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a b s t r a c t 

In the last few years, the formulation of real-world optimization problems and their efficient solution via meta- 
heuristic algorithms has been a catalyst for a myriad of research studies. In spite of decades of historical advance- 
ments on the design and use of metaheuristics, large difficulties still remain in regards to the understandability, 
algorithmic design uprightness, and performance verifiability of new technical achievements. A clear example 
stems from the scarce replicability of works dealing with metaheuristics used for optimization, which is often 
infeasible due to ambiguity and lack of detail in the presentation of the methods to be reproduced. Additionally, 
in many cases, there is a questionable statistical significance of their reported results. This work aims at providing 
the audience with a proposal of good practices which should be embraced when conducting studies about meta- 
heuristics methods used for optimization in order to provide scientific rigor, value and transparency. To this end, 
we introduce a step by step methodology covering every research phase that should be followed when addressing 
this scientific field. Specifically, frequently overlooked yet crucial aspects and useful recommendations will be 
discussed in regards to the formulation of the problem, solution encoding, implementation of search operators, 
evaluation metrics, design of experiments, and considerations for real-world performance, among others. Finally, 
we will outline important considerations, challenges, and research directions for the success of newly developed 
optimization metaheuristics in their deployment and operation over real-world application environments. 
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. Introduction 

The formulation and solution of optimization problems through the
se of metaheuristics has gained an increasing popularity over the last
ecades within the Artificial Intelligence community [1,2] . This momen-
um has been propelled by the emergence and progressive maturity of
ew paradigms related to problem modeling (e.g., large scale optimiza-
ion, transfer optimization), as well as by the vibrant activity achieved
n the Swarm Intelligence and Evolutionary Computation fields [3–5] .
n this regard, there are several crucial aspects and phases that define
 high-quality research work within these specific areas. Each of these
spects deserves a painstaking attention for reaching the always desir-
ble replicability and algorithmic understanding. Moreover, these ef-
orts should be intensified if the conducted research has the goal of being
eployed in real-world scenarios or applications. 
∗ Corresponding author. 
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This last aspect unveils one of the most backbreaking challenges that
esearchers face these days. It is relatively easy to find in the literature
eally meaningful studies around theoretical and synthetic applications
f optimization problems and their solution using metaheuristic algo-
ithms [6–8] . However, it is less frequent to find thoughtful and com-
rehensive studies focused on real-world deployments of optimization
ystems and applications. 

Besides that, the challenge is even more arduous when the main goal
f the research is to put in practice a previously published theoretical
nd experimental study. There are two main reasons that generate this
omplicated situation. First, it is difficult to find studies that allow the
ork carried out to be transferred to practical environments without

equiring a significant previous effort. On the other hand, the second
eason points to the lack of a practical guide for helping researchers to
utline all the steps that a research work should meet for being repro-
pril 2021 
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ucible such that it contemplates both theoretical and real-world de-
loyment aspects. 

With this in mind, it is appropriate to claim that the gap between the-
retical and real-world oriented research is still evident in the research
n metaheuristics for optimization that is being conducted nowadays.
his gap is precisely the main motivation for the present study in which
e propose a methodology of design, development, experimentation,
nd final deployment of metaheuristic algorithms oriented to the solu-
ion of real-world problems. The guidelines provided here will tackle
ifferent pivotal aspects that a metaheuristic solver should efficiently
ddress for enhancing its replicability and to facilitate its practical ap-
lication. 

To rigorously meet the objective proposed in this paper, each of the
hases that define a high-quality research are analyzed. This analysis is
onducted from a critical but constructive approach towards amending
isconceptions and bad methodological habits, with the aim of ulti-
ately achieving valuable research of practical utility. To this end, the

nalysis made for each phase incorporates a prescription of application-
gnostic guidelines and recommendations that should be followed by
he community to foster actionable metaheuristic algorithms, namely,
etaheuristic methods designed and tested in a principled way, with a

iew towards ensuring their actual use in real-world applications. 
Over the years, several efforts have been made by renowned re-

earchers for establishing firm foundations that guide practitioners to
onduct rigorous research studies [9–12] . All these previous studies
ave significantly contributed to the standardization of some important
oncepts. However, the majority of these works are focused on some
pecific steps or phases of the whole optimization process, while others
ocus on very specific knowledge domains. These remarkable studies
ill be analyzed in upcoming sections. Such works certainly helped us

o highlight the main novelty of the methodology proposed here, which
s the deeming of each step that makes up a real-world oriented opti-
ization research. We cover from the early phase of problem modeling

o the validation and practical operation of the developed algorithm.
herefore, the main contributions and analysis of this tutorial are fo-
used on the following issues: 

• Problem Modeling and Mathematical Formulation : this first step is de-
voted to the modeling and mathematical formulation of the opti-
mization problem, which is guided by a previously conducted con-
ceptualization. 

• Algorithmic Design, Solution Encoding and Search Operators : this phase
is entirely dedicated to the design and the implementation of the
metaheuristic algorithm. 

• Performance Assessment, Comparison and Replicability : this is a crucial
step within the optimization problem solving process, and it is de-
voted to the correct evaluation of the algorithms developed, and to
the replicability and consistency of the research. 

• Algorithmic Deployment for Real-World Applications : once the meta-
heuristic is developed and properly tested, this last phase is dedi-
cated to the deployment of the method in a real environment. 

The remainder of the paper is structured as follows. In Section 2 ,
he history of problem solving through metaheuristics is briefly out-
ined, underscoring the related inherent methodological uncertainties.
n Section 3 , we introduce a reference workflow which will guide the
hole methodology. We also highlight in this section some of the most

mportant related works already published in the literature and their
onnection with the methodology proposed in the present paper. Our
roposed practical procedure is described in detail in Sections 4 , 5 , 6 ,
nd 7 . Additionally, a summary of good practices at each specific phase
f the complete problem solving process is provided in Section 8 . The tu-
orial ends with a discussion on future research lines of interest for the
cope of this tutorial, Section 9 , followed by our concluding remarks
rovided in Section 10 . 
2 
. Problem solving using metaheuristics: A long history with 

ethodological uncertainties 

Optimization problems and their efficient handling has received ex-
ensive attention throughout the years. The appropriate solution of ex-
raordinarily complex problems usually entails the use of significant
omputation resources [13–15] . This computational complexity, along
ith their ease of application to real-world situations, has made of the
ptimization field one of the most intensively studied by the current
rtificial intelligence community. This scientific interest has led to the
roposal of a plethora of solution approaches by a considerable number
f researchers and practitioners. Arguably, the most successful methods
an be grouped into three different categories: (1) exact methods, (2)
euristics, and (3) metaheuristics. As stated previously, this study will
harpen its focus on the last of these categories. 

Metaheuristics can be divided into different categories depending
n their working philosophy and inspiration [16,17] . For a better un-
erstanding of the situation described in this paper, it is interesting to
ut emphasis on a specific branch of knowledge related to metaheuris-
ics and optimization problem solving: bio-inspired computation [18] .
n the last two decades, a myriad of bio-inspired approaches have been
pplied to different problems, some of which have shown remarkable
erformance. This growing attention has led to an extraordinary in-
rease in the amount of relevant published material, usually focused
n the adaptation, improvement, and analysis of a variety of methods
hat have been previously reported in the specialized literature. 

Several reasons have contributed to this situation. Probably, the most
mportant cornerstone was the birth of the branches which are known
oday as Evolutionary Computation and Swarm Intelligence [19,20] . The
ain representative techniques within these streams are the genetic al-

orithm (GA, [21,22] ), particle swarm optimization (PSO, [23] ), and
nt colony optimization (ACO, [24] ). Being more specific, it was PSO,
hanks to its overwhelming success and novelty, the one that decisively
nfluenced the creation of a plethora of bio-inspired methods, which
learly inherit its main philosophy [25] . 

In spite of the existence of an ample collection of classical and sophis-
icated solvers proposed in both past and recent literature, an important
egment of the research community continues scrutinizing the natural
orld seeking to formulate new metaheuristics that mimick new bio-

ogical phenomena. This fact has entailed the seeding of three different
roblems in the community, which are now deeply entrenched. We list
hese problems below: 

• Usually, the proposed novel methods are not only unable to offer a
step forward for the community, but also augment the skepticism of
critical researchers. These practitioners are continuously question-
ing the need for new methods, which apparently are very similar
to previously published ones. Some studies that have discussed this
problem are [26] , [27] or [5] . 

• The uncontrolled development of metaheuristics contributes to grow
an already overcrowded literature, which is prone to generate am-
biguities and insufficiently detailed research contributions. This un-
controlled growth is splashing the research community with a large
number of articles whose contents is not replicable and in some
cases, it may be even unreliable. The reason is the ambiguity and
lack of detail in the presentation of the methods to be replicated and
the questionable statistical significance of their reported results. 

• Most of the proposed methods are tested over synthetic datasets and
generally compared with classical and/or representative metaheuris-
tics. This fact also involves the generation of two disadvantages. First
of all, the sole comparison with classical techniques has led to unre-
liable and questionable findings. Second, the approaches proposed
in these publications is usually difficult to deploy in real-world envi-
ronments, requiring huge amounts of time and effort to make them
work. Finally, being aware of the rich related literature currently
available, today’s scientific community must turn towards the pro-
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Table 1 

Summary of the literature review, and comparison with our proposed methodology. 

Problem Modeling 
and Mathematical 
Formulation 

Algorithmic 
Design, Solution 
Encoding and 
Search Operators 

Performance 
Assessment, 
Comparison and 
Replicability 

Algorithmic 
Deployment for 
Real-World 
Applications Focus 

[26] ✗ 
√

✗ ✗ Bio-inspired and swarm intelligence algorithms 

[9] ✗ ✗ 
√

✗ Resource-constrained project scheduling problems 

[10] ✗ ✗ 
√

✗ —
[11] 

√
✗ 

√
✗ Multi-objective problems 

[12] ✗ ✗ 
√

✗ —
[28] ✗ 

√ √
✗ Swarm Intelligence 

[29] ✗ 
√ √

✗ Vehicle Routing Problems with Time Windows 

[30] ✗ 
√ √

✗ Vehicle Routing Problems 

[31] 
√

✗ 
√

✗ Common pitfalls and good practices for parameter tuning 

[32] 
√

✗ 
√

✗ —
[33] 

√
✗ 

√
✗ —

[34] ✗ ✗ 
√

✗ Bio-inspired Optimization 

[35] 
√

✗ 
√

✗ Numerical optimization algorithms in a black-box scenarios 

[36] 
√

✗ ✗ ✗ —
[37] 

√
✗ 

√
✗ Multi-objective problems 

[38] 
√

✗ ✗ ✗ Newcomers 

[39] 
√

✗ ✗ ✗ Two-echelon Capacitated Vehicle Routing Problem 

[40] 
√ √

✗ ✗ Bin Packing Problems 

This work 
√ √ √ √

—
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posal of practical and real-world applications of metaheuristic algo-
rithms. This goal cannot be reached if part of the community con-
tinues delving into the proposal of new solution schemes which, in
most cases, don’t seem to be fully justified. 

For reversing this non-desirable situation, we provide in this work
 set of good practices for the design, experimentation, and application
f metaheuristic algorithms to real-world optimization problems. Our
ain goals with the methodology proposed in this paper is to guide re-

earchers to conduct fair, accurate, and shareable applied studies, deem-
ng all the spectrum of steps and phases from the inception of the re-
earch idea to the final real-world deployment. 

As has been pointed out in the introduction, some dedicated efforts
ave been conducted before with similar purposes. Some of these papers
re currently cornerstones for the community, guiding and inspiring the
evelopment of many high-quality studies. In [28] , for instance, a tuto-
ial on the use of non-parametric statistical tests for the comparison of
volutionary and swarm intelligence metaheuristics is presented. In that
aper, some essential non-parametric procedures for conducting both
airwise and multiple comparisons are detailed and surveyed. A similar
esearch is introduced in [9] , in which a procedure for statistically com-
aring heuristics is presented. The goal of that paper is to introduce a
ethodology to carry out a statistically correct and bias-free analysis. 

In [29] , a detailed study on the Vehicle Routing Problem with Time
indows is presented, in which several guides are offered for the proper

esign of solutions and operators, among other remarkable aspects. In
ny case, one of the most valuable parts of this research is the in-depth
iscussion on how heuristic and metaheuristic methods should be as-
essed and compared. An additional interesting paper is [30] , which
roposes a procedure to introduce new techniques and their results in
he field of routing problems and combinatorial optimization problems.
urthermore, in a previously cited paper, Sorensen [26] also provides
ome good research practices to follow in the implementation of novel
lgorithms. 

