
Big Data
Spark Streaming

Dr. Wenceslao PALMA
wenceslao.palma@pucv.cl

W. PALMA Spark 1 / 16

Spark streaming

An extension to the core api that enables scalable, high-throughput and
fault tolerant stream processing of data streams.
Data is ingested from many sources and can be processed using high level
functions like map, reduce, join and window.
The processed data can be stored to HDFS, databases and dashboards.

W. PALMA Spark 2 / 16

Spark streaming: batches

A data stream is divided into batches.
Batches are generated w.r.t an interval of time.
The batch interval must considers the latency requirements of the
applcation.
Spark streaming provides a high level abstraction called Discretized
stread (DStream).
DStreams are created from input data streams or by applying hig-level
operations on other DStreams.

W. PALMA Spark 3 / 16

Spark streaming

A StreamingContext object has to be created in order to initialize a
Spark streaming program.
Input sources are defined by creating input DStreams.
The streaming computation is defined applying transformations and
output operations to DSTreams.
Using streamingContext.start() starts the data ingestion.
The processing can be stopped manually or due to any error using
streamingContext.awaitTermination().

W. PALMA Spark 4 / 16

Spark streaming: transformations and outputs

transformations: DStreams support many of the transformations of Spark
RDD’s. Some of the common ones are the following: flatMap(), filter(),
count(), union(), join(), reduceByKey(), etc
outputs: similar to actions for RDDs, output operations trigger the
execution of all the DStream transformations.
using output operations DStream’s data is pushed out to external systems
(databases or filesystems). pprint(), saveAsTextFiles(), foreachRDD().
a spark streaming program must include at least one output operation.

W. PALMA Spark 5 / 16

Spark streaming: DStreams

A Dstream is inmutable and is represented by a continuous series of
RDD’s.
Each RDD contains data from a certain interval.

W. PALMA Spark 6 / 16

Spark streaming: DStreams and transformations

Any transformations applied on a Dstream operates on the underlying
RDD’s and generates a new DStream.
All the RDD’s transformations are computed by the Spark engine.

W. PALMA Spark 7 / 16

Spark streaming: an example

spark-submit sparkStreaming-ncFilter.py 2>/dev/null

from pyspark import SparkConf
from pyspark import SparkContext
from pyspark.streaming import StreamingContext

conf = SparkConf()
conf.setMaster(’yarn-client’)
conf.setAppName(’spark-streaming’)
conf.set(’spark.executor.instances’, 3)

sc = SparkContext(conf=conf)

streamSC = StreamingContext(sc,60)

line = streamSC.socketTextStream("hadoop1",9999)

words = line.flatMap(lambda line: line.split(" "))
wPair = words.map(lambda word: (word,1))
wordCount = wPair.reduceByKey(lambda x, y: x+y)

wordCount.pprint()

streamSC.start()
streamSC.awaitTermination()

W. PALMA Spark 8 / 16

Spark streaming: instructions to execute the code

Open two terminals.
In the first terminal, a data server will be simulated using the Netcat
utility ($nc -lk 9999).
In the second server the python code is running ($ spark-submit
sparkStreaming-nc.py).

W. PALMA Spark 9 / 16

Spark streaming: filter example

spark-submit sparkStreaming-ncFilter.py 2>/dev/null

from pysaprk import SparkConf
from pyspark import SparkContext
from pyspark.streaming import StreamingContext

conf = SparkConf()
conf.setMaster(’yarn-client’)
conf.setAppName(’spark-streamingFilter’)
conf.set(’spark.executor.instances’, 3)

sc = SparkContext(conf=conf)

streamSC = StreamingContext(sc,30)

line = streamSC.socketTextStream("hadoop1",9999)

filterDS = line.filter(lambda line: "sensor4" in line)
#print the first 10 elements of every batch of data in a DStream
filterDS.pprint()
filterDS.count().pprint()

streamSC.start()
streamSC.awaitTermination()

W. PALMA Spark 10 / 16

Spark streaming: Batches, windows and slide duration

In the figure, the duration of the window is 3 (window length) and the
interval at which the window operations is performed is 2 (sliding
interval).
Spark allows to apply transformations over a sliding window of data
(windowed computations).
RDDs that fall within the window are combined and operated to produce
the RDDs of the windowed DStream.
Some of the common window operations are the following: window(),
countByWindow(), reduceByWindow(), reduceByKeyAndWindow(),
countByValueAndWindow().

W. PALMA Spark 11 / 16

Spark streaming: Example (How the window slides)

from pyspark import SparkConf
from pyspark import SparkContext
from pyspark.streaming import StreamingContext

conf = SparkConf()
conf.setMaster(’yarn-client’)
conf.setAppName(’spark-streaming window map’)
conf.set(’spark.executor.instances’, 3)

sc = SparkContext(conf=conf)
streamSC = StreamingContext(sc,10)

line = streamSC.socketTextStream("hadoop1",9998)

windw = line.window(30,10).pprint()

streamSC.start()
streamSC.awaitTermination()

INPUT (nc -lk portNumber) OUTPUT
10 (0th second) 10
20 (10 seconds later) 10 20
30 (20 seconds later) 10 20 30
40 (30 seconds later) 20 30 40

W. PALMA Spark 12 / 16

Spark streaming: fault tolerance

Remember that an RDD is an inmutable and deterministically
re-computable distributed dataset.
If any partition of an RDD is lost due to a worker node failure, then that
partition can be re-computed from the original dataset using the lineage
of operations.

All data transformations in Spark Streaming are based on RDD operations
and as long as the input dataset is present all intermediate data can be
recomputed.

W. PALMA Spark 13 / 16

Spark streaming: failure of a worker node

Using HDFS files as inputs sources. Data is reliable store in HDFS,
thus no data will be lost and all data can be recomputed.
Using network-based data sources. In this case, the input stream is
replicated in memory between nodes of the cluster (default replication
factor is 2).

W. PALMA Spark 14 / 16

Spark streaming: failure of the driver node

Spark can periodically perform checkpointing by setting a checkpointing
directory using the StreamingContext.
Metadata checkpointing

Configuration
DStream operations
Incomplete batches

W. PALMA Spark 15 / 16

Spark streaming: some considerations about slide interval

W. PALMA Spark 16 / 16

