
Memory-Limited Execution of Windowed Stream Joins
�

Utkarsh Srivastava Jennifer Widom

Stanford University�
usriv,widom � @db.stanford.edu

Abstract

We address the problem of computing approxi-
mate answers to continuous sliding-window joins
over data streams when the available memory may
be insufficient to keep the entire join state. One
approximation scenario is to provide a maximum
subset of the result, with the objective of losing as
few result tuples as possible. An alternative sce-
nario is to provide a random sample of the join
result, e.g., if the output of the join is being ag-
gregated. We show formally that neither approxi-
mation can be addressed effectively for a sliding-
window join of arbitrary input streams. Previ-
ous work has addressed only the maximum-subset
problem, and has implicitly used a frequency-
based model of stream arrival. We address the
sampling problem for this model. More impor-
tantly, we point out a broad class of applications
for which an age-based model of stream arrival is
more appropriate, and we address both approxi-
mation scenarios under this new model. Finally,
for the case of multiple joins being executed with
an overall memory constraint, we provide an algo-
rithm for memory allocation across the joins that
optimizes a combined measure of approximation
in all scenarios considered. All of our algorithms
are implemented and experimental results demon-
strate their effectiveness.

1 Introduction

Data stream systems [14, 18, 22] face the challenge that
immediate online results often are required, but sufficient
memory may not be available for the run-time state re-
quired by a workload of numerous queries over high-
volume data streams [7, 13]. There are two basic solutions:
provide approximate instead of accurate query results using
memory exclusively to ensure high performance [2, 7, 9],
or provide accurate results by using disk with the risk of
failing to keep up with the input rate [7, 19]. In this paper,
we address the problem of memory-limited execution of
sliding-window joins [2] in data stream systems, focusing
on providing approximate results.

�
This work was supported by the National Science Foundation under

grants IIS-0118173 and IIS-9817799 and by a Sequoia Capital Stanford
Graduate Fellowship.

Consider a continuous sliding-window join between two
streams ��� and ��� , denoted as ���
	 �������������	 ���� . Win-
dows � � and � � consist of the most recent tuples on their
respective streams, and may be tuple-based (e.g., the last
1000 tuples), or time-based (e.g., tuples arriving in the last
10 minutes). The output of the join contains every pair of
tuples from streams � � and � � that satisfy the join pred-
icate � and are simultaneously present in their respective
windows. In general, to perform the join accurately, the
entire contents of both windows must be maintained at all
times. If we have many such joins with large windows over
high-volume data streams, memory may be insufficient for
maintaining all windows in their entirety. If the data stream
application has stringent performance requirements (to pre-
clude the use of disk), but can tolerate an approximate join
result, there are two interesting types of approximation:

1. “Max-Subset” Results: If the application benefits
from having a maximum subset of the result, we can
selectively drop tuples (sometimes referred to as load
shedding [7, 17]) with the objective of maximizing the
size of the join result produced.

2. Sampled Results: A random sample of the join result
may often be preferable to a larger sized but arbitrary
subset of the result. For example, if the join result is
being aggregated, the sample can be used to provide a
consistent and unbiased estimate of the true aggregate.

Previous work on memory-limited join execution [7, 13]
has considered only max-subset results, and has implicitly
assumed a frequency-based model of stream arrival. In this
model, each join-attribute value has a roughly fixed fre-
quency of occurrence on each stream. These frequencies
(either known or inferred through monitoring) are used to
make load-shedding decisions, i.e., which tuples to drop
and which to retain, in order to maximize the size of the join
result produced. However, no justification has been pro-
vided as to why this (or any other) model is required for ad-
dressing the max-subset approximation problem. Our first
contribution is to show formally that if a sliding-window
join over arbitrary streams is to be executed without enough
memory for retaining the entire windows, neither of the
above types of approximations can be carried out effec-
tively: For the max-subset problem, any online algorithm
can return an arbitrarily small subset as compared to the
optimal (offline) algorithm [7], and for the sampling prob-
lem, no algorithm can guarantee a nonzero uniform random

Model Max-Subset Random Sample
Age-Based

Frequency-Based
Section 3

Addressed in [7]
Section 4

Figure 1: Problem space

sample of the join result. Thus, we must have some model
of stream arrival to make any headway on the problem.

There are many applications for which the frequency-
based model considered in previous work is inappropri-
ate. (One obvious case is a foreign-key join, where on one
stream each value occurs at most once.) For these appli-
cations, we define an age-based model that is often appro-
priate and enables much better load-shedding decisions. In
the age-based model, the expected join multiplicity of a tu-
ple depends on the time since its arrival rather than on its
join-attribute value. Examples will be given in Section 2.2.

Given the two types of approximation and the two mod-
els, we have the problem space shown in Figure 1. The
max-subset problem has been addressed in [7], but only for
the frequency-based model. To the best of our knowledge,
the sampling problem, i.e., the problem of extracting a ran-
dom sample of the join result with limited memory, has not
been addressed in previous work. Our contribution is to ad-
dress the max-subset problem for the age-based model, and
the sampling problem for both models.

Our discussion so far assumes a single two-way sliding-
window join. In reality, we expect to be executing many
queries simultaneously in the system. Thus, there is an
added dimension to all of the above problems: memory
allocation among multiple joins. The total available mem-
ory should be allocated to the different joins such that a
combined approximation measure is optimized. We pro-
vide an optimal memory allocation scheme that minimizes
the maximum approximation error in any join. Our tech-
nique also extends to the weighted case, i.e., when different
joins have different relative importance.

1.1 Related Work

There has been considerable work recently on data stream
processing; see [11] for a survey. We discuss only the body
of work related to answering queries approximately when
available memory is insufficient. This work can be broadly
classified into two categories. One category consists of
load-shedding strategies for max-subset approximation of
joins. Random load-shedding is the simplest, and has been
considered in [13]. [7] primarily considers the offline load-
shedding problem (one in which all future tuple arrivals are
known), and provides some heuristics for the online case
that implicitly assume a frequency-based model. An al-
ternative stream model for load-shedding uses a stochas-
tic process [20]. Although this model is more general, the
primary focus in [20] is on scenarios in which the tuples
arriving on one stream are independent of those that have
already arrived on another stream. However, most scenar-
ios we consider do not exhibit this independence, e.g., our
age-based example in Section 2.2. Moreover, the process
of inferring a general stochastic process merely by observ-
ing the stream is not clear.

The other category consists of randomized sketch-based
solutions for approximately answering aggregate queries
over joins, providing probabilistic error guarantees [1, 9].
These techniques do not extend to handle sliding-window
joins or windowed aggregates which are required in many
applications: although the techniques handle explicit dele-
tions within streams, they cannot handle the implicit dele-
tions generated by sliding windows.

In this paper, we only consider the stream system being
memory-limited. The stream system could instead (or also)
be CPU-limited, i.e., the rate of incoming tuples is higher
than can be processed. Load-shedding for the CPU-limited
case has been considered in [4, 17]. Sampling from a win-
dow is addressed in [3], but only for a single stream and not
for a join result. Random sampling for joins has been con-
sidered in the relational context [5]. However, all sampling
methods developed there require repeated access or indices
on at least one of the relations, making these techniques
inapplicable in the stream context.