The difficulty of finding standards in optimization research in terms
f significant laboratory practices is the main focus of the work pro-
osed in [10] . Thus, the authors of that work suggest some valuable
ecommendations for properly conducting rigorous and replicable ex-
eriments. A similar research is proposed in the technical report pub-
ished by Chiaraindini et al. [12] . In that report, the authors formalize
everal scenarios for the assessment of metaheuristics through labora-
3 
ory tests. More specific is the study presented in [31] , focused on high-
ighting the many pitfalls in algorithm configuration and on introducing
 unified interface for efficient parameter tuning. 

It is also interesting to mention the work proposed in [32] , which in-
roduces some good practices in experimental research within evolution-
ry computation. Focused also in evolutionary computation, the authors
f [33] highlight some of the most common pitfalls researchers make
hen performing computational experiments in this field, and they pro-
ide a set of guidelines for properly conducting replicable and sound
omputational tests. A similar effort is made in [34] but focused on bio-
nspired optimization. The literature contemplates additional works of
his sort, such as [35] . 

The methodologies mentioned up to now revolve around two key
spects in optimization: efficient algorithmic development and rigorous
ssessment of techniques. In addition to that, it is also possible to find
n the literature good practices about the modeling and formulation of
he optimization problem itself. This issue is equally important to the
thers that have been previously mentioned, and not dealing properly
ith it, usually becomes a source of multiple uncertainties and ineffi-

iencies. In [36] , for example, Edmonds provides a complete guide for
roperly formulating mathematical optimization problems. The author
f that paper highlights the importance of analyzing the complexity of
roblems, which is crucial for choosing and justifying the use of a solu-
ion method. He also stresses the importance of carefully defining three
ifferent ingredients that make up an optimization problem: instances,
olutions, and costs. 

Also related are the works conducted in [11] and [37] , both dedi-
ated to multi-objective problems. Moreover, in its successful book [38] ,
umar dedicates a complete section to guide researchers in the proper
efinition of optimization problems. This book is especially valuable for
ewcomers in the area due to its informative nature. Apart from these
eneric approaches, valuable works of this sort can be found in the lit-
rature devoted to some specific knowledge domains, such as the ones
resented in [39] and [40] . 

As indicated before, the community has made remarkable efforts
o establish some primary lines which should guide the development
f high-quality, transparent, and replicable research. The main original
ontribution of the methodology proposed in this paper is the consider-
tion of the full procedure related to a real-world oriented optimization
esearch, covering from the problem modelling to the validation and
ractical operation of the developed systems. Finally, Table 1 summa-
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Fig. 1. Phase 1 of the reference workflow for solving optimization problems with metaheuristic algorithms. 

Fig. 2. Phase 2 of the reference workflow for solving optimization problems with metaheuristic algorithms. 

r  

c  

s

3

A

 

o  

p  

c  

n  

F  

t
 

o  

g  

s  

d  

(  

F  

t  

t  

t  

a
 

w  

T  

g  

d  

t  

t  
izes the state of the art outlined in this section. We also depict the main
ontribution of our proposal in comparison with each of the works de-
cribed there. 

. Solving optimization problems with metaheuristic algorithms: 

 reference workflow 

In this section, we introduce the reference workflow that describes
ur methodological proposal. Our main intention is to establish this
rocedure as a reference, considering its adoption a must for properly
onducting both theoretical and practical rigorous, thorough, and sig-
ificant studies related to metaheuristic optimization. Thus, Fig. 1 and
ig. 2 represent this reference workflow, which will serve as a guide for
he remaining sections of this paper. 

Thus, we have used two different high-level schemes to describe
ur methodology graphically. The first one ( Fig. 1 ) is conceived as the
4 
eneral scheme, and it contemplates the problem description ➂, analy-
is, and development of the selected solution approach (5–6), and the
eployment of the solution ➃. On the other hand, the second scheme
 Fig. 2 ) is completely devoted purely to the research activity (stage ➅ in
ig. 1 ). In another short glimpse, we can also see how we have devised
wo different development environments. Specifically, problem descrip-
ion, baseline analysis, and research activity are conducted in a labora-
ory environment ➀, while the algorithmic deployment is conducted in
n application environment ➁. 

Focusing our attention on the first workflow, the whole activity starts
ith the existence of a real problem that should be efficiently tackled.
he detection of this problem and the necessity of addressing it, trig-
ers the beginning of the research, whose first steps are the conceptual
efinition of the problem and the definition and analysis of both func-
ional and non-functional requirements ➂. It should be clarified here
hat this first description of the problem is made at a high-level, focus-
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ng on purely conceptual issues. Due to the nature of this first step, the
resence of final stakeholders is highly recommended in addition to re-
earchers and developers. 

Regarding functional requirements, it is hard to find a canonical def-
nition [41] , but they can be referred to as what the product must do

42] or what the system should do [43] . Furthermore, the establishment
f functional requirements involves the definition of the objective (or
bjectives in case of multi-objective problems) function to be optimized
nd the equality and inequality constraints (in case of dealing with a
roblem with side constraints). On the other hand, there is no such
onsensus for non-functional requirements. Davis defines them as the

equired of overall attributes of the system, including portability, reliability,

fficiency, human engineering, testability, understandability and modificabil-

ty [44] . Robertson and Robertson describe them as a property, or quality,

hat the product must have, such as an appearance, or a speed or accuracy

roperties [42] . More definitions can be found in [41] . In any case, these
bjectives are crucial for the proper election of the solution approach,
nd the non-consideration of them can lead to the re-design of the whole
esearch, involving both economical and time costs. This paramount
mportance is the reason why, in this work, we put special attention
n highlighting the impact of the consideration or non-consideration of
hese non-functional objectives (of a fair and comprehensive description
f the non-functional requirements). In fact, many of the research con-
ributions available in the literature are focused on the pure fulfillment
f functional requisites, making them hard to be properly deployed in
he real world. Thus, we can see the meeting of non-functional objec-
ives as the key for efficiently transitioning from the laboratory ➀ to the
pplication environment ➁. 

After this first conceptual phase, it is necessary to scrutinize the
elated literature and scientific community for finding an appropriate
aseline ➄. The main objective of this process is to find a public shared
ibrary or baseline that fits with the previously fixed functional require-
ents. In the positive case, the next step is to analyze whether these
ndings are theoretically compliant with all the outlined non-functional
equirements. The published research activity is usually carried out un-
er trivial and unofficial laboratory specifications with a short-sighted
esign mostly concentrated on the “what ” (functional objectives) but not
n the feasibility of “the how ”. The recommended good practice is filter-
ng out research that has allegedly gone through from the lab hypothesis
o the demanding real-world conditions. On the contrary, when assum-
ng that the baseline does not satisfy or reckon these non-functional
equirements, the research activity will first include procedures to eval-
ate the baseline viability so as to decide whether the baseline is still a
otential workaround or has to be discarded ➅. Finally, if both actions
re positively solved, the investigation is considered ready to go through
he deployment phase ➃. 

At this point, it is important to highlight that the so-called Algorithmic

eployment for Real-World Application phase ➃ (detailed in Section 7 ),
onsidered as a cornerstone in our methodology, can receive as input
n algorithm directly drawn from a public library ➄, or a method de-
eloped ad-hoc as a result of a thorough research procedure ➅. At this
hase, it could be possible to face the emergence of new non-functional
bjectives, implying the re-analysis of the problem (going back to ➂) for
he sake of deeming all the newly generated necessities. 

On the contrary, if all the non-functional requirements are consid-
red but not fully met, further re-adjustments are necessary. In this
cenario, additional minor adaptations should be made over the meta-
euristic if further configurations are left to test ➆. Nevertheless, if these
inor adjustments do not result in a desirable performance of the al-

orithm, the process should re-iterate starting from the Algorithmic De-

ign, Solution Encoding and Search Operators phase (part of Workflow 2,
ig. 2 , and detailed in Section 5 ), which may involve a re-design and
e-implementation of (or even a new) our metaheuristic solution ➅. Fi-
ally, if none of the above deviations occur and the performance of the
etaheuristic meets the initially established objectives, the problem can
5 
e considered solved and the research completely finished after the final
eployment of the algorithm in a real environment. 

In another vein, Fig. 2 depicts the second part of our workflow, which
s devoted to the work related to research development. As can be eas-
ly seen in this graphic, this workflow has three different entry points,
epending on the status of the whole activity. Furthermore, this phase
s divided into three different and equally important sequential stages.
hese phases and how they are reached along the development process
re detailed next: 

• Problem Modeling and Mathematical Formulation ( Section 4 ): This first
step should be entirely devoted to the modeling and mathematical
formulation of the optimization problem, which should be guided by
the previously conducted conceptualization. The entry to this part of
the research should be materialized if the problem to solve has not
been tackled in the literature before, or in case of the non-existence
of an adapted baseline or library. 

• Algorithmic Design, Solution Encoding and Search Operators ( Section 5 ):
This second stage should be devoted to the design and implementa-
tion of the metaheuristic method. It should also be highlighted that
another research branch could also be conducted, which is the re-
finement of a baseline or library already found in the scientific com-
munity. 

• Performance Assessment, Comparison and Replicability ( Section 6 ):
Once the algorithmic approach is developed (or refined), the per-
formance analysis of the technique should be carried out. This is a
crucial phase within the optimization problem solving process, and
the replicability and consistency of the research clearly depend on
the good conduction of this step. Furthermore, once the quality of the
algorithms has been tested over the theoretical problem, it should
be deployed in a real environment ( Algorithmic Deployment for Real-

World Application phase, Fig. 1 ). 

Once we have introduced and described our envisioned reference
orkflow, we outline in the following sections all the good practices

hat researchers and practitioners should follow for conducting high-
uality, real-world oriented research. 

. Problem modeling and mathematical formulation 

Once the analyst and domain expert have agreed upon the concep-
ual definition and the requirements to be met by the solution, the
esearch activity gets started. All these inputs (conceptual description
nd functional/non-functional requirements) will be tracked along the
hole workflow and be more approachable depending on the specific

tage. At the problem modeling phase, the “what ” contained in the con-
eptualization and functional requirements have to be perfectly clear
nd comprehensive enough to be fairly translated into a mathematical
ormulation. 

.1. Mathematical formulation 

The key steps to be followed are depicted in Fig. 3 aiming at ade-
uately translating a problem conception on paper into a precise math-
matical formulation of an optimization problem: 

• Clearly state the objective/cost function 𝑓 ( x ) in charge of cover-
ing functional requirements and measure the quality and success of
each assignment or solution. Try to infer as well the main charac-
teristics of 𝑓 ( X ) : linear/nonlinear, unimodal/multimodal, or contin-
uous/discontinuous. In multi-objective scenarios, when the decision
functions are conflicting, multiple criteria will play a part in the de-
cision making process. Nonetheless, the stakeholder might narrow
down the Pareto optimal/nondominated solutions by imposing some
preferences. 
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Fig. 3. Phase 1 of the reference workflow for solving optimization problems with metaheuristic algorithms. 
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• Characterize the decision variables ( 𝐱 = { 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 } ) to be tuned
(the order of the cities to visit, the community in which a node should
be placed, the value of some input parameters,...) and their domain.

• Determine the constraints of the problems as well as the natural or
imposed restrictions, whose intersection will yield the feasible re-
gion of solutions. For Constrained Optimization Problems, hereafter
called COPs, the nature of such constraints (equality, inequality or
both) may be decisive in the algorithm approach selection. 

Also, in Fig. 3 , and for the sake of understandability, we have de-
icted in the upper right corner the placement of this phase in the Re-
earch Activity workflow ( Fig. 2 ). The researcher will strive to accom-
odate the itemized list of functional and non-functional requirements

nto the mathematical formulation since setting boundaries to the auto-
atic solution generation relieves subsequent efforts in modeling them

t a next stage. We propose here a list of most common real-world non-
unctional requirements and some good practices to be assessed, if ap-
lied, by the researcher: 

• Time consumption . It is often the most relevant non-functional re-
quirement expelled to take into account since the beginning of the
mathematical conceptualization. 
• The fitness/objective function 𝑓 ( x ) evaluation might be ex-

tremely time-consuming, specifically when equations are large
and must be assessed in heavy computer-based simulations. Re-
formulations such as those approaches based on approximation-
preserving reduction, i.e., relaxing the goal from finding the op-
timal solution to obtaining solutions within some bounded dis-
tance from the former [45] , surrogate objective functions [46] or
dimension reduction procedures (rightly after introduced) might
be practical alternatives. 

