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Abstract

It is common to encounter combinatorial problems in binary domains
when facing real problems using computational resources. As there are a
large number of possible candidate solutions, this complicates the use of
classical and common algorithmic techniques to address them. When this
happens, it can become a problem associated with the high cost of resources
they generate, so great importance is given to solving these problems effi-
ciently. A study can be made on the existing methods to deal with this
problem, such as Metaheuristics. There are metaheuristics that allow op-
erating in discrete search spaces, however, in the case of continuous swarm
intelligence metaheuristics, it is necessary to adapt them to operate in these
domains. To carry out this adaptation, it is essential to use a binary scheme,
in order to take advantage of the original moves of metaheuristics designed for
continuous problems. In this work we propose to solve several combinatorial
problems by applying different reinforcement learning techniques, machine
learning area, on swarm-based metaheuristics for the selection of binariza-
tion schemes. Testing within these techniques, different elements such as
transfer functions and binarization techniques. Apriori we can notice from
several studies that implementations of swarm-based metaheuristics with re-
inforcement learning techniques affect the exploration-exploitation trade-off,
however, much more results and experimentation are required, to be able
to state that this hybridization works on several problems and not only on
the ones raised in these studies. Therefore, to demonstrate the performance
of the proposal, different parameterizations will be thoroughly evaluated by
means of the respective statistical tests. Different benchmank problems will
also be evaluated against other swarm-based metaheuristics that use these
reinforcement learning techniques for the selection of binarization schemes.

Keywords: Metaheuristics, binarization, machine learning, swarm intel-
ligence, reinforcement learning.

i



Contents

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Main Objective . . . . . . . . . . . . . . . . . . . . . . 3
1.4.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . 4

1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 4
2.1 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Taxonomy of Metaheuristics . . . . . . . . . . . . . . . 5
2.2 Whale Optimization Algorithm . . . . . . . . . . . . . . . . . 6
2.3 Grey Wolf Optimization . . . . . . . . . . . . . . . . . . . . . 9
2.4 Sine-Cosine Algorithm . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Binarization Techniques . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Two-Step Binarization Scheme . . . . . . . . . . . . . 14
2.5.2 First Step: Transfer Functions . . . . . . . . . . . . . . 15
2.5.3 Second Step: Binarization . . . . . . . . . . . . . . . . 22

2.6 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Hybrids in Metaheuristics . . . . . . . . . . . . . . . . . . . . 24
2.8 Reinforcement Learning Fundamentals . . . . . . . . . . . . . 25
2.9 Reinforcement Learning Supporting Metaheuristics . . . . . . 27
2.10 Temporal Difference Learning . . . . . . . . . . . . . . . . . . 28
2.11 Q-Learning: Off-policy TD Control . . . . . . . . . . . . . . . 28
2.12 SARSA: On-policy TD Control . . . . . . . . . . . . . . . . . 30
2.13 Difference between Q-Learning and SARSA . . . . . . . . . . 31
2.14 Backward Q-Learning . . . . . . . . . . . . . . . . . . . . . . 32
2.15 Set Covering Problem . . . . . . . . . . . . . . . . . . . . . . 34
2.16 Knapsack Problem . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Proposal 36
3.1 Binarization Scheme Selector . . . . . . . . . . . . . . . . . . 37
3.2 Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Determination of States . . . . . . . . . . . . . . . . . . . . . 40
3.5 Repair of Infeasible Solutions . . . . . . . . . . . . . . . . . . 40

ii



4 Preliminary Results 42
4.1 Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Statistical Test Results . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Action charts . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Exploration-Exploitation Charts . . . . . . . . . . . . . . . . 69

5 Analysis and Discussions 75
5.1 Tables Analysis and Discussions . . . . . . . . . . . . . . . . . 75
5.2 Charts Analysis and Discussions . . . . . . . . . . . . . . . . 76

6 Conclusions 77

iii



List of Figures

1 Categories and Subcategories of Optimization Methods . . . . 5
2 Classic Binarization Scheme . . . . . . . . . . . . . . . . . . . 15
3 S-Shaped Transfer Functions . . . . . . . . . . . . . . . . . . 15
4 S-Shaped Transfer Functions . . . . . . . . . . . . . . . . . . 15
5 O-Shaped Transfer Functions . . . . . . . . . . . . . . . . . . 16
6 X-Shaped Transfer Functions . . . . . . . . . . . . . . . . . . 16
7 Z-Shaped Transfer Functions . . . . . . . . . . . . . . . . . . 16
8 U-Shaped Transfer Functions . . . . . . . . . . . . . . . . . . 17
9 X-Shaped Time Variable Transfer Functions . . . . . . . . . . 17
10 S1-Shaped Time Variable Transfer Functions . . . . . . . . . 17
11 S2-Shaped Time Variable Transfer Functions . . . . . . . . . 17
12 S3-Shaped Time Variable Transfer Functions . . . . . . . . . 18
13 S4-Shaped Time Variable Transfer Functions . . . . . . . . . 18
14 V1-Shaped Time Variable Transfer Functions . . . . . . . . . 18
15 V1-Shaped Time Variable Transfer Functions . . . . . . . . . 18
16 V2-Shaped Time Variable Transfer Functions . . . . . . . . . 19
17 V2-Shaped Time Variable Transfer Functions . . . . . . . . . 19
18 V3-Shaped Time Variable Transfer Functions . . . . . . . . . 19
19 V3-Shaped Time Variable Transfer Functions . . . . . . . . . 19
20 V4-Shaped Time Variable Transfer Functions . . . . . . . . . 20
21 V4-Shaped Time Variable Transfer Functions . . . . . . . . . 20
22 Machine Learning Classification . . . . . . . . . . . . . . . . . 24
23 SARSA Algorithm Sequence . . . . . . . . . . . . . . . . . . . 30
24 An example of SCP . . . . . . . . . . . . . . . . . . . . . . . . 35
25 Solution to the practical example of SCP . . . . . . . . . . . . 35
26 Metaheuristic Scheme . . . . . . . . . . . . . . . . . . . . . . 36
27 General Proposal Scheme . . . . . . . . . . . . . . . . . . . . 37
28 Proposal Scheme with the combinations . . . . . . . . . . . . 38
29 y-axis with 85-action zoom. . . . . . . . . . . . . . . . . . . . 61
30 y-axis with 40-action zoom. . . . . . . . . . . . . . . . . . . . 61
31 85 Actions Chart - Average number of actions in exploitation

state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
32 85 Actions Chart - Average number of actions in exploration

state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
33 85 Actions Chart - Average number of actions in exploitation

state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
34 85 Actions Chart - Average number of actions in exploration

state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

iv



35 40 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

36 40 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

37 85 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

38 85 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

39 85 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

40 85 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

41 40 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

42 40 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

43 85 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

44 85 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

45 85 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

46 85 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

47 40 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

48 40 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

49 40 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

50 40 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

51 40 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

52 40 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

53 40 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

54 40 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

v



55 40 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

56 40 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

57 40 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

58 40 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

59 40 Actions Chart - Average number of actions in exploitation
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

60 40 Actions Chart - Average number of actions in exploration
state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

61 Exploration and Exploitation Chart of WOA - BCL - 61 solv-
ing SCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

62 Exploration and Exploitation Chart of WOA - MIR - 61 solv-
ing SCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

63 Exploration and Exploitation Chart of WOA - QL1 - 61 solv-
ing SCP with 85 actions. . . . . . . . . . . . . . . . . . . . . . 70

64 Exploration and Exploitation Chart of WOA - SA1 - 61 solv-
ing SCP with 85 actions. . . . . . . . . . . . . . . . . . . . . . 70

65 Exploration and Exploitation Chart of WOA - BQSA1 - 61
solving SCP with 40 actions. . . . . . . . . . . . . . . . . . . 70

66 Exploration and Exploitation Chart of WOA - BQSA1 - 61
solving SCP with 40 actions. . . . . . . . . . . . . . . . . . . 70

67 Exploration and Exploitation Chart of GWO - BCL - c2 solv-
ing SCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

68 Exploration and Exploitation Chart of GWO - MIR - c2 solv-
ing SCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

69 Exploration and Exploitation Chart of GWO - QL1 - c2 solv-
ing SCP with 85 actions. . . . . . . . . . . . . . . . . . . . . . 71

70 Exploration and Exploitation Chart of GWO - SA1 - c2 solv-
ing SCP with 85 actions. . . . . . . . . . . . . . . . . . . . . . 71

71 Exploration and Exploitation Chart of GWO - BQSA1 - c2
solving SCP with 40 actions. . . . . . . . . . . . . . . . . . . 72

72 Exploration and Exploitation Chart of GWO - BQSA1 - 57
solving SCP with 40 actions. . . . . . . . . . . . . . . . . . . 72

73 Exploration and Exploitation Chart of SCA - BCL - a4 solving
SCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

74 Exploration and Exploitation Chart of SCA - MIR - a4 solving
SCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



75 Exploration and Exploitation Chart of SCA - QL1 - a4 solving
SCP with 85 actions. . . . . . . . . . . . . . . . . . . . . . . . 73

76 Exploration and Exploitation Chart of SCA - SA1 - a4 solving
SCP with 85 actions. . . . . . . . . . . . . . . . . . . . . . . . 73

77 Exploration and Exploitation Chart of SCA - BQSA1 - a4
solving SCP with 40 actions. . . . . . . . . . . . . . . . . . . 73

78 Exploration and Exploitation Chart of SCA - BQSA1 - 45
solving SCP with 40 actions. . . . . . . . . . . . . . . . . . . 73

79 Exploration and Exploitation Chart of WOA - QL5 - KP2 100
solving 0-1KP with 40 actions. . . . . . . . . . . . . . . . . . 74

80 Exploration and Exploitation Chart of WOA - SA5 - KP2 100
solving 0-1KP with 40 actions. . . . . . . . . . . . . . . . . . 74

81 Exploration and Exploitation Chart of GWO - QL3 - KP2 100
solving 0-1KP with 40 actions. . . . . . . . . . . . . . . . . . 74

82 Exploration and Exploitation Chart of GWO - SA3 - KP2 100
solving 0-1KP with 40 actions. . . . . . . . . . . . . . . . . . 74

83 Exploration and Exploitation Chart of SCA - QL4 - KP5 solv-
ing 0-1KP with 40 actions. . . . . . . . . . . . . . . . . . . . . 75

84 Exploration and Exploitation Chart of SCA - SA4 - KP5 solv-
ing 0-1KP with 40 actions. . . . . . . . . . . . . . . . . . . . . 75

vii



1 Introduction

Nowadays, optimization problems related to industry and the scientific world
have grown to a large extent, causing more and more metaheuristics (MH)
to emerge trying to solve NP-hard combinatorial optimization problems [1].
According to the premise exposed by the “No Free Lunch Theorem” [2,3], it
“compels” our conscience to want to develop more and more robust optimiza-
tion algorithms that present feasible solutions, of quality and in reasonable
computation times, capable of solving NP-Hard problems.

In order to develop more robust algorithms, we can distinguish differ-
ent variations of techniques used in MH; in the first instance there is the
hybridization of mathematical programming with MH or also known as
“Matheuristics” [4]. There are methods that interrelate MH with problem
simulation, known as “Simheuristics” [5]. There are also hybridization meth-
ods between MH techniques combining their exploration-exploitation com-
ponents [6], currently, the area that is in constant development and on which
this research is focused, is the interaction between MH and Machine Learn-
ing (ML) techniques, where ML techniques support MH operators in various
ways in order to improve the performance [7–9].

With the continuous advances in digitization and the incorporation of
artificial intelligence in different processes, it is necessary to be able to solve
highly complex problems in binary domains in reduced computation times.
There are multiple MH that allow solving problems in binary domains that
do not need to vary their structure, however, MH designed to work on contin-
uous domain problems have demonstrated and presented better performance
and throughput in benchmark problems due to the fact that they allow con-
trolling the exploration-exploitation balance [10].

Of this particular case, the exploration-exploitation balance, there are
countless comments that the performance of the MH is greatly affected by
the trade-off between exploration and exploitation. However, these com-
ments are based solely on analysis of suboptimal results as they cannot
encompass the large number of tests or comparison with other techniques
(which also have suboptimal results) preventing them from achieving the
true optimum. There is also a lot of literature on this topic, but unfortu-
nately, it is not clear what the specific reasons are, or it is not explained
when and why a performance is poor or good. Finally, there are very few
papers that consider metrics to measure and control this balance, thus leav-
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ing exploration and exploitation ratios totally randoms.

Therefore, the objective of this work is to present a framework of different
implementations of RL in swarm-based MH for the resolution of combinato-
rial problems by selecting binarization schemes in an autonomous and fully
on-line manner. Testing within these techniques, different elements such as
transfer functions or the binarization technique. Apriori we can note due to
several studies that swarm-based MH implementations with RL techniques
affect the exploration-exploitation balance [11–14], however, more results and
experiments are required, to be able to affirm that this MH-RL hybridization
works in several problems and not only in those raised by these studies. This
is why, in order to demonstrate the performance of the proposal, different pa-
rameterizations will be evaluated in an exhaustive manner by means of the
respective necessary statistical tests. Also, different benchmark problems
will be evaluated against other swarm-based MH that use these RL tech-
niques for the selection of binarization schemes. It is necessary to mention
that with “performance” we refer to the results obtained when measuring the
fitness, that is, the one that obtains a lower average fitness in a minimization
problem or a higher average fitness in a maximization problem will have a
better “performance”.

1.1 Problem statement

The following subsections state the problem to be addressed through the
research questions and respective hypotheses, together with the main and
specific objectives, as well as the research methodology to be used.

1.2 Research Questions

The research questions that arise that drive the motivation for this work are
as follows:

• How to implement reinforcement learning techniques for binarization
scheme selection in swarm-based metaheuristics?

• Is it possible that reinforcement learning techniques for binarization
scheme selection improve the performance of swarm-based metaheuris-
tics solving combinatorial problems?

• Is it possible that new transfer functions and binarization techniques
of choice in the literature improve the performance of swarm-based
metaheuristics in solving combinatorial problems?
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1.3 Hypothesis

The hypotheses of this work are presented in this section. We propose four
hypotheses with their respective null hypotheses.

• The use of reinforcement learning techniques for the selection of bi-
narization schemes improves the performance of swarm-based meta-
heuristics when solving combinatorial problems.

• (H0) The use of reinforcement learning techniques for the selection of
binarization schemes does NOT improve the performance of swarm-
based metaheuristics when solving combinatorial problems.

• The use of reinforcement learning techniques for the selection of bina-
rization schemes affects the exploration-exploitation balance of swarm-
based metaheuristics when solving combinatorial problems.

• (H0) The use of reinforcement learning techniques for the selection of
binarization schemes NOT affects the exploration-exploitation balance
of swarm-based metaheuristics when solving combinatorial problems.

• Other metrics besides fitness influence the performance of exploration
and exploitation balancing in swarm-based metaheuristics solving com-
binatorial problems.

• (H0) Other metrics than fitness do NOT influence the performance of
exploration and exploitation balancing in swarm-based metaheuristics
solving combinatorial problems.

1.4 Objectives

The objectives of the alleged work are presented in this section. Identifying
general and specific.

1.4.1 Main Objective

To develop a framework that compiles various reinforcement learning tech-
niques in swarm-based metaheuristics by selecting binarization schemes to
solve combinatorial problems. Performing in turn, different adjustments,
such as reward functions, operators and metrics.
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1.4.2 Specific Objectives

• Generate a collection of techniques to improve the performance of
swarm-based metaheuristics.

• Implement various reinforcement learning techniques in swarm-based
metaheuristics that allow autonomous selection of binarization schemes.

• Compare the results of the different techniques implemented and demon-
strate the performance of the different techniques.

1.5 Research Methodology

The proposed work has a quantitative approach with an explanatory scope,
since a comparison is made between several proposed and existing techniques.
It is also an exploratory study since it is necessary to study which similar
techniques and implementations have better performance.

2 Related Work

This section will present the general concepts necessary to understand the
framework that compiles several reinforcement learning techniques in swarm-
based metaheuristics.

2.1 Metaheuristics

First we must know where MH come from in order to understand what they
are and how they work. According to the work of Talbi in [15], we can
divide optimization methods into two large groups: exact methods, meth-
ods by which we can obtain better solutions in a given search space; and
approximate methods, which generate high quality solutions in reasonable
computation times for practical use. Among the approximate methods we
find the approximate and heuristic algorithms, in the latter, we find the MH,
algorithms that have two subcategories. Those based on a single solution and
those based on population. The figure (1) details graphically what has been
expressed above, making clearer both the categories and subcategories of the
optimization methods presented by Talbi.

