
Large Scale Data Processing-MapReduce
Introduction

Dr. Wenceslao PALMA
wenceslao.palma@ucv.cl

W. PALMA 1 / 10



Large Data

Websites

266 million- The number of
websites by december 2010.
21.4 million- The number of
added websites in 2010.

Social Media

152 million- The number of
blogs on the Internet (as tracked
by BlogPulse 2010).
25 billion- The number of sent
tweets on Twitter in 2010.
175 million- People on Twitter
as of September 2010.
600 million- People on Facebook
at the end of 2010.

W. PALMA 2 / 10



Large Scale

Google grew from processing 100 TB of a data day in 2004 to processing
20 PB a day in 2008.

Facebook reports 2.5 PT of user data growing at about 15 TB/day in
2009.

Moving beyond the commercial sphere

The Large Hadron Collider will produce roughly 15 petabytes (15 million
gigabytes) of data annually.
When the Large Synoptic Survey Telescope (LSST) comes online around
2015 in Chile, its 3.2 gigapixel primary camera will produce approximately
half a petabyte of archive images every month.

W. PALMA 3 / 10



MapReduce

The only feasible approach to tackling large-data problems today is to
divide and conquer.

The general principles behind divide-and-conquer algorithms are broadly
applicable to a wide range of problems in many different application
domains.

There are many issues that need to be addressed:

How to break up a large problem into smaller tasks?
How to assign tasks across a potentially large number of computer nodes.?
How to coordinate synchronization among the different nodes?
How to share partial results from one node that is needed by another?
How do we accomplish all of the above in the face of software errors and
hardware faults?

W. PALMA 4 / 10



MapReduce

MapReduce is a programming model for data processing introduced by Google
(2004) to support parallel and fault-tolerant computations over large data sets
on clusters of computers. It provides an abstraction that hides many
system-level details from the programmer.

W. PALMA 5 / 10



Apache Hadoop

A project that develops open-source software for realiable,
scalable, distributed computing, including:

Hadoop core: MapReduce support which is refered as only Hadoop.

Hadoop Distributed File System (HDFS)

Pig: A high-level data-flow language and execution framework for parallel
computation.

Hadoop 6= Mapreduce

A MapReduce program breaks a job into small pieces and processes each of
them in a parallel fashion.

Hadoop core refers to the overall system for running MapReduce programs.

W. PALMA 6 / 10



Hadoop Distributed File System (HDFS)

HDFS

Hadoop Distributed File System (HDFS) is the primary storage system used
by Hadoop applications. HDFS creates multiple replicas of data blocks and
distributes them on compute nodes throughout a cluster to enable reliable,
extremely rapid computations.

W. PALMA 7 / 10



HDFS

By default, HDFS stores three separate copies of each data block to
ensure both reliability, availability, and performance.

In large clusters, the three replicas are spread across diffeerent physical
racks, so HDFS is resilient towards two common failure scenarios: (1)
individual datanode crashes and (2) failures in networking equipment that
bring an entire rack offine.

W. PALMA 8 / 10



Pig

Pig raises the level of abstraction for processing large
datasets.

The language used to express data flows called Pig

Latin.

Pig transforms a data flow into a series of MapReduce
jobs.

W. PALMA 9 / 10



Pig

Pig raises the level of abstraction for processing large
datasets.

The language used to express data flows called Pig

Latin.

Pig transforms a data flow into a series of MapReduce
jobs.

Pig allows to focus on the data rather than the nature of the execution.

W. PALMA 9 / 10



Pig

Pig raises the level of abstraction for processing large
datasets.

The language used to express data flows called Pig

Latin.

Pig transforms a data flow into a series of MapReduce
jobs.

Pig allows to focus on the data rather than the nature of the execution.

“The [Hofmann PLSA E/M] algorithm was implemented in pig in 30-35 lines of
pig-latin statements. Took a lot less compared to what it took in

implementing the algorithm in Map-Reduce Java. Exactly that’s the reason I
wanted to try it out in Pig. It took 3-4 days for me to write it, starting from learning
pig.”
– Prasenjit Mukherjee, Mahout project a

a
Olston C. et al. Programmming and Debugging Large-Scale Data Processing Workflows

W. PALMA 9 / 10



Traditional DBMS vs MapReduce

Traditional DBMS MapReduce

Data size Gigabytes Petabytes
Access Interactive and batch Batch
Updates Read and write many

times
Write once, read many times

Structure Static schema Dynamic schema
Integrity High Low

W. PALMA 10 / 10


