
Large Scale Data Processing
Pig

Dr. Wenceslao PALMA
wenceslao.palma@ucv.cl

W. PALMA 1 / 14

Pig

Pig raises the level of abstraction for processing large
datasets. Pig is made up of two pieces:

The language used to express data flows called
Pig Latin.
An execution environment to run Pig Latin
program which transforms a data flow into a
series of MapReduce jobs.

W. PALMA 2 / 14

Pig

Pig raises the level of abstraction for processing large
datasets. Pig is made up of two pieces:

The language used to express data flows called
Pig Latin.
An execution environment to run Pig Latin
program which transforms a data flow into a
series of MapReduce jobs.

Pig allows to focus on the data rather than the nature of the execution.

W. PALMA 2 / 14

Pig

Pig raises the level of abstraction for processing large
datasets. Pig is made up of two pieces:

The language used to express data flows called
Pig Latin.
An execution environment to run Pig Latin
program which transforms a data flow into a
series of MapReduce jobs.

Pig allows to focus on the data rather than the nature of the execution.

“The [Hofmann PLSA E/M] algorithm was implemented in pig in 30-35 lines of
pig-latin statements. Took a lot less compared to what it took in

implementing the algorithm in Map-Reduce Java. Exactly that’s the reason I
wanted to try it out in Pig. It took 3-4 days for me to write it, starting from learning
pig.”
– Prasenjit Mukherjee, Mahout project a

a
Olston C. et al. Programmming and Debugging Large-Scale Data Processing Workflows

W. PALMA 2 / 14

Pig

Pig doesn’t perform as well as programs written in MapReduce (see paper
A Comparison of Join Algorithms for Log Processing in MapReduce).
However, the gap is narrowing with each release.

Writting queries in Pig will save your time :)

Pig has two execution modes:

Local mode. This mode is suitable only for small datasets and when trying
out Pig. ($pig -x local)
MapReduce mode. Pig translates queries into MapReduce jobs and runs
them in a cluster. In this case, we must verify that the Pig version is
compatible with the version of Hadoop we are using. This is documented
on the releases page.

PigPen is an Eclipse plugin that provides a Pig script text editor and a button
for running the script on an Hadoop cluster. It includes an operator graph
window which shows a script in graph form for visualizing the data flow.

W. PALMA 3 / 14

Pig

Pig Latin provides:

more transparent program structure

easier program development and maintenance

automatic optimization opportunities

W. PALMA 4 / 14

Pig vs Hadoop 1

1from Pig talk at SIGMOD08
W. PALMA 5 / 14

Pig Latin Language

Example: find the top 10 most visited pages in each category

W. PALMA 6 / 14

Pig Latin Language

A dataflow diagram for the previous query

W. PALMA 7 / 14

Pig Latin Language

The dataflow in Pig Latin:

visits = load ’/data/visits’ as (user,url,time);
gVisits = group visits by url;
visitsCounts = foreach gVisits generate url,count(visits);

urlInfo = load ’/data/urlInfo/’ as (url,category,pRank);
visitCounts = join visitsCounts by url, urlInfo by url;

gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ’/data/topUrls’;

W. PALMA 8 / 14

Pig Latin Language

Operates directly over files. Ex.: ’/data/visits’, ’/data/urlInfo/’,
’/data/topUrls’

Schemas can be assigned dynamically but they are optional. Ex.: as
(user,url,time), as (url,category,pRank)

User defined functions (UDFs) can be used in every construct:
load,store,group,filter,foreach. Ex.: top(visitCounts,10);

W. PALMA 9 / 14

Pig Latin Language

UDFs are written in Java, and filter functions are all subclasses of FilterFunc, which
itself is a subclass of EvalFunc.

public abstract class EvalFunc<T> {

public abstract T exec(Tuple input) throws IOException;

}

To use the new function:

It must be compiled and packaged it in a JAR file.

We tell Pig about the JAR file with the REGISTER operator

W. PALMA 10 / 14

Pig Latin Language

Command Description
LOAD Read data from file system.
STORE Write data to file system.
FOREACH...GENERATE Apply an expression to each record and output

one or more records.
FILTER Apply a predicate and remove records that do

not return true.
GROUP/COGROUP Collect records with the same key from one or

more inputs.
JOIN Join two or more inputs based on a key.
CROSS Cross product two or more inputs.
UNION Merge two or more datasets.
SPLIT Split data into two or more sets, based on filter

conditions.
ORDER Sort records based on a key.
DISTINCT Remove duplicate tuples.
STREAM Send all records through a user provided bi-

nary.
DUMP Write ouput to stdout
LIMIT Limit the number of records

W. PALMA 11 / 14

Pig vs SQL-DBMS

Pig:

Data flow programming language. A Pig Latin program is a step-by-step
set of operations on an input relation, in which each step is a single
transformation.

More relaxed about the data being processed: schemas can be defined at
runtime but it’s optional.

All reads are bulk, streaming writes (like MapReduce).

Programming in Pig Latin is like working at the level of an RDBMS query
planner, which figure out how to turn a declarative statement into a system of
steps.

SQL:

Declarative programming language.

Data is stored in tables with tightly predefined schemas.

Low-latency queries (random read/writes), transactions and indexes.

W. PALMA 12 / 14

Counting Triangles: The Pig solution (www.vertica.com)

set default_parallel N;

set mapreduce.job.maps M;

EDGES = load ’input/graph.txt’ using PigStorage(’ ’) as (source:long, dest:long);

CANON_EDGES_1 = filter EDGES by source < dest;

CANON_EDGES_2 = filter EDGES by source < dest;

TRIAD_JOIN = join CANON_EDGES_1 by dest, CANON_EDGES_2 by source;

OPEN_EDGES = foreach TRIAD_JOIN generate CANON_EDGES_1::source, CANON_EDGES_2::dest;

TRIANGLE_JOIN = join CANON_EDGES_1 by (source,dest), OPEN_EDGES by (CANON_EDGES_1::source,CANON_EDGES_2::dest);

TRIANGLES = foreach TRIANGLE_JOIN generate 1 as a:int;

CONST_GROUP = group TRIANGLES ALL parallel 1;

FINAL_COUNT = foreach CONST_GROUP generate COUNT(TRIANGLES);

dump FINAL_COUNT;

W. PALMA 13 / 14

References

Hadoop: The Definitive Guide. Tom White. O’Reilly 2010.

Pig: Web-scale data processing. Christopher Olston. Pig talk at SIGMOD
2008.

W. PALMA 14 / 14

