant computation time added to
the normal run time of the algorithms. Please note that the base algorithms do not have
same average wall-clock time as they consist of different operations, so we cannot expect the
MAB-OS to be more efficient than each of them, but it is interestingly efficient compared
to the average time over the base algorithms.

3.2. Convergence analysis
The first evaluation of the performance of the framework is by analyzing the convergence

curves on the introduced benchmark functions. Here, we compare the MAB-OS convergence
behavior with those of base algorithms, i.e. HHO, DE, and WOA, as well as a random bandit
selection baseline. In the random baseline, one of the algorithms are selected in a uniformly
randomly manner and the positions are updated with that algorithm’s update rule. This
baseline would indicate the effect of non-intelligent and non-systematic online hybridization
of algorithms.

We start with the unimodal functions, F1-F7, where figure 2 shows the convergence
curves of the algorithms and MAB frameworks (top subplot) and the distribution of the
active algorithm in an example trial for the MAB-OS (bottom subplot). The MAB-OS does
not seem efficient in this type of functions compared to the best algorithm which is usually
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Figure 2: The performance of multi-armed bandit (MAB) between Differential Evolution (DE), Harris
Hawks Optimizer (HHO), and Whale Optimization Algorithm (WOA) compared to the vanilla DE, HHO,
and WOA algorithms, and random bandit selection baseline on unimodal fitness landscapes.

HHO, or WOA (e.g. on F1 and F2). The reason for this inferior performance is assumed to
be due to the fact that in unimodal functions, exploitation is a suitable strategy that brings
about fast convergence to the very small values around the only local minimum, which is
also the global optimum. As a result, the winning strategy focuses on one specific superior
update rule and does not lose any chance for the improvement. This is probably the main
reason for the linear (in logarithmic scale) decrease of the curves in many of these functions
(e.g. WOA curve in F1). For MAB-OS, however, this cannot be the case since it has to
spend time on the evaluation of all the constituting algorithms. Spending iterations on
the sub-par algorithms, e.g. DE for some unimodal functions, would hinder the MAB-OS
convergence rate to be as fast as the winning algorithm. In fact, we consider this as a good
indication of not easily trapping in locally optimal solutions when using MAB-OS, which
will be investigated on multi-modal and composite test functions. One might argue that
such functions are more similar to challenging, real-world optimization problems.

The convergence behavior of algorithms on high dimensional multimodal functions are
depicted in figure 3. There is no absolute winner on this type of landscape, however, HHO
and WOA are still performing better in most cases. We can see that MAB and random
bandit also usually reach the solutions that HHO achieves. In F8, HHO outperforms with
high margin, and its reason is similar to the unimodal case. In fact, the consistency in
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Figure 3: The performance of multi-armed bandit (MAB) between Differential Evolution (DE), Harris Hawks
Optimizer (HHO), and Whale Optimization Algorithm (WOA) compared to the vanilla DE, HHO, and WOA
algorithms, and random bandit selection baseline on high-dimensional multimodal fitness landscapes.

the single update rule can sometimes lead to never-ceasing improvement. An interesting
observation in F8 is that the MAB-OS also insists on using HHO in the majority of the
iterations due to its performance. Generally speaking, there is a relatively high randomness
in the behavior of algorithms on these functions that strongly depends on a variety of
parameters such as initialization and local minima conditions. This leads to the observation
that while MAB algorithms are performing relatively good here, there is no meaningful
difference between the random bandit and MAB in these functions.

The next type of functions are fixed dimensional multimodal functions which usually
have much lower dimensions but with different modalities that can trap algorithms in locally
optimal solutions (Figure 4). In such functions, DE has a better performance compared to
its performance in the previous functions. In fact, the exploration capability of DE makes

11



Figure 4: The performance of multi-armed bandit (MAB) between Differential Evolution (DE), Harris Hawks
Optimizer (HHO), and Whale Optimization Algorithm (WOA) compared to the vanilla DE, HHO, and WOA
algorithms, and random bandit selection baseline on fixed-dimensional multimodal fitness landscapes.

it converge to better solutions in many of these multimodal landscapes. This is while HHO
shows inferior behavior now compared to its performance on unimodal functions. Also, the
superiority of intelligent MAB-OS compared to random hybridization is observed in most
of the cases. Especially, in F21-F23, we can observe how MAB has a similar performance
to the winning algorithm DE while random bandit and WOA are in the middle and HHO
shows the worst behavior.