1.2 Summary of Contributions

1. We show formally that the problem of approximating
a sliding-window join with limited memory cannot be
addressed effectively for arbitrary streams (Sections
3.1 and 4.1).

2. We introduce a novel age-based model for stream ar-
rival that captures many applications not captured by
the frequency-based model assumed in previous work
(Section 2).

3. For a single two-way join with a fixed memory con-
straint, we provide novel algorithms for the max-
subset problem under the age-based model (Section
3), and the sampling problem under both the fre-
quency and age-based models (Section 4).

4. For multiple two-way joins with an overall memory
constraint, we give an algorithm to allocate memory
among the various joins so as to optimize a combined
measure of approximation (Section 5).

5. We provide a thorough experimental evaluation show-
ing the effectiveness of our techniques (Section 6).

2 Preliminaries and Models

We briefly describe our basic model of continuous query
processing over data streams. Assume any discrete time
domain. For a stream ��� , �������
	

, a variable number of tu-
ples may arrive in each unit of time. However, we assume
that over time, tuples on stream � � arrive at a constant aver-
age rate of ��� tuples per unit time. ��� 	 �� denotes a window
on stream ��� . We consider time-based windows, where ���
denotes the length of the window in time units. At time�
, a tuple � belongs to � � 	 � � if � has arrived on � � in the

time interval 	 ��� ��� � � . At time t, we say � is of age � if
it arrived at time

��� � . We consider time-based windows
for generality; tuple-based windows can also be captured
by assuming that a single tuple arrives every time unit.

S [W1]1

1
results

S −probe

S2]2[W

Optional
Windowed

Aggregation

S2
−probe

S1

Σ

results

2S

Figure 2: Sliding-window join with aggregation

The basic query we consider (shown in Figure 2) is a
sliding-window equijoin between two streams � � and � �
over a common attribute � , denoted � � 	 � � ��� � � 	 � � .
The output of the join consists of all pairs of tuples � ��� � � ,
� � � � � , such that �
��� � � � ��� � and at some time

�
, both

� ��� � � 	 � � and � ��� � � 	 � � . Conceptually, a sliding-
window join is executed as shown in Figure 3, which de-
tails the steps to be followed for a newly arriving tuple on
� � . A symmetric procedure is followed for a newly arriving
tuple on � � . We also consider queries with a windowed ag-
gregation operator on top of the streamed join result. Other
work [8] has focused on approximate windowed aggrega-
tion in memory-limited environments. We do not consider
this aspect of memory usage in our calculations, however
analyzing the tradeoff between memory allocation to joins
and aggregation is an interesting subject of future work.

We classify every join-result tuple as either an � � -probe
join tuple or an � � -probe join tuple. When a new tuple �
arrives on � � and joins with a tuple �
	 � � � 	 � � (line 3
of Figure 3), � and �
	 are said to produce an � � -probe join
tuple. � � -probe join tuples are defined symmetrically. A
tuple � � � � may first produce � � -probe join tuples when
it arrives. Then, before it expires from � � 	 � � , it may pro-
duce � � -probe join tuples with newly arriving tuples on � � .
We use � �� �
� , � � � � 	

, to denote the number of ��� -probe
join tuples produced by a tuple � � � � before it expires
from � � 	 � � .
2.1 Frequency-Based Stream Model

Continue to consider the sliding-window join � �
	 ������ �
����	 ��� . Let � denote the domain of join attribute � . The
frequency-based model that has been assumed in previous
work [7, 13] is defined as follows:

Definition 2.1 (Frequency-Based Model). For each value� � � , a fixed fraction � � � � � of the tuples arriving on � � ,
and a fixed fraction � ��� � � of the tuples arriving on � � , have
value � in attribute � .

Assuming an average rate � � of arrivals per unit time on � � ,
the expected number of ��� -probe join tuples that a tuple
� � � � produces is given by:

� 	 � � � ��� � � ��� � ��� � � � ��� ��� (1)

Example Scenario: Suppose we are monitoring a system
with a fixed number of components. We have a stream of

1. When a new tuple � arrives on � �
2. Update � � 	 � � by discarding expired tuples
3. Emit � � � � ��	 � �
4. Add � to � � 	 � �

Figure 3: Sliding-window join execution

actions and a stream of errors on all components, and we
want to perform a sliding-window join on component-
id to look for possible correlations between actions and
errors. Some components may be more heavily used than
others, and some may be more error-prone than others, but
each component-idmay have a roughly fixed frequency
of occurrence on each stream.

2.2 Age-Based Stream Model

For many applications, the frequency-based model is inap-
propriate. As a simple example, consider online auction
monitoring [16] with the following streams:���

: OpenAuction(auction-id,seller-id)���
: Bid(auction-id,bid-amount)

When a seller starts an auction, a tuple arrives on � � . When
a bid is placed on an auction, a tuple arrives on � � . Suppose
we are interested in knowing, for each seller, the average
number of bids received on all of his auctions in the last 5
days. This query requires a sliding-window join between
� � and � � with a window on ��� equal to the maximum
lifetime of an auction, followed by an aggregation operator
with a 5-day window.

Suppose memory is insufficient to retain all the tuples
in ��� ’s window, and suppose we use the frequency-based
model for making load-shedding decisions in this scenario.
Auction-ids are unique, so on stream � � we see each
auction-id only once. On stream � � , the arriving auction-
ids are the currently open auctions, so this set changes over
time. Thus, no fixed frequency distribution can be inferred
through monitoring. In this case, load-shedding schemes
based on the frequency model [7] will simply retain new
tuples and discard old ones. However, that is exactly the
wrong thing to do, since most bids are received on auctions
that are about to close, i.e., are relatively old. To capture
such scenarios, we propose a new age-based model defined
as follows:

Definition 2.2 (Age-Based Model). For a tuple � � � � ,
the � � -probe join tuples produced by � obey the following
two conditions:

1. The number of ��� -probe join tuples produced by � is
a constant independent of � , and is denoted by � � .

2. Out of the � � � � -probe join tuples of � , � � � ��� are pro-
duced when � is between age � � � and � .

A symmetric case holds for the � � -probe join tuples pro-
duced by a tuple �
	 � � � . Define �� ��� , � � � � 	

, as the cu-
mulative number of ��� -probe join tuples that a tuple � � ���
produces by age � , i.e., � � ��� �"!$#%& � � � �(')� .

Thus, according to this model, the number of joins a tu-
ple produces is independent of its join-attribute value, but
is a function of the age of the tuple in the window. Assump-
tion 1 in Definition 2.2 is not strictly necessary for our ap-
proach. However, in the scenarios we have considered, the
set of join-attribute values changes over time. Thus, even if
��� � �
� depends on ��� � for a tuple � � ��� , it would be diffi-
cult to infer this dependence by monitoring the stream.