• Dimension reduction relates decision variables, the parameters
on which the algorithm will perform the decision-making pro-
cedure. The length of such list 𝑛 = |𝐱| and their flexibility is
strictly related to the time consumption required by the meta-
heuristic to explore the search space and run evaluations (i.e.,
𝑓 ( x ) ). Therefore, a preliminary study on the input parameters’
selection, similar to Attribute Selection in Machine Learning, is
strongly advocated in realistic scenarios oriented to real-world
deployment. A parameterized complexity analysis might trig-
ger a mathematical reformulation after delving into both the
6 
sensitivity of the objective function with respect to parameters
[47] (analogously to Information Gain in Machine Learning) and
the inter-relation/correlation of each pair of input variables. The
major concern about time consumption is likely to entice the re-
searcher to pay close attention to the balance between problem
dimensionality reduction and solution quality. 

• Constraints may contribute to a faster convergence by narrow-
ing the search in the feasible space. Nevertheless, the number of
constraints (and their complexity) can also have a big impact on
the existence of a solution and/or on the capacity of a numeri-
cal solver to find it. In fact, for real-life optimization problems,
inequality constraints (physical limitations, operating modes, ...)
can be quite large in comparison to decision variables 𝐱, hence
causing the feasible space to be shrunk to the point of eliminating
any available solution. In such a case, the COP goal will be math-
ematically reformulated as finding the least infeasible vector of
variable values. 

• Accuracy of the solution . Generally tightly related to the time-
consumption requirement, once the mathematical formulation has
been inferred, the optimization problem can be categorized into a
convex (i.e. the objective function 𝑓 ( x ) is a convex function and
the feasible search space is a convex set) or non-convex one, which
will mostly lead the algorithm selection process and its design. Re-
searchers must get a balance between the aforementioned time con-
sumption and the accuracy of the solution, especially on large scale
non-convex spaces: are local optima acceptable results in favor of the
computation lightening? are global optima achievable and verifiable
in the real-world environment?. These questions will also flourish in
the subsequent stages. 

• Unexpected algorithm interruptions must return feasible solutions . In
real-world environments, many unforeseen events may justify a need
for a solution before the algorithm meets the stopping criteria thus
finishing the search process. The solution, albeit premature, must
be complete and fully compliant with the hard constraints. In such
circumstances, the tendency to convert non-linear constraints into
penalties (soft constraints) in the objective function to bias the solu-
tions towards the frontiers is not a viable option. 

With such an enumeration of requirements in hand, researchers
hould check those regarded at this initial stage and those not plau-
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ible for being satisfied by the mathematical formulation, which will be
onsequently transferred to the following adjacent phase. 

.2. Analyze problem complexity - Justify the use of metaheuristics 

Once the mathematical formulation has been completed, the re-
earch team involved in the work at hand should justify with solid
rounds the need for metaheuristics to solve it efficiently. Mathemat-
cal optimization is a long-standing discipline, which has been tradi-
ionally focused on convex objective functions and feasible sets [48] .
ortunately, there are already specific solvers (either exact or heuris-
ics) suited to deal with this family of optimization problems, even to
ptimality when some specific conditions hold (e.g., linearity). Convex-
ty ensures that every local optimum is a global optimum, hence avoid-
ng common issues that motivate the use of heuristic and metaheuristic
lternatives. 

Unfortunately, the majority of contributions addressing real-world
ptimization problems just neglect any discussion on the convexity and
roperties of their mathematical formulations. Instead, they directly
esort to the use of metaheuristics, without any major discussion on
hether they are really needed [27] . In this context, any prospective
ork along this line should pause at the following research questions: 

• Are the objective function(s) and constraint(s) analytically defined? In-
tuitively, certain real-world optimization scenarios do not allow for
an analytical formulation of the optimization problem itself. Indeed,
the complexity of systems and assets to be optimized (as occurs in
e.g., industrial machinery) jeopardizes the derivation of closed-form
formulae for the objectives and constraints to be dealt with. How-
ever, this does not imply that quality and feasibility cannot be eval-
uated for any potential solution, but rather that the system/asset at
hand must be considered as a black-box model that can be queried
for any given input (solution). In this case, when the use of algo-
rithms that do not depend or rely on the problem’s properties be-
comes properly justified, it paves the way for the use of metaheuris-
tic algorithms. 

• Can the problem be modified or reformulated without compromising the

imposed functional requirements? When the problem can be analyti-
cally defined, it might fail to comply with the mathematical prop-
erties that could allow exact methods and ad-hoc heuristics to be
applied. For instance, even if the convexity of the objective(s) can
be guaranteed, their linear or quadratic nature with respect to the
optimization variables plays a crucial role in the adoption of exact
linear and quadratic programming methods rather than optimization
heuristics (e.g., gradient-based methods). At this point, it is strongly
advised to examine strategies to reformulate (relax) the problem
and mathematically simplify its objective(s) and constraint(s). These
strategies include, among others, quadratic and linear transforma-
tions, constraint approximation via trust regions or Lagrangian re-
laxation [49] . 
When considered and successfully applied to the problem at hand,
the compliance of the reformulated problem concerning functional
requirements should be analyzed. For instance, if the objective(s) are
modified, a quantitative analysis of the implications of such mod-
ifications in the landscape of the original problem should be per-
formed, particularly in regards to quality degradation (fitness value)
and feasibility (constraint satisfaction). Depending on the chosen
problem relaxation strategy, the reformulation could just penalize
with an additive objective term those solutions as per their compli-
ance with the imposed constraints. This reformulation is a crucial
aspect that can be detected and it must be held in mind in subse-
quent design phases, as there is no mathematical guarantee that a
feasible solution will be obtained. A similar conclusion can be drawn
with linear relaxation strategies: is the quality (fitness) of the global
optima of the relaxed problem far away from that of the original,
unrelaxed problem? If there is an optimality gap, is it relevant for
7 
the real-world application under study? Unless these discussions are
elaborated at this point of the reference workflow, design choices in
subsequent phases can be made on the basis of a problem statement
uncoupled from the requirements of the real-world problem under
consideration. 

• Is the problem complex enough to discard simpler heuristics? An equally
relevant aspect of real-world problems is its complexity, which has
been lately studied in the literature under the concept of fitness land-

scape [50–52] . In the context of optimization, fitness landscape com-
prises three essential elements of study: search space, fitness func-
tion, and neighborhood among solutions. Interestingly, since the
search space and the definition of a neighborhood depend stringently
on how solutions (optimization variables) are represented, the math-
ematical statement of the optimization problem and the algorithmic
design of the solver to address it become entangled with each other
[53] . In other words, a single problem statement can span differ-
ent fitness landscapes depending on how solutions are represented,
even if dealing with continuous search spaces. The point is that only
by assessing all these elements jointly, one can find solid reasons to
opt for simpler heuristics, such as implicitly enumerative methods
that rely extensively on the domains of study of landscape analysis
(e.g., exhaustive search, Montecarlo sampling, neighborhood search,
A 

∗ and branch and bound among others). Besides, landscape anal-
ysis can unveil other features with important implications that can
be equally identified, such as ruggedness, basins of attraction, and
funnels, to mention a few. When addressing real-world optimization
scenarios with analytically defined problem formulations, we advo-
cate for a closer look at these tools that, unfortunately, are often
overseen in the literature related to real-world optimization. 

• Is there expert knowledge about the problem/asset that should be consid-

ered in the definition of the problem? In real-world settings, years of
unassisted problem solving by users often accumulate expert knowl-
edge that can be exploited in the design of efficient heuristics, as
typically done by local search methods in memetic algorithms. How-
ever, we emphatically underscore the relevance of expert knowledge
in terms of problem analysis. For instance, large regions of the search
space can be discarded as per the experience of the user consuming
the solution provided by the algorithm (implicit experience-based
constraints). Likewise, the usability of the output in real application
contexts can give valuable hints about how the problem can be re-
laxed, either in terms of formulation or in what refers to aspects
impacting on its landscape (e.g., solution encoding, or how solu-
tions can be compared to each other – neighborhood). Section 5 will
later revolve on the capital role of expert knowledge in the design
of optimization algorithms for real-world problems. However, this
relevance also permeates to the definition of the problem itself and
its eventual reformulations. 

Summarizing the above points: metaheuristics must not be simply re-
arded as a swiss knife for solving real-world problems, nor should this
amily of solvers be unduly applied to problems that can be simplified
r tackled with simpler optimization methods. Instead, metaheuristics
re powerful algorithmic enablers to deal efficiently with those cases of
tudy whose complexity calls for their adoption. The provision of unde-
iable arguments for the necessity of metaheuristics should be enforced
n prospective studies. 

. Algorithmic design, solution encoding and search operators 

The second phase to analyze after the problem modeling is the one
evoted to the pure algorithmic design and development. Fig. 4 summa-
izes the main aspects of this activity. As in the previous subsection, we
ave shown in the upper right corner the placement of this phase in the
esearch Activity workflow ( Fig. 2 ). As can be seen in this scheme, and

ollowing the guidelines highlighted in the previous section, this step re-
eives as input an optimization problem, formulated adequately as one
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Fig. 4. Summary of the methodology on Algorithmic Design, Solution Encoding, and Search Operators. 
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r more objective functions, a set of decision variables, and a group of
onstraints. Furthermore, a group of must-fulfilling non-functional re-
uirements is also provided as input, which undoubtedly influences the
esigns and developments conducted in this phase. This specific stage
f the research can be reached from four different points: 

1. Following the natural flow of research methodology depicted in
Fig. 1 , the metaheuristic design and implementation are conducted
after the mathematical formulation of the problem ( Section 4 ). 

2. If researchers have found a baseline that meets the same functional
requirements of the problem at hand, but the theoretical compliance
of all non-functional requirements established (step ➄ in Fig. 1 ) can-
not be verified. 

3. The re-design and re-implementation of the selected metaheuristic
is necessary if the experiments carried out in the Lab Environment
using a previously implemented solver do not verify the compliance
of the defined functional requirements ( Section 6 ). 

4. From the Algorithmic Deployment for Real-World Applications step
( Section 7 and ➆ in Fig. 1 ), only if the previously deployed solver
does not meet the established non-functional requirements. 

Thus, these are the most important aspects a researcher or a prac-
itioner should consider regarding the algorithmic design, solution en-
oding, and search operator development: 

• Solution encoding . This is the first crucial decision to take in the
algorithmic design [54,55] . The type of encoding for representing
the candidate solution(s) should be decided (real or discrete; binary
[56] , permutation [57] , random keys [58] , etc.). Its length (under-
stood as the number of parameters that compose the solution) is
also an essential choice. This length can be dependant on the size
of the problem, or on the number of parameters to optimize. Thus,
depending on these choices, encoded solutions can adopt different
8 
meanings. For example, the candidate can represent the problem so-
lution itself (when genotype = phenotype [59] ), as in the case of
the permutation encoding for the TSP [60] , or a partial solution,
as normally happens when using Ant Colony Optimization [61,62] .
Nonetheless, the candidate can represent a set of values acting as
input for a specific system or a configuration of a defined set of pref-
erences [63] which will subsequently play a part in the complete
problem solution. Taking this particularity into account, it is impor-
tant not only to match the encoding to the problem (genotype vs
phenotype) but to clearly detail it. For this reason, two important
questions a researcher should answer are: “Do we need to encode an
individual for representing in a straightforward manner the prob-
lem’s solution? Or we need an intermediate encoding better suited
to test different heuristic operators? ”. 
Focusing our attention on solutions encoded as parameters that act
as inputs for an external system, researchers should bear in mind that
the length of the candidate solutions and the domain of their vari-
ables are strictly related to the running times needed by the meta-
heuristic to modify and evaluate them. This impact on the running
times is the reason for which, as mentioned in the previous section,
a preliminary study on the input parameters to be considered is re-
quired for studies oriented to real-world deployment. This way, re-
searchers could definitely choose which parameters should be part
of the solution encoding, balancing both time consumption and in-
fluence in the solution quality. A remarkable number of studies have
been published in the literature delving into this topic [64] , being
the restricted search mechanism [65] and the compression expansion

[66] two representative strategies of this sort. 
Furthermore, the importance of solution encoding is twofold. On the
one hand, it defines the solution space in which the solver works.
On the other hand, the movement/variation operators to consider
are dependant on this encoding. Consequently, different operators
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1 https://www.ntu.edu.sg/home/epnsugan/index_files/CEC2020/CEC2020- 
1.htm 
should be used depending on the encoding (e.g., real numbers, bi-
nary or discrete). Ideally, this representation should be wide and
specific enough for representing all the feasible solutions to the prob-
lem. Additionally, it should fit at best as possible the domain search
of the problem, avoiding the use of representations that unnecessar-
ily enlarge this domain. In any case, and taking into account that this
methodology is oriented to real-world deployments, non-functional
requirements should be decisive for deciding which encoding is the
most appropriate to deal with the problem at hand. For example, if
the real environment contemplates unexpected algorithm interrup-
tions (concept defined in Section 4.1 ), encoding strategies allowing
for partial solutions should be completely discarded. Moreover, if the
execution time is a critical factor in the real system, representations
that require a complex and time-consuming transformations or trans-
lations should also be avoided. An example of this translations is the
Random-Keys based encoding, often used in Transfer Optimization
environments [67,68] . 