Figure 5 illustrates the convergence curves for the composite functions that have challeng-
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Figure 5: The performance of multi-armed bandit (MAB) between Differential Evolution (DE), Harris
Hawks Optimizer (HHO), and Whale Optimization Algorithm (WOA) compared to the vanilla DE, HHO,
and WOA algorithms, and random bandit selection baseline on composite fitness landscapes.

ing landscape combined from different types of landscapes. This feature complicates keeping
balance between exploration and exploitation. As a result, algorithm selection techniques
that rely on landscape features would possibly have difficulties to select the right choice of
algorithm for these functions. However, MAB-OS only depends on the rewards collected
from the function values which makes it independent from the landscape features. The in-
ferior performance of HHO is again observable in such functions. Similar to fixed dimension
multimodal functions, DE has a good performance on the majority of these problems.
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It is evident that MAB follows the outstanding behavior of DE and WOA in these
functions and relies less on HHO. An interesting observation is that generally MAB uses
HHO in much less number of iterations compared to previous functions. Another surprising
observation is that MAB can outperform all of the base algorithms in some functions. For
example in F24, F27, and F32, MAB shows the best convergence rate and final solution.
This indicates that MAB is able to combine the merits of different algorithms in a synergistic
manner that leads to performing beyond the underlying base algorithms.

3.3. Performance evaluation and statistical analysis

Table 2: Performance table of unimodal test functions. Average, standard deviation, and the best obtained
solutions are reported on each test function for all the baseline algorithms as well as random selection and
multi-armed bandit algorithm selection

Objective Function DE HHO WOA RANDOM MAB

F1
Ave 3.8485E-10 5.4443E-133 6.2894E-172 2.6749E-114 6.1063E-56
Std 1.6871E-10 2.9109E-132 0.00 1.4404E-113 3.2883E-55
Best 1.1296E-10 2.2541E-147 2.1945E-187 1.8336E-156 2.9331E-192

F2
Ave 5.9057E-06 3.1109E-69 9.4168E-110 1.4553E-67 5.0403E-32
Std 2.1499E-06 1.3889E-68 3.2983E-109 5.4537E-67 2.7143E-31
Best 2.0261E-06 3.7224E-78 2.7212E-117 2.2937E-84 1.5031E-107

F3
Ave 1.6513E+04 3.3200E-108 1.1920E+04 1.2984E-78 5.0697E-13
Std 2.8884E+03 1.4293E-107 7.3915E+03 6.9920E-78 2.2117E-12
Best 8.5027E+03 7.6186E-130 1.5087E+03 9.8246E-109 1.2515E-143

F4
Ave 1.4803E+00 2.0502E-65 2.3074E+01 2.8650E-56 4.6356E-10
Std 7.4467E-01 8.9544E-65 2.3223E+01 1.5337E-55 2.0187E-09
Best 5.9087E-01 5.8329E-77 4.5818E-04 8.6694E-71 1.7562E-70

F5
Ave 2.4287E+01 9.0637E-04 2.6587E+01 9.9512E-03 1.6498E-03
Std 6.7448E-01 1.2677E-03 3.0543E-01 7.8235E-03 2.2999E-03
Best 2.2817E+01 9.7848E-07 2.6023E+01 7.5730E-04 1.4117E-06

F6
Ave 2.6214E-10 1.7254E-05 3.9657E-03 3.4340E-06 1.2326E-05
Std 1.4904E-10 2.5979E-05 2.4786E-03 3.1424E-06 2.7365E-05
Best 9.1883E-11 2.8510E-10 1.7987E-03 3.5143E-07 5.1433E-11

F7
Ave 2.1427E-02 7.9972E-05 6.4471E-04 1.4265E-04 1.4964E-04
Std 5.9699E-03 9.6293E-05 5.9913E-04 1.6949E-04 1.8282E-04
Best 1.1012E-02 3.8186E-06 5.1377E-05 1.5354E-05 6.1500E-06

Now that the convergence rates, on average, are observed and discussed, we provide the
tabular results on the final obtained solutions by the proposed framework compared to the
base algorithms. We evaluate the algorithms with different initialization conditions and
random seeds to have a fair comparison. The quantity of interest is the best solution that
the population has achieved at each point of the optimization (F ∗). We provide the average
and standard deviation of this value over 30 runs. Also, the best performance of these runs
is reported as a measure of the potential capability of the algorithms. The reason is that
some algorithms have more consistent, i.e. less variance, behaviors while others have more
stochastic, i.e. high variance, performances.
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Table 3: Performance table of unimodal test functions. Average, standard deviation, and the best obtained
solutions are reported on each test function for all the baseline algorithms as well as random selection and
multi-armed bandit algorithm selection

