
Large Scale Data Processing
MapReduce intro

Dr. Wenceslao PALMA
wenceslao.palma@ucv.cl

August 2013

W. PALMA 1 / 18



MapReduce

What is MapReduce?

MapReduce is a programming model for data processing introduced by Google
(2004) to support parallel and fault-tolerant computations over large data sets
on clusters of computers. It provides an abstraction that hides many
system-level details from the programmer.

Big ideas behind MapReduce

1 Scale “out”, not “up”.

2 Assume failures are common.

3 Move processing to the data.

4 Process data sequentially and avoid random access.

5 Hide system-level details from the applicaion developer.

6 Seamless scalability.

W. PALMA 2 / 18



MapReduce

(1) Scale “out”, not “up” . There is evidence to conclude that a cluster of
low-end servers approaches the performance of the equivalent cluster of
high-end servers. The small performance gap is insufficient to justify the price
premium of the high-end servers.

W. PALMA 3 / 18



MapReduce

(1) Scale “out”, not “up” . There is evidence to conclude that a cluster of
low-end servers approaches the performance of the equivalent cluster of
high-end servers. The small performance gap is insufficient to justify the price
premium of the high-end servers.

MapReduce is an scale out approach that provides equitable distribution and
independence

W. PALMA 3 / 18



MapReduce

(2) Assume failures are common. Large-scale services distributed across a
large cluster must cope with failures as an intrinsic aspect of its operation.

W. PALMA 4 / 18



MapReduce

(2) Assume failures are common. Large-scale services distributed across a
large cluster must cope with failures as an intrinsic aspect of its operation.

MapReduce implementations cope with failures through automatic restart and
replication.

W. PALMA 4 / 18



MapReduce

(3) Move processing to the data. In high-performance computing
processing nodes and storage nodes are linked togheter by a high-capacity
interconnect. However, a bottleneck in the network is created when
data-intensive workloads are not very processor-demanding.

W. PALMA 5 / 18



MapReduce

(3) Move processing to the data. In high-performance computing
processing nodes and storage nodes are linked togheter by a high-capacity
interconnect. However, a bottleneck in the network is created when
data-intensive workloads are not very processor-demanding.

MapReduce takes advantage of data locality by running code on the processor
where the block of data we need resides.

W. PALMA 5 / 18



MapReduce

(4) Process data sequentially and avoid random access. Data-intensive
processing is desirable to avoid random data access and instead organiz
coputations so that data is processed sequentially.

W. PALMA 6 / 18



MapReduce

(4) Process data sequentially and avoid random access. Data-intensive
processing is desirable to avoid random data access and instead organiz
coputations so that data is processed sequentially.

In MapReduce all the computations are organized into long streaming
operations that take advantage of the aggregated bandwidth of many disks in
cluster. Mapreduce trades latency for throughput.

W. PALMA 6 / 18



MapReduce

(5) Hide system-level details from the application developer.
Programming distributed applications leads to the application developer to
deal with several threads, processes, or machines.

W. PALMA 7 / 18



MapReduce

(5) Hide system-level details from the application developer.
Programming distributed applications leads to the application developer to
deal with several threads, processes, or machines.

MapReduce addresses the challenges of distributed programming by providing
an abstraction that isolates the developer from system-level details.
MapReduce maintains a separation of what computations are to be performed
and how those computations are actually carried out on a cluster of machines.

W. PALMA 7 / 18



MapReduce

(6) Seamless scalability. If running an algorithm on a particular dataset
takes 100 machine hours, then we should be able to finish in an hour on a
cluster of 100 machines, or use a cluster of 10 machines to complete the same
task in ten hours.

W. PALMA 8 / 18



MapReduce

(6) Seamless scalability. If running an algorithm on a particular dataset
takes 100 machine hours, then we should be able to finish in an hour on a
cluster of 100 machines, or use a cluster of 10 machines to complete the same
task in ten hours.

With MapReduce, this isn’t so far from the truth, at least for some
applications.

W. PALMA 8 / 18



MapReduce

MapRaduce is not the first model of parallel computation. However:

it has changed the way we organize computations at a massive scale.

it maked certain large-data problems easier, but suffers from limitations
as well.

W. PALMA 9 / 18



MapReduce: logical view

The input to a MapReduce job is divided into fixed-sized pieces called splits.

A recommended split size is the size of an GDFS/HDFS block (64MB by
defautl). However, this can be changed when each file is created.

Split are processed in parallel by different machines.

The output ends up in R files on the distributed file system, where R is the
number of reducers.

W. PALMA 10 / 18



MapReduce: execution overview

Mapreduce splits input files into M pieces

Many copies of the user program are started on the cluster

W. PALMA 11 / 18



MapReduce: execution overview

Master node assigns map or reduce tasks to idle workers.

W. PALMA 12 / 18



MapReduce

Workers doing map tasks read a corresponding split

Intermediate results are buffered in memory

W. PALMA 13 / 18



MapReduce

Periodically, intermediate results are written to local disk.

These results are partitionated in R regions.

Locations of these partitions are published to master node.

W. PALMA 14 / 18



MapReduce

Reducers read all input data.

When reducer has read all input data, it sorts data by intermediate keys.

W. PALMA 15 / 18



MapReduce

Each reducer iterates over sorted intermediate data.

Output of the reduce function is appended to a final output file.

W. PALMA 16 / 18



MapReduce

The output is available in R output files.

Typically these files are not combined. They could be kept for an application
that is able to handle partitioned data.

W. PALMA 17 / 18



References

Data-Intensive Text Processing with MapReduce. Jimmy Lin and Chris
Dyer. Pre-production manuscript book, April 2011.

W. PALMA 18 / 18