Different Age Curves: Consider a curve that plots � � � ���
against � ; we call this the age curve for window � � 	 � � .
Intuitively, the age curve shows how likely a tuple in � � 	 ��
is to produce join tuples, as it becomes older. Different
applications that adhere to the age-based model may have
very different age-curve shapes:
� Increasing: An example is the auction scenario de-

scribed above. In a typical auction, relatively few
bids are received in the beginning, followed by a large
number of bids when the auction is about to close.
Thus ��� � ��� is small for small � , and increases with
� until the auction lifetime, after which it drops to

�
.

� Decreasing: Consider a join between an Orders and a
Fulfillments stream on order-id, with a window on
the orders stream. Most parts of an order are fulfilled
soon, but some may require backorder and are fulfilled
later. Thus we expect to see a decreasing age curve.

� Bell: Consider a join between streams of readings
from two different sensors, with a band-join condition
on timestamp. This join may be used to discover cor-
relations between readings from two different obser-
vation points taken at roughly the same time. In this
case, the age curve is expected to be bell-shaped. The
age � at which the peak of the age curve occurs will
be determined by factors such as clock skew between
the two sensors, and the difference in network latency
from the sensors to the stream system. We perform an
experiment of this form in Section 6.

2.3 Parameter Estimation

For using any of the models described above, the model pa-
rameters must be instantiated, i.e., we must determine the
frequencies of occurrence � � � � � and � ��� � � of values � � �
for the frequency-based model, and the age curves for the
age-based model. We assume the standard technique of
using the past to predict the future, so parameters are esti-
mated by monitoring the streams. There is previous work
on building histograms in an online fashion using small
space [10, 12], which can be used to estimate the values
of � ��� � � and � ��� � � . For the age-based model, � � , � � ���
	

,
is estimated as the average number of � � -probe join tuples
that an � � -tuple produces in its lifetime. Similarly, � � � ���
is estimated as the average number of � � -probe join tuples
that an � � -tuple produces between age � � � and � .

We do not need to collect � � � ��� for each time unit � ,
but can use a coarser time granularity. To accurately deter-
mine � � � ��� , we should execute the join with the full win-
dow � � 	 � � being retained. For now, we assume that we

can allocate an extra chunk of “monitoring memory” that
is circulated periodically to each window in turn to moni-
tor its parameters accurately. If this memory is not avail-
able, � � � ��� can be approximately estimated by retaining a
small fraction of the tuples on ��� in � � 	 �� for their entire
lifetime. Alternative schemes for approximately estimating
the age curve when extra memory is not available is a topic
of future work.

3 Max-Subset
Recall our basic algorithm for executing join � � 	 � � ���
� � 	 � � shown in Figure 3. If memory is limited, we need
to modify the algorithm in two ways. First, in Line 2, we
update � � 	 � � in addition to � � 	 � � to free up memory
occupied by expired tuples. More importantly, in Line 4,
memory may be insufficient to add � to � � 	 � � . In this
case, we need to decide whether � is to be discarded or
admitted into � � 	 � � , and if it is to be admitted, which of
the existing tuples is to be discarded. An algorithm that
makes this decision is called a load-shedding strategy [4, 7,
17]. Due to load-shedding, only a fraction of the true result
will actually be produced. We denote the fraction of the
result tuples produced as recall.

Recall � � � � Number of result tuples produced up to time
�

Number of actual result tuples up to time
�

Definition 3.1 (Max-Subset Problem). Given a fixed
amount of memory for a sliding-window join � � 	 � � ���
����	 ��� , devise an online load-shedding strategy that max-
imizes �������
	������������� � � � .

We first state a result on the hardness of the prob-
lem for arbitrary streams (Section 3.1), then present a
load-shedding strategy for the age-based model (Section
3.2), and finally discuss the max-subset problem for the
frequency-based model (Section 3.3).

3.1 Hardness Result

A load-shedding strategy is optimal if it eventually pro-
duces the maximum recall among all strategies using the
same amount of memory. For bounded streams, an offline
strategy is one that is allowed to make its load-shedding de-
cisions after knowing all the tuples that are going to arrive
in the future. We show that for arbitrary streams, it is not
possible for any online strategy to be competitive with the
optimal offline strategy.

Let � denote a bounded sequence of tuple arrivals on
the streams ��� and � � . Consider any online strategy. Let
 on ��� � � � denote the recall obtained at the end of execut-
ing the online strategy with memory � on the sequence � .
Similarly, let off ��� � � � denote the recall for the optimal
offline strategy. We assume � is insufficient to retain the
entire windows. The online strategy is � -competitive if for
any sequence � , off ��� � � ���� on ��� � � ��� � .

Theorem 3.2. For the max-subset problem, no online strat-
egy (even randomized) can be � -competitive for any � that
is independent of the length of the input sequence.

A detailed proof is omitted due to space constraints. The
idea is to construct an input distribution and to lower-bound
the expected competitive ratio of any deterministic strategy
on that input distribution. We then obtain Theorem 3.2 by
applying Yao’s min-max theorem [21].

This result shows that we cannot expect to find an effec-
tive load-shedding strategy that addresses the max-subset
problem for arbitrary streams.

3.2 Age-Based Model

Consider the max-subset problem for the age-based model.
For presentation, we first assume a fixed amount of mem-
ory is available for ���
	 ���� , and consider the problem of
maximizing the number of ��� -probe join tuples produced.
A symmetric procedure applies for � � -probe join tuples
given a fixed memory for � � 	 � � . Then we show how to
allocate the overall available memory between � � 	 ���� and
� � 	 � � to maximize the recall of the entire join.

3.2.1 Fixed Memory for � � 	 � �
Suppose the available memory for � � 	 � � is sufficient to
store � � tuples of stream ��� . We denote the amount of
memory required to store one tuple as a “cell”. For now we
assume � � � �

, i.e., one tuple arrives on � � at each time
step. At the end of the section we show the easy general-
ization to other �
� .1 We first give the optimal strategy for
� � � �

, which forms the building block for our strategy
for � ��� �

. Recall that � � ��� denotes the total number of
� � -probe join tuples that a tuple � � � � produces by age � .
Let � ��� �� denote the � (� � �) at which

���	� #�
is maximized.

Strategy 1 (� � � �
). Retain the first tuple � � � � in

� � 	 � � for � ��� �� time units, discarding other tuple arrivals
on � � . After � ��� �� time units, discard � , retain the tuple
arriving next for the next � ��� �� time units, and continue.

The relatively straightforward proof that Strategy 1 is opti-
mal is omitted due to space constraints.

Example 3.3. Let � � � �
and � � ���

as we have assumed
so far. Let the window size � � = 4, and let the age curve
be defined by � � � � � � ��� � �
� 	 � � ��� � �
���� � 	 � � �����)� � �

.
 ��� ������� is maximized at � ��� �� � � .

Let � � denote the tuple arriving at time
�

on ��� . The
following diagram illustrates Strategy 1 on this example.
Entries in the third row denote the number of � � -probe join
tuples produced between each time step and the next.