Objective Function DE HHO WOA RANDOM MAB

F8
Ave 6.3708E+03 5.0348E-02 8.5920E+02 1.0601E+02 3.3269E+02
Std 2.9597E+02 7.9861E-02 1.0619E+03 3.1223E+02 1.0699E+03
Best 5.5537E+03 3.8183E-04 6.6231E-02 1.0721E-03 6.1516E-04

F9
Ave 1.7049E+02 0.00 3.7896E-15 0.00 0.00
Std 1.2061E+01 0.00 2.0407E-14 0.00 0.00
Best 1.2340E+02 0.00 0.00 0.00 0.00

F10
Ave 7.6018E-06 4.4409E-16 3.5231E-15 4.4409E-16 9.1778E-16
Std 3.2677E-06 9.8608E-32 2.1964E-15 9.8608E-32 1.5166E-15
Best 3.2440E-06 4.4409E-16 4.4409E-16 4.4409E-16 4.4409E-16

F11
Ave 8.9137E-04 0.00 0.00 0.00 0.00
Std 3.3461E-03 0.00 0.00 0.00 0.00
Best 1.9976E-10 0.00 0.00 0.00 0.00

F12
Ave 3.4556E-03 7.6125E-07 9.4544E-04 4.8148E-07 8.6700E-07
Std 1.8609E-02 7.4942E-07 1.4927E-03 2.9504E-07 2.1891E-06
Best 4.8539E-11 1.6914E-10 1.6506E-04 4.6654E-08 3.8436E-11

F13
Ave 1.2293E-09 9.6779E-06 4.0308E-02 3.7319E-04 1.0974E-05
Std 8.5030E-10 1.6950E-05 4.9275E-02 1.9740E-03 3.9282E-05
Best 1.1923E-10 2.1571E-08 3.3570E-03 1.4183E-06 1.4592E-09

We employ two metrics to compare the algorithms in this section, The first metric is
based on the comparison of the statistical behavior of the algorithms. This metric considers
all of the trials and examines if there is a winning algorithm for each pair of algorithms. To
this end, we use paired t-test with significance level of α = 0.05 and rank them based on the
pair results of this test. This metric evaluates whether an algorithm’s better performance is
statistically meaningful or not and shows the consistency of the performance. The second
metric, focuses only on the best best performance, i.e. one trial, of the algorithms which
can represent the potential outcome of using a specific algorithm. We can then rank the
algorithms for each function based on this best obtained solution.

The final solutions for the unimodal functions F1-F7 are tabulated in table 2. The results
indicate that HHO has the best overall performance. The random online hybridization and
bandit also have relatively good results that is much better than the worst algorithm but
not as well as the best algorithm. This is in alignment with the observations from the
convergence curves.

Table 3 and table 4 report the results for the high dimensional and fixed dimensional
multimodal functions, respectively. As discussed in the previous section, we can see that DE
has a better performance on low dimensional multimodal landscapes and the MAB-OS is
also good enough in most of the cases and performs almost as well as the winning algorithm
for both average and the best performances.

At last, Table 5 shows the obtained solutions for the composition benchmark functions.
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Here, we can specifically observe that MAB-OS can not only perform as well as the winning
algorithm which is DE in majority of the cases but also outperforms it and achieves the first
rank among the algorithms.

To show the overall performance of the MAB-OS, we compute the relative ranking of the
algorithms for different types of functions based on the aforementioned metrics (Figure 6).
The results capture the discussed results about the performance of HHO and DE in different
types of landscapes where each of them are good only in specific types of landscapes. MAB,
however, have a good rank on all types of functions and on average achieves the first rank.
The order of the rankings of the algorithms over all of the benchmark functions is as follows:
MAB-OS < Random Bandits < DE < HHO < WOA.

