
Large Scale Data Processing
MapReduce-Hadoop

Dr. Wenceslao PALMA
wenceslao.palma@ucv.cl

September 2013

W. PALMA 1 / 21



Hadoop

Hadoop is an open-source Java-based software plataform
developed by the Apache Software Foundation.

Hadoop implements Google’s MapReduce programming model on top of a
distributed file system called the Hadoop Distributed File System (HDFS).

MapReduce divides a job into many tasks.

HDFS creates multiple replicas of data blocks for reliability.

Then, MapReduce processes the data where it is located.

W. PALMA 2 / 21



HDFS::Read

The client node calls the namenode, using RPC, to determine the locations of
the blocks.

For each block, the namenode returns the addresses of the datanodes that have
a copy of that block.

If the client is itself a datanode, then it will read from the local datanode if it
stores a copy of the block.

Datanodes are sorted according to their proximity to the client acoording to the
topology of the cluster’s network

W. PALMA 3 / 21



HDFS::Network distance

The network is represented as a tree

Distance between two nodes is the sum of their distances the their closest
common ancestor.

distance(/d1/r1/n1, /d1/r2/n3) = 4

W. PALMA 4 / 21



HDFS::Write

The client node splits the data into packets which are placed in a data queue.

Then, it asks the namenode a list of datanodes where to store the replicas.

The list of nodes forms a pipeline (in the figure the replication level is three).

An internal queue of packets, called the ack queue, is maintained with packets
waiting to be acknowledged.

W. PALMA 5 / 21



HDFS::Write

Dealing with errors

The pipeline is closed and any packets in the ack queue are added to the front
of the data queue. Thus, datanodes downstream from the failed node will not
miss any packets.

The current block on the good datanodes is given a new id which is
communicated to the namenode. Thus, the partial block on the failed datanode
will be deleted when the failed datanode recovers later on.

When the namenode notices that the block is under-replicated, it creates a
further replica on another node.

Fails on multiple datanodes

The write succeeds as along as dfs.replication.min replicas (default one) are
written and the block will be asynchronously replicated until its replication factor
dfs.replication (default three) is reached.

W. PALMA 6 / 21



HDFS::Replica placement

First replica → on the client node.

Second replica → is placed on a different rack from the first (chosen at random).

Third replica → is placed on the same rack but on a different node chosen at
random.

W. PALMA 7 / 21



HDFS::Replica placement

First replica → on the client node.

Second replica → is placed on a different rack from the first (chosen at random).

Third replica → is placed on the same rack but on a different node chosen at
random.

The replica placement strategy provides a good balance among reliablity, write
bandwidth, read performance and block distribution across the cluster

W. PALMA 7 / 21



Hadoop::MapReduce job run

The client submits the MR job, the jobtracker coordinates the job run, the
tasktrackers run the tasks that the job has been split into, and the DFS which is
used for sharing job files.
W. PALMA 8 / 21



Hadoop::MapReduce job run

Job submission

The job submission process asks the jobtracker for a new JobID, checks the
output specification of the job, computes the input splits and copies the
resources needed to run the job.

The job JAR is copied with a high replication factor (default is 10).

Finally, it tells the jobtracker that the job is ready for execution.

Job initialization

During the initialization the jobtracker creates an object to represent the job
being run, it encapsulates its tasks and bookkeeping information.

The lists of tasks to run is created using the input splits. The jobtracker creates
one map task for each split.

W. PALMA 9 / 21



Hadoop::MapReduce job run

Task assignment

Tasktrackers send heartbeats to the jobtracker to indicate whether it is ready to
run a new task.

Tasktracker have a fixed number of slots for map tasks and for reduce tasks.
The empty map slots are filled before the reduce slots.

To jobtracker picks the map task whose input split is as close as possible to the
tasktracker.

Task execution

To run a task the tasktracker must localize the job JAR by copying it from the
shared filesystem. It creates a local working directory and un-jars the contents
of the JAR.

Then, an instance of TaskRunner is created to run the task.

The TaskRunner launches a new JVM to run each task.

W. PALMA 10 / 21



Hadoop::How status are propagated through MapReduce

W. PALMA 11 / 21



Hadoop::Failures

Task failure

When user code in the map or reduce tasks throws a runtime exception the
child JVM reports the error to its tasktracker. The tasktracker mark the task
as failed freeing up a slot.