• Population . On the one hand, if the number of candidate solutions to
optimize is just one, as in Simulated Annealing (SA, [69] ) and Tabu
Search (TS, [70] ), we can consider the metaheuristic as a trajectory-
based method. On the other hand, if we deal with a group of solu-
tions, the technique is classified as population-based. Examples of
these solvers are GA and PSO. An additional consideration is the
number of populations, which can also be more than one. These
methods can be called multi-population, multi-meme, or island-
based methods, depending on their nature [71,72] . Instances of these
approaches are the Imperialist Competitive Algorithm [73] or the
distributed and parallel GAs [74] . In these specific cases, the way in
which individuals are introduced in each sub-population should be
clearly specified, and the way in which solutions migrate from one
deme to another must also be formulated [75] . Finally, well-known
methods such as Artificial Bee Colony [76] and Cuckoo Search (CS,
[77] ) are characterized for being multi-agent, meaning that each in-
dividual of the community can behave differently. 
Summarizing, the number of solutions to consider, the structure of
the population, and the behavior of the individuals are three as-
pects that must be thoroughly studied. As in the previous case, non-
functional requirements need to be carefully analyzed for making the
right decision. For example, if the solver is run in a distributed en-
vironment, a multi-population method or a distributed master-slave
approach (both synchronous or asynchronous) could be promising
choices. Moreover, if the running time is a critical aspect and the
problem is not expensive to evaluate, a single point search algo-
rithm could be considered. In this regard, functional requirements
must also be analyzed for choosing the proper alternative. For in-
stance, if the solution space is non-convex and the number of local
optima is high, a population-based metaheuristic should be selected,
since it enhances the exploration of the search space. This aspect can
be particularly observed in multimodal optimization [78,79] . 

• Operators . The design and implementation of operators is an impor-
tant step that should also be carefully conducted. A priori, it is not a
strict guideline for the development of functions in functional terms.
Furthermore, there are different kinds of operators, such as selec-
tion, successor, or replacement functions, among others [16,55,80] .
In any case, and in order to avoid any ambiguity related to the ter-
minology used [26,81] , the way in which individuals evolve along
the execution should be detailed using a standard mathematical lan-
guage [5] . In order to do that, each operator’s inputs and outputs
should be described using both algorithm descriptions and standard
mathematical notation. We should also describe the nature of the
operators (search based, constructive...) and the way in which they
operate. Furthermore, and with the ambiguity avoidance in mind,
it is advisable to anticipate possible resemblances with other algo-
rithms from the literature and highlight differences (if any) by using,
once again, mathematically defined concepts. 
9 
For example, a mutation operator of a GA can be mathematically
formulated as: 

𝐱 𝑡 +1 = 𝑓 𝑖 ( 𝐱 𝑡 , 𝑍) ∈  , (1)

where 𝐱 𝑡 +1 is the output solution, and 𝑍 denotes the number of
times one of the functions 𝑓 𝑖 () in  is applied to the input 𝐱 𝑡 . Fol-
lowing the same notation, a crossover could be denoted as 𝐳 𝑡 +1 =
𝑔 𝑖 ({ 𝐱 𝑡 , 𝐲 𝑡 } , 𝑍) ∈  . 
Again, non-functional requirements should be carefully studied to
accurately choose or design all the operators that will be part of the
whole algorithm. For example, some operators allow the eventual
generation of incomplete and/or non-feasible solutions (i.e., solu-
tions which do not meet all the constraints) to enhance the explo-
ration capacity of the method. In any case, these alternatives should
be avoided in case the real-world scenario considers unexpected al-
gorithm interruptions. Additionally, in case the running time is a
critical issue, operators that favor the convergence of the algorithm
should be prioritized (understanding convergence as the computa-
tional effort that the algorithm requires for reaching a final solu-
tion(s) [82] ). 

• Algorithmic Design . Briefly explained, the algorithmic design dic-
tates how operators are applied to the solution or groups of solu-
tions. It could be said that this design determines the type of meta-
heuristic developed. At this point, it should be mandatory to pro-
vide overall details of the algorithm. To do this, several alternatives
are useful, such as a flow diagram, a mathematical description or a
pseudocode of the method. Furthermore, if the modeled technique
incorporates any novel ingredient, it is highly desirable to conduct
this overall description of the method using references to other algo-
rithmic schemes made for similar purposes. Furthermore, the num-
ber of possible alternatives for building a solution metaheuristic is
really immense, being impossible to point here all the aspects that
should be highlighted. In any case, some of the facets that must be
described are the selection criterion, the criterion for the interaction
among solutions (in terms of recombination in GAs, or migration in
multi-population metaheuristics), the acceptance criterion (replace-
ment) and the termination criterion. 
Probably, the first good practice to follow when deciding the algo-
rithmic design of a real-world oriented metaheuristic is to take a
detailed look at recent related scientific competitions. Tournaments
such as the ones celebrated in reference conferences such as the IEEE

Congress on Evolutionary Computation 1 and the Genetic and Evolution-

ary Computation Conference should guide the selection of the can-
didate algorithm. For making this decision, it should be checked if
the real-world problem belongs to a class of problems with a similar
competition benchmark, being meaningful in this case to focus the
attention on those algorithms that have shown a remarkable perfor-
mance at recent competitions. 
Once again, researchers should thoroughly consider both functional
or non-functional requirements for properly choosing the design of
the metaheuristic. For example, computationally demanding designs
could be acceptable only in situations in which the running time is
not critical. On the contrary, if we want to reduce the execution
time by sacrificing some quality in the solution, the termination cri-
terion would be a cornerstone for reaching a proper and desirable
convergence. Interaction between candidate solutions would also be
of paramount importance if the implemented algorithms will be de-
ployed in a distributed environment, requiring advanced and care-
fully designed communication mechanisms. 
Regarding the problem complexity, if this is remarkably high, auto-
mated algorithm selection mechanisms can be an appropriate alter-

https://www.ntu.edu.sg/home/epnsugan/index_files/CEC2020/CEC2020-1.htm
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native [83] . This concept sinks its roots in the well-known no-free-
lunch theorem [84] . This theorem particularly applies in computa-
tionally demanding problems, in which no single algorithm defines
the baseline. On the contrary, there is a group of alternatives with
complementary strengths. In this context, automated algorithm se-
lection mechanisms can, within a predefined group of algorithms,
decide which one can be expected to perform best on each instance
of the problem. 
Another interesting aspect to consider for the algorithmic design is
the whole complexity of the technique. Usually, the development
of complex algorithmic schemes is unnecessary, if not detrimental.
Some influential authors have proposed the bottom-up building of
metaheuristics, using the natural trial and error procedure. It has
been demonstrated how, in practice, robust optimizers can be built,
which can compete with complex and computationally expensive
methods. This concept, based on the philosophical concept of Oc-
cam’s Razor, is the focus of some interesting studies such as [85,86] .
An additional consideration that should be taken into account for
properly choosing the algorithmic design is the expertise of the fi-
nal user. In this sense, if the user who will use the deployed method
in the real environment has no experience with these kinds of tech-
niques, it is recommended to implement techniques needing a slight
parameterization. Examples of these methods are the basic versions
of the Cuckoo Search or Differential Evolution. Other promising al-
ternatives for these types of situations are the solvers known as adap-
tive [87] , or the automated design methods [88,89] . On the con-
trary, if the final user is familiar with the topic, the researcher could
deploy a flexible solver configurable by several control parameters
to allow refinements in the future. Well-known examples of these
methods are the Genetic Algorithm (with its crossover and mutation
probabilities, population size, replacement strategy, and many other
parameters) or the Bat Algorithm (with its loudness, pulse rate, fre-
quency or wavelength, among other parameters). 
Furthermore, and although the interest in providing theoretical guar-
antees of newly developed metaheuristics is in crescendo, we should
also explicitly call in this methodological paper for an effort to in-
corporate theoretical reasons for new algorithmic designs. In other
words, we should progressively shift from a performance-driven ra-
tionale ( look, my algorithm works ) to a theory-/intuition-driven de-
sign rationale ( look, my algorithm will work because,... ). Of course, this
trend should also be extended not only to the algorithmic design, but
also to the generation of new operators and operation mechanisms. 
Finally, and referring to the proposal of new metaheuristics, opera-
tors, or mechanisms, we want to highlight the importance of prop-
erly describing all the aspects involved in a solver using a stan-
dard language. In other words, all metaphoric features should be
left apart, or contextualized using openly accepted methods as ref-
erences. In fact, the lack of depth in these descriptions is the main
reason for lots of ambiguities generated in the literature [5,27] . For
example, it is perfectly valid to name the individuals of a population
as Raindrops, Colonies, Bees or Particles, but they must be notated
using a standard mathematical language, and it should be clarified
that they are similar to an individual of a Genetic Algorithm (if we
use the GA as a reference). 

. Performance assessment, comparison and replicability 

When the selection of the algorithms is carried out by considering
revious reports and studies in the literature, this step is indeed not
eeded. However, it is quite frequent that good comparisons do not ex-
st in the literature to make a reasonable decision. This implies that we
ave to conduct our own comparisons in order to select the algorithm
hat better meets our requirements. This section discusses on several
spects that must be considered to conduct a rigorous and fair exper-
mentation to make that decision. Specifically, these topics are: exper-
10 
mental benchmark 6.1 , evaluation score 6.2 , fair comparisons among
echniques 6.3 , statistical testing 6.4 , and replicability 6.5 . 

.1. Experimental benchmark 

This is usually the first decision researchers must face when design-
ng the experimental evaluation of their proposal. In this regard, de-
ending on the kind of contribution (more theoretical or more applied)
he nature of the problems used in the experimentation might be differ-
nt. In the first case, researchers would probably use synthetic bench-
ark functions to assess the performance or the advantages of the differ-

nt proposals or considered algorithms. In the second case, the authors
ould normally propose a set of instances related to the problem they
re trying to solve. Sometimes, especially when they are dealing with a
ovel or a very specific problem with strong requirements, one has to de-
ign his own benchmark. In all the cases, those problem instances must
omply with several conditions to ensure that the experiments succeed
n assessing the significance of the decision of selecting one or another
echnique. In order to do that, benchmarks should be designed not only
o allow the evaluation of functional but also of non-functional require-
ents, in order to analyze the degree to which all of them are met. Ad-
itionally, it should also be considered specific conditions allowing or
ncouraging the eventual application of statistical tests, such as a large
umber of problems and/or an odd number of them to reduce potential
roblems in the comparative analysis, due to the cycle ranking or the sur-

ival of the nonfittest paradoxes [90] . Since the methodology introduced
n this paper is oriented to the deployment of real-world metaheuris-
ics, we recommend conducting laboratory tests using datasets as real
s possible, even if they are synthetically generated. 

In this regard, it is widely agreed in the community that real-world
enchmarks have been traditionally scarce. However, significant efforts
ave been recently conducted to overcome this lack. In [91] an easy-
o-use multi-objective optimization suite is introduced, consisting of 16
ound-constrained real-world problems. Similar studies have been also
ontributed in [92] and [93] , focused on realistic many-objective opti-
ization problems. In [94] , a generic framework is proposed to design

eared electro-mechanical actuators. The proposed framework is uti-
ized for constructing realistic multi-objective optimization test suite,
ith an emphasis placed on constraint handling. Another work along

his line can be found in [95] , which describes a benchmark suite com-
osed by 57 real-world constrained optimization problems. An addi-
ional proposal published in [96] revolves on data-driven evolution-
ry multi-objective optimization. Additional studies of this kind can be
ound in [97] , [98] , and [99] . In any case, for the generation of valuable
ynthetic problem instances, all the variables that compose the real sit-
ation must be thoroughly studied in order to build reliable test cases.
hus, newly built datasets should be adapted to these variables. Lastly,

f any real instance is available, the generation of additional synthetic
est cases is recommended, using the real one as inspiration. 