Time 1 2 3 4 5 6 7 8

Cell 1 � � � � � � ��� ��� ��� ��� �����
Discard � � ��� � � ��� ��� � � �����
Results 1 1 2 1 1 2 1 �����

Strategy 1 produces � join tuples every � time units and is
optimal among all possible strategies.

1Note that all of our optimality claims assume constant rather than
average � � , however our experiments (Section 6) show that our algorithm
performs well for a distribution of arrival rates.

Now suppose � ��� �
. We must consider two cases:

1. If � ��� ���� � � , the optimal strategy is to run Strategy 1
“staggered”, for each of the � � cells. For example, if
� � � 	

in Example 3.3, we get:

Time 1 2 3 4 5 6 7 8

Cell 1 � � � � � � � � � � � � � � �����
Cell 2 � � � � � � ��� ��� ��� �����

Discard ��� � � � � ��� � � �����

2. If � ��� �� � � � , the problem becomes more complex
because running a staggered Strategy 1 uses only � ��� ��
cells, thereby underutilizing the available memory.

To address Case 2 (� ��� �� � � �), we first define an age curve
with a minima. The age curve � � � ��� against � has a minima
if there exist � � � � � � � � such that � � � � � � � � � � � � � and
� � � � � � � � � � � ��� .

If the age curve has no minima, the optimal strategy is to
retain every tuple for exactly � � time units. Once a tuple
has been retained for � ��� �� time units, retaining it any fur-
ther becomes less useful, and since the curve has no minima
the tuple cannot become more useful in the future. Thus,
it should be discarded as early as possible after � ��� �� time
units. At the same time, tuples should not be discarded any
earlier than � � time units, as that would lead to underuti-
lization of memory.

If the age curve has a minima, retaining each tuple for
exactly � � time units may be suboptimal. We illustrate the
subtleties through an example.

Example 3.4. Let � � = 3 and � � = 2. Let the age curve
be defined by � � � � � � � � � � � 	 � � �

, and � � �!� � � 	
. Thus,

the age curve has a minima at � � 	 . We have � ��� �� ���
, so

� ��� �� � � � . The following strategy alternates between re-
taining every tuple for

�
and � time units, and by exhaustive

search is seen to be optimal for this example:

Time 1 2 3 4 5 6 7 8

Cell 1 � � � � � � ��� � � � � � � �����
Cell 2 � � � � � � � � � � ��� �����

Discard � � � � ��� � � � � �����
Results 3 3 5 3 5 3 5 �����

This strategy produces an average of � join tuples per time
unit. Note that retaining every tuple for � � � 	 time units
produces only � join tuples per time unit.

We do not have an optimal strategy for the general case
of age curves with minima, but in practice, age curves are
unlikely to have minima (e.g., none of the examples dis-
cussed in Section 2.2 have minima). However, for com-
pleteness, we give the following greedy heuristic for this
case. For each tuple � � ���
	 � � , assign a priority that
represents the fastest rate at which � can produce � � -probe
join tuples. The priority of a tuple at age

�
is given by:

" � ��# � � ��$ � � � � �&%('�!) %�*,+ �
 � � ')� � � � � �

' � �

When a tuple needs to be discarded due to a memory con-
straint, the tuple with the lowest priority is discarded.

This greedy strategy leads to the optimal solution for
Example 3.4. Interestingly, this strategy reduces to the op-
timal strategy for all the previous cases as well. In the rest
of this paper, we do not consider age curves with minima.

We shall refer to the overall approach for the age-based
max-subset problem presented in this section as the AGE
algorithm. We evaluate AGE experimentally in Section 6.

3.2.2 Fixed Memory for � �
	 � � �� ��� 	 ���
So far we have addressed the problem of maximizing the
number of ��� -probe join tuples,

�� ��� 	
, given a fixed

amount of memory for ��� 	 � � . Now suppose we have a
fixed amount of memory � for the entire join. To de-
termine how to allocate the available memory between
� � 	 � � and � � 	 � � , we need a function that relates the
memory allocation to the overall recall obtained. Let � �
be the memory allocated to � � 	 � � . Let � denote the rate
at which � � -probe join tuples are produced. If the AGE al-
gorithm from Section 3.2.1 is applied:

 � �
�

� �
��� � #����
	�
���
	� if � � � � ��� ��

 � ��� � � if � � � � ��� ��
(2)

Then the overall recall of the join is given by � �� ���� � � � � .
To determine the memory allocation between � � 	 ��� and
����	 ��� , we simply find � � and � � such that this expres-
sion for the recall of the join is maximized, subject to the
constraint � � � � � � � .

Finally, so far we have assumed � � � �
. If � � � �

, and
memory � � is available for ��� 	 � � , Equation 2 becomes:

 � �
�

� � �
� � � # ���
	�
���
	� if � � � � � � � ��� ��

��� � � ��� � � ��� � if � � � � � � � ��� ��
(3)

The recall for the entire join is then given by � � � � �� � � �� � � � � .

3.3 Frequency-Based Model

We briefly consider the max-subset problem for the
frequency-based model as covered in [7]. We derive the re-
call obtained given a fixed amount of memory for the join,
This relationship between memory and recall is needed in
Section 5 for overall memory allocation across joins.

Consider � � -probe join tuples first. Recall Definition
2.1 of the frequency-based model. The following approach,
called PROB, is suggested in [7]: Every tuple � � � � � 	 ����
is assigned a priority equal to � � � � � � ��� . If a tuple needs to
be discarded due to a memory constraint, the tuple with the
lowest priority is discarded.

Without loss of generality, assume the values in � are� � � � � � � � � , and for
� � ' , � � � � � � � � � � � % � . Then for� � ' , PROB will prefer to retain all instances of � � in

� � 	 ���� over any instance of � % . Let � � be the mem-
ory allocated to � � 	 � � . PROB will retain all instances
of � � � � � � � � � � � � , where

�
is the largest number such that

� � ��� ! �%& � � ��� � % � � � � . (A fraction of the instances of

� � � � will be retained too, but our analysis is not affected
significantly.) Thus, ��� -probe result tuples are produced at
a rate given by � � � � � � � � ! �%& � � � � � % �� � � � % � . A sym-
metric expression can be derived for the rate � at which
the � � -probe join tuples are produced, given memory � �
for � � 	 � � . The overall recall of the join is then given by� � � � �� � � � � + �� + �
���������� �	���
�� � ���
 . Thus, given a total amount

of memory � for the join, we can find � � and � � such
that the overall recall of the join is maximized, subject to
the constraint � ��� � � � � .

4 Random Sampling
In this section, we address the problem of extracting a ran-
dom sample of the � � 	 � � ��� � � 	 � � join result with
limited memory. We first state a result on the hardness of
performing uniform random sampling on the join result for
arbitrary streams (Section 4.1). We then give an algorithm
for uniform random sampling that applies for both the age-
based and frequency-based models (Section 4.2). Finally,
in Section 4.3, we consider the case when a uniform sam-
ple is not required directly by the application, but is being
gathered only for estimating an aggregate over the join re-
sult. For these cases, we consider a statistically weaker
form of sampling called cluster sampling [6], which can be
performed more easily than uniform sampling, and often
yields a more accurate estimate of the aggregate.