Figure 6: The ranking of the base algorithms (HHO, DE, and WOA), random operator selection, and
Multi-Armed Bandit Optimizer Selection (MAB-OS) for different types of landscapes: a) Based on best
performance and b) Based on the statistical tests. The bar chart shows that Bandit, i.e. MAB, holds a
good ranking in almost all functions while other base algorithms are only good in specific type of landscapes.
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Table 4: Performance table of unimodal test functions. Average, standard deviation, and the best obtained
solutions are reported on each test function for all the baseline algorithms as well as random selection and
multi-armed bandit algorithm selection

Objective Function DE HHO WOA RANDOM MAB

F14
Ave -1.9962E-03 1.6237E-01 3.8965E-01 -1.9962E-03 -1.9962E-03
Std 4.3368E-19 8.8511E-01 1.7766E+00 4.3368E-19 4.3368E-19
Best -1.9962E-03 -1.9962E-03 -1.9962E-03 -1.9962E-03 -1.9962E-03

F15
Ave 3.0823E-02 3.0008E-02 3.0201E-02 3.0038E-02 3.0007E-02
Std 3.5890E-03 3.7100E-07 2.4901E-04 1.6437E-04 4.8341E-09
Best 3.0007E-02 3.0007E-02 3.0009E-02 3.0007E-02 3.0007E-02

F16
Ave 1.5465E-06 1.5465E-06 1.5465E-06 1.5465E-06 1.5465E-06
Std 4.2352E-22 1.1248E-11 6.7713E-11 1.0378E-15 8.2753E-17
Best 1.5465E-06 1.5465E-06 1.5465E-06 1.5465E-06 1.5465E-06

F17
Ave 8.8736E-04 8.8743E-04 8.8755E-04 8.8736E-04 8.8736E-04
Std 2.1684E-19 9.8602E-08 3.6067E-07 2.1684E-19 2.6926E-10
Best 8.8736E-04 8.8736E-04 8.8736E-04 8.8736E-04 8.8736E-04

F18
Ave -7.8426E-14 9.0000E-01 2.3582E-06 1.7599E-13 -7.7360E-14
Std 7.9936E-16 4.8466E+00 4.4223E-06 4.3999E-13 4.0917E-15
Best -8.0824E-14 -7.4163E-14 4.7904E-12 -7.4163E-14 -8.0380E-14

F19
Ave 1.2179E-03 1.2199E-03 2.6664E-03 1.2179E-03 1.2179E-03
Std 2.1684E-19 2.5256E-06 2.0834E-03 2.1684E-19 2.1684E-19
Best 1.2179E-03 1.2179E-03 1.2185E-03 1.2179E-03 1.2179E-03

F20
Ave 6.1414E-02 4.9699E-02 6.9192E-02 4.1599E-02 6.5378E-02
Std 5.9314E-02 5.8990E-02 1.0629E-01 5.7294E-02 5.8916E-02
Best -1.9952E-03 -1.9786E-03 -1.9930E-03 -1.9952E-03 -1.9952E-03

F21
Ave 1.6841E-01 5.0980E+00 6.7321E-01 2.7189E+00 4.3476E-07
Std 9.0694E-01 2.1346E-05 2.0460E+00 2.5433E+00 6.1290E-07
Best 3.2094E-07 5.0980E+00 7.1072E-06 3.2094E-07 3.2094E-07

F22
Ave 2.2248E-01 4.9608E+00 1.7331E+00 1.2401E+00 -1.4054E-04
Std 1.1989E+00 1.3258E+00 2.9301E+00 2.2481E+00 1.6090E-07
Best -1.4057E-04 1.2712E-04 -1.2147E-04 -1.4057E-04 -1.4057E-04

F23
Ave -1.0982E-04 4.6869E+00 1.8077E+00 1.2617E+00 -1.0967E-04
Std 4.0658E-20 1.8382E+00 3.0929E+00 2.2873E+00 8.0408E-07
Best -1.0982E-04 8.2292E-05 -6.3864E-05 -1.0982E-04 -1.0982E-04
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Table 5: Performance table of unimodal test functions. Average, standard deviation, and the best obtained
solutions are reported on each test function for all the baseline algorithms as well as random selection and
multi-armed bandit algorithm selection

Objective Function DE HHO WOA RANDOM MAB

F24
Ave 2.4909E+03 2.6521E+03 2.5847E+03 2.4941E+03 2.4033E+03
Std 1.3890E+01 5.3335E+01 6.0695E+01 5.3647E+01 3.4108E+01
Best 2.4687E+03 2.5139E+03 2.4869E+03 2.3826E+03 2.3262E+03