Furthermore, when the experimental benchmark is made up of syn-
hetic functions, such functions should be a challenge for optimization
lgorithms. Thus, the benchmark should comprise functions of different
ature and challenging features, such as a different number of local op-
ima, shifting of the global optimum, rotation of the coordinate system,
on-separability of (sub-)components, noise, several problem sizes, etc.,
epending on the expected features of the problem to tackle. Designing
uch a benchmark can be a difficult task, so a good recommendation
s to use some of the existing benchmarks in the literature. The use of
ell-known benchmarks also facilitates the selection of the reference al-
orithms to be included in the comparison. It should be finally pointed
ut that, although a technique will be deployed in a real environment
olving a real-world problem, conducting tests with this kind of datasets
s of great importance for measuring the quality of the developed pro-
osal. 

On the other hand, when the experimental benchmark includes real-
orld problems that have not been tackled before, authors should care-
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ully select an appropriate set of instances to evaluate their proposal,
r even generate them. This last case is especially frequent in situations
here the problem is being solved for the first time by the commu-
ity, something frequent when dealing with real environments. Thus,
he testbed should include a broad set of instances covering all the rel-
vant characteristics of the problem under consideration in order to re-
emble, as much as possible, the real-world scenarios being modeled.
hese dataset should be chosen or generated for efficiently testing each
unctional and non-functional requirements of the problem. Lastly, in-
tances should be described in detail and, whenever possible, should be
ade available to the community, so that other authors can use them

o evaluate their own contributions. 

.2. Evaluation measure 

An optimization algorithm can be assessed from different points of
iew and based on many features. Traditionally, main measures are re-
ated to the performance (a fitness function or an error measure). How-
ver, there are many other possible measures of interest in a real-world
ontext: 

• Processing time , which depends on computational complexity. In
many real-world contexts this response time is crucial. In this con-
text, it is recommended to generate a record containing the execution
times presented by all the considered metaheuristics. This record
should be associated with the computational environment in which
techniques have been run. Thus, this logbook will be useful in the
subsequent deployment phase, and it is specially crucial for properly
measuring the impact of the system migration on the algorithm’s
running time. 

• Memory requirements : This is especially important when the algo-
rithm is expected to run in hardware with limited resources. 

• For distributed algorithms there are special measures such as the
communication latency , or the achieved speedup (relative to the num-
ber of nodes). Additionally, other non-functional requirements can
also be considered and measured, such as robustness when a node
fails, redundancy, etc. 

• The required time to obtain a reasonably good solution , especially in
problems in which each evaluation requires significant computa-
tional resources. In these scenarios, algorithms often apply surrogate
models to reduce their execution time. 

As a general rule, the assessment of the performance of an optimiza-
ion algorithm can not be guaranteed if the measure of just a single
un is reported. Robust estimators of an evaluation metric can only be
omputed if enough information is available. In this sense, multiple runs
hould be considered so that the statistical methods described below can
eliver significant conclusions. Special attention should also be paid to
he fact that multiple runs must be independent, i.e., no information is
ed from one run to another. 

.3. Rich comparisons from multiple perspectives 

A rigorous assessment of an optimization method should focus on
ifferent aspects of the method behavior, and it should explore differ-
nt perspectives for gathering meaningful insights. For example, aligned
ables with min, max and mean results should only be considered for in-
ormative purposes. Nevertheless, much richer visualizations should be
nalyzed to dive in the data and highlight the most important findings
f the research. One possible approach to visualize the comparisons be-
ween algorithms is the use of data profile techniques like the one pro-
osed in [100] , which was later extended in [101] . The modified data
rofile technique proposed in these studies allow comparing several op-
imization algorithms by adopting a two-step methodology: a compari-
on of the mean in the first step, and a comparison of confidence bounds
n the second phase. 
11 
In some real-world problems, specific visualizations can be helpful
o ease the interpretation of the results of the optimization algorithm.
or example, in a routing problem, the visualization of the routes can
e examined by an expert in mobility that will be able to assess the con-
enience of using the solutions provided by the optimization algorithm.
n some cases, a route with a longer distance might be more appropri-
te if it complies with some additional constraints that were not avail-
ble when the problem was defined than a route with a shorter distance
hich violates such constraints. This can be easily spotted by the expert
ith this kind of visualizations. 

Something similar is recommended for real-parameter optimization
roblems. In this case, it is also useful to depict different solutions, but an
lternative visualization should be considered. This visualization should
ake possible to represent not only the solutions themselves, but also

he fitness value associated to each solution, in order to identify promis-
ng regions of the solution space. A direct approach for visualizing con-
inuous variables would be to use 2D or 3D scatter plots, in the case of
ery small problems. If the problem has 4 variables or more, it is not
ossible to represent solutions without the use of dimensionality reduc-
ion techniques (PCA, t-SNE, UMAP, etc.). An alternative approach is
he use of parallel coordinate plots. 

In the case of multi-objective optimization problems, they also re-
uire specific visualization techniques. In this context, it is of great inter-
st to be able to represent the Pareto front of the optimization problem
o allow the user to choose from among all the available non-dominated
olutions. 

Another important issue that should be subject of study is how algo-
ithms manage the exploration vs. exploitation ratio [102,103] . In most
ases, authors do not put significant attention on how the components of
he developed techniques contribute to exploration/exploitation. How-
ver, no analysis to support this hypothesis is normally carried out, and
uch analysis should be mandatory [104] . 

Another crucial aspect, which has been also mentioned in previous
ections, deals with the complexity of the algorithms. In this sense, an
ntuitive approach is to compare the running times of the algorithms
nder study. However, this measure is only meaningful in certain real-
orld situations. Other elements could also affect this performance mea-

ure: differences in the computing platform, availability of a parallel
mplementation, the application of the code, etc. For this reason, other
anguage-agnostic measures such as the Cyclomatic Complexity (or Con-
itional Complexity, or McCabe’s Complexity) [105] , are normally pre-
erred. More concretely, Cyclomatic Complexity is a software metric that
easures the number of independent paths in a program source code.
he higher the number of independent paths are, the more complex the
rogram is and, thus, a higher complexity value is obtained. Nonethe-
ess, the efficiency of the algorithm, in terms of their consumption of
omputing resources, can be of utmost importance for real-world ori-
nted research. 

The last fundamental feature pointed out in this subsection relates
o the adjustment of the parameter values of each algorithm. In this
ense, it makes sense to adjust the parameter values to adapt the search
o the complexity of the instance/problem, given that this complexity
an be directly inferred from the information that we have of the in-
tance/problem (such as, for example, its size), without the need of ad-
itional processing to identify it. If a parameter tuning algorithm has
een employed (which is highly recommended, see [5] ), the tuned val-
es should also be analyzed. An additional aspect to consider is to clearly
nalyze the influence of each parameter in the fulfillment of established
unctional and non-functional requirements, and to analyze the impact
f the fine-grained tuning of each parameter value. The depth compre-
ension of this influence is of great value for providing a sort of under-
tandability framework to non-familiarized stakeholders. In this regard,
lgorithm developers should prioritize techniques and systems that can
e parameterized externally, so that such parameterization can be car-
ied out by non-experts in the field. 
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.4. Statistical testing 

Statistical comparisons of results should be considered mandatory,
specially when the algorithms used in the experimentation are stochas-
ic. However, even if the statistical comparisons are made, they are not
lways correctly carried out. There are some popular methods in in-
erential hypothesis testing, such as the t -test or the ANOVA family.
onetheless, these tests, called parametric tests , assume a series of hy-
otheses on the data to which they are applied (normality, homocedas-
icity, etc.). If those assumptions do not hold, their reliability is not
uaranteed, and alternative approaches should be considered. This is
he case of non-parametric tests, such as Wilcoxon’s test, which do not
ssume any particular characteristic of the distribution of the under-
ying data [106] . Consequently, these tests can be more generally ap-
lied. However, they are less powerful than parametric tests as they con-
ider the relative ranking instead of the real error values of the different
roposals. 

Additionally, when several comparisons are done, the cumulative er-
or should be carefully considered. For instance, the popular Wilcoxon’s
est is a test designed for comparing two data samples (usually coming
rom the errors of the algorithms subject to comparison). When more
han two samples are compared among them, the cumulative error could
ncrease [28] . In these cases, a post-hoc treatment such as Holm (or oth-
rs) should be used to keep this cumulative error under control in the
verall comparison. 

It should be noted, however, that the use of statistical tests does not
uarantee that errors in the interpretation of results will not occur. In-
eed, the concept of p-value can lead to several misinterpretations. This
ame problem could also arise when using confidence intervals meth-
ds, but it has been proven that it happens in a smaller scale [107] .
lso, in [90] two popular comparison strategies are analyzed, obtain-

ng several paradoxes that could lead to different misinterpretations of
esults. In particular, comparing by pairs of algorithms, as it is done
hen using well-known t -test or Wilcoxon’s test, could produce the cy-

le ranking paradox, concluding that none of the compared algorithms
ould be identified as the best one. Furthermore, methods like ANOVA,
hich compares multiple algorithms, may lead to the survival of the non-

ttest paradox , by which the identified winner could differ from the one
btained through statistical comparisons of pairs of algorithms. 

The above inferential tests are based on frequentist statistics, and
resent several problems, the most obvious being the degree of depen-
ence between the p-value and the confidence intervals with respect to
he size of the sample. Generally, when enough data is available, it is
ery simple to obtain a small p-value. Since the sample size is arbitrarily
hosen by the researcher and the null hypothesis (samples come from
he same distribution) is usually wrong, the researcher can reject it by
esting the algorithms with a larger amount of data. On the contrary,
onsiderable differences could not yield small p-values if there are not
nough data (as datasets) for testing the method [108] . More recently,
he use of Bayesian statistical tests is attracting more and more inter-
st, as they are considered to be more stable and the interpretation of
heir results is more appropriate to what researchers want to analyze
108] . 

.5. Replicability of the experiments 

As the last point of this section, replicability is one of the standard
riteria used to assess the scientific value of a research. With replication,
ifferent and independent researchers can address a scientific hypothe-
is and build up evidence for or against it. In this section, we are going
o describe different considerations that should be taken into account to
ake possible the replicability of experiments. 

A good practice for comparing multiple algorithms is to ensure that
ll of them have been configured by following the same approach, with
he same exhaustiveness, so all of them are run on the same environment
12 
nd experimental conditions that guarantees that none of them has an
dvantage over the others. This is a crucial aspect for determining which
pproach will perform better in the real environment. In order to accom-
lish that, it is important to use a benchmark that does not have an unfair
ias which favors some algorithms over the others. This is particularly
mportant when the algorithms are tested using a synthetic benchmark,
ecause it could have some characteristics that are uncommon in real-
orld problems. As we are concerned about real-world problems, any

pecific feature that could be useful in any particular optimization algo-
ithm would be of particular interest. 

Regarding the experimental conditions, another important issue that
hould be taken into account is the maximum processing time, which is
trictly determined by the real-world problem to be solved. A good prac-
ice in this context is the allocation of a dedicated budget of objective
unction evaluations for each of the algorithms in the experimentation.
his budget should be determined by an estimation of the time complex-

ty required by each algorithm in the benchmark. In turn, the estimated
ime complexity of a method should be subject to the implementation
hat would be subsequently deployed over the real environment. Also,
t is advisable to perform quantitative time complexity assessments for
ach of the stages that comprise the whole metaheuristic technique. It
hould also be clear that the time complexity can be influenced by mul-
iple factors, including the hardware in which the experiments are run
nd the software of the implementation in use, such as the operating
ystem, the programming language and/or the compiler/interpreter. A
hange in any of these factors could significantly alter the performance
stimation of the algorithms under comparison. In any case, the max-
mum processing time of an algorithm is an important decision driver
hat has to be considered when designing the algorithmic solution. Oth-
rwise, the selection of one metaheuristic approach over other possibili-
ies could be of no practical use when applied to the real-world scenario
nder study. 