4.1 Hardness Result

For sampling over the windowed join result of arbitrary
streams, we have the following negative result:

Theorem 4.1. If the available memory is insufficient to re-
tain the entire windows, it is not possible to guarantee a
uniform random sample for any sampling fraction � �

.

A detailed proof is omitted due to space constraints but
the basic idea is as follows. Suppose we choose to dis-
card a tuple � in ��� 	 ��� because memory is full. Then we
must know that all � � -probe join tuples that � would sub-
sequently produce are guaranteed not to be needed in our
sample. However, for arbitrary streams, at any time during
the lifetime of � , there is no upper bound on the number
of � � -probe join tuples that � will produce before expiry.
Thus, for any sampling fraction greater than

�
, it cannot be

guaranteed that we can discard � but preserve the sample.
This result shows that we cannot expect to find an ef-

fective procedure that performs uniform random sampling
over the join result of arbitrary streams with limited mem-
ory. However, we can compute a sample when we have a
model of stream arrivals, as we show next.

4.2 Uniform Random Sampling

For random sampling we can consider the frequency-based
and the age-based models together. We shall assume
Bernoulli sampling, or sampling under the coin-flip seman-
tics [5]: for sampling a fraction � from a set of tuples, every
tuple in the set is included in the sample with probability �
independent of every other tuple.

� � : Tuple arriving on � �
� � � � � � : Number of � � -probe join tuples that � � produces
� : Sampling fraction

DecideNextJoin � � � � : Join � � � � � � � :
1. pick ������� ��� 1. � �
� ����� � �
�
� ����� � �
2. �
� � � �
	 � � �
�
� ����� ��� 2. if (�
� � ����� � � � � � �
	 �)
3. if (� � � � �
	 � � � � � � � �) 3. output � � ����� �
4. discard � � 4. DecideNextJoin(� �)

Figure 4: Algorithm UNIFORM

4.2.1 Sampling Algorithm

Our algorithm UNIFORM for uniform random sampling
over a sliding-window join with limited memory is shown
in Figure 4. We only show the procedure for sampling
from the � � -probe join tuples by selectively retaining tu-
ples in � � 	 � � . The procedure for sampling from the � � -
probe join tuples is analogous. UNIFORM needs to know,
for each arriving tuple � � � � � , the number of ��� -probe
join tuples that � � will produce, i.e., � � � � � � . For the age-
based model, � � � � � � � � � . For the frequency-based model
��� � �
� � � � � � � � � �
��� � ��� ��� (recall Equation 1). We as-
sume the sampling fraction � is known for now. In the next
subsection, we show how � can be determined based on the
amount of memory available.

When a tuple � � arrives on � � , � � � ����� is initial-
ized to

�
, and the procedure DecideNextJoin � � � � is called.

Join � �
� � � � � is called when a tuple � � , that joins with �
� ,
arrives on � � . � � � � denotes the geometric distribution with
parameter � [15], and ������ ��� denotes that we pick �
at random from ��� � � . When DecideNextJoin(� �) is called,
UNIFORM logically flips coins with bias � for deciding the
next � � -probe join tuple of � � that will be included in the
sample. If all remaining � � -probe join tuples of � � are re-
jected by the coin flips, � � is discarded.

4.2.2 Determining the Sampling Fraction �
To determine the sampling fraction � , we first obtain the
expected memory usage of UNIFORM (i.e., the expected
number of tuples retained) in terms of � . We then equate
this expected memory usage to the amount of memory
available for performing the join and solve for � . For ro-
bustness, we can also calculate the variance of the memory
usage of UNIFORM and decide the sampling fraction such
that the probability of the memory usage exceeding the
available memory is sufficiently small. The following re-
sults about the expected memory usage follow from simple
properties of the geometric distribution; proofs are omit-
ted. Note that now the tuple size must include the space
required to store the extra fields next and num (Figure 4).
Frequency-Based Model: Recall Definition 2.1. We as-
sume that the � � -probe join tuples of a tuple � � � � � are
produced uniformly throughout the lifetime of � � (because
a uniform fixed fraction of tuples arriving on � � join with
�
�).

Theorem 4.2. For the frequency-based model, the ex-
pected memory usage of ���
	 ���� is (let � � � � �):

� � � ����
��� � � � � ��� � � � � � � � � � + � � � ���
 �� � � � � �
��� � � �
Age-Based Model: Recall Definition 2.2. Recall that
 � � ��� denotes the cumulative number of � � -probe join tu-
ples that a tuple � ��� � � produces by age � . Define the
inverse of the � function, �� �� ��� � , as the smallest � such
that � � ��� � � . Thus, a tuple � � � � � produces � ��� -
probe join tuples by the time its age is � � ��� � .
Theorem 4.3. For the age-based model, the expected mem-
ory usage of � � 	 � � is � � ! � �� & � � � � � � � � � � � � � � � � .
In both models, a symmetric expression holds for the ex-
pected memory usage of � � 	 � �� , assuming we use the
same sampling fraction � for the � � -probe join tuples.
Summing these expressions gives us the total memory us-
age for the join ��� 	 ��� � � ����	 ���� .
4.3 Cluster Sampling

The correctness of UNIFORM depends heavily on the ac-
curacy with which � � � �
� is estimated for a tuple � � � � ,� � � � 	

. For example, for a tuple � ��� � � , if � � � � � � is
underestimated as � 	 � � � � � , then all the � � -probe join tuples
of � � subsequent to its first � 	 � � � � � join tuples will never
be selected for the sample. On the other hand, if � � � � � � is
overestimated, � � may remain in � � 	 � � until expiry, wait-
ing for joins that never take place, and the overall memory
usage may be considerably higher than the expected value
derived in Theorems 4.2 and 4.3.

If a uniform random sample of the join is not required
directly by the application, but the sample is being taken
only to estimate an aggregate over the join results, these
difficulties can be overcome by using a statistically weaker
form of sampling called cluster sampling [6].

In general, cluster sampling is applicable when the pop-
ulation to be sampled can be divided into groups, or clus-
ters, such that the cost of sampling a single element of a
cluster is equal to that of sampling the entire cluster. Thus,
for cluster sampling, a certain number of clusters are cho-
sen at random, and all elements of selected clusters are in-
cluded in the cluster sample. A cluster sample is unbiased,
i.e., each element of the population has equal probability of
being included in the sample. However, it is correlated, i.e.,
the inclusion of tuples is not independent of each other as in
a uniform sample. A detailed analysis of cluster sampling
can be found in [6]. In the remainder of this section we as-
sume the sample of the join is being gathered for estimating
either a sum or an average aggregate, and the objective is
to minimize the error in the estimated aggregate.