F25
Ave 7.4671E+03 8.3213E+03 7.1753E+03 4.9134E+03 5.8990E+03
Std 3.3703E+03 6.8934E+02 2.1715E+03 2.4121E+03 2.2190E+03
Best 2.3000E+03 6.9565E+03 2.3889E+03 2.3277E+03 2.3001E+03

F26
Ave 2.8474E+03 3.3338E+03 3.0875E+03 2.8889E+03 2.7384E+03
Std 8.6431E+00 1.0928E+02 7.7636E+01 7.0576E+01 2.1240E+01
Best 2.8300E+03 3.1648E+03 2.9733E+03 2.7853E+03 2.6996E+03

F27
Ave 3.0123E+03 3.5547E+03 3.1828E+03 3.0644E+03 2.9148E+03
Std 1.0713E+01 1.2507E+02 1.2140E+02 6.5126E+01 2.6482E+01
Best 2.9871E+03 3.3059E+03 2.9996E+03 2.9404E+03 2.8499E+03

F28
Ave 2.8871E+03 4.0346E+03 3.0518E+03 2.9627E+03 2.9028E+03
Std 1.0804E-01 2.7317E+02 5.8246E+01 2.9819E+01 3.7931E+01
Best 2.8868E+03 3.5207E+03 2.9566E+03 2.8974E+03 2.8835E+03

F29
Ave 5.6242E+03 1.0164E+04 7.7713E+03 6.0750E+03 5.0106E+03
Std 9.5219E+01 1.0697E+03 1.2860E+03 1.2786E+03 4.5631E+02
Best 5.3998E+03 8.2942E+03 3.4927E+03 2.9841E+03 4.0595E+03

F30
Ave 3.2033E+03 4.1035E+03 3.4124E+03 3.3068E+03 3.2267E+03
Std 6.5243E+00 3.0647E+02 1.0373E+02 5.3156E+01 1.8775E+01
Best 3.1908E+03 3.5440E+03 3.2589E+03 3.2377E+03 3.1992E+03

F31
Ave 3.2214E+03 5.8755E+03 3.4482E+03 3.3439E+03 3.2561E+03
Std 1.8212E+01 5.7905E+02 7.6608E+01 4.7560E+01 4.7881E+01
Best 3.2087E+03 4.3236E+03 3.3101E+03 3.2623E+03 3.2102E+03

F32
Ave 4.1334E+03 6.5483E+03 5.1554E+03 4.4442E+03 3.9744E+03
Std 1.6838E+02 1.0399E+03 5.1367E+02 3.1625E+02 3.3804E+02
Best 3.6610E+03 4.5833E+03 4.3048E+03 3.8496E+03 3.4411E+03

F33
Ave 4.8839E+04 1.6160E+09 1.9993E+08 6.0830E+06 2.7951E+07
Std 2.0401E+04 2.3742E+09 1.8260E+08 5.4657E+06 3.6157E+07
Best 2.4048E+04 4.2898E+06 2.1828E+07 3.4244E+05 1.7539E+04
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Overall, the results of the convergence curves, the solution tables, and the ranking charts
indicate that MAB-OS can provide a significant positive impact on the performance of the
base algorithms by employing the advantages of each method in the right time. It can thus
combine the local search capabilities of HHO or WOA with the exploration strategies of DE
in a systematic manner that is identified intelligently by reinforcement learning.

4. Conclusion

In this work, we proposed an online optimizer selection framework based on the multi-
armed bandits problem as a classical reinforcement learning problem. In this framework,
the behavior of the optimization algorithms during the optimization are evaluated and rep-
resented as estimated scores based on the rewards collected from their convergence curves.
Then, the better algorithms have a higher chance of selection based on the soft sampling
on the upper confidence bound of their scores. This technique results in adaptive operator
selection without spending significant additional resources of time or fitness evaluation. The
results of using this framework on the base algorithms containing HHO, DE, and WOA show
that it can outperform them and achieve the best ranking on average which can be viewed
as a new optimization algorithm with better performance without any manual changes on
the update rules of base algorithms. While this work shows the effect of this framework, we
should note that this framework has the potential to be used on different sets of base algo-
rithms which can be an interesting direction for future works. Also, the Multi-Armed Ban-
dit Problem contains different parameters, reward definition, and implementation schemes
which can be optimized for possible better results in the future works.
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Appendix A. Performance of metaheuristic algorithms on some benchmark func-
tions