4



Figure 1: Categories and Subcategories of Optimization Methods

MH is a branch of optimization in computer science and applied mathe-
matics, related to algorithms and computational complexity theory. Where
an MH is defined as an iterative method which seeks to solve a problem,
using parameters given by the same. Guiding a subordinate heuristic in
order to find solutions close to the optimal one, creating a union between
exploitation and exploration in an ideal way in the search space..

Over the past 20 years, numerous MH have been developed in various
disciplines that lie at the intersection of several fields, such as artificial intel-
ligence, computational intelligence, soft computing, mathematical program-
ming, and operations research. Most MH mimic natural metaphors to solve
complex optimization problems [15]. This is why different types of MH have
emerged, focusing on different types of problems and showing different search
behaviors to reach the solution. Therefore they can be classified according to
their inspiration, it is known that the movements and ways to build solutions
are based on various behaviors [16], such as those based on Evolution [17],
based on swarm intelligence [1], based on physics [18] and based on human
behavior and societies [19].

2.1.1 Taxonomy of Metaheuristics

There are different approaches to classify and describe an MH algorithm, de-
pending on the characteristics to be emphasized. Therefore, we will describe
the most important ways of classification.
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• Nature Inspired vs. Non-Nature Inspired: It is based on com-
paring the origin of the algorithm. There are some that find their
origin in the behavior of some species in nature such as Grey Wolf
Optimization, Whale Optimization Algorithm or Ant Algorithms; and
unlike others that are not inspired by nature, such as Tabu Search and
Iterated Local Search.

• Population-Based vs. Single Point Search: The number of solu-
tions used at the same time determines whether the algorithm works
on a population, or on a single solution. The latter are called trajectory
methods, and are formed by MH based on local search Tabu Search, It-
erated Local Search and Variable Neighborhood Search. Where each one
shares the characteristic of describing a trajectory in the search space,
while it is being performed. On the other hand, population-based MH
describe the evolution of a set of points in the search space.

• Dynamic vs. Static Objective Function: They can also be com-
pared depending on how the objective function is used. While some
maintain the function proposed in the representation of the problem,
others modify it during its search, such as the Guided Local Search
algorithm. The purpose of this is that the function manages to incor-
porate the information gathered during the search process.

• One vs. Various Neighborhood Structures: Most metaheuris-
tic algorithms work with a single neighborhood structure. In other
words, the topology of the fitness landscape does not change over the
course of the algorithm. Other MH, such as the Variable Neighborhood
Search, use a set of neighborhood structures that offer the possibility
to diversify the search by switching between different landscapes.

• Memory Usage vs. Memory-Less Methods: Another feature is
the memory usage given to each MH. Where some use an adaptive
memory for their search history, in contrast to others that use a static
memory as in the Branch & Bound algorithm.

2.2 Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) is inspired by the hunting be-
havior of humpback whales, specifically, how they make use of a strategy
known as “bubble netting”. This strategy consists of locating the prey and,
by means of moving in spiral turns that are similar to a “9”, enclosing in on
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the prey. This algorithm was invented by Mirjalili and Lewis in 2015 [17].

The WOA metaheuristic starts with a set of random solutions. At each
iteration, the search agents update their positions with respect to a randomly
chosen search agent or the best solution obtained so far. There is a param-
eter a that is reduced from 2 to 0 to provide changes between exploration
and exploitation. When the equation vector (1) has value: |

−→
A | ≥ 1, a new

random search agent is chosen. On the other hand, when |
−→
A | < 1, the best

solution is selected; the point of this is to be able to update the position of
the search agents.

On the other hand, the value of the parameter p (random number between
0 and 1) allows the algorithm to switch between a spiral or circular motion.
In order to assimilate this, there are three movements that are crucial when
working with the metaheuristic:

1. Searching for prey (p < 0.5 and |A| ≥ 1): The whales search for
prey randomly based on the position of each prey. When the algorithm
determines that |

−→
A |≥ 1, then we can say that it is exploring and

allows WOA to perform a global search. We represent this first move
with the following mathematical model:

−→
X t+1

i =
−−−→
Xt

rand −
−→
A ·
−→
D

−→
D = |

−→
C ·
−−−→
Xt

rand −
−→
X t

i|
(1)

where t denotes the current iteration,
−→
A and

−→
C are coefficient vectors

and
−−−→
Xrand is a random position vector (i.e., a random whale) chosen

from the current population. The vectors
−→
A and

−→
C can be computed

according to the following Equation (2):

−→
A = 2−→a · −→r −−→a
−→
C = 2 · −→r

(2)

where, −→a decreases linearly from 2 to 0 over iterations (both in the
exploration and exploitation phases) and −→r corresponds to a random
vector of values between [0, 1].

2. Encircling the prey (p < 0.5 and |A| < 1): Once the whales have
found and recognized their prey, they begin to encircle them. Since the
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position of the optimal design in the search space is not known in the
first instance, the metaheuristic assumes that the current best solution
is the target prey or is close to the optimum. Therefore, once the best
search agent is defined, the other agents will attempt to update their
positions toward the best search agent. Mathematically, it is modeled
in Equation (3):

−→
X t+1

i =
−→
X∗t

i −
−→
A ·
−→
D

−→
D = |

−→
C ·
−→
X∗t

i −
−→
X t

i|
(3)

where
−→
X∗ is the position vector of the best solution obtained so far

and
−→
X is the position vector. The vector

−→
A and

−→
C are calculated in

Equation (2). It is worth mentioning that
−→
X must be updated at each

iteration if a better solution exists.

3. Bubble net attack (p ≥ 0.5): For this attack, the “shrinking net
mechanism” is presented and this behavior is achieved by decreasing
the value of a in the Equation (2). Thus, as the whale spirals, it shrinks
the bubble net until it finally catches the prey. This motion is modeled
with the following Equation (4):

−→
X t+1

i =
−→
D′ · ebl · cos (2πl) +

−→
X∗t

i
−→
D′ = |

−→
X∗t

i −
−→
X t

i|
(4)

where
−→
D′ is the distance of the i-th whale from the prey (the best

solution obtained so far), b is a constant for defining the shape of the
logarithmic spiral and l is a random number between [−1, 1].

It is worth mentioning that humpback whales simultaneously swim around
the prey within a shrinking circle and along a spiral trajectory. In order to
model this simultaneous behavior, there is a 50% probability of choosing
between the encircling prey mechanism (2) or the spiral model (3) to update
the position of the whales during optimization. The mathematical model is
as follows: .

−→
X t+1

i =


−→
X∗t

i −
−→
A ·
−→
D If p < 0.5

−→
D′ · ebl · cos (2πl) +

−→
X∗t

i If p ≥ 0.5
(5)

The pseudocode (1) of the metaheuristic [20] is included for a better
understanding of what has been previously stated:
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Algorithm 1 Whale Optimization Algorithm
1: Initialize the whale population Xi (i = 1, 2, . . . , n)
2: Calculate the fitness of each search agent
3: X∗ = The best search agent
4: while t ≤ Maximum number of iterations do
5: for each search agent do
6: Update a,A,C, l and p
7: if (p < 0, 5) then
8: if (|A| < 1) then
9: Update the position of the current search agent using of

Equation (3).
10: else(|A| ≥ 1)
11: Select a random search agent (XRand)
12: Update the position of the current search agent using

Equation (1).
13: end if
14: else(p ≥ 0, 5)
15: update the position of the current search agent using Equation

(4).
16: end if
17: end for
18: Check if any search agent goes beyond the search space and we modify

it.
19: Calculate the fitness of each search agent
20: Update X∗ if there is a better solution
21: t← t+1

22: end while
23: Return (X∗)

2.3 Grey Wolf Optimization

The Grey Wolf Optimizer (GWO) is inspired by and mimics the leadership
hierarchy and hunting mechanism of grey wolves in the wild. At the top
of the pack are the alpha wolves, responsible for decision making, followed
by the beta and delta wolves. The rest of the pack are called or referred
to as omegas [21]. The prey location is the optimal solution and the wolves
represent potential solutions in the search space. The wolves closest to the
prey are the alpha, beta and delta wolves, wolves corresponding to the best,
second and third best solutions found so far respectively. The representation
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of these leading wolves in the search space is formed as: α, β and δ. The
position of the rest of the pack, previously referred to as omegas are updated
in the search space based on their positions relative to that of the leaders.
For prey hunting, a set of steps must be applied: encircle, stalk, attack, and
search for prey.

1. Encircling the prey: The pack surrounds the prey by repositioning
agents or wolves depending on the location of the prey, this type of
action can be modeled as follows:

−→
X (t+ 1) =

−→
Xp(t)−

−→
A ·
−→
D (6)

Where, t is the iteration,
−→
Xp is the position of the prey,

−→
X is the

position of the wolf and
−→
D can be defined as follows:

−→
D =|

−→
C ·
−→
Xp(t)−

−→
X (t) | (7)

On the other hand, the coefficient vectors
−→
A and

−→
C of equations (6)

and (7) respectively can be calculated as:

−→
A = 2a · −→r1 − a
−→
C = 2−→r2

(8)

Where, a decreases linearly from 2 to 0 as the iterative process pro-
gresses. Finally −→r1 and −→r2 correspond to uniform random vectors of
value between 0 and 1.

2. Stalking the prey until it stops: This action is performed by the
entire pack based on information from the α, β and δ wolves, which
are expected to know the location of the prey they are stalking, this
can be mathematically modeled as:

−→
X (t+ 1) =

−→
X1 +

−→
X3 +

−→
X3

3
(9)

10



Where
−→
X1,
−→
X3 and

−→
X3 are defined as:

−→
X1 =|

−→
Xα −

−→
A1 ·
−→
Dα |

−→
X2 =|

−→
Xβ −

−→
A2 ·
−→
Dβ |

−→
X3 =|

−→
Xδ −

−→
A3 ·
−→
Dδ |

(10)

−→
Xα,

−→
Xβ and

−→
Xδ are the first three best solutions at a given iteration

t,
−→
A1,
−→
A2 y

−→
A3 we define them as in the equation (8) for the vector

−→
A

and finally
−→
Dα,
−→
Dβ and

−→
Dδ are defined using the following:

−→
Dα =|

−→
C1 ·
−→
Xα −

−→
X |

−→
Dβ =|

−→
C2 ·
−→
Xβ −

−→
X |

−→
Dδ =|

−→
C3 ·
−→
Xδ −

−→
X |

(11)

Where,
−→
C1,
−→
C2 and

−→
C3 are defined in the equation (8) for the vector

−→
C

3. Attack the prey: Agents approach the prey, which is achieved by
decreasing the scan rate a. The parameter a is updated linearly at
each iteration to go from 2 to 0 as follows:

a = 2− t
2

T
(12)

Where, t corresponds to the number of the current iteration and T
is the number of total iterations. According to Mirjalili in [21], due
to the values that a can take, it allows to transit smoothly between
exploration and exploitation. It indicates that half of the iterations are
devoted to exploration and the other half is allocated to exploitation.
This is interpreted as the wolves move or change their position to any
random position between their current position and the position of the
prey.

4. Search for prey: To search for prey the wolves separate from each
other. This behavior is modeled by setting large values of the param-
eter a in the equation (12) to allow exploration of the search space.
Therefore, wolves diverge from each other to better explore the search
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space and then converge again to attack when they find better prey.
It is necessary to mention, that any wolf can find a better (optimal)
prey. If a wolf gets close to the prey, it will become the new alpha and
the other wolves will be divided into beta, delta and omegas according
to their distance from the prey.

The parameter a gives random weights to the dam and shows the impact
of the dam as in the equations (6) and (7). This allows GWO to exhibit more
randomic behavior, thus favoring exploration and evasion of local optima.
It is worth noting, that a provides random values at all times keeping in
mind the goal of emphasizing exploration not only at the beginning of the
optimization process but until its end as well.

As was presented in the whale algorithm (section 2.2), for a better under-
standing of all the movements of the metaheuristic, pseudocode (2) indicating
how it operates algorithmically is made available to the reader:

Algorithm 2 Grey Wolf Optimization
1: initialize a population of n random gray wolf positions
2: Find α, β and δ as the first three best fitness solutions
3: Initialize t = 0
4: while t ≤ Maximum number of iterations do
5: for each wolf in the pack do
6: Update the current position of the wolf according to Eq. 9
7: end for
8: end while
9: Update a, A and C according to Eqs. (12) y (8)

10: Evaluate the positions of the individual wolves
11: Update the positions of α, β and δ three best solutions of the current

population
12: t← t+1

13: Return the wolf to its optimum position

2.4 Sine-Cosine Algorithm

This algorithm based on the trigonometric functions sine and cosine, was
created by Mirjalili in 2016 [22]. Like all optimization techniques based
on iterations this one starts with a random population, then through the
equations of motion (13) and (14).
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Xt+1
i = Xt

i + r1 · sin(r2) · |r3P t
i −Xt

i | (13)

Xt+1
i = Xt

i + r1 · cos(r2) · |r3P t
i −Xt

i | (14)

Therefore the general equation of the metaheuristic Sine Cosine Algo-
rithm is the one presented in Eq. (15).

Xt+1
i =


Xt+1

i = Xt
i + r1 · cos(r2) · |r3P t

i −Xt
i | r4 ≥ 0.5

Xt+1
i = Xt

i + r1 · sin(r2) · |r3P t
i −Xt

i |, r4 < 0.5
} (15)

Where:

r1 = 2 · π ·Rand() (16)
r2 = 2 ·Rand() (17)
r3 = Rand() (18)
r4 = 2 · π ·Rand() (19)

The four parameters of the equations of motion are r1, r2, r3, r4. Where
r1 determines the direction of the motion, i.e. towards or away from the
best known solution (Eq. 16). r2 defines the magnitude of the motion (eq.
17). r3 integrates how random the motion will be, when r3 > 1 the motion
will be more stochastic (Eq. 18). r4 determines whether the motion will be
performed with the sine or cosine function in the same proportion (Eq. 19).

The metaheuristic procedure, as with the whale and grey wolf, is ex-
plained in the pseudocode (3):

2.5 Binarization Techniques

Within the continuous MH, there are binarization techniques, which consist
of transferring the values of a continuous domain to a binary one. This trans-
fer of values is carried out with the aim of preserving the quality movements
of continuous MH and thus generate quality binary solutions.

In several NP-Hard combinatorial problems, continuous MH operating
with a binarization scheme have presented a great performance, which has
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Algorithm 3 Sine-Cosine Algorithm
1: Initialize a set of search agents (Solutions)
2: Initialize t = 0
3: while t ≤ Maximum number of iterations do
4: Evaluate each of the search agents by objective function
5: Update best solution obtained so far (XBest)
6: Update r1, r2, r3 and r4
7: Update the position of the search agent using Eq. 15
8: end while
9: t← t+1

10: Return XBest

attracted the interest of the scientific community, some examples of the previ-
ously mentioned are: Binary Magnetic Optimization Algorithm [23], Binary
Bat Algorithm [24], Binary Dragonfly [25], among others [26–33].

Among the most commonly used binarization schemes in recent times
[10], the two-step techniques stand out because they do not alter the func-
tioning of the other elements of the MH.

