
Data Stream Management Systems
Join Query Operators

Dr. Wenceslao PALMA
wenceslao.palma@ucv.cl

W. PALMA DSMSs 1 / 24



Stream

A stream S is an unbounded bag (multiset) of pairs 〈s, τ〉, where s is a tuple
belonging to S and τ ∈ T is the timestamp that denotes the arrival time of
tuple s on stream S.

Query operator

Conceptually, a query operator may be thought of as a function that consumes
inputs streams, stores some state, performs computation when new data
arrive, modifies the state and outputs results.

W. PALMA DSMSs 2 / 24



The Join query operator

Regarding the Join operator a new implementation is justified by the following
reasons.

(a) Since data streams may be infinite, a blocking operator will never see its entire
input not being able to produce any result. Solution: implement streaming

symmetric join operators that processes tuples from the streams in an
arbitrary interleaved fashion.

(b) Since data streams are potentially unbounded in size, its is not possible to store
join state continuously and match all tuples. Solution: consider a recent portion
of the streams based on a sliding window that explicitly defines the state of
the operator as the set of tuples in the window.

W. PALMA DSMSs 3 / 24



The purge-join-insert algorithm

In general a join operator, implementing sliding windows to limit the size of
its states, executes a 3-step process referred to as the purge-join-insert
algorithm. For a newly arriving tuple a ∈ A :

(1) a is used to purge tuples stored in window B[W ].

(2) a is probed with tuples in B[W ] possibly producing join results.

(3) a is inserted in A[W ]. Symmetric steps are executed for a B tuple.

W. PALMA DSMSs 4 / 24



The three major join operators

BJoin. Using this operator a query plan is composed of binary join
operators that store intermediate results.

MJoin. It takes symmetrically all the streams joining the arriving tuples
with the remaining streams in a particular order without storing
intermediate results.

Eddy. Using this operator queries are processed without fixed plans.
Instead, query execution is conceived as a process of routing tuples
through operators where a tuple routing operator adjusts the routing
order of tuples on a per-tuple basis.

W. PALMA DSMSs 5 / 24



The BJoin operator

In BJoin, each binary operator keeps two states that stores tuples that the operator
has received so far. There are states that store the tuples received directly from a
stream, such as state SA and others states, such as SAB that store intermediate join
results. To deal with infinite inputs, the states can be maintained using sliding
windows and the join tuples are calculated using the purge-probe-insert algorithm.

W. PALMA DSMSs 6 / 24



BJoin-Optimization

The min-state algorithm aims at minimizing the total number of intermediate
results, thus reducing memory to store them as well as the processing costs
(CPU) in generating future join results.

The min-state algorithm is a greedy-based algorithm that computes a BJoin
plan in polynomial time.

The input to the algorithm is a join graph G = (V, E) that represents a
multi-join query, where V represents the set of input streams, marked by its
stream name Vi and its arrival rate λVi

, and an edge (Vi, Vj) ∈ E represents a
join predicate between two streams marked by the selectivity σViVj

of the join
Vi ⊲⊳ Vj .

The algorithm ranks the edges using the following expression λVi
λVj

σViVj
.

W. PALMA DSMSs 7 / 24



The algorithm ranks the edges using the following expression λVi
λVj

σViVj
.

The smallest value is selected and a join is generated with its vertex. The
min-state algorithm does not guarantee to always find an optimal BJoin tree,
thus leading the optimizer to be more conservative because it requires more
resources than the query actually needs. However, it was chosen for its
efficiency i.e. a good plan is found quickly, which is much needed by
continuous query processing.

W. PALMA DSMSs 8 / 24



Consider a 5-way join A ⊲⊳ B ⊲⊳ C ⊲⊳ D ⊲⊳ E in Figure (a) with sliding
windows of size W = 1.

W. PALMA DSMSs 9 / 24



MJoin operator

Mjoin considers n inputs streams symmetrically and by allowing the tuples
from the streams to arrive in an arbitrary interleaved fashion. The basic
algorithm of MJoin creates as many hash tables (states) as there are join
attributes in the query.

Probing sequence

When a new tuple from a stream arrives into the system, it is probed with the
other n − 1 streams in some order to find the matches for the tuple. The
order in which the streams are probed is called the probing sequence.

W. PALMA DSMSs 10 / 24



MJoin operator

The execution of a MJoin operator can be seen as a sequence of query plans
executed using left-deep pipeline plans where the internal state of hash tables is
determined solely by the source tuples that have arrived so far.

W. PALMA DSMSs 11 / 24



MJoin operator

MJoin is very attractive when processing continuous queries over data streams
because the query plans can be changed by simply changing the probing sequence.
Sliding windows are adopted to deal with infinite inputs limiting the size of hash
tables and the purge-probe-insert algorithm is used to calculate join tuples.

W. PALMA DSMSs 12 / 24



MJoin operator

Drawback

The principal drawback of MJoin is the recomputation of intermediate results
because intermediate tuples generated during query execution are not stored
for future use. For example, the first query plan generates (C1 ⊲⊳ B)
intermediate results which are not stored and could be used in the query plan
(A2 ⊲⊳ B) ⊲⊳ C1 (see previous figure).

Solution

Add/remove temporary caches of intermediate result tuples → adaptive caching.

W. PALMA DSMSs 13 / 24



MJoin operator

The A-caching algorithm

The A-caching algorithm improves the performance of MJoin using caches to
store intermediate result tuples. In A-caching the performance of a continuous
join depends on the probing sequence and caching. This approach follows a
two-step process, to improve the performance of MJoin:

A probing sequence is chosen, independently for each stream, using the
A-Greedy algorithm.

For a given probing sequence, A-caching may decide to add a cache in the
middle of the pipeline.