Figure A1: Comparison of the convergence curves of several metaheuristic optimization algorithms on
some of the benchmark functions. We can observe that Harris Hawks Optimizer (HHO, orange curve),
Differential Evolution (DE, yellow curve), and Whale Optimization Algorithm (WOA, Blue curve) have
good performances among the evolutionary and swarm-based algorithms on these benchmark functions.
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Appendix B. Baseline Algorithms

Algorithm B1: Harris Hawks Optimization Algorithm [26]
Initialize the population Xi (i = 1, 2, ..., N) and maximum number of iterations T
while t ≤ T do

Check if any search agent goes beyond the search space and amend it
Calculate the fitness of each search agent
Set X∗ and F ∗ as the best solution and fitness
for each search agent do

E0 = 2r1 − 1 , J = 2(1− r2) . r1, r2 ∼ U(0, 1)
E = 2E0(1− t

T
)

if |E| ≥ 1 then

Xt+1 =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5

(X∗(t)−Xm(t))− r3(LB + r4(UB − LB)) q < 0.5

if |E| < 1 then
if r ≥ 0.5 and |E| ≥ 0.5 then

. Soft Besiege
Xt+1 = (X∗(t)−X(t))− E|JX∗(t)−X(t)|

else if r ≥ 0.5 and |E| < 0.5 then
. Hard Besiege
Xt+1 = X∗(t)− E|X∗(t)−X(t)|

else if r < 0.5 and |E| ≥ 0.5 then
. Soft Besiege with progressive rapid dives

Xt+1 =

{
Y = X∗(t)− E|JX∗(t)−X(t)| F (Y ) < F (X(t))

Z = Y +R× LF (D) F (Z) < F (X(t))

. D: Dimension, R: Random Vector (1×D), LF: Levý Flight

else if r < 0.5 and |E| < 0.5 then
. Hard Besiege with progressive rapid dives

Xt+1 =

{
Y = X∗(t)− E|JX∗(t)−Xm(t)| F (Y ) < F (X(t))

Z = Y +R× LF (D) F (Z) < F (X(t))

. Xm: Average position of the current population

return X∗, F ∗

~r1 ∈ [0, 1], ~r2 ∈ [0, 1], a = 2(1− t

T
) (B1a)

~A = 2a~r1 − a, ~C = 2~r2 (B1b)

~D = |~C ~Xp(t)− ~X(t)| (B1c)
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Algorithm B2: Differential Evolution Algorithm [2]
Initialize the population Xi (i = 1, 2, ..., N) and maximum number of iterations T
Calculate the fitness of each search agent
Set X∗ and F ∗ as the best solution and fitness
while t ≤ T do

for each search agent do
Generate 3 random indices I1, I2, I3 different than the current agent i
for d ∈ [D] do

r ∼ U(0, 1)

U
(d)
i (t) =

{
X

(d)
I1

(t) + F (X
(d)
I2

(t)−X(d)
I3

(t)) r ≤ CR

X
(d)
i (t) r > CR

. F: mutation factor, CR: crossover ratio
Check if Ui goes beyond the search space and amend it
if F (Ui(t)) ≤ F (Xi(t)) then

Xi(t+ 1) = Ui(t)
F (Xi(t+ 1)) = F (Ui(t))
if F (Ui(t)) < F ∗ then

update X∗ and F ∗

else if F (Ui(t)) > F (Xi(t)) then
Xi(t+ 1) = Xi(t)
F (Xi(t+ 1)) = F (Xi(t))

return X∗, F ∗

~X(t+ 1) = ~Xp(t)− ~A. ~D (B1d)

a2 = −1− t

T
, ~r3 ∈ [0, 1], ~l = 0.5 + (a2 − 1)~r3 (B2a)

~D′ = | ~Xp(t)− ~X(t)| (B2b)

~X(t+ 1) = ~D′.ebl.cos(2πl) + ~Xp(t) (B2c)
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Algorithm B3: Whale Optimization Algorithm (WOA) [27]
Initialize the whales population Xi (i = 1, 2, ..., N)
while t ≤ T do

Check if any search agent goes beyond the search space and amend it
Calculate the fitness of each search agent
Update X∗ if there is a better solution
update a, a2
for each search agent do

update A,C, l, p
if p ≥ 0.5 then

if |A| > 1 then
Select a random agent Xrand

Update the position of the current agent by Eq. B1 with Xp = Xrand

if |A| ≤ 1 then
Update the position of the current agent by Eq. B1 with Xp = X∗

if p < 0.5 then
update the position of the current agent by Eq. B2 with Xp = X∗

t = t+ 1
return X∗, F ∗
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Appendix C. Benchmark functions

Figure C1: 2D version of unimodal test functions (30 dimensional versions are used for the experiments).

