
Big Data
Hadoop

Dr. Wenceslao PALMA
wenceslao.palma@pucv.cl

W. PALMA 1 / 16

Word Count Example

The goal of this example is to count the number of distinct words in a given
text.

class MAPPER
method MAP(docID a, doc d)

for all term t in doc d do
EMIT(term t, count 1)

The MAP method takes an input pair and produces a set of intermediate
<key,value> pairs. Then all the intermediate values associated with the same
intermediate key are grouped by the MapReduce library (shuffle phase).

W. PALMA 2 / 16

Word Count Example

class REDUCER
method REDUCE(term t, counts[c1,c2,...])

sum = 0
for all count c in counts[c1,c2,...] do

sum = sum + c
EMIT(term t, count sum)

The REDUCE method receives an intermediate key and a set of values for
that key merging together these values to form a smaller set of values.

W. PALMA 3 / 16

Word Count Example

Suposse we are give the following input file:

We are not what
we want to be,
but at least
we are not what
we used to be.

The MapReduce job consists of the following:

Map(doc_id, record) --> [(word, 1)]
Reduce(word, [1,1,...]) --> (word, count)

In the map phase the text is tokenized into words. Then a <word,1> pair is formed
with these words.

<we, 1>; <are, 1>; <not, 1>; <what, 1>;

Remember that <key, value> pairs are generated in parallel on many machines.
Each task has a little part of the overall Map input

W. PALMA 4 / 16

Word Count Example

Considering our input text, in preparation for the reduce phase all the “we” pairs are
grouped togheter, all the “what” pairs are grouped togheter, etc.

<we, 1> <we, 1> <we, 1> <we, 1> −− > <we, [1,1,1,1]>
<are, 1> <are, 1> −− > <are, [1,1]>
<not, 1> <not, 1> −− > <not, [1,1]>
...

In the reduce phase a reduce function is called once for each key. The reduce phase
also sorts the output into increasing order by key as follows:

<are, 2>; <at, 1>; <be, 2>; <but, 1>; <least, 1>; <not, 2>; <to, 2>;
<used, 1>; <want, 1>; <we, 4>; <what, 2>

Like in the map phase, the reduce phase is also run in parallel. Each machine is
assigned a subset of the keys to work on. The results are stored into a separate file.

W. PALMA 5 / 16

Word Count::The Map source code

public class Map extends MapReduceBase implements Mapper<LongWritable, Text,
Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,

Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());
output.collect(word, one);

}
}

}

LongWritable, Text, Text and IntWritable are Hadoop specific data types designed for
operational efficiency. All these data types are based out of Java data types; LongWritable
is the equivalent for long, IntWritable for int and Text for String.
Mapper<LongWritable, Text, Text, IntWritable> refers to the data type of input and
output key value pairs. The input key (LongWritable) is a default value, the input value
(Text) is a line. The output is of the format <word,1> hence the data type of the ouput is
Text and IntWritable.

W. PALMA 6 / 16

Word Count::The Map source code

public class Map extends MapReduceBase implements Mapper<LongWritable, Text,
Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,

Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());
output.collect(word, one);

}
}

}

In the map method map(LongWritable key, Text value, OutputCollector<Text,
IntWritable> output, Reporter reporter)
The first two parameters refer to the data type of the input to the mapper.
The third parameter OutputCollector<Text, IntWritable> output does the job of
taking the output data from the mapper. The Reporter is used to report the task status
internally in Hadoop environment.

W. PALMA 7 / 16

Word Count::The Reduce source code

public class Reduce extends MapReduceBase implements Reducer<Text, IntWritable,
Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text,
IntWritable> output, Reporter reporter) throws IOException {

int sum = 0;
while (values.hasNext()) {

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}
}

Considering Text, IntWritable, Text, IntWritable, the first two refers to data type of the
input (<we,1>) to the reducer. The last two refers to data type of the output
(<we,#occurrences>).
In the reduce method reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
The input to reduce method from the mapper after the sort and shuffle phase is of the
format <we,[1,1,1,1]>

W. PALMA 8 / 16

Word Count::The driver

public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);
}

W. PALMA 9 / 16

Compilation and run

$ mkdir classes
$ javac -classpath /usr/share/hadoop/hadoop-core-0.20.204.0.jar -d classes/ *.java
$ jar -cvf wordcount.jar -C classes/ .
$ hadoop dfs -ls input/
$ hadoop jar wordcount.jar org.myorg.WordCount input/ output/
$ hadoop dfs -cat output/part-00000

W. PALMA 10 / 16

Word Count::python (mapper.py)

#!/usr/bin/env python

import sys

for line in sys.stdin:
line = line.strip();
words = line.split();
for word in words:

print ’%s\t%s’ % (word,1)

W. PALMA 11 / 16

Word Count::python (reducer.py)

#!/usr/bin/env python
import sys

currentWord = None
wordCount = 0
word = None
for line in sys.stdin:

line = line.strip();
word,count = line.split(’\t’,1)
count = int(count)

if currentWord == word:
wordCount += int(count)

else:
if currentWord:

print ’%s\t%s’ % (currentWord,wordCount)
wordCount = count
currentWord = word

if currentWord == word:
print ’%s\t%s’ % (currentWord,count)

W. PALMA 12 / 16

Word Count::python

Testing locally before running in Hadoop

$ echo "hadoop linux hadoop big mapreduce hadoop" | python mapper.py | sort | python reducer.py
$ wget ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
$ cat t8.shakespeare.txt | python mapper.py | sort | python reducer.py > output.txt
$ more output.txt

W. PALMA 13 / 16

Word Count:: testing the code in a cluster

copy the source code into the master node of the cluster
replace joe with your username
$ scp sourceCodePython.zip joe@IPAddress:/home/joe

login into the master node
$ ssh joe@IPAddress

unzip the source code
$ unzip sourceCodePython.zip

download the input data
$ wget ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt

copy the input data into HDFS
$ hadoop fs -copyFromLocal t8.shakespeare.txt /user/joe/

run the mapreduce code
$ hadoop jar /opt/cloudera/parcels/CDH-5.8.2-1.cdh5.8.2.p0.3/jars/\

hadoop-streaming-2.6.0-cdh5.8.2.jar \
-file /home/joe/mapper.py -mapper /home/joe/mapper.py \
-file /home/joe/reducer.py -reducer /home/joe/reducer.py \
-input /user/joe/t8.shakespeare.txt -output /user/joe/output

complete reference to hdfs commands
$ https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/FileSystemShell.html

W. PALMA 14 / 16

Exercise::Inverted index

W. PALMA 15 / 16

Pseudocode

class MAPPER
method MAP(docID n, doc d)

H = new AssociativeArray

for all term t in doc d do
H{t} = H{t}+1

for all term t in H do
EMIT(term t, posting <n,H{t}>)

class REDUCER
method REDUCE(term t, posting [<n1,f1>,<n2,f2>....])

P = new List

for all posting <docid,f> in postings [<n1,f1>,<n2,f2>....] do
Append(P,<docid,f>)

Sort(P)
EMIT(term t, postings P)

W. PALMA 16 / 16