2.5.1 Two-Step Binarization Scheme

For various problems, two-step binarization schemes have shown great rele-
vance [34]. As the name says, this binarization scheme is composed of two
steps, the first one being the transfer function. This function allows trans-
ferring the values generated by the continuous MH to a continuous interval
between [0, 1]. Once the values are in a continuous interval, the second step
is performed; the binarization, which consists of transferring this interval to
a binary value. With the Figure (2) we can appreciate the above described
in a better way.
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Figure 2: Classic Binarization Scheme

2.5.2 First Step: Transfer Functions

Kennedy et al. in 1997 [35] introduced transfer functions. Their main ad-
vantage is the delivery of a probability between 0 and 1 at a low computa-
tional cost. In the literature there are several innovative transfer functions
other than the classical S and V, such as: O-types, X-types, Z-types, U-
types [36–45], and even variations of the classical ones that could be called
as “time-varying” [25, 46–48]. They can be represented graphically in the
figures (3 - 21). These functions have four variations each, as shown in Table
(1).
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Figure 5: O-Shaped Transfer Functions
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Figure 12: S3-Shaped Time Vari-
able Transfer Functions
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Figure 13: S4-Shaped Time Vari-
able Transfer Functions
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Figure 14: V1-Shaped Time Vari-
able Transfer Functions
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Figure 16: V2-Shaped Time Vari-
able Transfer Functions
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Figure 17: V2-Shaped Time Vari-
able Transfer Functions
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Figure 18: V3-Shaped Time Vari-
able Transfer Functions
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Figure 20: V4-Shaped Time Vari-
able Transfer Functions
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Table 1: Transfer Functions

Type Transfer Function

S1 [29,31] T(dj
w) =

1

1+e−2d
j
w

(20)

S2 [29,49] T(dj
w) =

1

1+e−d
j
w

(21)

S3 [29,31] T(dj
w) =

1

1+e
−d

j
w

2

(22)

S4 [29,31] T(dj
w) =

1

1+e
−d

j
w

3

(23)

V1 [29,50] T(dj
w) =

∣∣∣erf (√
π
2 djw

)∣∣∣ (24)

V2 [29,50] T(dj
w) =

∣∣∣tanh(djw)∣∣∣ (25)

V3 [29,31] T(dj
w) =

∣∣∣∣ djw√
1+(djw)2

∣∣∣∣ (26)

V4 [29,31] T(dj
w) =

∣∣∣ 2πarctan(
π
2d

j
w

)∣∣∣ (27)

O1 [36,37] T (djw) = sin(2 · π(x− a) · b · cos(2 · π(x− a) · c)) + d

a = 0, b = 1, c = 1, d = 0
(28)

O2 [36,38] T(dj
w) = ⌊|xmod2|⌋ (29)

O3 [36,39] T(dj
w) =

(djw+djwmin)

(|djwmin|+djwmax
) (djwmin ≤ djw ≤ djwmax) (30)

O4 [36,40] T(dj
w) = djw (31)

X1 [41,42] T(dj
w) =

1

1+e2d
j
w

(32)

X2 [41,42] T(dj
w) =

1

1+ed
j
w

(33)

X3 [41,42] T(dj
w) =

1

1+e
d
j
w
2

(34)

X4 [41,42] T(dj
w) =

1

1+e
d
j
w
3

(35)

Z1 [43,44] T(dj
w) =

√
1− 2d

j
w (36)

Z2 [43,44] T(dj
w) =

√
1− 5d

j
w (37)

Z3 [43,44] T(dj
w) =

√
1− 8d

j
w (38)

Z4 [43,44] T(dj
w) =

√
1− 20d

j
w (39)21



2.5.3 Second Step: Binarization

The function of binarization is to discretize the probability obtained from the
transfer function, delivering a binary value. For this step there are different
techniques in the literature such as those exemplified in the Table (2).

Table 2: Techniques of Binarization

Type Binarization

Standard Xj
new =

{
1 if rand ≤ T (djw)

0 else.
(40)

Complement Xj
new =

{
Xj

w if rand ≤ T (djw)

0 else.
(41)

Static
Probability

Xj
new =


0 if T (djw) ≤ α

Xj
w if α < T (djw) ≤ 1

2(1 + α)

1 if T (djw) ≥ 1
2(1 + α)

(42)

Elitist Xj
new =

{
Xj

Best if rand < T (djw)

0 else.
(43)

Roulette
Elitist

Xj
new =


P [Xj

new = ζj ] =
f(ζ)∑

δ∈Qg
f(δ) if rand ≤ T (djw)

P [Xj
new = 0] = 1 else.

(44)

2.6 Machine Learning

ML is a subfield of computer science and artificial intelligence, which en-
compasses a series of algorithms that learn from a data set and are capable
of making predictions [9]. ML techniques have been gaining popularity in
recent times and various applications can be found, ranging from everyday
applications, research and even industrial use [51–55]. According to the liter-
ature, the classification of the different techniques that ML has are presented
in different ways, however, all agree that the most common classification di-
vides the algorithms according to their learning paradigm, in other words,
if it is supervised or not, or if we are reinforcing learning. These paradigms
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are classified in Figure (22).

• Supervised Learning:As the name indicates, these algorithms de-
pend on the supervision of a user for their correct operation, in other
words, the algorithms need a training phase [56]. The classic example
of supervised learning would be image classification, the algorithm is
trained by giving it a set of images with their respective labels. In this
way it learns from the information contained in the images, being able
to generate image-label relationships. As a result of this relationship
and training, if the algorithm receives a new image that does not be-
long to the training set, it will be able to identify the corresponding
label.

• Unsupervised Learning: In this type of algorithm, the training
phase is not necessary as in the supervised algorithms, since they de-
tect patterns and characteristics among the data provided, which al-
lows them to fulfill certain tasks [57]. An example could be clustering
techniques, where you want to group data containing similar charac-
teristics without having to define what these characteristics are within
the dataset. K-means [58] as a direct example takes care of identifying
centroids within the dimensions of the data given to the algorithm and
thus identifies similar features among the data.

• Semi-supervised Learning: These mixed algorithms are an inter-
mediate classification to the supervised and unsupervised paradigms,
since they share characteristics of both. An example could be image
classification again, however, not all labels are known for a given data
set. So this mixed strategy between algorithms that use the infor-
mation from the image-label relationship (supervised), together with
unsupervised algorithms to complete or use the information obtained
from the features and patterns of the image-label relationships (unsu-
pervised) must be used [59–61].

• Reinforcement Learning: Reinforcement learning [62], has been
growing in popularity due to its ease of access to large-scale computing,
as well as the great performance that has been achieved. A possible
example to this, is the work done by Mnih et al. [63], where they
use reinforcement learning techniques called Deep Q-network, where
it overcomes 49 Atari 2600 console games. The algorithm receives as
input the pixels and the score of the game, and through a deep network
manages to learn the sequence of moves to be performed to maximize
the score.
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Figure 22: Machine Learning Classification

2.7 Hybrids in Metaheuristics

A hybrid MH is described as the combination of a metaheuristic algorithm
and a different learning algorithm, including Matheuristics, Constraint Pro-
gramming, ML [6], among others. For this work we will focus on the hybrids
generated with ML, where we find two groups: ML supporting MH, or MH
supporting ML.

Focusing on the first group mentioned above, in the work of García et
al. [64], two lines of research are shown. First, we find the integration of
ML as the replacement of an operator, such as the handling of a population,
local search and parameter tuning. Second, is to use ML as a selector of a
set of MH, choosing the most appropriate one depending on the problem to
be addressed.

When using ML as a selector, we can divide this category into three
groups, the first of which is algorithm selection that chooses from a set of
techniques for the problem in order to obtain better performance for a set of
similar instances [65]. Secondly we find the hyperheuristic strategies, where
their goal is to use the MH to cover a set of problems. And finally we
find cooperative strategies, which combine algorithms sequentially, with the
objective of improving the robustness of the solution. For this work, we will
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investigate the hybridization between the use of MH in conjunction with
reinforcement learning techniques, techniques that belong to the ML area.

2.8 Reinforcement Learning Fundamentals

Based on Reinforcement Learning (RL), an agent consists of four sub-elements:
a policy, a value function, a reward function and optionally, an environment
model [66].

Then, as a definition:

• A policy defines the agent’s behavior at each instant of time, i.e., it is
a mapping from the set of perceived states to the set of actions to be
performed when the agent is in those states.

• The value function allows the agent to aim at maximizing the sum
of total rewards in the long-term. It calculates the value of a state-
action pair as the total amount of rewards that the agent can expect
to accumulate in the future, starting from the state he is in. Thus,
the agent selects the action based on value judgments. Indeed, while
reward determines the immediate and intrinsic desirability of a state-
action pair, value indicates the long-term desirability of a state-action
pair considering likely future state-action pairs and their rewards.

• A reward function represents the agent’s goal, i.e., it translates each
perceived state-action pair into a single number. In other words, a
reward indicates intrinsic desirability of that state-action pair. It is a
way of communicating to the agent what the agent wants to obtain,
but not how to achieve it.

• A model of the environment is intended to reproduce the behavior of
the environment, i.e. the model that directs the agent to the next state
and the next reward on the basis of the current state-action pair. The
model of the environment is not always available, that is why it is one
of the optional elements.

Then, at each of the discrete time steps, i.e., t = 0, 1, 2, ..., N , the agent
and the environment interact with each other. Thus, the former receives
from the latter a representation of it at time t, st ∈ S, where S is the set
of available states, which summarizes all the information regarding the en-
vironment. Based on this, an action at ∈ A(st) is selected by the agent,
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where A(st) is the set of available actions in state st. In the next step, i.e.,
t+ 1, the agent is in a new state (st + 1) and receives a reward rt+1 ∈ R in
response to the performed action at.

Since in RL the agent’s objective is the maximization of the value func-
tion, at time t the agent chooses the action that maximizes the expected
value of the total rewards that can be obtained in the future from the state
in which the agent is. The expected reward Rt, is generally defined as a func-
tion of the current and discounted future rewards, the equation representing
this is as follows:

Rt =
n∑

j=0

γj · rt+j+1 (45)

Where, γ ∈ [0, 1] is the discount factor. Therefore, the agent’s goal is to
learn a policy capable of maximizing long-term rewards by interacting with
the environment based on one’s own experience. To do so, at each step t,
starting from the state st, the agent has to compute as follows the value of
the action-value function Qπ(s, a) for each possible action on the basis of the
policy π. The policy π, can be defined as:

Qπ(s, a) = Pπ{Rt | st = s, at = a} (46)

A fundamental property of the action-value function is the fulfillment of
the following recursive relation, known as Bellman’s equation for Qπ(s, a):

Qπ(s, a) = Pπ{rt+1 + γ ·Qπ(st+1, at+1) | st = s, at = a} (47)

To learn a policy capable of maximizing long-run rewards, the agent has
to select the action that fulfills a relation, called a greedy policy.

Q∗(s, a) = maxQπ(s, a) (48)

Since Q∗(s, a) is a value function that is under the policy π, then, Bell-
man’s equation is satisfied, and it is called Bellman’s optimality equation.
Which, expresses that the value of a state following an optimal policy must
be equal to the expected return for the best action selected in that state, in
mathematical language, Q∗(s, a) = maxa∈A(S)Q

π(s, a)

Due to the iterative method, it is possible to compute the action-value
function Qπ(s, a). It is called policy evaluation and starts with an arbitrary
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initialization of Qπ
0 (s, a). At each computational iteration, the action-value

function is approximated using the Bellman equation as an update rule:

Qπ
k+1(s, a) = Pπ{rt+1 + γ ·Qπ

k(st+1, at+1) | st = s, at = a} (49)

In addition, in each state it is useful to check whether there is another
policy that, if followed, would be able to perform better than the one cur-
rently being followed. This process is known as policy improvement. The
action that seems the best according to the largest action-value function
(Qπ(s, a)) is selected.

2.9 Reinforcement Learning Supporting Metaheuristics

Search methods face a number of challenges in solving combinatorial op-
timization problems, among them are: Avoiding a local optimum, being
applicable to different problems of varying sizes and at the same time being
able to produce good quality solutions in a short time [67]. Where MH and
hyperheuristics seek to address these challenges [15, 68]. To better address
them, hybrids between RL and MH algorithms have been created [69], in
which they aim to support and improve MH.

The following are some reasons, which we consider noteworthy, why hy-
bridization is advantageous:

• It causes the MH to be adaptive, which allows the algorithm to be
applicable to different problems.

• It does not require complete information about the problem, as RL
models learn by gathering experience [70].

• By using independent learning agents [71], it allows in some cases, the
computational cost to be lower. Since it uses a single update formula
at each step.

• If general features are used, the information learned by the RL can be
used in other parts of the same problem [72].

• The behavior of various RL methods end in optimal state-action pairs
[62], which can be exploited. As an example of this, one can see how
the policy choosing the next action evolves at each step.
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2.10 Temporal Difference Learning

Temporal Difference (TD) is an incremental learning procedure, specialized
in problems where it is necessary to predict the solution through experience
or previously obtained data [71]. TD methods, unlike conventional learning
methods, learning occurs when a change in prediction occurs over time. That
is, just like the Monte-Carlo (MC) method, it learns directly from experience
without waiting for the final result [62].

Because both methods use experience as mentioned above, we can state
that given an experience π updates the current estimate V (St) (Eq. 50) for
non-terminal states St. And unlike the MC method, TD methods only need
the next time step t+1 to obtain a feedback and update the reward Rt+1. So
as to obtain the estimate V (St+1), as exemplified by the following equation:

V (St)← V (St) + α
[
Rt+1 + γV (St+1 − V (St))

]
(50)

2.11 Q-Learning: Off-policy TD Control

Among the TD algorithms, we find the Q-Learning (QL) algorithm [73],
which provides agents with the ability to learn to act optimally without the
need to construct domain maps. Having several possible s states, where the
“environment” is the current s in which the agent interacts and performs
decisions. The agent has a set of possible actions, which affect the reward
and the next state. Once an action is performed, the state changes. When
changing state, the agent receives a reward for the decision made. Where the
rewards received by the agent consequently generate learning in the agent.
To solve the problem, the agent learns the best course of actions it can take,
which has a maximum cumulative reward. The sequence of actions from the
first state to the terminal state is called an episode. The transition of states
is given by the equation (51).

Qnew(st, at) = (1− α) ·Qold(st, at) + α · [rn + γ ·maxQ(st+1, at+1)] (51)

Where Qnew(st, at) is nominating the reward of the action taken in state
st and rn is the reward received when action at is taken, maxQ(st+1, at+1) is
the maximum value of the action for the next state, the value of α must be
0 < α ≤ 1 and corresponds to the learning factor. On the other hand, the
value of γ must be 0 ≤ γ ≤ 1 and corresponds to the discount factor. If γ
reaches the value of 0, only the immediate reward will be considered, while as
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it approaches the value 1 the future reward receives greater emphasis relative
to the immediate reward. QL is algorithmically presented with the following
pseudo-code:

Algorithm 4 Q-Learning: Off-Policy TD Control
1: Algorithm parameters: α ϵ [0, 1]
2: Initialize Q(s, a)
3: while t ≤ Maximum number of iterations do
4: Inicializamos s
5: while s ̸= sterminal do
6: Select action a
7: Observe r
8: Create s′

9: Choose from s′ using the policy obtained from Q
10: Q(s, a)←− (1− α) ·Q(s, a) + α · [r + γ ·maxQ(s′, a′)]
11: end while
12: t← t+1

13: end while
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2.12 SARSA: On-policy TD Control

It is a learning reinforcement method, belonging to the TD learning predic-
tion methods. It uses the generalized policy iteration pattern, which consists
of two processes that are performed simultaneously and interact with each
other. Where one performs the value function, with the current policy, and
at the same time the other one improves the current policy. These two pro-
cesses complement each other and in each iteration, but it is not necessary
that each one is completed before the next one begins.

The SARSA algorithm is divided into on-policy and off-policy approaches.
In the present work we will focus on its on-policy variable, where a learning
agent learns the current value function derived from the policy currently in
use. To understand how it works, the first step is to learn an action-value
function instead of a state-value function. In particular, for the on-policy
method we must estimate Qπ(s, a) for the current behavioral policy π and
for all states s and actions a. It is important to emphasize that an episode
consists of a sequence of states and state-action pairs.

Figure 23: SARSA Algorithm Sequence

In Figure 23 the state-to-state transitions are considered and the values
of each have been learned. To understand the algorithm, let us consider the
transitions as a pair of values, state-action to state-action, where the values
of the state-action pairs are learned. Formally these cases are identical: both
are Markov chains with a reward process. The theorems that ensure conver-
gence of state values under TD also apply to the corresponding algorithm
for action values, with the following equation:

Q(st, at)←− Q(st, at) + α · [rt+1 + γ ·Q(st+1, at+1)−Q(st, at)] (52)

After each transition the state is updated, until a terminal state is reached.
When a state st+1 is terminal then Q(st+1, at+1) is defined as zero. Each
transition process is composed of five events: st, at, rt+1, st+1, at+1 (State-
Action-Reward-State-Action); giving name to the SARSA algorithm. The
pseudo-code of the algorithm is shown below:.

30



Algorithm 5 SARSA: On-Policy TD Control
1: Algorithm parameters: α ϵ [0, 1]
2: Initialize Q(s, a)
3: while t ≤ Maximum number of iterations do
4: Initialize s
5: Choose a of s using the policy obtained from Q
6: while s ̸= sterminal do
7: Select action a
8: Observe r
9: Create s′

10: Choose a of s using the policy obtained from Q
11: Q(s, a)←− Q(s, a) + α · [r + γ ·Q(s′, a′)−Q(s, a)]
12: end while
13: t← t+1

14: end while

2.13 Difference between Q-Learning and SARSA

The two algorithms; QL and SARSA, learn the value of the optimal state-
action pairs, Q∗(s, a), through the transitions from state-action pair to state-
action pair. These methods are both online control algorithms. They are
online algorithms in that they perform the updates of the action-value func-
tion estimate at the end of each step without waiting for the term condition.
In both methods, the updated estimate of Q∗(s, a) is already available for use
in the next state. They are control algorithms because they perform actions
to achieve their purpose, which is the estimation of the optimal state-action
value function Q∗(s, a).