All the previous requirements are needed to guarantee the replica-
ility of the experimental conditions. However, we can not talk about
eplicability if the specific instances/problems used in the experiments
re not readily available to external researchers. In the specific case of
his methodology, which is oriented to real-world applications, it could
e possible that the instance/problem used contains internal and pri-
ate data, which should not be shared publicly. In these situations, re-
earchers should comply with the corresponding legal limitations be-
ore the public sharing of the data (such as anonymizing private data,
or example). Additionally, it could be interesting to provide connec-
ors for different languages and/or frameworks. Furthermore, if the
roblem datasets have been generated synthetically (as mentioned in
ection 6.1 ), it is highly recommended to publicly share the instance
enerator that was adopted. 

Finally, and although it is usually not considered a requirement,
aking the source code of a new algorithm freely available to facili-

ate replicating the results is highly recommended. In this regard, and
epending on the context, confidentiality issues can arise between the
lgorithm developer and the stakeholder. In this case, several actions
an be conducted, such as the anonymization of the code, or the gen-
ralization of the method. Thus, the principal reason for enhancing the
haring of the source code is that, very often [109] , many details in
he implementation that have a strong influence on the results are not
ncluded in the descriptions provided. Thus, without a reference imple-
entation, many implementations of the same algorithms could deeply
iffer in their results. Thus, the source code should be shared in a per-
anent and public repository, such as GitHub, Gitlab, Bitbucket, etc.,

o name a few. If confidentiality is a problem, a contact e-mail could be
hared for code sharing requests. 

The conjunction of the availability of both the data and the source
ode of the algorithm is what is called “Open Science ” [110–112] , and it
s an increasingly popular approach to ensuring replicability in science,
o that we can make better and better science. 
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. Algorithmic deployment for real-World applications 

Once we have completed the steps of the Lab Environment phase of
orkflow 1 , it’s time to proceed with the second part of Fig. 1 , namely

he Application Environment, which is focused on the algorithmic de-
loyment for the real application at hand. As pointed out in Section 3 ,
his phase receives as input either an algorithm implementation taken
rom an existing software package or an ad-hoc method defined in the
lgorithmic design step of Workflow 2 . In both cases, this implementa-
ion should go through a verification process to determine whether it
ulfills the functional and non-functional requirements to be deployed
n a real environment. If this is not the case, then a new implementation
hould be addressed. 

When facing the development of a metaheuristic to be deployed in
 real-world environment, several factors can lead to taking one of the
ollowing approaches: to implement the algorithm from scratch or to
hoose an existing optimization framework. Among these factors, we
an consider: 

• Programming skills . If the development team has a high expertise then
a choice is to determine whether it can afford to make an implemen-
tation from scratch. Consequently, the written code can be highly
optimized, and thus it is more likely to meet the non-functional re-
quirements, particularly those related to performance. The counter-
part of this approach is that the code may be difficult to be updated,
extended, and reused by other people (including the development
team itself). 

• Using an existing optimization framework . The most productive ap-
proach to develop a metaheuristic is to build on existing frameworks.
This way, most of the needed algorithmic components may be al-
ready provided, so there is no need to reinvent the wheel, and they
can offer additional functionality (e.g., visualization, analysis tools,
etc.). If a goal of the metaheuristic to be developed is to offer it to
the community (in principle, as an open-source contribution), inte-
grating it into a framework is probably the best choice. However, as
a possible negative point, using a framework imposes the use of a set
of existing base components, so the resulting implementation could
not be as efficient as one developed ad-hoc, and thus non-functional
requirements related to performance could be affected. 

• Corporate development platform . Many companies have a preferred
software platform to develop their products, e.g., Java,.NET (C#,
Visual Basic), etc., which can impose constraints affecting the im-
plementation of the algorithm, both in the sense of the optimization
frameworks that could be used and the availability of third-party
libraries. In this sense, programming languages such as Python are
becoming very popular due to the large number of existing libraries
for data analysis, visualization, and parallel execution. 

• Software license . An important issue to consider when using third-
party software is the licensing policy. Some licenses, such as GPL
(GNU General Public License) or LGPL (GNU Lesser General Public
License), can be too restrictive and thus can hinder the adoption of
software packages in non-open-source applications. Others, includ-
ing MIT and Apache, are less restrictive. 

• Project activity . If an existing software package is attractive to use, it
is important to determine whether the project is still active, which
ensures, at least in theory, the possibility of contacting the authors
to report bugs found or to answer questions than are not included in
the project’s documentation. There is also the choice of requesting
support for the project developers. 

Table 2 contains a summary of the main features of a representative
et of metaheuristic optimization frameworks. The characteristics re-
orted include the programming language used in the project, the main
ocus of the framework (most of them include single- and multi-objective
lgorithms, but they usually are centered on one of them), the software
icence, and the current version and last update date (at the time of
riting this paper). 
13 
Attending to the programming language, we observe that Java,
ython, and C++ are popular choices, but we also find HeuristicLab
nd PlatEMO, which are developed in C# and MATLAB, respectively.
t first glance, it might be assumed a priori that Python-based frame-
orks would be computationally inefficient, so if this is a non-functional

equirement, then others based on C++ or even Java could be more
ppropriate. However, Pygmo is in fact based on Pagmo (it is basically a
ython wrapper of that package, which becomes a drawback to Python
sers if the intend to use Pygmo to develop new algorithms), so it can be
ery competitive in terms of performance. The other frameworks writ-
en in Python are considerable slower; for example, if we consider jMetal
Java) and jMetalPy (Python), it can be seen that running the same al-
orithm with identical settings (e.g., the default NGSA-II algorithm pro-
ided in both packages) can take up to fifteen times more computing
ime in Python than in Java. In return, the benefits of Python for fast
rototyping and the large number of libraries available for data analy-
is and visualization make the frameworks written in this language ideal
or testing and fine-tuning. 

The orientation of the frameworks on single- or multi-objective op-
imization can be a stronger reason to choose a particular package
han the programming language. Thus, if the problem at hand is single-
bjective, then ECJ, HeuristicLab, Pagmo/Pygmo, ParadisEO, or NiaPy
ffers a wide range of features and algorithms to deal with it. The same
pplies with the other frameworks concerning multi-objective optimiza-
ion; in this regard, it is worth mentioning jMetal, which started in 2006
nd it is still an ongoing project which is continuously evolving, and
latEMO, which appeared a few years ago and offers more than 100
ulti-objective algorithms and more than 200 benchmark problems. 

The type of software licenses can be a key feature that may dis-
ble the choice of a particular package. For example, PlatEMO is free
o be used in research works according to its authors, so it is not clear
hether it can be used in industrial or commercial applications. In this

egard, the first release of jMetal had a GPL license, which was changed
 few years later to LGPL and, more recently, to MIT upon request of
esearchers working in companies that wanted to use the framework in
heir projects. 

When the metaheuristic has been implemented, it is advisable to per-
orm a fine-tuning to improve its performance as much as possible. This
rocess has two dimensions. First, the code can be optimized by applying
rofiling tools to determine how the computational resources available
re distributed among the functions to be optimized. This way, code
arts consuming considerable time fractions can be detected, and they
an be refactored by rewriting them to make them more efficient. We
ave to note that metaheuristics consist of a loop where several steps
e.g., selection, variation, evaluation, and replacement in the case of
volutionary algorithms) are repeated thousands or millions of times,
o any small improvement in a part of the code can have a high impact
n the total computing time. 

The second dimension is to adjust the parameters settings of the al-
orithm to improve its efficacy, which can be carried out by following
wo main approaches: ad-hoc pilot tests and automatic configuration.
he first approach is the most widely used in practice, and it is advis-
ble when having a high degree of expertise; otherwise, it usually turns
nto a loop of trial and error steps lacking rigor and leading to a waste
f much time. The second alternative implies the use of tools for auto-
atic parameter tuning of metaheuristics [126] , such as irace [127] and
aramILS [128] , although it must be taken into account that the tuning
ith these kinds of tools can be computationally unaffordable in real-
orld problems. 

At this point, the new implementation should again be verified
gainst the non-functional requirements, which could imply to review
he implementation in case of not fulfilling some of them. If this is not
he case, the metaheuristic may still not be ready to be used in a real
nvironment because of the potential appearance of new non-functional
equirements. This situation can happen due to a number of facts, such
s the following: 
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Table 2 

Main features of representative multi-objective optimization frameworks. “SO/MO ” in column Algorithms 
stand for single-objective/multi-objective algorithms. If a framework provides both types of algorithms but 
it is more focused on one them, it is highlighted in boldface . 

Framework Language Algorithms License Current version Last update 

ECJ [113] Java SO /MO AFL 27 August 2019 

HeuristicLab [114] C# SO /MO GPLv3 3.3 July 2019 

jMetal [115,116] Java SO/ MO MIT 5.10 July 2020 

jMetalCpp [117] C + SO/ MO LGPL 1.8 November 2019 

jMetalPy [118] Python SO/ MO MIT 1.5.3 February 2020 

MOEAFramework [119] Java SO/ MO LGPL 2.13 December 2019 

NiaPy [120] Python SO MIT 2.0.0 November 2019 

Pagmo [121] C + SO /MO GPL/LGPL 2.16 September 2020 

ParadisEO [122] C + SO /MO CeCill 2.0.1 December 2018 

PlatEMO [123] MATLAB MO Open source 2.9 October 2020 

Pygmo [124] Python SO /MO Mozilla 2.16 September 2020 

Platypus [125] Python SO/ MO GPLv3 1.0.4 April 2020 
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• Changes in the deployment environment. The real system was not
specified in detail when the problem was defined (e.g., the target
computing system is not as powerful as previously expected), so
there can be a requirement fulfillment degradation that was not ob-
served in the in-lab development. 

• The client is satisfied with the results obtained by the metaheuristic,
so it is applied to more complex scenarios than expected. Conse-
quently, the quality of the solutions cannot be satisfactory, or time
constraints can be violated. 

• Once the algorithm is running, the domain expert notices new sit-
uations that were not taken into account when the functional and
non-functional requirements were defined. 

• The algorithm is not robust enough, and there may be significant
differences in the obtained solutions under similar conditions, which
can be confusing for the user. 

• In the case of multi-objective problems, providing an accurate Pareto
front approximation, with a high number of solutions, can over-
whelm the decision maker if it is merely presented. The algorithm
could be empowered then with a high-level visualization compo-
nent to assist in choosing a particular solution (a posteriori decision
making). Even a dynamic preference articulation mechanism could
be incorporated to guide the search during the optimization process
(interactive decision making). 

If the metaheuristic is not compliant with all the new non-functional
equirements, it must be analyzed whether they can be fulfilled by re-
djusting the parameters settings or by carrying out a new implementa-
ion; on the contrary, it can be necessary to go back again to the research
ctivity or even to the problem description. 

. Summary of lessons learned and recommendations 

The final purpose of the methodology discussed heretofore is to avoid
everal problems, poor practices and practical issues often encountered
n projects dealing with real-world optimization problems. As a prescrip-
ive summary of the phases in which the methodology is divided, we
erein provide a set of synthesized recommendations that should help
ven further when following them in prospective studies. Such recom-
endations are conceptually sketched in Fig. 5 , and are listed next: 

1. Problem modeling and mathematical formulation: 
• It should be strictly mandatory to clearly state the problem ob-

jectives, variables and constraints, considering all the practical
aspects of the scenario at hand (e.g. users consuming the output,
contextual factors affecting the validity of the solution, etc.). 

• All non-functional requirements should be exhaustively listed,
such as time/memory consumption, accuracy of the solution, the
chance to undergo unexpected early interruptions, the usability
of the produced solution(s), etc. 
14 
• Objectives and/or functional/non-functional requirements
should be prioritized as per the criteria of the user. 

• The complexity of the problem should be analyzed towards sub-
stantiating the need for metaheuristics. 

2. Algorithmic design, solution encoding and search operators: 
• Baseline models should be first searched for in the literature, past

experiences, project reports or any other source of information.
If they exist, baseline models should be used first: 
• If any baseline model meets the functional and non-functional

requirements, the problem is solved. There is no need for it-
erating any further. 

• If no baseline model meets the requirements, they must be
considered as a starting point to incrementally improve their
compliance with the requirements. 

• It is advisable to quantify and trace which requirements benefit
the most from each algorithmic modification, so that insighta are
gained about which changes can be more promising in order to
improve the compliance with every requirement. 