Figure C2: 2D version of some multimodal test functions (F8-F13) and fixed dimension multimodal functions
(F14-F18).

Table C1 shows the functional form of the unimodal functions, and the multimodal
functions are listed in table C2. For the details of composition functions, please read the
full details on CEC-2017 benchmark [30].

24



Table C1: Unimodal Benchmark Functions

Function Range Dim

F1(x) =
∑N

i=1 x
2
i [-100,100] 30

F2(x) =
∑N

i=1 |xi|+ ΠN
i=1|xi| [-10,10] 30

F3(x) =
∑N

i=1(
∑i

j−1 xj)
2 [-100,100] 30

F4(x) = maxi{|xi|, 1 ≤ i ≤ N} [-100,100] 30

F5(x) =
∑N−1

i=1 [100(xi+1 − x2i )2 + (xi − 1)2] [-30,30] 30

F6(x) =
∑N

i=1([xi + 0.5])2 [-100,100] 30

F7(x) =
∑N

i=1 ix
4
i + random[0, 1) [-1.28,1.28] 30
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Table C2: Multimodal Benchmark Functions

Function Range Dim

F8(x) =
∑N

i=1−xi sin
√
|xi|+ 12569.487 [-500,500] 30

F9(x) =
∑N

i=1 [x2i − 10 cos 2πxi + 10] [-5.12,5.12] 30

F10(x) = −20exp(−0.2
√

1
N

∑N
i=1 x

2
i − exp( 1

N

∑N
i=1 cos (2πxi)) + 20 + e [-32,32] 30

F11(x) = 1
4000

∑N
i=1 x

2
i − ΠN

i=1 cos ( xi√
i
) + 1 [-600,600] 30

F12(x) = π
N
{10 sin (πy1) +

∑N−1
i=1 (yi − 1)2[1 + 10 sin2 (πyi+1)] [-50,50] 30

+(yN − 1)2}+
∑N

i=1 u(xi, 10, 100, 4), yi = 1 + xi+1
4

u(xi, a, k,m) =


k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

F13(x) = 0.1{sin2 (3πx1) +
∑N

i=1(xi − 1)2[1 + sin2 (3πxi + 1)] [-50,50] 30

+(xN − 1)2[1 + sin2 (2πxn)]}+
∑N

i=1 u(xi, 5, 100, 4)

F14(x) = ( 1
500

+
∑25

j=1
1

j+
∑2

i=1(xi−aij)6
)−1 − 1 [-65,65] 2

F15(x) =
∑11

i=1 [ai − x1(b2i+bix2)

b2i+bix3+x4
]2 + 0.0027 [-5,5] 4

F16(x) = 4x21 − 2.1x41 + 1
3
x61 + x1x2 − 4x22 + 4x42 + 1.03163 [-5,5] 2

F17(x) = (x2 − 5.1
4π2x

2
1 + 5

π
x1 − 6)2 + 10(1− 1

8π
) cos (x1) + 10− 0.397 [-5,5] 2

F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)] [-2,2] 2

×[30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]− 3

F19(x) = −
∑4

i=1 ciexp(−
∑3

j=1 aij(xj − p−ij)2) + 3.864 [1,3] 3

F20(x) = −
∑4

i=1 ciexp(−
∑6

j=1 aij(xj − pij)2) + 3.32 [0,1] 6

F21(x) = −
∑5

i=1 [(X − ai)(X − ai)T + ci]
−1 + 10.1532 [0,10] 4

F22(x) = −
∑7

i=1 [(X − ai)(X − ai)T + ci]
−1 + 10.4028 [0,10] 4

F23(x) = −
∑10

i=1 [(X − ai)(X − ai)T + ci]
−1 + 10.5363 [0,10] 4
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• MAB-OS is an online Optimizer Selection framework based on Multi-Armed 
Bandits problem. 

• The algorithms are viewed as armed bandits in a dynamic environment. 
• MAB-OS relies on the estimated values based on the collected rewards of each 

algorithm. 
• The performance of MAB-OS is evaluated by using HHO, DE, and WOA as base 

algorithms. 
• MAB-OS achieves the best overall ranking among the base and random 

algorithms. 

Highlights (for review)