The difference between these two RL techniques is the evaluation of the
π policy (Eq. 46).

• QL is an off-policy algorithm, i.e., the agent learns the value of the
state-action pair independently of the action performed, since its up-
dates are performed independently of the current action, but with re-
spect to the action that maximizes the value of the next state-action
pair.

• While SARSA is a on-policy algorithm, i.e., the agent learns the value
of the state-action pair based on the action performed. In this way it
evaluates the current policy, unlike QL which performs one policy and
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evaluates another.

The Q-table formation procedure is the same for both algorithms. The
only difference between them is the update rule that is followed at each step,
equations (51) and (52). The different update rule allows SARSA to learn
faster than QL. However, this makes SARSA a more conservative algorithm
while QL is more likely to find the most optimal policy.

2.14 Backward Q-Learning

Backward Q-Learning is another RL technique. Although its name is similar
to QL, it is not an ordinary QL updating function, this time, a backward
update is performed, hence the name Backward Q-Learning.

In this structure, the action is directly affected, while the policy is in-
directly affected. As the agent increases the interaction with the environ-
ment, the precise knowledge of the agent also increases. The agent thanks to
its structure can improve the speed of learning, balance the explore-exploit
dilemma and converge to the global minimum using those previous states,
actions and information in an episode. Then, it is recorded that agents went
through states, chose actions and acquired rewards in an episode, and then
this information will be used to update the QL function again.

When the agent reaches the goal state in the current episode, it will
utilize the data that had occurred to backward update the QL function. For
example, the st−n state is defined as an initial state, and the st+1 state is
defined as a terminal state. The agent updates the QL function N times
from the initial state st−n to the terminal state st+1 in one episode. And
the agent simultaneously records each element of the four events “s, a, r, s,”
then the agent will use the information to update backward the QL function
N times. Therefore, we redefine the one-step QL function as:

Q(sit, a
i
t)←− Q(sit, a

i
t) + α · [rit+1 + γ ·maxQ(sit+1, a

i
t+1)−Q(sit, a

i
t)] (53)

for i = 1, 2, ..., N where i is the number of times for update the QL
function in current episode. And the agent simultaneously records the four
events in M i, that is:

M i ←− sit, a
i
t, r

i
t, s

i
t+1 (54)
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when the agent reaches the goal state, the agent will backward update
the QL function based on the information of M i as follows:

Q(sjt , a
j
t )←− Q(sjt , a

j
t ) + α · [rjt+1 + γ ·maxQ(sjt+1, a

j
t+1)−Q(sjt , a

j
t )] (55)

where j = N,N−1, N−2, ..., 1. Hence, the agent can utilize the previous
information to backward update the QL function. A pseudo-code is added
for a better understanding of the above:

Algorithm 6 Backward Q-Learning
1: Initialize arbitrarily all Q(s, a), M and set α and γ
2: for each episode do
3: Choose a random state st or initialize state st
4: Choose an action at from state st
5: while N ≥ 1 do
6: for each step in the episode do
7: Execute the select action ait to the environment, then receive

immediate reward rt+1 and observe the new state sit+1

8: Choose an action ait+1 from state sit+1

9: Record the four events in M i ←− sit, a
i
t, r

i
t, s

i
t+1

10: Update Q(sjt , a
j
t ) using the Eq. 53

11: Update state and action: sit ←−sit+1 and ait ←−ait+1

12: i← i+1

13: end for
14: end while
15: for j = N to 1 do
16: Backward update Q(sjt , a

j
t ) using Eq. 55

17: end for
18: Initialize all M values
19: end for
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2.15 Set Covering Problem

The SCP is a classical covering problem that consists into find a subset
of columns in a zero-one matrix such that they can cover all the rows of
that matrix at a minimum cost. Let A = (aij) be a m × n binary matrix
with I = {1, . . . ,m} and J = {1, . . . , n} being the row and column sets
respectively. We say that a column j can cover a row i if aij = 1. The cost
of selecting the column j is represented by cj , a non-negative value, and xj
is a decision variable to indicate if the column j is selected (xj = 1) or not
(xj = 0).

Minimize

n∑
j=1

cjxj (56)

Subject to:

n∑
j=1

aijxj ≥ 1 ∀i ∈ I (57)

xj ∈ {0, 1} ∀j ∈ J (58)

One of the many practical applications of this problem is the location
of fire stations. Lets consider a city divided in a finite number of areas
which need to locate and build fire stations. Each one of this areas need to
be covered by at least one station, but a single fire station can only bring
coverage to its own area and the adjacent ones; also, the problem requires
that the number of stations to build needs to be the minimum.

Intentionally, we have selected an instance of SCP with m = 11 and
n = 11 to represent it graphically in figures (24), (25) and by Eq. (59 - 70).
When a SCP formulation has a constant cost (a value of 1 in this case), we
will refer to it as an Unicost SCP instance.

Minimize

11∑
j=1

cjxj (59)
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AREA1 : x1 + x2 + x3 + x4 ≥1 (60)
AREA2 : x1 + x2 + x3 + x5 ≥1 (61)
AREA3 : x1 + x2 + x3 + x4 + x5 + x6 ≥1 (62)
AREA4 : x1 + x3 + x4 + x6 + x7 ≥1 (63)
AREA5 : x2 + x3 + x5 + x6 + x8 + x9 ≥1 (64)
AREA6 : x3 + x4 + x5 + x6 + x7 + x8 ≥1 (65)
AREA7 : x4 + x6 + x7 + x8 ≥1 (66)
AREA8 : x5 + x6 + x7 + x8 + x9 + x10 ≥1 (67)
AREA9 : x5 + x8 + x9 + x10 + x11 ≥1 (68)
AREA10 : x8 + x9 + x10 + x11 ≥1 (69)
AREA11 : x9 + x10 + x11 ≥1 (70)

Figure 24: An example of SCP Figure 25: Solution to the practi-
cal example of SCP

2.16 Knapsack Problem

The Knapsack Problem (KP) is categorized as a NP-hard problem. It as-
sumes a knapsack with a maximum capacity C and a set of objects N . Where
each object element has a value pi and a weight wi. The objective is to select
a subset of objects belonging to N that the sum maximizes the value that
can be stored inside the knapsack, without exceeding the maximum weight
of the knapsack [74,75]. Mathematically it is defined as:

Maximize

n∑
i=1

pi (71)
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Subject to:

n∑
i=1

wi ≤ C (72)

3 Proposal

This proposal focuses on a framework that compiles several RL techniques to
support the selection of binarization schemes in swarm-based metaheuristics
when solving combinatorial problems. Several adjustments will be made to
their original versions, such as transfer functions. In this way, giving our
intelligent selector an even larger repertoire to choose from.

Figure 26: Metaheuristic Scheme

The Figure exemplifies the multiple configurations that a MH can have,
understanding these as a set of operators, which have parameters to be con-
figured according to the problem to be solved.
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3.1 Binarization Scheme Selector

As previously stated, the aim of this work is to realize a framework in which
different MHs are hybridized with RL techniques. Part of the work consists
of testing these RL techniques as intelligent selectors that allow us to au-
tonomously choose the binarization to be used in each of the iterations (Fig.
27) in an online way, thus affecting the exploration-exploitation tradeoff and
thus managing to evade local optima, recall that when we refer to online,
it means that our selector makes a decision after each iteration without the
need to wait for the term condition. The other part of this work is to intro-
duce other components to the scheme, for example, more transfer functions
and other binarization techniques. There are studies that have previously
performed RL techniques, namely QL for the selection of binarization tech-
niques [11–14].

Figure 27: General Proposal Scheme
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One of the strengths of this research is the choice of different RL tech-
niques, currently two techniques from the list of considered ones are imple-
mented: QL and SARSA. Both techniques are implemented as an intelligent
operator, which chooses the binarization technique to be used based on a
reward system, with which it learns deterministically.

In the first instance, the choice has been limited to the V4 transfer func-
tion, in addition to using the elitist and complement binarization method,
as it is one of the most widely used [10, 29, 34, 76] to later compare them
with our versions. These two static, i.e., independent versions of our pro-
posal can be seen in Table (3). The structure of the implemented proposal
is exemplified in Fig. (28).

Table 3: Recommended binarization schemes in the literature.

Cite Binarization Transfer Function Name
[76] Elitist (Eq. 43) V4 (Eq. 27) BCL
[29] Complement (Eq. 41) V4 (Eq. 27) MIR

Smart 
Operator

(RL Technique)

Other Transfer Functions

INPUT

Other Binarization Techniques

OUTPUT

Binarization 
scheme 
selector

Actor-Critic (AC)

Temporal 
Difference (TD)

Q-Learning

R-Learning

ACLA

SARSA

QV-Learning

Monte Carlo for RL

Backward 
Q-Learning

Others in literature

Reinforcement Learning List

S-Shaped

V-Shaped

X-Shaped

Z-Shaped

O-Shaped

Transfer Functions List

Others in literature

Standard

Complement

Static Probability

Elitist

Elitist Roulette

Binarization Techniques List

Others in literature

Figure 28: Proposal Scheme with the combinations
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3.2 Rewards

The rewards in the RL algorithms is fundamental for a correct performance,
that is why in the literature there are several ways to calculate the rewards
[77–80]. The type of reward from the chosen metric determines the Rt value
for the general equations of the proposed RL techniques.

As a first instance in our proposal, the following forms of rewards will
be considered. Among the simplest in the literature is the first, used in the
work of Xu et al. [77] and Choong et al. [78], where it is increased by a fixed
value for the action that generated an improvement in overall fitness, and a
decrease or punishment of the same fixed value in case no improvement was
achieved. The second type of reward is a variation of the previous one used
in Abed work [79], where there is no penalty for the action taken. Finally,
we have three more types of rewards collected by Nareyek in [80]. All these
rewards are detailed in the Table (4):

Table 4: Reward Types

Name of Reward Mathematical Formula

With Penalty rn =

{
+1, If fitness improves
−1, Otherwise

(73)

Without Penalty rn =

{
+1, If fitness improves
0, Otherwise

(74)

Global Best rn =

{
W

BestF itness , If fitness improves

0, Otherwise
(75)

Root Adaption rn =

{√
BestF itness, If fitness improves

0, Otherwise
(76)

Scalating Adaption rn =

{
W ·BestF itness, If fitness improves
0, Otherwise

(77)

3.3 Metrics

As previously stated, there are a variety of rewards whose metric to be eval-
uated is fitness improvement. This means that if there is an improvement in
overall fitness, a reward will be given, while if it is maintained and does not
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undergo improvement, the RL technique will give a penalty if so defined in
the reward type. Recently the work of Chen et al. [81] looks at other metrics
that vary from fitness or different from fitness, such as population diversity,
average fitness of the population and the fitness of the best individual. An-
other of the motivations of this work is to venture, like Chen, to search and
experiment with other metrics to evaluate in the metaheuristic process and
not to focus so much on the classical ones, in this way to be able to have
results and compare.

3.4 Determination of States

Thanks to the work of Choi et al. [82], there are different ways to determine
diversity. In the first instance the determination of diversity is calculated
based on the work of Hussain et al. [83], represented mathematically as:

Div =
1

l · n

l∑
d=1

n∑
i=1

|x̄d − xdi |, (78)

Where Div is the diversity status determination, x̄d denotes the mean of
the individuals in dimension d, xdi is the value of the i-th individual of the
d-th dimension, n is the number of individuals in the population, and l is
the size of the dimension of the individuals.

Let XPL% and XPT% be the exploration and exploitation percentages,
respectively. The values of XPL% and XPT% are calculated from the work
of Morales-Castañeda et al. [84] as follows:

XPL% =
Div

Divmax
· 100, (79)

XPT% =
|Div −Divmax|

Divmax
· 100. (80)

Where from both equations, Div is the diversity state determination
given by the equation (78) and Divmax denotes the maximum value of the
diversity state found in the whole optimization problem.

3.5 Repair of Infeasible Solutions

For the KP problem, the decision was made to use two widely known re-
pair strategies [85], greedy add (Algorithm 7) and greedy drop (Algorithm
8); which are adapted depending on whether the proposed solution in each
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state is feasible or infeasible respectively. First the operator greedy add, is
used to repair the feasible solutions and thus improve the already proposed
solution. Then the operator greedy drop is used at the moment of receiving
an infeasible solution, so it is necessary to remove items inside the knapsack.
The metric used by these operators is the density, which is the ratio between
the profit (pi) and the weight (wi) of an item. Using the metric, the oper-
ators analyze each item found in the solution vector V in increasing order
and change the value of the item to 0 or 1, depending on whether the item
xi meets the constraint or not.

Algorithm 7 Greedy add operator
1: Input values: V,wtotal, C
2: for i = 0 to n-1 do
3: if V [i] = 0 and wtotal ≤ C then
4: V [i] = 1
5: wtotal = wtotal + wi

6: end if
7: end for

Algorithm 8 Greedy drop operator
1: Input values: V,wtotal, C
2: for i = n-1 to 0 do
3: if V [i] = 1 and wtotal > C then
4: V [i] = 0
5: wtotal = wtotal + wi

6: end if
7: end for

In the SCP problem, the repair operator is used on the solutions delivered
by K-means and the operator [86]. The repair process starts with a solution
vector Sinput, after analysis of the operator the vector Soutput is obtained
(Algorithm 9). The repair strategy starts by iteratively using the heuristic
operator indicating the column to be added. Once all the rows are covered,
the columns that have all their rows covered by other columns are removed.
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Algorithm 9 SCP Repair
1: Input values: Sinput

2: S = Sinput

3: while repair(S) == True do
4: S.append(Heuristic(S))
5: end while
6: S ← itemRepeated(S)
7: Soutput = S

4 Preliminary Results

Since the present work consists of the compilation of multiple RL techniques,
in this installment we have reached the point of implementing three tech-
niques that we have already mentioned and explained; QL, SARSA and
Backward Q-Learning. In Table (5) are the implemented configurations.

Table 5: Details of the implemented configuration

Reinforcement Learning
Technique

Transfer Functions
Used

Total of Rewards
Used

Metaheuristic
Used

Problem
Solved

Total Instances
Used

Q-Learning S and V 5

WOA
GWO
SCA

SCP 45

S,V,X,Z and O1 1

SARSA S and V 5
S,V,X,Z,O1 1

Backward Q-Learning S and V 1
S,V,X,Z and O1 1

Q-Learning S and V 5 0-1KP 19
SARSA

It should be noted, that in order to facilitate the reading of the tables
to come, different acronyms or identifiers have been assigned, as shown in
Table (6).
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Table 6: SARSA and Q-Learning implementations

Reward Types Name
With Penalty (Eq. 73) SA1
Without Penalty (Eq. 74) SA2
Global Best (Eq. 75) SA3
Root Adaption (Eq. 76) SA4
Scalating Adaption. (Eq. 77) SA5

With Penalty (Eq. 73) QL1
Without Penalty (Eq. 74) QL2
Global Best (Eq. 75) QL3
Root Adaption (Eq. 76) QL4
Scalating Adaption. (Eq. 77) QL5

With Penalty (Eq. 73) BQSA1

4.1 Statistical Tests

To determine which of the implemented MHs performs best with our smart
selector in solving the problems, we employ statistical methodologies that
provide a viable option to compare our results.

To compare two MH implementations, we utilize the Wilcoxon-Mann-
Whitney statistical test, a non-parametric test that is employed when data
are not normally distributed and are independent of each other. When cal-
culating and evaluating the p-value, we cannot infer that the results of our
implementation A are worse than the results of B if the value is less than
0.05. This assessment is connected to the hypothesis that is the subject of
the statistical test:

H0 = Algorithm A ≥ Algorithm B
H1 = Algorithm A < Algorithm B

4.2 Experimental Results

In this work, experiments have been performed on two problems, Set Cover-
ing Problem and 0-1 Knapsack Problem. The experiments solving the SCP
with the Beasley OR Library instances add up to 45 instances [87]. For the
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Table 7: Configuration details from SCP instances employed in this work

Instance set m n Cost range
4 200 1000 [1,100]
5 200 2000 [1,100]
6 200 1000 [1,100]
A 300 3000 [1,100]
B 300 3000 [1,100]
C 400 4000 [1,100]
D 400 4000 [1,100]

experiments solving the 0-1KP we consider 19 of the 31 instances recorded
in the literature [88,89].

In this work, experiments have been performed on two problems, Set
Covering Problem and 0-1 Knapsack Problem. The experiments solving the
SCP with the Beasley OR Library instances add up to 45 instances [87]. For
experiments solving the 0-1KP we consider 19 of the 31 instances recorded in
the literature and used in the [88,89], these instances can be downloaded at:
http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/. These
instances can be categorized into two groups:

• Low-dimensional, Nºs 1-10.