When the tasktracker notices that it has not received a progress update for a
while the hanging task is marked as failed. The timeout period is normally 10
minutes. It can be configured in a per job basis by setting
mapred.task.timeout. It must not be configured to a value of zero.

When the jobtracker is notified of a failed task, it will reschedule execution of
the task.If any task fails four times, the whole job fails. This can be configured
using mapred.map.max.attempts and mapred.reduce.max.attempts.

However, for some applications it is undesirable to abort the job, as it may be
possible to use the results of the job despite some failures. In this case, we can
specify the max percentage of tasks that are allowed to fail setting
mapred.max.map.failures.percent and
mapred.max.reduce.failures.percent

W. PALMA 12 / 21



Hadoop::Failures

Tasktracker failure

When a tasktracker fails or runs very slowly, it will stop sending heartbeats to
the jobtracker. The jobtracker notices it and removes it from its pool of
tasktrackers. This can be specify setting
mapred.tasktracker.expiry.interval.

Any tasks completed successfully or in progress that belongs to an incomplete
job are rescheduled.

A tasktracker can be blacklisted if the number of tasks that have failed on it is
significantly higher than an average task failure rate on the cluster.

W. PALMA 13 / 21



Hadoop::Failures

Jobtracker failure

It is the most serious failure mode.

Hadoop, has no mechanism to deal with failure of the jobtracker

W. PALMA 14 / 21



Hadoop::Job Scheduling

Hadoop comes with a choice of schedulers.

The default is the FIFO queue-based scheduler.

There are also multiuser schedulers: the Fair Scheduler and the Capacity
Scheduler.

Via the mapred.job.priority the priority of a job is set. However, with the
FIFO scheduler, priorities do not support preemption.

W. PALMA 15 / 21



Hadoop::Job Scheduling

The Fair Scheduler

A short job belonging to one user will complete in a reasonable time even while
another user’s long job is running, and the long job will still make progress.

The Fair Scheduler supports preemption, so if a pool has not received its fair
share for a certain period of time, then the scheduler will kill tasks in pools
running over capacity in order to give the slots to the pool running under
capacity.

The Fair Scheduler can be enabled setting the property
mapred.jobtracker.taskScheduler to
org.apache.hadoop.mapred.FairScheduler

W. PALMA 16 / 21



Hadoop::Job Scheduling

The Capacity Scheduler

In the Capacity Scheduler takes a slightly different approach to multiuser
scheduling. A cluster is made up of a number of queues, which may be
hierarchical (so a queue may be the child of another queue), and each queue has
an allocated capacity.

Within each queue, jobs are scheduled using FIFO scheduling (with priorities).

The Capacity Scheduler allows users or organizations (defined using queues) to
simulate a separate MapReduce cluster with FIFO scheduling for each user or
organization.

W. PALMA 17 / 21



Hadoop::Shuffle and Sort

Each map task has a circular memory buffer which is 100 MB by default (see
io.sort.mb property). When the content of the buffer reaches a certain
threshold size (io.sort.spill.percent) a background thread spill the contents to
disk.
Before it writes to disk, the thread divides the data into partitions
corresponding to the reducers

By default, the output is not compressed, but it is easy to enable by setting
mapred.compress.map.output to true.

W. PALMA 18 / 21



Hadoop::Shuffle and Sort

The reduce task starts copying their outputs as soon as each completes.

The reduce task has a small number of copier threads so that it can fetch map
outputs in parallel. The default is five threads, but this number can be changed
by setting the mapred.reduce.parallel.copies property.

How do reducers know which tasktrackers to fetch map output from?

W. PALMA 19 / 21



Hadoop::Task Execution

Speculative execution

Hadoop doesn’t try to diagnose and fix slow-running tasks; instead, it tries to
detect when a task is running slower than expected and launches another,
equivalent, task as a backup. This is termed speculative execution of tasks.

If the original task completes before the speculative task, then the speculative
task is killed; on the other hand, if the speculative task finishes first, then the
original is killed.

Speculative execution is turned on by default.

W. PALMA 20 / 21



Hadoop::Task Execution

Task JVM Reuse

Jobs that have a large number of very short-lived tasks (these are usually map
tasks), or that have lengthy initialization, can see performance gains when the
JVM is reused for subsequent tasks.

With task JVM reuse enabled, tasks do not run concurrently in a single JVM.
The JVM runs tasks sequentially.

W. PALMA 21 / 21