4.3.1 Two Approaches

Consider sampling from the � � -probe join tuples; a sym-
metric procedure applies for sampling from the � � -probe
join tuples. A tuple �
� � � � joins with ��� � �
� � tuples arriv-
ing on � � . These join tuples form a cluster, and the entire

cluster can be sampled by simply retaining � � in � � 	 � �
until expiry. The fraction of clusters that can be sampled
is determined by the number of tuples that can be retained
until expiry in the memory available for � � 	 � � . Thus we
have the following naïve approach to cluster sampling.

Strategy 2 (EQ-CLUSTER). Add an incoming tuple � � �
� � to � �
	 � � with probability � . If � � is added to ���
	 ���� ,
retain it until expiry and include all its � � -probe join tuples
in the sample.

Notice that this scheme does not depend on � � � � � � , and al-
ways produces an unbiased sample. The expected memory
usage for ���
	 ���� according to this scheme is � ����� � . Thus,
� can be decided based on the amount of memory available.

EQ-CLUSTER is suitable when the clusters are roughly
of equal size (e.g., as in the age-based model). However,
if clusters are of unequal sizes, as in the frequency-based
model, statistics literature [6] suggests that better estimates
of the aggregate can be obtained by selecting a cluster with
probability proportional to its size. Otherwise, if clusters
are selected with equal probability, large clusters that con-
tribute most to the aggregate may be missed altogether. We
thus have the following approach:

Strategy 3 (PPS-CLUSTER). Add an incoming tuple � � �
� � to � � 	 � � with probability proportional to � � � � � � . If � �
is added to � � 	 � � , retain it until expiry and include all its
� � -probe join tuples in the sample.

With PPS-CLUSTER, to get an unbiased estimate of the
aggregate, we must perform weighted aggregation on the
cluster sample: the contribution of each cluster to the ag-
gregate is assigned a weight inversely proportional to the
cluster size. Details can be found in [6]. Notice that even
if ����� �
� � is incorrectly estimated, the same incorrect esti-
mate is used in performing weighted aggregation. Hence,
the resulting estimate of the aggregate is still unbiased.

Consider the application of PPS-CLUSTER for the
frequency-based model. Since � � � � � ��� � � � � � � � � , let � �
be added to � � 	 � � with probability � � � � � � � � ��� where �
is a proportionality constant. The expected memory usage
of � � 	 � � is � � � � � ! �
��� � � � � � � � � � � . Thus, � can be de-
termined according to the amount of memory available.2

4.3.2 Comparison of Approaches

To summarize, let us briefly consider which sampling ap-
proach is preferable in different scenarios. Recall that the
objective is to minimize the error in an estimated aggregate.
The relevant factors to be considered are:

� Accuracy of model parameters: If � �� �
� is incorrectly
estimated for a tuple � � � � , � � � � 	

, UNIFORM may
perform poorly since it may produce a biased sample.
In this case, cluster sampling should be used.

2A value of � obtained in this way can cause ��� ����� �
	 �� to exceed 1
for some

� �
, resulting in an overestimate of memory usage. The correct

value of � can be chosen by an iterative procedure; details are omitted.

� Inter-cluster variance: Consider the variance in the
values of the aggregate for different clusters. The
lower this variance, the better the performance of clus-
ter sampling compared to uniform sampling [6].

� Cluster sizes: PPS-CLUSTER should be used for
unequal-size clusters. PPS-CLUSTER reduces to EQ-
CLUSTER for equal-size clusters.

5 Memory Allocation across Multiple Joins
Now suppose our stream system is executing a number
of continuous queries, each of which involves a sliding-
window join. In this section, we address the problem of al-
locating the available memory across these multiple joins.
For now, let us assume the unweighted case, i.e., all joins
are equally important. The goal of our allocation scheme is
to ensure that no join does “too badly” in terms of approx-
imation error, i.e., we seek to minimize the maximum ap-
proximation error in any join. It is important to observe that
different joins may differ in the accuracy of their approxi-
mation even when given the same fraction of their memory
requirement. Thus, simple proportional allocation of mem-
ory among the joins is generally not sufficient.

Suppose there are � sliding-window joins with an over-
all memory constraint � . Each join has a certain approxi-
mation metric which we denote by � : For the max-subset
problem, � is the recall of the join. If the output of the
join is being aggregated, � is the error in the estimated
aggregate. We assume that each join uses the same ap-
proximation metric (i.e., either recall or aggregation error),
otherwise the choice of a combined approximation metric
is not clear. We shall focus on the case when � is recall. A
similar technique applies when � is aggregation error.

For a particular memory allocation, let ��� be the recall
obtained for the

� ��� join. The optimal memory allocation
we seek is the one that maximizes � ��� � * � * � � � . The key to
our scheme is the following observation (a similar observa-
tion is made in [4]).

Theorem 5.1. To maximize the minimum recall, the opti-
mal memory allocation is one that produces the same recall
in all joins.

By Theorem 5.1, in the optimal memory allocation the
recall obtained in each join is the same, say � ��� � . Let � � � ���
denote the minimum amount of memory required to ob-
tain recall � in the

� ��� join. Then � ��� � is the maximum �
such that

! �� & � � � � ��� � � . Assuming the functions � �
are known, � ��� � can be found by an iterative binary search.
The amount of memory to be allocated to the

� ��� join is
then given by � � � � ��� � � .

Recall that we specified the relationship between the
amount of memory available for a join and the recall that
can be obtained, both for the age-based (Section 3.2.2) and
the frequency-based (Section 3.3) models. These formu-
lae can be used to calculate ��� � ��� . When the metric �
is aggregation error, we can use the relationship between
the available memory and the fraction that can be sampled
(Theorems 4.2 and 4.3). The expected aggregation error

for a given sampling fraction can be derived in terms of
population characteristics such as mean and variance [4].
Together, these can be used to calculate � � � ��� .

Finally, suppose that different joins have different rela-
tive importance. Let � � be the weight of the

� ��� join. Now
our objective is to maximize � � ��� * � * � � � ��� � . Our argu-
ment extends to show that the optimal solution is to allo-
cate memory � ���� � � ��� � � to the

� ��� join, where � ��� � is the
maximum � such that

! �� & � � ���� � ��� ��� .
We shall refer to the approach for memory allocation

presented in this section as ALLOC, and evaluate its per-
formance experimentally in Section 6.

6 Experiments
We now present an experimental evaluation of our tech-
niques. Our experiments demonstrate the following:

1. In a real-life scenario that adheres to the age-based
model, our algorithm AGE (Section 3.2.1) gives con-
siderably higher recall than more naïve approaches.

2. Our sampling approaches UNIFORM and PPS-
CLUSTER (Section 4) provide low-error estimates of
windowed aggregates over the join result. Either of
the two approaches may be preferable, depending on
the specific scenario.

3. Our algorithm ALLOC for memory allocation across
joins (Section 5) significantly outperforms simple pro-
portional allocation in terms of maximizing the mini-
mum recall.