• Large-dimensional, Nºs 11-19.

Tables (7) and (8) contain descriptions of the datasets used in both prob-
lems.

The instances for the SCP problem were run with a total of 40 population
and 1000 iterations, having a total of 40,000 calls to the objective function,
as used in the work of Lanza et al. [76]. The instances for the 0-1KP problem
were run with a total of 20 population and 5000 iterations, having a total of
100,000 calls to the objective function, as used in the work of Abdel-Basset
et al. [88]. The implementation was developed in Python 3.8.5 and processed
using the free Google Colaboraty service [90]. The parameter settings of the
RL technique algorithms are presented in Table (9).
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Table 8: 0-1KP Datasets Descriptions

No Dataset Capacity Dimension
1 KP1 269 10
2 KP2 878 20
3 KP3 20 4
4 KP4 11 4
5 KP5 375 15
6 KP6 60 10
7 KP7 50 7
8 KP8 10.000 23
9 KP9 80 5
10 KP10 879 20
Uncorrelated data instances
11 KP1 100 100 1.000
12 KP1 200 200 1.000
13 KP1 500 500 1.000
Weakly correlated instances
14 KP2 100 100 1.000
15 KP2 200 200 1.000
16 KP2 500 500 1.000
Strongly correlated instances
17 KP3 100 100 1.000
18 KP3 200 200 1.000
19 KP3 500 500 1.000
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Table 9: Parameters Settings of the Reinforcement Learning Techniques

Reinforcement Learning
Technique

α γ

Q-Learning
0.1 0.4SARSA

Backward Q-Learning

Summary tables (10-12) are presented for ease of reading, in these tables
the results of the three MH with QL, SARSA and Backward Q-Learning
solving SCP and 0-1KP can observed. In these tables we have highlighted
the best values, and we have also underlined the RPD of the best solutions
obtained. More details can be seen in the tables (13-24) where all instances
and each of their values are shown, not only the last row of the table. The
complete tables are composed as follows: the first column (Inst.) presents the
name of each solved instance, in the second column (Opt.), the optimal value
of each instance. While the next 3 columns present the best results (Best),
the average results (Avg) and the relative percentage deviation calculated
according to Eq. (81), all for each of the implemented versions. Finally, the
last row is the sum of each column, presented above in the summary tables.

RPD =
100 · (Best−Opt)

Opt
. (81)
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Table 10: Summary Table of SCP with 85 Actions

WOA
BCL MIR QL1 SA1

Best RPD Best RPD Best RPD Best RPD∑
490.31 178.89 1195.82 787.64 264.84 4.37 263.84 4.02

GWO
BCL MIR QL1 SA1

Best RPD Best RPD Best RPD Best RPD∑
260.11 2.42 272.22 11.75 266.91 5.45 265.04 4.83

SCA
BCL MIR QL1 SA1

Best RPD Best RPD Best RPD Best RPD∑
305.56 20.45 1123.22 728.24 266.27 4.9 265.33 4.59

Table 11: Summary Table of SCP with 40 Actions

WOA
BCL MIR BQSA1

Best RPD Best RPD Best RPD∑
490.31 178.89 1195.82 787.64 266.71 5.08

GWO
BCL MIR BQSA1

Best RPD Best RPD Best RPD∑
260.11 2.42 272.22 11.75 268.6 6.19

SCA
BCL MIR BQSA1

Best RPD Best RPD Best RPD∑
305.56 20.45 1123.22 728.24 268.02 5.99
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Table 12: Summary Table of 01-KP

WOA
SA1 SA2 SA3 SA4 SA5

Best RPD Best RPD Best RPD Best RPD Best RPD∑
2347.0 17.7 2329.06 17.81 2282.16 18.16 2324.79 18.35 2330.64 17.73

QL1 QL2 QL3 QL4 QL5
Best RPD Best RPD Best RPD Best Avg Best RPD∑
2410.42 17.22 2390.95 17.46 2343.85 18.04 2304.11 18.18 2381.16 17.54

GWO
SA1 SA2 SA3 SA4 SA5

Best RPD Best RPD Best RPD Best RPD Best RPD∑
2570.37 15.21 2567.32 15.16 2566.32 15.15 2538.74 15.39 2545.42 15.35

QL1 QL2 QL3 QL4 QL5
Best RPD Best RPD Best RPD Best RPD Best RPD∑
2560.74 14.98 2477.0 16.11 2488.53 16.22 2502.0 16.0 2486.64 16.05

SCA
SA1 SA2 SA3 SA4 SA5

Best RPD Best RPD Best RPD Best RPD Best RPD∑
2417.0 17.17 2323.79 17.79 2315.58 17.98 2348.42 17.77 2326.37 17.95

QL1 QL2 QL3 QL4 QL5
Best RPD Best RPD Best RPD Best RPD Best RPD∑

2384.06 17.31 2344.0 17.85 2344.74 17.61 2335.27 17.87 2343.74 17.97
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Table 13: SCP - WOA - 85 ACTIONS

BCL MIR QL1 SA1
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

41 429 542.0 583.7 26.34 683.0 713.4 59.21 438.0 438.0 2.1 434.0 434.0 1.17
42 512 756.0 809.9 47.66 1114.0 1163.8 117.58 543.0 543.0 6.05 538.0 538.0 5.08
43 516 739.0 846.9 43.22 1230.0 1264.7 138.37 539.0 539.0 4.46 538.0 538.0 4.26
44 494 596.0 739.8 20.65 954.0 1032.5 93.12 523.0 523.0 5.87 518.0 518.0 4.86
45 512 755.0 821.0 47.46 1121.0 1192.6 118.95 537.0 537.0 4.88 530.0 530.0 3.52
46 560 815.0 913.0 45.54 1391.0 1464.0 148.39 572.0 572.0 2.14 571.0 571.0 1.96
47 430 597.0 652.2 38.84 854.0 912.2 98.6 440.0 440.0 2.33 441.0 441.0 2.56
48 492 757.0 844.3 53.86 1148.0 1208.4 133.33 504.0 504.0 2.44 500.0 500.0 1.63
49 641 922.0 1031.1 43.84 1586.0 1678.7 147.43 680.0 680.0 6.08 676.0 676.0 5.46
410 514 696.0 787.2 35.41 1090.0 1153.4 112.06 528.0 528.0 2.72 527.0 527.0 2.53
51 253 378.0 398.4 49.41 582.0 607.0 130.04 260.0 260.0 2.77 262.0 262.0 3.56
52 302 502.0 542.2 66.23 804.0 879.0 166.23 330.0 330.0 9.27 328.0 328.0 8.61
53 226 320.0 363.3 41.59 506.0 547.0 123.89 233.0 233.0 3.1 231.0 231.0 2.21
54 242 318.0 366.5 31.4 540.0 566.6 123.14 251.0 251.0 3.72 251.0 251.0 3.72
55 211 305.0 327.7 44.55 397.0 417.5 88.15 217.0 217.0 2.84 217.0 217.0 2.84
56 213 358.0 379.3 68.08 531.0 540.8 149.3 226.0 227.0 6.1 224.0 224.0 5.16
57 293 387.0 475.7 32.08 642.0 703.8 119.11 306.0 306.0 4.44 305.0 305.0 4.1
58 288 422.0 468.7 46.53 673.0 732.6 133.68 297.0 297.0 3.12 296.0 296.0 2.78
59 279 430.0 495.5 54.12 698.0 728.8 150.18 284.0 284.0 1.79 286.0 286.0 2.51
510 265 429.0 455.2 61.89 594.0 655.2 124.15 273.0 273.0 3.02 273.0 273.0 3.02
61 138 285.0 356.5 106.52 752.0 818.9 444.93 144.0 144.0 4.35 144.0 144.0 4.35
62 146 413.0 509.5 182.88 1100.0 1175.9 653.42 152.0 152.0 4.11 153.0 153.0 4.79
63 145 337.0 450.9 132.41 1030.0 1099.7 610.34 149.0 149.0 2.76 147.0 147.0 1.38
64 131 286.0 327.3 118.32 655.0 704.3 400.0 134.0 134.0 2.29 133.0 133.0 1.53
65 161 357.0 429.1 121.74 1050.0 1124.6 552.17 176.0 176.0 9.32 172.0 172.0 6.83
a1 253 479.0 577.4 89.33 1243.0 1323.1 391.3 266.0 266.0 5.14 264.0 264.0 4.35
a2 252 452.0 613.1 79.37 1150.0 1211.2 356.35 267.0 267.0 5.95 266.0 266.0 5.56
a3 232 436.0 526.0 87.93 1117.0 1174.2 381.47 243.0 243.0 4.74 243.0 243.0 4.74
a4 234 469.0 558.6 100.43 1080.0 1136.9 361.54 242.0 242.0 3.42 247.0 247.0 5.56
a5 236 447.0 576.1 89.41 1139.0 1168.0 382.63 247.0 247.0 4.66 245.0 245.0 3.81
b1 69 380.0 509.0 450.72 1353.0 1407.2 1860.87 71.0 71.0 2.9 71.0 71.0 2.9
b2 76 374.0 508.2 392.11 1265.0 1372.7 1564.47 78.0 78.0 2.63 78.0 78.0 2.63
b3 80 468.0 574.8 485.0 1753.0 1808.5 2091.25 81.0 81.0 1.25 82.0 82.0 2.5
b4 79 372.0 589.4 370.89 1536.0 1616.1 1844.3 83.0 83.0 5.06 83.0 83.0 5.06
b5 72 376.0 440.5 422.22 1372.0 1441.0 1805.56 74.0 74.0 2.78 72.0 73.0 0.0
c1 227 523.0 671.9 130.4 1488.0 1581.9 555.51 242.0 242.0 6.61 243.0 243.0 7.05
c2 219 507.0 629.8 131.51 1654.0 1741.8 655.25 237.0 237.0 8.22 232.0 232.0 5.94
c3 243 629.0 759.5 158.85 2059.0 2123.0 747.33 256.0 256.0 5.35 258.0 258.0 6.17
c4 219 570.0 716.0 160.27 1645.0 1721.1 651.14 232.0 232.0 5.94 231.0 231.0 5.48
c5 215 496.0 636.9 130.7 1619.0 1684.6 653.02 226.0 226.0 5.12 227.0 227.0 5.58
d1 60 419.0 620.8 598.33 1950.0 2057.5 3150.0 64.0 64.0 6.67 64.0 64.0 6.67
d2 66 480.0 700.6 627.27 2264.0 2314.1 3330.3 69.0 69.0 4.55 68.0 68.0 3.03
d3 72 548.0 735.3 661.11 2445.0 2526.3 3295.83 77.0 77.0 6.94 77.0 77.0 6.94
d4 62 476.0 720.4 667.74 2025.0 2079.9 3166.13 63.0 63.0 1.61 63.0 63.0 1.61
d5 61 461.0 749.8 655.74 1930.0 2055.9 3063.93 64.0 64.0 4.92 64.0 64.0 4.92

490.31 595.31 178.89 1195.82 1258.45 787.64 264.84 264.87 4.37 263.84 263.87 4.02
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Table 14: SCP - WOA - 40 ACTIONS

BCL MIR BQSA1
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD

41 429 542.0 583.7 26.34 683.0 713.4 59.21 441.0 441.0 2.8
42 512 756.0 809.9 47.66 1114.0 1163.8 117.58 548.0 548.0 7.03
43 516 739.0 846.9 43.22 1230.0 1264.7 138.37 541.0 541.0 4.84
44 494 596.0 739.8 20.65 954.0 1032.5 93.12 520.0 520.0 5.26
45 512 755.0 821.0 47.46 1121.0 1192.6 118.95 540.0 540.0 5.47
46 560 815.0 913.0 45.54 1391.0 1464.0 148.39 586.0 586.0 4.64
47 430 597.0 652.2 38.84 854.0 912.2 98.6 445.0 445.0 3.49
48 492 757.0 844.3 53.86 1148.0 1208.4 133.33 510.0 510.0 3.66
49 641 922.0 1031.1 43.84 1586.0 1678.7 147.43 689.0 689.0 7.49
410 514 696.0 787.2 35.41 1090.0 1153.4 112.06 522.0 525.0 1.56
51 253 378.0 398.4 49.41 582.0 607.0 130.04 265.0 266.0 4.74
52 302 502.0 542.2 66.23 804.0 879.0 166.23 328.0 328.0 8.61
53 226 320.0 363.3 41.59 506.0 547.0 123.89 234.0 234.0 3.54
54 242 318.0 366.5 31.4 540.0 566.6 123.14 252.0 252.0 4.13
55 211 305.0 327.7 44.55 397.0 417.5 88.15 217.0 217.0 2.84
56 213 358.0 379.3 68.08 531.0 540.8 149.3 224.0 224.0 5.16
57 293 387.0 475.7 32.08 642.0 703.8 119.11 310.0 310.0 5.8
58 288 422.0 468.7 46.53 673.0 732.6 133.68 297.0 297.0 3.12
59 279 430.0 495.5 54.12 698.0 728.8 150.18 281.0 281.0 0.72
510 265 429.0 455.2 61.89 594.0 655.2 124.15 277.0 277.0 4.53
61 138 285.0 356.5 106.52 752.0 818.9 444.93 147.0 147.0 6.52
62 146 413.0 509.5 182.88 1100.0 1175.9 653.42 155.0 155.0 6.16
63 145 337.0 450.9 132.41 1030.0 1099.7 610.34 150.0 150.0 3.45
64 131 286.0 327.3 118.32 655.0 704.3 400.0 135.0 135.0 3.05
65 161 357.0 429.1 121.74 1050.0 1124.6 552.17 174.0 176.5 8.07
a1 253 479.0 577.4 89.33 1243.0 1323.1 391.3 267.0 267.0 5.53
a2 252 452.0 613.1 79.37 1150.0 1211.2 356.35 271.0 271.0 7.54
a3 232 436.0 526.0 87.93 1117.0 1174.2 381.47 247.0 247.0 6.47
a4 234 469.0 558.6 100.43 1080.0 1136.9 361.54 248.0 248.0 5.98
a5 236 447.0 576.1 89.41 1139.0 1168.0 382.63 248.0 248.0 5.08
b1 69 380.0 509.0 450.72 1353.0 1407.2 1860.87 72.0 72.0 4.35
b2 76 374.0 508.2 392.11 1265.0 1372.7 1564.47 79.0 79.0 3.95
b3 80 468.0 574.8 485.0 1753.0 1808.5 2091.25 82.0 82.0 2.5
b4 79 372.0 589.4 370.89 1536.0 1616.1 1844.3 83.0 83.0 5.06
b5 72 376.0 440.5 422.22 1372.0 1441.0 1805.56 74.0 74.0 2.78
c1 227 523.0 671.9 130.4 1488.0 1581.9 555.51 248.0 248.0 9.25
c2 219 507.0 629.8 131.51 1654.0 1741.8 655.25 236.0 236.0 7.76
c3 243 629.0 759.5 158.85 2059.0 2123.0 747.33 259.0 259.0 6.58
c4 219 570.0 716.0 160.27 1645.0 1721.1 651.14 234.0 234.0 6.85
c5 215 496.0 636.9 130.7 1619.0 1684.6 653.02 228.0 229.5 6.05
d1 60 419.0 620.8 598.33 1950.0 2057.5 3150.0 65.0 65.5 8.33
d2 66 480.0 700.6 627.27 2264.0 2314.1 3330.3 69.0 69.0 4.55
d3 72 548.0 735.3 661.11 2445.0 2526.3 3295.83 77.0 77.0 6.94
d4 62 476.0 720.4 667.74 2025.0 2079.9 3166.13 63.0 63.0 1.61
d5 61 461.0 749.8 655.74 1930.0 2055.9 3063.93 64.0 64.0 4.92