W. PALMA DSMSs 14 / 24



MJoin operator

When an A tuple arrives, the cache is consulted first to verify if there are
results already cached. If so, the probing sequence can be avoided.

If there is a miss, the probing sequence continues normally and inserts back the
computed result into the cache.

When new B and C tuples arrive, the cache must be updated if the arriving
tuples generate B ⊲⊳ C or C ⊲⊳ B intermediate results.

W. PALMA DSMSs 15 / 24



The Eddy operator

Main characteristics

The Eddy operator is designed to enable fine-grained runtime control and
adaptively approach the optimal order of join operations at runtime.

Queries are executed without fixed plans.

An optimized join order for each incoming tuple is computed individually.

How Eddy works

An Eddy is a tuple routing operator between data sources and query
operators as joins.

It monitors the execution and makes routing decisions by sending tuples
from the data sources through query operators.

As a result, the routing destinations for tuples alone determine the query
plans executed by the Eddy.

W. PALMA DSMSs 16 / 24



The Eddy operator

In the query of figure, the valid routing options for different types of
tuples (shown on the data flow edges) are as follows:

A and C tuples can only be routed to the A ⊲⊳ B and B ⊲⊳ C operator
respectively.
B tuples can be routed to either of the two join operators.
Intermediate AB and BC tuples can only be routed to B ⊲⊳ C and A ⊲⊳ B

operator respectively.
ABC result tuples are routed to the output.

W. PALMA DSMSs 17 / 24



The Eddy operator

Tuple routing schemes

An Eddy has a tuple routing scheme that monitors the behaviour of the
operators (cost and selectivity) and accordingly routes tuples through the
operators.

back-pressure: the processing of a tuple is more slow in a high cost
operator than in that of low cost. This generates larger input queue sizes
for high costs operators. If the length of input queues is fixed, the Eddy
operator is forced to route tuples to an operator of lower cost before
routing to those of higher cost.

lottery scheduling: each time a tuple is routed to an operator, it obtains a
ticket. When the operator returns a tuple to the Eddy, one ticket is
debited. Thus, the number of tickets is used to roughly estimate the
selectivity of an operator. When two operators are eligible to process a
tuple, the operator with more tickets has higher probability to process it.
By doing this, the Eddy is very adaptive and the join order can be
changed at runtime.

W. PALMA DSMSs 18 / 24



The Eddy operator

Drawback

(1) At the beginning of the query processing the data source of A is stalled.
Thus, A ⊲⊳ B operator is an attractive destination for routing B tuples
and the Eddy executes plan (A ⊲⊳ B) ⊲⊳ C

(2) Some time later, a great quantity of A tuples arrive and it becomes
apparent that the plan A ⊲⊳ (B ⊲⊳ C) is the better choice.

(3) The Eddy switches the routing policy so that subsequent B tuples are
routed to B ⊲⊳ C first.

(4) However, the Eddy continues to emulate (A ⊲⊳ B) ⊲⊳ C because of all the
previously seen B tuples are still stored in the internal state of the A ⊲⊳ B

operator. As A tuples arrive, they must join with these B tuples before
the B tuples are joined with C. tuples.

The Eddy continues to emulate an suboptimal plan even after it has switched
the routing policy.

W. PALMA DSMSs 19 / 24



The Eddy operator

SteMs

The State Modules (SteMs) architecture is an extension of the Eddy
architecture that ensures that the state stored in the join operators is
entirely independent of routing history.

To this end, SteMs does not store intermediate results.

The main operator is a SteM, which is instantiated for each attribute of
each base relation addressed in the join predicates

Tuples arriving from each base relation are first built into their own SteM
and then used to probe the other relations’ SteMs to get the join results.

W. PALMA DSMSs 20 / 24



The Eddy operator

Considering the query of the figure, when
a new A tuple arrives, it is:

(1) inserted into the A SteM.

(2) probed against B tuples stored in the
B SteM to find matching tuples
corresponding to A ⊲⊳ B.

(3) the resulting AB tuples are probed
against the C tuples stored in the C

SteM in order to generate ABC

results. Intermediate AB tuples are
not stored anywhere. Thus, the state
accumulated into SteMs is
independent of the routing history.

W. PALMA DSMSs 21 / 24



The Eddy operator

Drawbacks

Re-computation of intermediate results: since intermediate results
are not stored anywhere, they are re-computed each time they are needed.

Constrained plan choices: query plans that can be executed for any
new tuples are constrained because even if the Eddy knows the existence
of an optimal query plan, this plan is not feasible. For example, any new
A tuple must join with B tuples (stored in the SteM on B) first and then
with C tuples (stored in the SteM on C). This restricts the query plan for
new A tuples to be (a ⊲⊳ B) ⊲⊳ C. A new optimal query plan such as
a ⊲⊳ (B ⊲⊳ C) cannot be proposed because the absence of B ⊲⊳ C tuples.

W. PALMA DSMSs 22 / 24



The Eddy operator

STAIRs

The STAIR operator exposes the state stored in the operators and allows
to the Eddy manipulate this state in order to reverse any bad routing
decisions.

A STAIR on relation A and attribute a, denote by A.a, contains either
tuples from A or intermediate tuples that contain a tuples from A.

To reverse any bad routing decisions made in past, STAIRs perform the
following operations:

Demotion(A.a, t, t′): this operation reduces an intermediate tuple t stored
in the STAIR A.a to a sub-tuple t′ of that tuple. Intuitively, this operation
undoes a tuple that was done earlier during execution.
Promotion(A.a, t, B.b): this operation replaces a tuple t with super tuples
of that tuple generated using another join in the query. Intuitively, this
operation reroutes the tuple t to the new join ordering.

W. PALMA DSMSs 23 / 24



The Eddy operator

W. PALMA DSMSs 24 / 24