6.1 Age-Based Experiment

For initial experimentation with the age-based model, we
captured real data as follows. We set up two stream
sources,

� � and
� � , and a central server. Source

� � and the
server run on the same physical machine, while source

� �
runs on a geographically distant machine connected over a
wide-area network (WAN). Each source produces tuples at
a constant rate of � � � � � �����

per second. Each tuple
contains a timestamp ts from the local clock at the source.
All tuples are streamed to the server using a connectionless
UDP channel.

Denote the stream of tuples from sources
� � and

� � as
� � and ��� respectively. We execute a sliding-window join
whose purpose is to identify causal correlation between the
two streams—to do so, it matches tuples from � � with
tuples from ��� that were timestamped approximately one
minute earlier. Specifically, the join predicate chosen is
� � � ��� � � � � ��� � 	 �
	 � 	 ��� � � � where time units are seconds.
To ensure that � � tuples do not expire before matching � �
tuples arrive (recall there may be significant network la-
tency for � � tuples to arrive), we conservatively set the
window on � � as � � � 	

minutes. Since joining tuples
always arrive later on � � than on ��� , a window on � � need
not be stored.

We generated a trace of approximately 40 minutes of
activity , which we then used to perform repeatable exper-
iments. Figure 5 shows the age curve (� � � ��� vs. �) deter-
mined by an initial pass through our trace. We show � � � ���

Figure 5: Age curve for WAN experiment

Figure 6: Recall obtained on WAN experiment

as a fraction after normalizing it with respect to � � . The
granularity chosen for � was 0.1 second. We see that a
tuple � � � � produces most join tuples at an age of approx-
imately � �� � seconds. Out of this, a

� �
second delay is

due to the join predicate, and the rest of the delay is due
to clock skew between sources

� � and
� � , and significantly

higher network latency for tuples from
� � than from

� � .
6.1.1 Results

Figure 6 shows the recall obtained on our trace by various
possible load-shedding approaches as we vary the amount
of allocated memory. Memory is shown as a percent-
age of the amount required to retain the entire window
(� � ���). The approaches being compared are (1) AGE: Sec-
tion 3.2.1; (2) UNTIL-EXPIRY: A tuple is added to � � 	 � �
only if memory is available, and then retained until expiry;
(3) RECENT: The most recent tuples in the window are re-
tained; and (4) Theoretical-AGE: The recall that should be
theoretically obtained by applying the AGE approach, as
given by Equation 3. Note that RECENT is the approach
that we get if we simply apply the frequency-based model
in this scenario.

Although in reality the age curve shown in Figure 5 has
some minima, � � � ��� never increases significantly after de-
creasing. Hence, for all practical purposes, we can apply
our AGE approach assuming the curve has no minima. � ��� ��
was calculated to be

��� � � seconds.
We see that AGE outperforms RECENT and UNTIL-

EXPIRY. RECENT performs especially badly, producing
no join tuples even when the allocated memory is as much

as 40%. However, when the allocated memory is high
enough so that � � � �
� � ��� �� , AGE reduces to RECENT
(see Equation 3), and hence both approaches produce the
same recall. Note that if � � had been conservatively set to
be higher, the performance of UNTIL-EXPIRY would de-
grade, whereas the performance of AGE would not be af-
fected. We also see that the actual recall obtained by AGE
closely agrees with the theoretically predicted value.

6.2 Experiments on Synthetic Data

For the next set of experiments, we synthetically gener-
ate streams � � and � � for both the age-based and the
frequency-based model, and perform the sliding-window
join � � 	 � � � � � 	 � � with limited memory. For simplic-
ity, we consider only the � � -probe join tuples in our ex-
perimental results. For both models, tuples on streams � � ,� � � � 	

, are generated at an average rate of � � tuples per
unit time. This is done by choosing the inter-arrival time
uniformly at random between

� � 	 � � and
	 � ��� time units.

For all experiments we fix � � � � � � � � � �
and ��� � ��� �

.

6.2.1 Age-Based Data Generation

First stream ��� is generated. Each tuple on � � contains
a unique id which serves as the join attribute, emulating
the example scenarios of Section 2.2 (e.g., in the auction
scenario each tuple on ��� has a unique auction-id).
Next, we specify the age curve for � �
	 � � by dividing the
window duration � � into � buckets and specifying � � � ���
for the � ��� bucket. The first bucket consists of the newest
tuples, and the � ��� bucket the oldest tuples. We fix � � � �

and � � 	��
.

We then generate stream � � . Suppose a tuple is to be
generated on � � at time

�
. The value of its join attribute is

determined as follows. We choose one of the � buckets at
random with the � ��� bucket being chosen with probability
� � � ��� �
� � . Then, we choose one tuple at random from all
the tuples of � � 	 � � occupying the chosen bucket at time�
. The id of this randomly-chosen tuple is assigned as the

join-attribute value of the newly generated tuple on � � .
6.2.2 Max-Subset

We experimented with three different age curves. (1)
Increasing (INC): � � � ��� � � � ; (2) Decreasing (DEC):
� ��� ��� � � � � ��� � ; and (3) Bell-shaped (BELL): � � � ��� �
� � for

� � � � � � 	 and ��� � ��� � ��� � ��� � for� � 	 � � � � . Figure 7 shows a comparison of the recall
obtained by various approaches for different types of age
curves. For the INC curve, AGE significantly outperforms
RECENT. For the DEC curve, AGE reduces to RECENT,
so we do not show their results separately. For the BELL
curve, AGE outperforms RECENT until � � � � � � ��� �� (see
Equation 3). For � � � � � � ��� �� , AGE reduces to RECENT.

Note that for the same amount of allocated memory, the
recall differs greatly depending on the shape of the age
curve. This indicates that in the presence of multiple joins,
in order to maximize the minimum recall, simple propor-
tional memory allocation is not sufficient, which we verify
empirically in Section 6.2.5.

Figure 7: Recall obtained on synthetic age-based data

6.2.3 Frequency-Based Data Generation

Data generation for the frequency-based model is relatively
easier than for the age-based model. We choose a domain
� . The domain size is fixed at

� � � � ���
. For each stream,

the join-attribute values are drawn from a Zipfian distribu-
tion of parameter � over � [23]. The distribution used
for both streams need not be the same. We consider three
cases: (1) Directly Correlated (DC): The order of frequency
of occurrence of values is the same for � � and � � ; (2) In-
versely Correlated (IC): The order of frequency of occur-
rence of values for � � is opposite of that for � � , i.e., the
rarest value on ��� is the most common on � � and vice-
versa; and (3) Uncorrelated (UC): The order of frequency
of occurrence of values for the two streams is uncorrelated.

6.2.4 Random Sampling

To study the performance of our sampling approaches, we
perform a windowed average over the sampled result of
� � 	 � � � � � 	 � � and compare the approaches in terms
of aggregation error. The aggregation window is fixed at
������� � � � � �

. The aggregated attribute is part of either � �
or � � , and its values are drawn from a normal distribution
having mean � and variance � . At each time step, the value
of the windowed aggregate over the true result () and over
the sampled result (
) are calculated. The relative error in
the aggregate is calculated as

�

	 � 	 � ��	 . We report the av-

erage of these errors over the entire run. In all experiments,
while implementing UNIFORM, we assume a tuple size of
32 bytes. The two extra fields required (see Figure 4) are
stored compactly in two bytes, thus giving a new tuple size
of 34 bytes.