490.31 595.31 178.89 1195.82 1258.45 787.64 266.71 266.9 5.0850



Table 15: SCP - GWO - 85 ACTIONS

BCL MIR QL1 SA1
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

41 429 432.0 433.5 0.7 431.0 434.4 0.47 433.0 433.0 0.93 434.0 434.0 1.17
42 512 533.0 539.1 4.1 543.0 547.8 6.05 538.0 538.0 5.08 537.0 537.0 4.88
43 516 527.0 532.5 2.13 541.0 546.3 4.84 544.0 544.0 5.43 532.0 532.0 3.1
44 494 507.0 514.3 2.63 513.0 520.5 3.85 516.0 516.0 4.45 512.0 512.0 3.64
45 512 523.0 528.2 2.15 540.0 549.6 5.47 543.0 543.0 6.05 542.0 542.0 5.86
46 560 570.0 579.1 1.79 579.0 583.2 3.39 577.0 577.0 3.04 573.0 573.0 2.32
47 430 434.0 437.8 0.93 442.0 445.7 2.79 443.0 443.0 3.02 439.0 439.0 2.09
48 492 499.0 506.3 1.42 509.0 512.6 3.46 507.0 507.0 3.05 503.0 503.0 2.24
49 641 656.0 671.4 2.34 685.0 690.3 6.86 682.0 682.0 6.4 681.0 681.0 6.24
410 514 520.0 525.7 1.17 528.0 531.2 2.72 528.0 528.0 2.72 524.0 524.0 1.95
51 253 260.0 265.8 2.77 264.0 266.5 4.35 266.0 266.0 5.14 263.0 263.0 3.95
52 302 322.0 328.3 6.62 326.0 333.7 7.95 329.0 329.0 8.94 326.0 326.0 7.95
53 226 230.0 233.3 1.77 232.0 234.2 2.65 234.0 234.0 3.54 233.0 233.0 3.1
54 242 247.0 249.8 2.07 250.0 253.1 3.31 252.0 252.0 4.13 248.0 248.0 2.48
55 211 212.0 213.8 0.47 216.0 217.9 2.37 218.0 218.0 3.32 217.0 217.0 2.84
56 213 216.0 223.8 1.41 222.0 228.2 4.23 227.0 227.0 6.57 222.0 224.0 4.23
57 293 299.0 306.8 2.05 309.0 311.8 5.46 311.0 311.0 6.14 308.0 308.0 5.12
58 288 290.0 296.2 0.69 297.0 300.7 3.12 298.0 298.0 3.47 296.0 296.0 2.78
59 279 282.0 285.0 1.08 285.0 293.0 2.15 289.0 289.0 3.58 285.0 285.0 2.15
510 265 269.0 275.0 1.51 277.0 280.7 4.53 278.0 278.0 4.91 275.0 275.0 3.77
61 138 140.0 145.2 1.45 144.0 148.1 4.35 146.0 146.0 5.8 145.0 145.0 5.07
62 146 147.0 152.3 0.68 155.0 158.9 6.16 155.0 155.0 6.16 154.0 154.0 5.48
63 145 147.0 149.8 1.38 151.0 151.5 4.14 150.0 150.0 3.45 150.0 150.0 3.45
64 131 131.0 134.3 0.0 134.0 135.3 2.29 134.0 134.0 2.29 134.0 134.0 2.29
65 161 167.0 172.3 3.73 175.0 183.7 8.7 173.0 173.0 7.45 174.0 174.0 8.07
a1 253 262.0 263.2 3.56 271.0 277.6 7.11 266.0 266.0 5.14 266.0 266.0 5.14
a2 252 263.0 268.1 4.37 275.0 279.2 9.13 269.0 269.0 6.75 270.0 270.0 7.14
a3 232 241.0 245.3 3.88 250.0 256.1 7.76 248.0 248.0 6.9 246.0 246.0 6.03
a4 234 244.0 247.4 4.27 250.0 257.8 6.84 252.0 252.0 7.69 243.0 243.0 3.85
a5 236 244.0 246.5 3.39 255.0 259.0 8.05 249.0 249.0 5.51 247.0 247.0 4.66
b1 69 70.0 71.1 1.45 75.0 81.5 8.7 70.0 70.0 1.45 71.0 71.0 2.9
b2 76 76.0 78.3 0.0 86.0 91.3 13.16 81.0 81.0 6.58 80.0 80.0 5.26
b3 80 81.0 82.2 1.25 89.0 98.1 11.25 84.0 84.0 5.0 82.0 82.0 2.5
b4 79 82.0 82.9 3.8 95.0 100.0 20.25 81.0 81.0 2.53 84.0 84.0 6.33
b5 72 73.0 73.5 1.39 81.0 90.5 12.5 74.0 74.0 2.78 74.0 74.0 2.78
c1 227 239.0 248.1 5.29 263.0 272.7 15.86 249.0 249.0 9.69 250.0 250.0 10.13
c2 219 233.0 238.1 6.39 260.0 265.0 18.72 240.0 240.0 9.59 240.0 240.0 9.59
c3 243 252.0 257.3 3.7 279.0 289.1 14.81 265.0 265.0 9.05 261.0 261.0 7.41
c4 219 233.0 235.7 6.39 250.0 257.9 14.16 235.0 235.0 7.31 232.0 232.0 5.94
c5 215 226.0 229.4 5.12 248.0 256.3 15.35 233.0 234.0 8.37 231.0 231.0 7.44
d1 60 62.0 63.5 3.33 83.0 98.2 38.33 65.0 65.0 8.33 65.0 65.0 8.33
d2 66 66.0 68.3 0.0 97.0 113.7 46.97 71.0 71.0 7.58 70.0 70.0 6.06
d3 72 75.0 76.4 4.17 108.0 121.6 50.0 77.0 77.0 6.94 78.0 78.0 8.33
d4 62 62.0 63.5 0.0 90.0 101.9 45.16 65.0 65.0 4.84 64.0 64.0 3.23
d5 61 61.0 64.0 0.0 97.0 106.4 59.02 66.0 66.5 8.2 66.0 66.0 8.2

260.11 264.5 2.42 272.22 278.51 11.75 266.91 266.94 5.45 265.04 265.09 4.83
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Table 16: SCP - GWO - 40 ACTIONS

BCL MIR BQSA1
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD

41 429 432.0 433.5 0.7 431.0 434.4 0.47 439.0 439.0 2.33
42 512 533.0 539.1 4.1 543.0 547.8 6.05 543.0 543.0 6.05
43 516 527.0 532.5 2.13 541.0 546.3 4.84 534.0 534.0 3.49
44 494 507.0 514.3 2.63 513.0 520.5 3.85 523.0 523.0 5.87
45 512 523.0 528.2 2.15 540.0 549.6 5.47 547.0 547.0 6.84
46 560 570.0 579.1 1.79 579.0 583.2 3.39 584.0 584.0 4.29
47 430 434.0 437.8 0.93 442.0 445.7 2.79 448.0 448.0 4.19
48 492 499.0 506.3 1.42 509.0 512.6 3.46 510.0 510.5 3.66
49 641 656.0 671.4 2.34 685.0 690.3 6.86 694.0 694.0 8.27
410 514 520.0 525.7 1.17 528.0 531.2 2.72 530.0 530.0 3.11
51 253 260.0 265.8 2.77 264.0 266.5 4.35 269.0 269.0 6.32
52 302 322.0 328.3 6.62 326.0 333.7 7.95 331.0 331.0 9.6
53 226 230.0 233.3 1.77 232.0 234.2 2.65 231.0 232.5 2.21
54 242 247.0 249.8 2.07 250.0 253.1 3.31 252.0 252.0 4.13
55 211 212.0 213.8 0.47 216.0 217.9 2.37 219.0 219.0 3.79
56 213 216.0 223.8 1.41 222.0 228.2 4.23 230.0 230.0 7.98
57 293 299.0 306.8 2.05 309.0 311.8 5.46 312.0 312.0 6.48
58 288 290.0 296.2 0.69 297.0 300.7 3.12 300.0 300.0 4.17
59 279 282.0 285.0 1.08 285.0 293.0 2.15 290.0 290.0 3.94
510 265 269.0 275.0 1.51 277.0 280.7 4.53 277.0 277.0 4.53
61 138 140.0 145.2 1.45 144.0 148.1 4.35 147.0 147.0 6.52
62 146 147.0 152.3 0.68 155.0 158.9 6.16 157.0 157.0 7.53
63 145 147.0 149.8 1.38 151.0 151.5 4.14 151.0 151.0 4.14
64 131 131.0 134.3 0.0 134.0 135.3 2.29 132.0 132.0 0.76
65 161 167.0 172.3 3.73 175.0 183.7 8.7 179.0 180.0 11.18
a1 253 262.0 263.2 3.56 271.0 277.6 7.11 269.0 269.0 6.32
a2 252 263.0 268.1 4.37 275.0 279.2 9.13 273.0 273.0 8.33
a3 232 241.0 245.3 3.88 250.0 256.1 7.76 248.0 248.0 6.9
a4 234 244.0 247.4 4.27 250.0 257.8 6.84 248.0 248.0 5.98
a5 236 244.0 246.5 3.39 255.0 259.0 8.05 249.0 249.0 5.51
b1 69 70.0 71.1 1.45 75.0 81.5 8.7 73.0 73.0 5.8
b2 76 76.0 78.3 0.0 86.0 91.3 13.16 80.0 80.0 5.26
b3 80 81.0 82.2 1.25 89.0 98.1 11.25 84.0 84.0 5.0
b4 79 82.0 82.9 3.8 95.0 100.0 20.25 85.0 85.0 7.59
b5 72 73.0 73.5 1.39 81.0 90.5 12.5 75.0 75.0 4.17
c1 227 239.0 248.1 5.29 263.0 272.7 15.86 252.0 252.5 11.01
c2 219 233.0 238.1 6.39 260.0 265.0 18.72 239.0 239.0 9.13
c3 243 252.0 257.3 3.7 279.0 289.1 14.81 264.0 264.0 8.64
c4 219 233.0 235.7 6.39 250.0 257.9 14.16 238.0 238.0 8.68
c5 215 226.0 229.4 5.12 248.0 256.3 15.35 234.0 234.0 8.84
d1 60 62.0 63.5 3.33 83.0 98.2 38.33 66.0 66.0 10.0
d2 66 66.0 68.3 0.0 97.0 113.7 46.97 71.0 71.0 7.58
d3 72 75.0 76.4 4.17 108.0 121.6 50.0 80.0 80.0 11.11
d4 62 62.0 63.5 0.0 90.0 101.9 45.16 64.0 65.0 3.23
d5 61 61.0 64.0 0.0 97.0 106.4 59.02 66.0 66.0 8.2

260.11 264.5 2.42 272.22 278.51 11.75 268.6 268.7 6.19
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Table 17: SCP - SCA - 85 ACTIONS

BCL MIR QL1 SA1
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

41 429 526.0 577.8 22.61 689.0 707.2 60.61 440.0 440.0 2.56 435.0 435.0 1.4
42 512 600.0 720.5 17.19 1060.0 1165.8 107.03 547.0 547.0 6.84 540.0 540.0 5.47
43 516 589.0 741.6 14.15 1185.0 1269.0 129.65 541.0 541.0 4.84 538.0 538.0 4.26
44 494 580.0 709.2 17.41 986.0 1020.8 99.6 523.0 523.0 5.87 516.0 516.0 4.45
45 512 700.0 810.1 36.72 1126.0 1184.3 119.92 531.0 531.0 3.71 535.0 535.0 4.49
46 560 692.0 793.2 23.57 1421.0 1475.5 153.75 581.0 581.0 3.75 579.0 579.0 3.39
47 430 498.0 606.0 15.81 886.0 920.3 106.05 438.0 438.0 1.86 440.0 440.0 2.33
48 492 577.0 719.3 17.28 1119.0 1226.7 127.44 506.0 506.0 2.85 502.0 502.0 2.03
49 641 779.0 918.0 21.53 1535.0 1662.8 139.47 686.0 686.0 7.02 684.0 684.0 6.71
410 514 576.0 722.9 12.06 1143.0 1198.6 122.37 530.0 530.0 3.11 529.0 529.0 2.92
51 253 302.0 356.2 19.37 568.0 612.1 124.51 268.0 268.0 5.93 266.0 266.0 5.14
52 302 356.0 420.9 17.88 831.0 889.9 175.17 328.0 328.0 8.61 328.0 328.0 8.61
53 226 265.0 308.4 17.26 498.0 537.8 120.35 232.0 232.0 2.65 233.0 233.0 3.1
54 242 307.0 335.0 26.86 553.0 577.6 128.51 252.0 252.0 4.13 251.0 251.0 3.72
55 211 257.0 307.9 21.8 411.0 431.3 94.79 217.0 217.0 2.84 219.0 219.0 3.79
56 213 263.0 317.5 23.47 472.0 534.9 121.6 229.0 229.0 7.51 223.0 223.0 4.69
57 293 345.0 422.9 17.75 643.0 704.9 119.45 309.0 309.0 5.46 310.0 310.0 5.8
58 288 359.0 390.6 24.65 707.0 729.2 145.49 296.0 296.0 2.78 297.0 297.0 3.12
59 279 372.0 414.8 33.33 719.0 739.6 157.71 289.0 289.0 3.58 284.0 284.0 1.79
510 265 317.0 390.6 19.62 621.0 656.5 134.34 279.0 279.0 5.28 277.0 277.0 4.53
61 138 171.0 235.4 23.91 755.0 830.7 447.1 146.0 146.0 5.8 146.0 146.0 5.8
62 146 188.0 244.2 28.77 1092.0 1155.8 647.95 155.0 155.0 6.16 154.0 154.0 5.48
63 145 195.0 293.4 34.48 1091.0 1132.9 652.41 150.0 150.0 3.45 149.0 149.0 2.76
64 131 166.0 242.6 26.72 623.0 697.7 375.57 132.0 132.0 0.76 134.0 134.0 2.29
65 161 209.0 244.1 29.81 1000.0 1123.1 521.12 171.0 171.0 6.21 176.0 176.0 9.32
a1 253 286.0 308.1 13.04 1320.0 1343.3 421.74 267.0 267.0 5.53 266.0 266.0 5.14
a2 252 290.0 335.6 15.08 1175.0 1210.1 366.27 271.0 271.0 7.54 270.0 270.0 7.14
a3 232 265.0 289.9 14.22 1067.0 1170.2 359.91 242.0 242.0 4.31 243.0 243.0 4.74
a4 234 274.0 326.3 17.09 1095.0 1126.9 367.95 247.0 247.0 5.56 247.0 247.0 5.56
a5 236 276.0 319.3 16.95 1100.0 1165.1 366.1 249.0 249.0 5.51 246.0 246.0 4.24
b1 69 79.0 103.1 14.49 1341.0 1413.9 1843.48 71.0 71.0 2.9 71.0 71.0 2.9
b2 76 88.0 110.2 15.79 1364.0 1402.3 1694.74 78.0 78.0 2.63 78.0 78.0 2.63
b3 80 87.0 106.9 8.75 1670.0 1830.4 1987.5 82.0 82.0 2.5 82.0 82.0 2.5
b4 79 88.0 108.2 11.39 88.0 1461.8 11.39 83.0 83.0 5.06 82.0 82.0 3.8
b5 72 80.0 118.6 11.11 1404.0 1467.7 1850.0 74.0 74.0 2.78 74.0 74.0 2.78
c1 227 291.0 320.0 28.19 1508.0 1559.6 564.32 244.0 245.0 7.49 244.0 244.0 7.49
c2 219 271.0 287.0 23.74 1716.0 1770.6 683.56 239.0 239.0 9.13 238.0 238.0 8.68
c3 243 280.0 334.0 15.23 268.0 1880.5 10.29 259.0 259.0 6.58 257.0 257.0 5.76
c4 219 243.0 276.6 10.96 1657.0 1737.7 656.62 232.0 232.0 5.94 232.0 232.0 5.94
c5 215 268.0 287.8 24.65 1537.0 1649.7 614.88 230.0 230.0 6.98 229.0 229.0 6.51
d1 60 81.0 102.5 35.0 1979.0 2046.9 3198.33 65.0 65.0 8.33 64.0 64.0 6.67
d2 66 77.0 106.1 16.67 2201.0 2328.6 3234.85 69.0 69.0 4.55 69.0 69.0 4.55
d3 72 92.0 110.7 27.78 2413.0 2523.6 3251.39 76.0 76.0 5.56 76.0 76.0 5.56
d4 62 68.0 91.7 9.68 1929.0 2091.9 3011.29 63.0 63.0 1.61 63.0 63.0 1.61
d5 61 77.0 97.7 26.23 1979.0 2086.6 3144.26 65.0 65.0 6.56 64.0 64.0 4.92

305.56 364.08 20.45 1123.22 1254.5 728.24 266.27 266.29 4.9 265.33 265.33 4.59
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Table 18: SCP - SCA - 40 ACTIONS