• The complexity of the algorithm must be kept to the minimum
required for guaranteeing the requirements, even if the comput-
ing technology is capable of running it efficiently. This allows
minimizing risks during the deployment of the algorithm. 

• When designing the encoding strategy, population structure and
search operators, it is necessary to gauge, when possible, their
impact on the degree of fulfillment of the imposed requirements,
so that their design becomes coupled to them. 

• Validated algorithmic design templates should be always pre-
ferred rather than overly sophisticated algorithmic components.

• Expert knowledge acquired over years of observation of the sys-
tem/asset to be optimized should be always leveraged in the al-
gorithmic design. 

3. Performance assessment, comparison and replicability: 
• Baseline models selected in the previous phase should be always

included in the benchmark. 
• Quantitative metrics must be defined and measured for all func-

tional and non-functional requirements. 
• Variability of scenarios: when the problem at hand can be con-

figured as per a number of parameters, as many problem config-
urations as possible should be created and evaluated to account
for the diversity of scenarios that the algorithm(s) can encounter
in practice. 

• For the sake of fairness in the comparisons, parameter tuning
must be enforced in all the algorithms of the benchmark (includ-
ing the baseline ones). Furthermore, statistical tests should be
applied to ensure that the gaps among the performance of the
algorithms are indeed relevant. 

• User in the loop: results should be reported comprehensively to
ease the decision making process of the end user. It is better to
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Fig. 5. Main recommendations given for every phase of our proposed methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9  

 

p  

i  

s  

t  

h  

r  

s  

O  

r

9

 

m  

m  

l  

t  

p  

t  

t  

w  

l  

s  

p  

o  

u  

c
 

w  

u  

a  

t  

m  

c  

t  

s  

c  

n  

s  

i  

m  

v  

m  
provide several solutions at this phase than in deployment. Fur-
thermore, new requirements often emerge when the user evalu-
ates the results by him/herself. 

• When soft constraints are considered, the level of constraint ful-
fillment of the solutions should be also informed to the user. 

• If confidentiality allows it, it is always good and enriching to
publish code and results in public repositories. 

4. Algorithmic deployment for real-world applications: 
• Parameter tuning of the selected metaheuristic algorithm is a

must before proceeding further, so that the eventual performance
degradation between the laboratory and the real environment are
only due to contextual factors. 

• The degradation of the fulfillment of the requirements when in-
lab developments are deployed on the production environment
must be quantified and carefully assessed. If needed, a redesign
of the algorithm can be enforced to reduce this risk, always de-
parting from the identified cause of the observed degradation. 

• Good programming skills (optimized code, modular, with com-
ments and exception handling) are key for an easy update, ex-
tension, and reuse of the developed code for future purposes. 

• When possible, open-source software frameworks should be se-
lected for the development of the algorithm to be deployed in
order to ensure productivity and community support. 

• Hard constraints from corporate development platforms imposed
on the implementation language should be taken into account. 

• Straightforward mechanisms to change the parameters of the al-
gorithm should be implemented. 

• Efforts should be conducted towards the visualization of the al-
gorithm’s output. How can the solution be made more valuable
for the user? Unless a proper answer to this question is given as
per the expertise and cognitive profile of the user, this can be a
major issue in real-world optimization problems, specially when
the user at hand has no technical background whatsoever. 

. Research trends in real-world optimization with metaheuristics

Although the optimization research field has dealt with real-world
roblems throughout its long life, the diversity and increasing complex-
ty of scenarios in which such problems are formulated in practice have
timulated a plethora of new research directions over the years aimed
15 
o manage their different particularities efficiently. In this section, we
ighlight several challenges and research directions that, given the cur-
ent state of the art, we consider of utmost relevance for prospective
tudies in the confluence of real-world optimization and metaheuristics.
ur envisioned future for the field is summarized in Fig. 6 , and elabo-

ated in what follows. 

.1. Robust optimization and worst-case analysis 

In real-world optimization scenarios, many sources of uncertainty
ay arise, from exogenous variables of the environment that cannot be
easured and are not considered in the formulation anyhow, to the col-

ected data that can participate in the definition of the objective func-
ion(s) and/or constraint(s). Furthermore, it is often the case that, in
ractice, the user consuming the solution given to the problem is willing
o impose worst-case constraints assuming that such sources of uncer-
ainty cannot be counteracted anyhow. In fact, the identification of the
orst conditions under which the optimization problem can be formu-

ated is usually much easier for the user than the derivation of efficient
trategies to accommodate the uncertainty of the setup. This issue am-
lifies when tackling the problem at hand with metaheuristics, since the
ptimization algorithm itself induces an additional source of epistemic
ncertainty that may compromise the requisites imposed on the worst
ase. 

This situation unleashes a formidable future for robust optimization,
hich aims at the design of metaheuristic solvers for problems in which
ncertainty is considered explicitly in its formulation [129] . Initially
ddressed with tools from mathematical programming, robust optimiza-
ion has also been studied with metaheuristics, with different approxi-
ations to account for uncertainty during the search [130,131] . In this

ontext, a core concept in robust optimization is the level of conserva-
iveness demanded by the user, namely, the level of protection of the
olution against the uncertainty of the problem [132] . This issue is cru-
ial in real-world optimization, especially for its connection with the
otion of risk in circumstances in which decision variables relate to as-
ets that require human intervention. Depending on the implications of
mplementing the solution in practice, the user might prefer less opti-
al, albeit safer solutions. For instance, in manufacturing, it is often ad-

isable to be conservative when operating a human-intervened drilling
achine. If this operation were to be automated via a metaheuristic
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Fig. 6. Challenges and research directions foreseen for real-world optimization with metaheuristics. 
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lgorithm, the solution should ensure a high level of conservativeness
ith respect to the normal operation of the machine not to engender

isks for the operator and/or exposed persons. 
Besides advances reported in this line, we advocate for the anal-

sis of solutions with different quality and levels of conservativeness
ith respect to the sources of uncertainty existing in the real-world sce-
ario. This analysis can be realized by considering conservativeness as
n additional objective function to be minimized, so that multi-objective
etaheuristics can be designed to yield an approximation of the Pareto

ront by considering quality and risk [133,134] . When provided with
his Pareto front approximation, the user can appraise the implications
f the uncertainty on the quality of solutions for the problem, and select
he solution with the most practical utility bearing in mind both objec-
ives. We definitely foresee an increasing relevance of risk in real-world
ptimization problems considering the progressively higher prevalence
f automated means to solve them efficiently in real life. 

.2. Translating real requirements into optimization problems 

A few works have lately revolved around the methodological proce-
ure for formulating an optimization problem, including the definition
f its variables and constraints. Assorted tools have been very recently
roposed for this purpose, including directed questionnaires [135] and
lgebraic modeling languages to describe optimization problems (see
136] and references therein). Despite these tools, there is a large se-
antic gap in practical cases between what the user consuming the solu-

ion to the problem truly needs, and what the scientist designing the
ptimization algorithm understands. Leaving aside non-technicalities
hat could potentially open this gap, two factors that impact most in
idening this gap are 1) the capability of the user and the scientist to
lunge into the discourse of each other, progressively coming to a point
f agreement on what is needed ; and 2) the capability of the scientist
o effectively translate requirements from the application domain into
lgorithmic clauses. 

The first factor depends roughly on both parties’ social and empa-
hetic skills, especially from the scientist who must understand the over-
ll application context in which the problem is framed. A proper under-
tanding of the problem, along with discussions held with the practi-
ioner, can eventually unveil useful insights and hints that help in the
roblem formulation and the design of the algorithm. For this to occur,
he scientist must assimilate all the details concerning the asset/system
o be optimized, especially when the objective to be optimized and the
mposed constraints cannot be analytically determined. 

The second factor promoting the aforementioned semantic gap is
ore related to the methodology used for the translation between re-

uirements and problem formulation. The issue emerging at this point
16 
s whether this process can be enclosed within a unified methodology
hat comprises all questions and decision steps to be followed for formu-
ating a real-world optimization problem. Unfortunately, the question
emains unanswered in the literature, and current practices evince that
he definition of a real-world optimization problem is largely ad-hoc and
ubject to the expertise and modeling skills of the scientist. For instance,
n most cases, the number of constraints imposed on a particular prob-
em restricts the search space severely, to the point of modeling it as a
onstraint satisfaction problem in which the only goal of the solver is
o produce a feasible solution. Metaheuristics suitable to deal with con-
traint satisfaction problems differ from those used for the optimization
f an objective function (both single- and multi-objective), as the poten-
ial sparsity of the space where feasible solutions are located may call for
n extensive use of explorative search operators and diversity-inducing
echanisms. However, there is no clear criterion for shifting in practice

o this paradigm. Furthermore, the presence of multiple global optima
the so-called multi-modality of the problem’s landscape) can be a crit-
cal factor for the design of the algorithm. Unless carefully considered
rom the very inception of the problem, multi-modality can give rise
o solutions of no practical use due to non-modeled externalities that
iscriminate which solutions can be found in practice. 

All in all, prospective literature works on real-world optimization
hould not only restrict their coverage to the presentation of the prob-
em but also design and validate their algorithms. Explanations should
lso be given on the process by which the formulation of the problem
as inferred from the scenario under analysis. In real-world optimiza-

ion problems, information about the process is almost as valuable as
he result itself, inasmuch as the community can largely benefit from
nnovative methodological practices that can be adopted in other prob-
ems. 

.3. Hybridization of mathematical tools with metaheuristic algorithms 

When addressing real-world optimization problems with metaheuris-
ics, another relevant direction is the hybridization of these algorithms
ith methods from other disciplines for improved performance of the

earch process. Such an opportunity arises when the conditions under
hich the problem is formulated allows for the consideration of addi-

ional tools towards enhancing the convergence and/or quality of the so-
utions elicited by the metaheuristic algorithms. Therefore, the chance
o opt for hybrid metaheuristic algorithms is bounded to the case un-
er study and the functional and non-functional requirements imposed
hereon, as the incorporation of new search steps in the algorithm might
enalize the computational time, increase the memory consumption, en-
ail the purchase of third-party software, or may impose any other sim-
lar demand. 
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One example of this hybridization is the exploitation of explicit for-
ulae defining the objectives and/or constraints. There are plenty of
rogramming methods that can be utilized when the definition of the
tness and constraints comply with certain assumptions, such as a linear
r quadratic relationship with the optimization variables. When this is
he case, swarm and evolutionary methods for real-world optimization
hould make use of the aforementioned tools, even if a mathematical
ormulation of the optimization problem is available. Indeed, if the re-
uirements of the real-world problem under analysis aim at the compu-
ational efficiency of the search process, the scientist should do his/her
est to benefit from the equations. Unfortunately, this hybridization is
ot effectively done as per the current state of the art in Evolutionary
lgorithms and Swarm Intelligence. Prior work can be found around

he exploitation of gradient knowledge of the optimization problem to
ccelerate local search and ensure feasibility more efficiently in contin-
ous optimization problems [137] . Domain-specific knowledge is also
ey for a tailored design of the encoding strategy and other elements of
he metaheuristic algorithm [138] , which in some cases can be inspired
y the mathematical foundations of the problem. Search methods cap-
talizing on the combination of mathematical programming techniques
nd metaheuristics have been collectively referred to as matheuristics

139] , expanding a flurry of academic contributions in the last years
ver a series of dedicated workshops. 

In this context, an interesting research path to follow is variable re-
uction, which can alleviate the computational complexity of the search
rocess by inferring relationships among the system of equations de-
cribing a given problem [140] . As pointed out in this and other related
orks, a large gap is still to be bridged to extrapolate these findings to

eal-world optimization problems lacking properties such as differentia-
ility and continuity. Nevertheless, workarounds can be adopted to infer
uch relationships and enable variable reduction during the search pro-
ess, such as approximate means to detect such relationships (via e.g.,
eural or bayesian networks). Interestingly, reducing part of the vari-
bles involved in an optimization problem can bring along an increased
omplexity of other remaining variables. All this paves the way to inte-
rating variable reduction with traditional mathematical programming
ethods for constrained optimization, such as the Newton or interior-
oint methods. 