BCL MIR BQSA1
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD

41 429 526.0 577.8 22.61 689.0 707.2 60.61 439.0 440.0 2.33
42 512 600.0 720.5 17.19 1060.0 1165.8 107.03 551.0 551.0 7.62
43 516 589.0 741.6 14.15 1185.0 1269.0 129.65 546.0 546.0 5.81
44 494 580.0 709.2 17.41 986.0 1020.8 99.6 530.0 530.0 7.29
45 512 700.0 810.1 36.72 1126.0 1184.3 119.92 546.0 546.0 6.64
46 560 692.0 793.2 23.57 1421.0 1475.5 153.75 585.0 585.0 4.46
47 430 498.0 606.0 15.81 886.0 920.3 106.05 448.0 448.0 4.19
48 492 577.0 719.3 17.28 1119.0 1226.7 127.44 515.0 515.0 4.67
49 641 779.0 918.0 21.53 1535.0 1662.8 139.47 691.0 691.0 7.8
410 514 576.0 722.9 12.06 1143.0 1198.6 122.37 529.0 529.0 2.92
51 253 302.0 356.2 19.37 568.0 612.1 124.51 269.0 269.0 6.32
52 302 356.0 420.9 17.88 831.0 889.9 175.17 331.0 331.0 9.6
53 226 265.0 308.4 17.26 498.0 537.8 120.35 234.0 234.0 3.54
54 242 307.0 335.0 26.86 553.0 577.6 128.51 252.0 252.0 4.13
55 211 257.0 307.9 21.8 411.0 431.3 94.79 219.0 219.0 3.79
56 213 263.0 317.5 23.47 472.0 534.9 121.6 232.0 232.0 8.92
57 293 345.0 422.9 17.75 643.0 704.9 119.45 315.0 315.0 7.51
58 288 359.0 390.6 24.65 707.0 729.2 145.49 300.0 300.0 4.17
59 279 372.0 414.8 33.33 719.0 739.6 157.71 290.0 290.0 3.94
510 265 317.0 390.6 19.62 621.0 656.5 134.34 280.0 280.0 5.66
61 138 171.0 235.4 23.91 755.0 830.7 447.1 144.0 144.0 4.35
62 146 188.0 244.2 28.77 1092.0 1155.8 647.95 158.0 158.0 8.22
63 145 195.0 293.4 34.48 1091.0 1132.9 652.41 149.0 150.0 2.76
64 131 166.0 242.6 26.72 623.0 697.7 375.57 135.0 135.0 3.05
65 161 209.0 244.1 29.81 1000.0 1123.1 521.12 183.0 183.0 13.66
a1 253 286.0 308.1 13.04 1320.0 1343.3 421.74 265.0 265.0 4.74
a2 252 290.0 335.6 15.08 1175.0 1210.1 366.27 273.0 273.0 8.33
a3 232 265.0 289.9 14.22 1067.0 1170.2 359.91 245.0 245.0 5.6
a4 234 274.0 326.3 17.09 1095.0 1126.9 367.95 254.0 254.0 8.55
a5 236 276.0 319.3 16.95 1100.0 1165.1 366.1 252.0 252.0 6.78
b1 69 79.0 103.1 14.49 1341.0 1413.9 1843.48 72.0 72.0 4.35
b2 76 88.0 110.2 15.79 1364.0 1402.3 1694.74 80.0 80.0 5.26
b3 80 87.0 106.9 8.75 1670.0 1830.4 1987.5 82.0 82.0 2.5
b4 79 88.0 108.2 11.39 88.0 1461.8 11.39 84.0 84.0 6.33
b5 72 80.0 118.6 11.11 1404.0 1467.7 1850.0 74.0 74.0 2.78
c1 227 291.0 320.0 28.19 1508.0 1559.6 564.32 245.0 245.0 7.93
c2 219 271.0 287.0 23.74 1716.0 1770.6 683.56 239.0 239.5 9.13
c3 243 280.0 334.0 15.23 268.0 1880.5 10.29 261.0 261.0 7.41
c4 219 243.0 276.6 10.96 1657.0 1737.7 656.62 236.0 236.0 7.76
c5 215 268.0 287.8 24.65 1537.0 1649.7 614.88 232.0 232.0 7.91
d1 60 81.0 102.5 35.0 1979.0 2046.9 3198.33 64.0 64.0 6.67
d2 66 77.0 106.1 16.67 2201.0 2328.6 3234.85 69.0 69.0 4.55
d3 72 92.0 110.7 27.78 2413.0 2523.6 3251.39 78.0 78.0 8.33
d4 62 68.0 91.7 9.68 1929.0 2091.9 3011.29 64.0 64.0 3.23
d5 61 77.0 97.7 26.23 1979.0 2086.6 3144.26 66.0 66.0 8.2

305.56 364.08 20.45 1123.22 1254.5 728.24 269.02 269.08 5.9954



Table 19: 0-1KP - WOA - Q-Learning

QL1 QL2 QL3 QL4 QL5
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

KP1 295 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0
KP2 1024 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0
KP3 35 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0
KP4 23 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0
KP5 481.0694 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0
KP6 52 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0
KP7 107 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0
KP8 9767 9762.0 9765.16 0.05 9761.0 9764.84 0.06 9761.0 9764.68 0.06 9762.0 9765.1 0.05 9761.0 9765.52 0.06
KP9 130 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0
KP10 1025 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0
KP1 100 9147 5412.0 6174.74 40.83 5416.0 7031.06 40.79 5059.0 6574.48 44.69 5012.0 6814.52 45.21 5063.0 6679.1 44.65
KP1 200 11238 5402.0 6910.97 51.93 5491.0 7580.1 51.14 5861.0 8612.13 47.85 4661.0 8260.16 58.52 5790.0 8199.1 48.48
KP1 500 28857 8651.0 9749.9 70.02 8353.0 12546.35 71.05 7727.0 11999.9 73.22 7886.0 13013.03 72.67 8224.0 11591.06 71.5
KP3 100 1514 1277.0 1335.58 15.65 1258.0 1345.58 16.91 1249.0 1337.06 17.5 1229.0 1347.1 18.82 1245.0 1326.97 17.77
KP3 200 1634 1260.0 1341.81 22.89 1283.0 1411.58 21.48 1268.0 1417.9 22.4 1246.0 1420.9 23.75 1262.0 1414.68 22.77
KP3 500 4566 2956.0 3128.55 35.26 2989.0 3564.68 34.54 2958.0 3581.7 35.22 3014.0 3595.7 33.99 2937.0 3436.0 35.68
KP3 100 2397 1896.0 2070.9 20.9 1892.0 2215.68 21.07 1869.0 2234.23 22.03 1895.0 2287.19 20.94 1975.0 2265.52 17.61
KP3 200 2697 1993.0 2101.61 26.1 1897.0 2328.68 29.66 1794.0 2303.61 33.48 1985.0 2446.94 26.4 1896.0 2401.74 29.7
KP3 500 7117 4017.0 4245.16 43.56 3916.0 5201.58 44.98 3815.0 4607.45 46.4 3916.0 4830.52 44.98 3917.0 4910.83 44.96

2410.42 2631.39 17.22 2390.95 2955.91 17.46 2343.85 2926.59 18.04 2304.11 2997.54 18.18 2381.16 2903.29 17.54

Table 20: 0-1KP - WOA - SARSA

SA1 SA2 SA3 SA4 SA5
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

KP1 295 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0
KP2 1024 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0
KP3 35 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0
KP4 23 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0
KP5 481.0694 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0
KP6 52 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0
KP7 107 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0
KP8 9767 9762.0 9765.23 0.05 9761.0 9764.9 0.06 9761.0 9765.55 0.06 9762.0 9765.32 0.05 9763.0 9765.79 0.04
KP9 130 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0
KP10 1025 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0
KP1 100 9147 5142.0 6121.55 43.78 5177.0 5977.94 43.4 5092.0 5864.55 44.33 5205.0 5990.81 43.1 5478.0 5981.74 40.11
KP1 200 11238 5220.0 6413.52 53.55 5559.0 6241.13 50.53 5208.0 6189.61 53.66 5270.0 6080.16 53.11 5465.0 6293.58 51.37
KP1 500 28857 7896.0 9086.35 72.64 7297.0 8718.61 74.71 6878.0 8604.9 76.17 7715.0 8899.55 73.26 7132.0 8442.39 75.29
KP2 100 1514 1240.0 1326.35 18.1 1247.0 1304.35 17.64 1234.0 1302.35 18.49 1247.0 1298.26 17.64 1237.0 1295.26 18.3
KP2 200 1634 1259.0 1346.87 22.95 1265.0 1314.19 22.58 1266.0 1325.52 22.52 1239.0 1309.68 24.17 1270.0 1313.55 22.28
KP2 500 4566 3011.0 3134.39 34.06 2974.0 3069.19 34.87 2947.0 3036.27 35.46 2953.0 3053.46 35.33 2965.0 3072.32 35.06
KP3 100 2397 1879.0 2034.81 21.61 1887.0 2037.26 21.28 1895.0 2002.42 20.94 1797.0 2018.6 25.03 1888.0 2005.71 21.23
KP3 200 2697 1995.0 2106.74 26.03 1896.0 2014.1 29.7 1895.0 2058.84 29.74 1796.0 2044.52 33.41 1897.0 2050.06 29.66
KP3 500 7117 4017.0 4244.81 43.56 4017.0 4176.97 43.56 4013.0 4112.52 43.61 4015.0 4174.14 43.59 4015.0 4174.35 43.59

2347.0 2565.93 17.7 2329.06 2515.3 17.81 2282.16 2496.56 18.16 2324.79 2516.14 18.35 2330.64 2503.52 17.73

Table 21: 0-1KP - GWO - Q-Learning

QL1 QL2 QL3 QL4 QL5
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

KP1 295 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0
KP2 1024 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0
KP3 35 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0
KP4 23 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0
KP5 481.0694 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0
KP6 52 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0
KP7 107 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0
KP8 9767 9760.0 9763.84 0.07 9762.0 9764.16 0.05 9760.0 9763.55 0.07 9759.0 9762.84 0.08 9759.0 9763.26 0.08
KP9 130 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0
KP10 1025 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0
KP1 100 9147 6347.0 6947.19 30.61 5824.0 6547.26 36.33 5733.0 6508.65 37.32 5814.0 6622.1 36.44 5829.0 6551.06 36.27
KP1 200 11238 6480.0 7254.06 42.34 6227.0 6961.65 44.59 6024.0 6949.94 46.4 6283.0 6929.77 44.09 6061.0 6867.58 46.07
KP1 500 28857 8800.0 10045.16 69.5 8358.0 9773.97 71.04 8905.0 10083.84 69.14 8786.0 9920.03 69.55 8646.0 9807.03 70.04
KP2 100 1514 1314.0 1369.84 13.21 1296.0 1353.71 14.4 1288.0 1346.58 14.93 1281.0 1346.48 15.39 1293.0 1350.65 14.6
KP2 200 1634 1349.0 1402.94 17.44 1301.0 1377.61 20.38 1290.0 1367.19 21.05 1314.0 1360.23 19.58 1301.0 1374.16 20.38
KP2 500 4566 3136.0 3217.06 31.32 3042.0 3124.84 33.38 3008.0 3160.48 34.12 3025.0 3144.13 33.75 3078.0 3136.9 32.59
KP3 100 2397 1996.0 2124.94 16.73 1981.0 2080.45 17.36 1990.0 2050.71 16.98 1990.0 2057.87 16.98 1995.0 2079.13 16.77
KP3 200 2697 2087.0 2158.1 22.62 1987.0 2129.45 26.33 1995.0 2112.87 26.03 1997.0 2116.65 25.95 1996.0 2135.35 25.99
KP3 500 7117 4213.0 4335.16 40.8 4113.0 4306.1 42.21 4117.0 4315.35 42.15 4117.0 4344.68 42.15 4116.0 4293.26 42.17

2560.74 2725.81 14.98 2477.0 2662.7 16.11 2488.53 2675.33 16.22 2502.0 2672.47 16.0 2486.64 2659.5 16.05
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Table 22: 0-1KP - GWO - SARSA

SA1 SA2 SA3 SA4 SA5
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

KP1 295 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0
KP2 1024 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0
KP3 35 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0
KP4 23 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0
KP5 481.0694 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0
KP6 52 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0
KP7 107 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0
KP8 9767 9761.0 9764.39 0.06 9761.0 9764.32 0.06 9760.0 9764.97 0.07 9761.0 9764.52 0.06 9761.0 9763.87 0.06
KP9 130 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0
KP10 1025 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0
KP1 100 9147 5890.0 6816.55 35.61 6185.0 6885.0 32.38 6011.0 6702.81 34.28 6086.0 6737.68 33.46 6082.0 6645.81 33.51
KP1 200 11238 6597.0 7069.19 41.3 6348.0 7149.1 43.51 6593.0 7163.77 41.33 6464.0 7288.0 42.48 6349.0 7207.68 43.5
KP1 500 28857 9362.0 10158.1 67.56 9337.0 10113.26 67.64 9166.0 10135.55 68.24 8784.0 10215.55 69.56 8994.0 10071.23 68.83
KP2 100 1514 1299.0 1369.23 14.2 1309.0 1371.55 13.54 1311.0 1364.81 13.41 1313.0 1370.77 13.28 1317.0 1364.84 13.01
KP2 200 1634 1329.0 1383.65 18.67 1341.0 1387.97 17.93 1329.0 1387.55 18.67 1337.0 1390.58 18.18 1339.0 1383.16 18.05
KP2 500 4566 3126.0 3207.55 31.54 3121.0 3191.68 31.65 3124.0 3179.77 31.58 3111.0 3204.58 31.87 3140.0 3203.65 31.23
KP3 100 2397 1997.0 2102.29 16.69 1996.0 2096.1 16.73 1997.0 2095.81 16.69 1996.0 2085.03 16.73 1996.0 2100.45 16.73
KP3 200 2697 2089.0 2165.52 22.54 2092.0 2126.68 22.43 2080.0 2147.13 22.88 1996.0 2137.65 25.99 1997.0 2137.48 25.95
KP3 500 7117 4215.0 4370.58 40.78 4117.0 4360.39 42.15 4217.0 4341.71 40.75 4216.0 4350.97 40.76 4216.0 4376.23 40.76

2570.37 2714.69 15.21 2567.32 2716.74 15.16 2566.32 2708.21 15.15 2538.74 2721.97 15.39 2545.42 2706.66 15.35

Table 23: 0-1KP - SCA - QL

QL1 QL2 QL3 QL4 QL5
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

KP1 295 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0
KP2 1024 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0
KP3 35 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0
KP4 23 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0
KP5 481.0694 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0
KP6 52 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0
KP7 107 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0
KP8 9767 9758.0 9762.06 0.09 9759.0 9763.06 0.08 9759.0 9762.87 0.08 9758.0 9762.19 0.09 9759.0 9762.87 0.08
KP9 130 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0
KP10 1025 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0
KP1 100 9147 5330.0 6174.55 41.73 5173.0 6138.61 43.45 5205.0 6652.0 43.1 4787.0 6307.84 47.67 5179.0 6529.35 43.38
KP1 200 11238 5585.0 6644.39 50.3 5598.0 6950.35 50.19 5573.0 7194.94 50.41 5794.0 7016.19 48.44 5370.0 6661.84 52.22
KP1 500 28857 8024.0 9218.26 72.19 7736.0 10809.55 73.19 7541.0 11591.32 73.87 7616.0 10568.84 73.61 7898.0 10635.29 72.63
KP2 100 1514 1260.0 1322.13 16.78 1249.0 1311.48 17.5 1230.0 1317.87 18.76 1244.0 1320.19 17.83 1255.0 1328.29 17.11
KP2 200 1634 1257.0 1335.35 23.07 1258.0 1334.58 23.01 1244.0 1357.94 23.87 1239.0 1344.29 24.17 1208.0 1333.32 26.07
KP2 500 4566 3006.0 3111.71 34.17 2987.0 3113.03 34.58 2954.0 3179.23 35.3 2984.0 3210.74 34.65 2987.0 3210.71 34.58
KP3 100 2397 1894.0 2027.9 20.98 1891.0 2149.97 21.11 1966.0 2120.55 17.98 1897.0 2135.29 20.86 1989.0 2116.58 17.02
KP3 200 2697 1994.0 2090.77 26.07 1896.0 2199.1 29.7 1990.0 2178.81 26.21 1962.0 2131.39 27.25 1797.0 2207.13 33.37
KP3 500 7117 4017.0 4200.16 43.56 3817.0 4646.52 46.37 3916.0 4486.52 44.98 3917.0 4484.48 44.96 3917.0 4482.23 44.96

2384.06 2582.07 17.31 2344.0 2715.17 17.85 2344.74 2790.22 17.61 2335.27 2708.08 17.87 2343.74 2707.35 17.97
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Table 24: 0-1KP - SCA - SARSA

SA1 SA2 SA3 SA4 SA5
Inst. Opt. Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD Best Avg RPD