We certainly identify a promising future for the intersection between
etaheuristics and traditional mathematical programming methods, es-
ecially when solving real-world problems with accurate mathematical
quations available. As a matter of fact, several competitions are orga-
ized nowadays for the community to share and elaborate on new ap-
roaches along this research line. For instance, the competitions on real-
orld single-objective constrained optimization held at different venues

CEC 2020, SEMCCO 2020, and GECCO 2020) consider a set of 57 real-
orld constrained problems [95] . In these competitions, participants are
llowed to use the constraint equations to design the search algorithm.
nother example around real-world bound constrained problems can be

ound in [141] . In short, we foresee that metaheuristic algorithms hy-
ridized with mathematical programming techniques will become cen-
ral in future studies related to real-world optimization. 

.4. Meta-modeling for real-world optimization 

When dealing with physical assets/systems, the evaluation of the
uality and/or feasibility of solutions produced over the metaheuris-
ic search can be realized by complex simulation environments map-
ing the decision variables at their input to the values dictating their
tness/compliance with constraints. The use of digital twins in man-
facturing or the design of structures in civil engineering are two re-
ent examples of simulation environments that serve as a computational
epresentation of large-scale complex systems, for which an analytical
ormulation of all their components and interrelations cannot be easily
tated. 
17 
From an optimization perspective, the use of simulators for prob-
em solving (simulation-based optimization or simheuristics [142] ) con-
titutes a straightforward approach to circumvent an issue that appears
oncurrently in real-world problems: the impossibility of formulating
bjective functions and constraints in mathematical form. Furthermore,
epending on its faithfulness with respect to the modeled asset/system,
he use of simheuristics in real-world optimization can also account for
he uncertainty present in non-deterministic application scenarios under
nalysis in a scalable fashion. Consequently, the adoption of simulation-
ased optimization can ease the quantification of risk incurred by candi-
ate solutions and alternative hypothesis [143] , which connects back to
ur prospects around the importance of risk in real-world optimization
 Subsection 9.1 ). 

In this context, a research line with a long history in metaheuristic
ptimization is the use of machine learning surrogates [144] . Solvers un-
er this paradigm resort to data-based regression techniques to infer the
elationship between the decision variables and their objective function
alue, so that when learned, the evaluation of new candidates for the
roblem at hand can be efficiently performed by querying the trained
egression model [145] . Although the alleviation of the computational
omplexity of the solver is arguably the most extended use of surrogates
n metaheuristic optimization, another vein of literature has stressed on
he valuable information that surrogates can feed to the search algo-
ithm for improving its convergence. Possibilities for this purpose are
iverse, including the evaluation and removal of poor solutions when
nitializing the population of the metaheuristic algorithm, or the imple-
entation of informed operators that reduce their level of randomness

oncerning naïve metaheuristic implementations [146] . 
Disregarding the specific model combined with the metaheuristic al-

orithm (simulation or machine learning surrogates), several problems
rise when resorting to these meta-modeling approaches in real-world
roblems. To begin with, very few works have elaborated on scalable
eta-modeling approaches capable of implementing different model-

ng granularities, each balancing differently between the fidelity of the
eta-model with respect to the modeled asset/system, and the compu-

ational complexity of the model when queried with a certain input. This
rade-off and the challenges stemming therefrom have been widely iden-
ified in the related literature [143] . We herein underscore the need for
urther strategies to develop scalable meta-models with varying levels of
omplexity and fidelity. New advances in this line should marry up with
chievements in asynchronous parallel computing, especially when sev-
ral meta-models are considered jointly, each requiring different com-
lexity levels. This is actually another reason why the prescription of
on-functional requirements is of utmost importance in real-world opti-
ization: unless properly accounted from the very beginning, sophisti-

ated meta-models can be of no use if the available computing resources
o not fulfill such requirements in practice. 

Another issue that remains insufficiently unaddressed to date is how
o prevent surrogates from overfitting, specially in problems character-
zed by many decision variables that are tackled by using complex mod-
ling approaches (e.g., Deep Learning). Under such conditions, and de-
ending on the availability of evaluated examples at the beginning of the
earch, the learning algorithm might have a few high-dimensional ex-
mples available for training the surrogate. This could eventually dom-
nate the learning process and hinder the generalization of the trained
odel to unseen candidate solutions. Regularization approaches have

een extensively suggested to deal with this problem, especially with
inear models and neural networks [147,148] . However, we feel that
urther research can be pursued towards regularization approaches that,
esides overfitting, provide a countermeasure for another serious prob-
em derived from overly complex surrogates: the existence of virtual op-
ima, i.e., optima that do not exist in the original problem under analy-
is. When this is the case, regularized ensembles and archiving strategies
an be effective solutions to both overfitting and virtual optima. 

Finally, we briefly pause at the explainability of machine learn-
ng models, which currently capitalizes most research contributions
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eported under the eXplainable Artificial Intelligence (XAI) paradigm
149] . XAI refers to all techniques aimed at eliciting interpretable infor-
ation about the knowledge learned by a model. In the case of black-

ox surrogate models, XAI must be conceived not only as a driver for
cceptability but also as a tool to provide hints for the design of the op-
imization algorithm. For instance, post-hoc XAI methods can be used
o unveil what the surrogate observes in its input (decision variables) to
roduce a given output (estimated fitness value), so that a global under-
tanding of the decision variables that most correlate with the fitness
alue can be obtained. This augmented information about the search
rocess can boost the acceptability of the solution provided by the over-
ll surrogate-assisted metaheuristic by a non-expert user. Causal anal-
sis for machine learning models [150,151] can take a step further in
his direction, discriminating which decision variables, when modified
hroughout the search, lead to major changes in the fitness value. These
tudies can unchain new forms of informed search operators that seize
mplicit causal relationships between variables and fitness during the
earch. 

.5. Automating algorithm selection and parameter tuning 

We round up our prospects with a mention of parameter tuning,
hich is arguably among the main reasons for differences appearing be-

ween the in-lab design of a metaheuristic algorithm and its deployment
n a real-world environment. Indeed, the complexity of real-world sce-
arios can lead to incomplete/oversimplified formulations that do not
ully represent the diversity of contextual factors affecting the problem.
urthermore, the problem itself can be dynamic, so that fitness and/or
onstraints can evolve over time. If this variability is not considered
n the definition of the problem nor resolved during the design of the
etaheuristic algorithm (by means of e.g., dynamic optimization ap-
roaches), differences likely emerge when deploying the metaheuristic
n practice. The methodology herein presented contemplates this issue
y enforcing a fine-grained tuning of parameters right at the beginning
f the application environment, so that the effects of any contextual
ias on the compliance of functional and non-functional requirements
an be minimized. However, accounting for parameter tuning in our
ethodology does not play down the fact that parameter tuning is a

ime-consuming process, especially when the search for a satisfactory
arametric configuration of the solver takes into account a mixture of
unctional and non-functional requirements. 

Fortunately, in this context, the research community has left behind
ncient practices in parameter tuning, wherein the metaheuristic algo-
ithms were configured in a trial-and-error fashion, or by using the con-
gurations utilized in similar studies. This procedure is by no means
cceptable in academic works comparing among metaheuristics, nor
hould this be the case in real-world optimization. Vigorous research
s nowadays concentrated on the derivation of new algorithmic means
o automate the process of adjusting the parameters of metaheuristic
olvers, either during the search process (self-adaptation mechanisms
or parameter control ) or as a separate off-line process performed before
he configured metaheuristic is actually executed (parameter tuning ).
oth approaches can actually be applied to real-world problems, yet the
ecent activity noted in the field is steering more notably towards pa-
ameter tuning approaches due to their independence with respect to
he metaheuristic algorithm to be adjusted. In any case, when used in
eal-world optimization, automated parameter tuning methods can not
nly ease this process for non-expert users, but also perform it more
fficiently than grid search methods. 

Automated parameter tuning has so far provided a rich substrate of
ethods and software frameworks, mature enough for their early adop-

ion to cope with real-world problems of realistic complexity [152] . Our
laim in this matter is that the flexibility of current automated param-
ter tuning frameworks is limited, and leaves aside non-functional re-
uirements that often emerge in real-world environments. Most of them
ocus on optimality, i.e., on finding a configuration of the metaheuris-
18 
ic algorithm that performs best as per the objective function(s) of the
roblem at hand. In many situations, this goal suffices for the interest
f the user. However, we utterly believe that other aspects should also
e reflected in this process, such as implementation complexity (time,
emory), simplicity of search operators, and robustness of the config-
red algorithm against factors inducing uncertainty in the definition of
he problem. All in all, functional and non-functional requirements of
eal-world problems are also affected by the parametric configuration
f metaheuristics, so there is a pressing need for embedding metrics that
uantify such non-functional requirements in existing frameworks. 

Finally, we dedicate some closing words to the field of meta-learning,
hich is understood as the family of methods aimed at inferring a poten-

ially good algorithm for a given problem without actually addressing
t, namely, just by the similarities of the problem with others tackled
n the past [153,154] . For this purpose, meta-learning methods for op-
imization problems usually hinge on the extraction of meta-features
rom the given problem, which are then used as inputs of a super-
ised learning model that recommends the best algorithm [155] . In
ther words, meta-learning approaches automate the same task than
hat of automated parameter tuning methods, but without the compu-
ational complexity required by the latter to evaluate multiple candi-
ate solutions representing the algorithm and/or its parameter values.
tudies on meta-learning for the recommendation of metaheuristic algo-
ithms have so far been centered on instances of a few classical optimiza-
ion problems (e.g., traveling salesman [156] , vehicle routing [157] or
ow-shop scheduling [158] ). In those works meta-features are extracted

rom graph representations of the problem under analysis, or the analy-
is of their fitness landscapes. However, such meta-features are largely
roblem-dependent, which leaves an open question on whether such
eta-features can attain a good generalization performance of the meta-

earner when facing real-world problems, in which problem formula-
ions can be much more diverse in practice. Furthermore, the discovery
f alternative meta-feature extraction methods can pave the way to the
onsideration of meta-learning methods as a first step towards the auto-
ated construction of optimization ensembles, which are known to be

ess sensitive to the parametric configuration of their constituent solvers
han single metaheuristics. Moreover, ensembles of methods can be also
sed to identify which operator, parameter value or algorithmic compo-
ent is effective for a particular problem in a competitive way, and just
n one step [159] . We see a fascinating opportunity for meta-learning
n real-world optimization with metaheuristics, sparking many research
irections for achieving higher degrees of intelligent design automation
s the ones reviewed heretofore. 

0. Conclusions and outlook 

In this tutorial, we have proposed an end-to-end methodology for
ddressing real-world optimization problems with metaheuristic algo-
ithms. Our methodology covers from the identification of the optimiza-
ion problem itself to the deployment of the metaheuristic algorithm,
ncluding the determination of functional and non-functional require-
ents, the design of the metaheuristic itself, validation, and benchmark-

ng. Each step comprising our methodology has been explained in de-
ail along with an enumeration of the technical aspects that should be
onsidered by both the scientist designing the algorithm and the user
onsuming its output. Recommendations are also given for newcomers
o avoid misconceptions and bad practices observed in the literature
elated to real-world optimization. 

We have complemented our prescribed methodology with a set of
hallenges and research directions which, according to our experience
nd assessment of the current status of the field, should drive efforts in
ears to come. Specifically, our vision gravitates around four different
omains: 

• The consideration of risk as an additional objective to be minimized,
and the massive adoption of robust optimization techniques, given
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the high uncertainty under which real-world optimization problems
are formulated and the inherent stochastic nature of metaheuristic
algorithms. 

• More reported evidences of the process by which real-world opti-
mization problems are addressed, expanding the scientific value of
prospective studies not only to the algorithm(s) and provided solu-
tion(s), but also to the inception of the problem and the storytelling
themselves. 

• There is a need for efficient means to cope with the complexity
of real-world problems during the metaheuristic search, in which
we claim that the hybridization with mathematical tools, meta-
modeling, and machine learning surrogates will have an increasingly
prominent role in the field. 

• The incorporation of intelligent methods to automate the selection
and parameter tuning of the metaheuristic algorithm, which re-
quires current automated parameter tuning frameworks and meta-
learning approaches to consider metrics related to functional and
non-functional requirements imposed in real-world scenarios. 

We hope that the methodology proposed in this article and our
rospects serve as a guiding light for upcoming research works falling
n the confluence between metaheuristic algorithms and real-world op-
imization. It is our firm belief that the inherent complexity and uncer-
ainty of real-world problems has to be boarded with the methodological
igor required to ensure the practical value of the developed metaheuris-
ics. Unless common methodological standards for real-world optimiza-
ion are embraced in the future, a major gap will remain unbridged
etween academia, industrial stakeholders, and the society as a whole. 
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