KP1 295 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0 295.0 295.0 0.0
KP2 1024 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0 1024.0 1024.0 0.0
KP3 35 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0 35.0 35.0 0.0
KP4 23 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0 23.0 23.0 0.0
KP5 481.0694 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0 481.07 481.07 0.0
KP6 52 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0 52.0 52.0 0.0
KP7 107 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0 107.0 107.0 0.0
KP8 9767 9759.0 9762.86 0.08 9758.0 9761.67 0.09 9759.0 9761.97 0.08 9756.0 9761.74 0.11 9757.0 9762.06 0.1
KP9 130 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0 130.0 130.0 0.0
KP10 1025 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0 1025.0 1025.0 0.0
KP1 100 9147 5565.0 6136.16 39.16 5225.0 6033.94 42.88 5282.0 6080.81 42.25 5178.0 5874.16 43.39 5313.0 6030.87 41.92
KP1 200 11238 5602.0 6322.77 50.15 5232.0 6239.94 53.44 5492.0 6288.52 51.13 5701.0 6677.0 49.27 5342.0 6281.13 52.46
KP1 500 28857 8428.0 9456.52 70.79 7478.0 8854.65 74.09 7158.0 8683.52 75.19 7557.0 9321.52 73.81 7455.0 9040.1 74.17
KP2 100 1514 1242.0 1316.16 17.97 1248.0 1302.87 17.57 1238.0 1315.13 18.23 1236.0 1298.32 18.36 1247.0 1316.84 17.64
KP2 200 1634 1258.0 1346.48 23.01 1259.0 1327.45 22.95 1251.0 1348.74 23.44 1252.0 1322.52 23.38 1239.0 1309.42 24.17
KP2 500 4566 2997.0 3120.45 34.36 2979.0 3106.1 34.76 2934.0 3082.77 35.74 2960.0 3094.77 35.17 2968.0 3065.84 35.0
KP3 100 2397 1896.0 2058.81 20.9 1893.0 2032.0 21.03 1896.0 1998.42 20.9 1896.0 2006.29 20.9 1897.0 2050.19 20.86
KP3 200 2697 1989.0 2078.61 26.25 1991.0 2041.71 26.18 1897.0 2102.23 29.66 1896.0 2058.77 29.7 1894.0 2076.84 29.77
KP3 500 7117 4015.0 4202.3 43.59 3917.0 4181.71 44.96 3917.0 4275.23 44.96 4016.0 4214.39 43.57 3917.0 4170.9 44.96

2417.0 2577.54 17.17 2323.79 2529.16 17.79 2315.58 2532.07 17.98 2348.42 2568.5 17.77 2326.37 2540.86 17.95

4.3 Statistical Test Results

If the p-value obtained, as explained in section 4.1, is a value less than and
equal to 0.05, which means that the difference between the techniques is
statistically significant, making the comparison of their means valid. The
results obtained are shown in Tables (25-33), generating a matrix of the
means obtained. The tables in their first row and first column present the
versions of the MH to compare, where the reading per row and the obtaining
of a p-value less than 0.05 means that the version in the row has obtained
a better performance over the version located in the column, meaning that
the difference between the results is statistically significant. Any value that
is not less than or equal to 0.05 has been replaced by “>0.05” in order to
facilitate the reading of the table.

Table 25: Statistical test of Metheuristics WOA and 85 Actions solving SCP

Inst. BCL MIR QL1 SA1

BCL - 0.0 >0.05 >0.05
MIR >0.05 - >0.05 >0.05
QL1 0.0 0.0 - >0.05
SA1 0.0 0.0 >0.05 -
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Table 26: Statistical test of Metheuristics WOA and 40 Actions solving SCP

Inst. BCL MIR BQSA1

BCL - 0.0 >0.05
MIR >0.05 - >0.05

BQSA1 0.0 0.0 -

Table 27: Statistical test of Metheuristics GWO and 85 Actions solving SCP

Inst. BCL MIR QL1 SA1

BCL - 0.03 >0.05 >0.05
MIR >0.05 - >0.05 >0.05
QL1 >0.05 >0.05 - >0.05
SA1 >0.05 0.02 >0.05 -

Table 28: Statistical test of Metheuristics GWO and 40 Actions solving SCP

Inst. BCL MIR BQSA1

BCL - 0.03 >0.05
MIR >0.05 - >0.05

BQSA1 >0.05 >0.05 -

Table 29: Statistical test of Metheuristics SCA and 85 Actions solving SCP

Inst. BCL MIR QL1 SA1

BCL - 0.0 >0.05 >0.05
MIR >0.05 - >0.05 >0.05
QL1 0.0 0.0 - >0.05
SA1 0.0 0.0 >0.05 -

58



Table 30: Statistical test of Metheuristics SCA and 40 Actions solving SCP

Inst. BCL MIR BQSA1

BCL - 0.0 >0.05
MIR >0.05 - >0.05

BQSA1 0.0 0.0 -

Table 31: Statistical test of Metheuristics WOA solving 0-1KP

Inst. QL1 QL2 QL3 QL4 QL5 SA1 SA2 SA3 SA4 SA5

QL1 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL2 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL3 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL4 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL5 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05
SA1 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05
SA2 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05
SA3 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05
SA4 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05
SA5 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 -

Table 32: Statistical test of Metheuristics GWO solving 0-1KP

Inst. QL1 QL2 QL3 QL4 QL5 SA1 SA2 SA3 SA4 SA5

QL1 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL2 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL3 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL4 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL5 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05
SA1 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05
SA2 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05
SA3 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05
SA4 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05
SA5 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 -
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Table 33: Statistical test of Metheuristics SCA solving 0-1KP

Inst. QL1 QL2 QL3 QL4 QL5 SA1 SA2 SA3 SA4 SA5

QL1 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL2 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL3 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL4 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
QL5 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05 >0.05
SA1 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05 >0.05
SA2 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05 >0.05
SA3 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05 >0.05
SA4 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 - >0.05
SA5 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 -

4.4 Action charts

We present average action charts Fig. (31-60), these charts give us infor-
mation about the average choices made by our reinforcement learning tech-
niques during the iterative process of the MH. This generates a weighting
of the choices of the binarization schemes, allowing us to identify which
are the preferences of the implemented techniques according to the state
(exploratory or exploitative) in which they are during the execution of the
algorithm. The charts presented in this section are composed as follows: on
the abscissa axis is the average number of times the action has been selected
for the respective state, while on the ordinate axis are the possible actions
for the binarization scheme selector, in Fig.(29) and (30) you can distinguish
the two versions with their respective actions.
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Figure 29: y-axis with 85-action
zoom.

Figure 30: y-axis with 40-action
zoom.
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Figure 31: 85 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 32: 85 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 33: 85 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 34: 85 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 35: 40 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 36: 40 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 37: 85 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 38: 85 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 39: 85 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 40: 85 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 41: 40 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 42: 40 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 43: 85 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 44: 85 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 45: 85 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 46: 85 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 47: 40 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 48: 40 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 49: 40 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 50: 40 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 51: 40 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 52: 40 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 53: 40 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 54: 40 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 55: 40 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 56: 40 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 57: 40 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 58: 40 Actions Chart - Av-
erage number of actions in explo-
ration state.
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Figure 59: 40 Actions Chart -
Average number of actions in ex-
ploitation state.
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Figure 60: 40 Actions Chart - Av-
erage number of actions in explo-
ration state.

4.5 Exploration-Exploitation Charts

In order to better understand the diversity and behavior of the MH in their
exploratory and exploitation phases, it is necessary to use tools that allow
us to visualize this process in a more graphic way. We present exploration
and exploitation charts (Fig. 61-84) as presented by Morales-Castañeda et
al. [84] with the way of calculating diversity presented in Eq. (78). The
charts are composed of: the x-axis indicating the number of total iterations
and the y-axis which is the percentage of exploration and exploitation that
was obtained from Eq. (79) and (80).
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Figure 61: Exploration and Ex-
ploitation Chart of WOA - BCL
- 61 solving SCP.
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Figure 62: Exploration and Ex-
ploitation Chart of WOA - MIR
- 61 solving SCP.
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Figure 63: Exploration and Ex-
ploitation Chart of WOA - QL1 -
61 solving SCP with 85 actions.
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Figure 64: Exploration and Ex-
ploitation Chart of WOA - SA1 -
61 solving SCP with 85 actions.
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Figure 65: Exploration and Ex-
ploitation Chart of WOA - BQSA1
- 61 solving SCP with 40 actions.
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Figure 66: Exploration and Ex-
ploitation Chart of WOA - BQSA1
- 61 solving SCP with 40 actions.
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Figure 67: Exploration and Ex-
ploitation Chart of GWO - BCL
- c2 solving SCP.
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Figure 68: Exploration and Ex-
ploitation Chart of GWO - MIR
- c2 solving SCP.
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Figure 69: Exploration and Ex-
ploitation Chart of GWO - QL1 -
c2 solving SCP with 85 actions.
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Figure 70: Exploration and Ex-
ploitation Chart of GWO - SA1 -
c2 solving SCP with 85 actions.
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Figure 71: Exploration and
Exploitation Chart of GWO -
BQSA1 - c2 solving SCP with 40
actions.
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Figure 72: Exploration and
Exploitation Chart of GWO -
BQSA1 - 57 solving SCP with 40
actions.
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Figure 73: Exploration and Ex-
ploitation Chart of SCA - BCL -
a4 solving SCP.
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Figure 74: Exploration and Ex-
ploitation Chart of SCA - MIR -
a4 solving SCP.
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Figure 75: Exploration and Ex-
ploitation Chart of SCA - QL1 -
a4 solving SCP with 85 actions.
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Figure 76: Exploration and Ex-
ploitation Chart of SCA - SA1 -
a4 solving SCP with 85 actions.
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Figure 77: Exploration and Ex-
ploitation Chart of SCA - BQSA1
- a4 solving SCP with 40 actions.
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Figure 78: Exploration and Ex-
ploitation Chart of SCA - BQSA1
- 45 solving SCP with 40 actions.
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Figure 79: Exploration and Ex-
ploitation Chart of WOA - QL5 -
KP2 100 solving 0-1KP with 40 ac-
tions.
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Figure 80: Exploration and Ex-
ploitation Chart of WOA - SA5 -
KP2 100 solving 0-1KP with 40 ac-
tions.
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Figure 81: Exploration and Ex-
ploitation Chart of GWO - QL3
- KP2 100 solving 0-1KP with 40
actions.
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Figure 82: Exploration and Ex-
ploitation Chart of GWO - SA3 -
KP2 100 solving 0-1KP with 40 ac-
tions.
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Figure 83: Exploration and Ex-
ploitation Chart of SCA - QL4 -
KP5 solving 0-1KP with 40 ac-
tions.
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Figure 84: Exploration and Ex-
ploitation Chart of SCA - SA4 -
KP5 solving 0-1KP with 40 ac-
tions.

5 Analysis and Discussions

We will analyze and discuss the results obtained in the section 4. We will
start by analyzing the tables, passing through the Best fitness obtained, the
avgs and RPDs and then the action and exploration-exploitation charts.

5.1 Tables Analysis and Discussions

By reviewing the summary tables (10-12) or the detailed tables (13-24), we
can obtain quite interesting information about the behavior of the imple-
mented techniques. In the tables obtained by solving the SCP problem with
85 actions (13, 15, 17), we can notice that in the MH: WOA and SCA the
SARSA technique has stood out compared to QL and to the static versions
BCL and MIR, however, for the GWO case, neither of the two implemented
techniques has improved the BCL version. On the other hand, reviewing
the statistical tables (25, 27, 29) for these 85 actions, we can notice that
for WOA and SCA there IS statistically significant difference between the
implemented techniques (QL1 and SA1) and the static versions (BCL and
MIR), however, there is NO significant difference between the versions of
QL1 and SA1. On the GWO side, we can notice that there is only a differ-
ence between the SA1 and MIR technique.

With the tables containing the versions with 40 actions (14, 16, 18), we
can observe that the new implemented technique of BQSA has had a similar
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behavior to QL and SARSA: in WOA and SCA the BQSA has stood out
compared to the static versions and for GWO as in the 85 actions, BCL has
not been improved by any of the implemented versions and techniques. Re-
viewing the statistical tests in tables (26, 28, 30): again in WOA and SCA
we COUNT significant difference between the technique (BQSA) and the
static versions and in GWO there is NO difference between the technique
and the static ones.

Finally, with the tables that solve the 0-1KP (19-24), we can observe
that for GWO and SCA the technique that has stood out has been SA1 in
comparison with the QL versions, while in WOA it has been the opposite,
QL1 has stood out in comparison with the SARSA versions. Thanks to
the RPD and the statistical tests that record and analyze the 0-1KP results
(31-33), we can observe that for all SARSA and QL versions there is NO
statistically significant difference.

5.2 Charts Analysis and Discussions

If we read the work of Crawford et al. [10], we can conclude that binarization
schemes have a quite strong impact on the performance of an MH, that is
why Fig. (31-60) give us valuable information about this impact during the
exploration and exploitation process. With the analysis of the average action
charts of the versions implemented with 85 actions (31-34, 37-40, 43-46), for
both binarization scheme selectors (SARSA and QL) in the exploited state
have preference for transfer functions of type X, S and O (middle area of
the y-axis) while in the explored state they are strongly attracted to transfer
functions of type V and Z (lower and upper area of the y-axis).

In the charts recording the implemented technique with 40 actions (35-
36, 41-42, 47-48), the behavior is similar to the charts having 85 actions
with the QL and SARSA techniques. This time the BQSA technique in the
exploitation for WOA, GWO and SCA feels attraction for S-type transfer
functions, while in the exploration the attraction is for V-type ones.

In the action charts corresponding to 0-1KP (49-60), the behavior is dif-
ferent from BQSA. In this occasion for both QL and SARSA techniques the
attraction is by V-type in exploitation and by S-type in exploration.

Thanks to the Fig. (61-84), we can see the behavior of the exploration
and exploitation metrics during the iterative process, which allows us to
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know the influence of the binarization schemes used between the different
techniques, versions and MH. From these figures we can conclude that, in
WOA for SCP and 01-KP we have a similar behavior according to the ex-
ploration and exploitation percentages, however, it can be observed that for
SCP during the whole iterative process it has variations of greater amplitude,
more pronounced and in accordance with what Morales-Castañeda presents
us.

For the GWO versions we have the opposite in SCP, a trend is still seen
thanks to the colors of the graph, but it is no longer as exploitative as the it-
erations progress, instead, it becomes exploratory. While in 0-1KP we again
have a behavior similar to that presented by WOA, as the iterations progress
the state becomes exploitative until the end of the optimization process.

Finally, for the versions with SCA, we still see the trend thanks to the
colors of the graph, but it is no longer as pronounced as in WOA or GWO,
it has constant variations in its phases with large amplitude variations for
the case of SCP, while for 0-1KP we clearly see the trend of its behavior,
more similar to those of WOA and GWO and to what was presented by
Morales-Castañeda.

6 Conclusions

RL techniques have become famous in most research areas, as they allow
the automation of several processes within the MH work. In the literature
currently, there are several MH that are being supported by RL techniques
from different approaches, aiming to improve the performance of these tech-
niques. Due to this, the motivation to make this proposal arises, since the
MH generate a large amount of data that are not always used for the oper-
ation of the same MH. It should be noted that in the proposed techniques
the sizes of the Q-Tables are small, due to the small size of the sets of opera-
tors, unlike other techniques that work with large amounts of input variables.

In this work 2 different problems were proposed; Set Covering Problem
and 0-1 Knapsack Problem being solved with 3 MH; Whale Optimization
Algorithm, Grey Wolf Optimization and Sine-Cosine Algorithm, hybridized
with three RL techniques; SARSA, QL and BQSA, giving some implemen-
tations 5 different reward versions (Table 6), giving a total of 45 different
implementations. 12 implementations in SCP with 85 actions, 3 in SCP with
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40 actions and finally 30 implementations in 0-1KP. The techniques of these
RL to MH techniques have presented interesting fitness development and ex-
ploration and exploitation behavior. Different parameterizations have been
given to the different implementations: for the SCP problem 45 instances
with 40 population and 1000 iterations have been solved and in 0-1KP 19
instances with 20 population and 5000 iterations have been considered.

Experiments have shown that the MH: WOA and SCA tackling the SCP
problem achieve significantly better results (although not statistically sig-
nificantly) on the versions including SARSA and BQSA (in the case of the
versions with 40 shares). In addition, they show near-optimal performance
in most of the 45 situations considered. The behavior is similar for 0-1KP,
where MH: GWO and SCA have been shown to achieve better results (again
not statistically significant) in the versions with SARSA with the exception
of GWO, where the best is QL.

Future work will aim at finalizing the experiments already performed,
i.e. for the versions considering the 85 actions, to integrate BQSA to the
tables and compare them, while for the versions with 40 actions to integrate
QL and SARSA. In addition, the integration of other Temporal Difference
approaches classified as RL techniques present in the literature is proposed.
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