We first consider the case when the aggregated attribute
is part of � � . Recall that all the � � -probe join tuples pro-
duced by a tuple � � � � form a cluster. Thus, in this case,
all tuples in a cluster have the same value in the aggregated
attribute, which is the worst case for cluster sampling.

Effect of Allocated Memory: Figure 8 shows the aggre-
gation error of the various sampling approaches as we vary
the amount of allocated memory. We use the inversely
correlated (IC) frequency-based model with � � 	

, and
we fix � � � � � � �

. We see that PPS-CLUSTER out-
performs EQ-CLUSTER: in the IC case, there are a small
number of large clusters in the result which may be missed

Figure 8: Aggregation error vs. memory allocated, IC
frequency-based model, � � 	

, � � � � ��� �

Figure 9: Aggregation error vs. population variance, UC
frequency-based model, � � 	

, � � ��� �
, Memory=10%

by EQ-CLUSTER. UNIFORM performs better than PPS-
CLUSTER when the allocated memory is 10%. However,
the fraction that can be sampled grows more rapidly for
PPS-CLUSTER than for UNIFORM. Consequently, PPS-
CLUSTER performs better at higher allocated memory.
Note that the error of UNIFORM does not go down to 0
even when allocated memory is 100%. This is because even
the synthetic data does not adhere perfectly to the model, as
is required for the correctness of UNIFORM (Section 4.3).

Effect of Population Variance: Figure 9 shows the ag-
gregation error of the various sampling approaches as the
variance of the aggregated attribute is varied. We show the
variance normalized by the mean, i.e., we show the coeffi-
cient of variation (� � �). The allocated memory is 10%,
� � � � �

, and the model used is the uncorrelated (UC)
frequency-based model with � � 	

. As the population
variance increases, since all tuples in a cluster have the
same value, the inter-cluster variance increases. As a re-
sult, the performance of cluster sampling approaches de-
grades as compared to UNIFORM.

If the aggregated attribute is a part of stream � � , the
values in a cluster are uncorrelated. Consequently, clus-
ter sampling performs much better that UNIFORM since
it produces a much bigger sample. We omit the results for
this case due to lack of space. Finally, note that for compar-
ing our sampling approaches, we have calculated the exact
aggregate over the sampled result. In reality, when memory

Figure 10: Memory allocation across joins: frequency-
based model, Memory=20%

is limited, this aggregation may be approximated [8].

6.2.5 Memory Allocation across Multiple Joins

For memory allocation among multiple joins, we study the
performance of our ALLOC scheme in comparison with
simple proportional memory allocation (PROP). The met-
ric for comparison is the minimum recall obtained in any
join. We experimented with both the frequency-based and
age-based models.

Frequency-Based Model: We allocate memory across two
joins, where all parameters in the two joins are identical ex-
cept one is the directly correlated (DC) case, and the other
is the inversely correlated (IC) case (Recall Section 6.2.3).
The total available memory is 20% of that required for ex-
ecuting both joins accurately. The load-shedding strategy
used for each join is PROB [7]. Figure 10 shows a compar-
ison of the minimum recall obtained by both approaches
when we vary the skew parameter (�) of the frequency-
based model. As � increases, the minimum recall re-
mains almost constant for ALLOC, but decreases sharply
for PROP. The amount of memory allocated to each join
by ALLOC (as a percentage of the total memory required)
is shown by the dashed plots on the secondary Y-axis. Note
that PROP always splits the available memory evenly be-
tween the two joins, i.e., 10% to each join.

To understand these results, notice that the IC case is
“easy”, i.e., a relatively higher recall can be produced us-
ing a small amount of memory: only the rare values of � �
(which are frequent on � �) need to be retained. In contrast,
the DC case is “hard”, i.e., more memory is required to ob-
tain the same recall because the common values on � � need
to be retained. Moreover, as the skew (�) increases, the IC
case becomes easier, and the DC case becomes harder. AL-
LOC is able to outperform PROP by allocating less mem-
ory to the IC case, and using this extra memory to boost the
performance of the DC case.

Age-Based Model: We again execute two joins, one with
an increasing (INC) age curve, and another with a decreas-
ing (DEC) one. The INC curve is chosen as � � � ��� � � �
and the DEC curve as � � � ��� � ��� � ��� � , where the ex-
ponent � is varied. The total available memory is 50% of
that required for executing both joins accurately. The load-

Figure 11: Memory allocation across joins: age-based
model, Memory=50%

shedding strategy used for each join is AGE (Section 3.2.1).
Figure 11 shows a comparison of the minimum recall ob-
tained by both approaches when we vary the exponent � .
As � increases, the minimum recall increases for ALLOC
but remains constant for PROP. With increase in � , the
DEC case becomes “easier”, while the INC case remains
equally “hard” (by Equation 3). Thus ALLOC is able to
outperform PROP by allocating less memory to DEC, and
using the extra memory to boost the performance of INC.
More Joins: We omit the results of experimenting with
a greater number of joins, but the findings were similar:
As more “hard” joins are added, the gain of ALLOC over
PROP decreases, while if more “easy” joins are added, the
gain of ALLOC over PROP increases. Intuitively, the per-
formance of PROP is always limited by the hardest join,
while ALLOC equalizes the recall among all joins.

7 Conclusion

In this paper we addressed memory-limited approximation
of sliding-window joins. We defined a novel age-based
model that often enables us to address the max-subset prob-
lem more effectively than the frequency-based model used
previously. We introduced and addressed the problem of
extracting a random sample of the join result with limited
memory. Finally, we gave an optimal algorithm for mem-
ory allocation across joins to minimize the maximum ap-
proximation error.

One promising avenue for future work is to extend the
approximation techniques developed here to address a re-
lated but distinct problem: memory-limited computation
of exact answers. Now, instead of load-shedding we must
store selected data on disk. The frequency-based and age-
based models may help us develop algorithms that min-
imize disk I/O for this setting. A second interesting di-
rection is to generalize our memory allocation strategy to
handle a broader class of queries and plan operators. Fi-
nally, so far we have considered only the static version of
the problem, where stream characteristics are assumed to
be relatively stable. For volatile environments, we plan to
develop adaptive versions of our algorithms.

Acknowledgements
We are grateful to Arvind Arasu, Rajeev Motwani, and the
entire STREAM group at Stanford for useful discussions.

References
[1] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and

self-join sizes in limited storage. In Proc. of the 1999 ACM Symp.
on Principles of Database Systems, pages 10–20, 1999.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proc. of the 2002 ACM Symp.
on Principles of Database Systems, pages 1–16, June 2002.

[3] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving
window over streaming data. In Proc. of the 2002 Annual ACM-
SIAM Symp. on Discrete Algorithms, pages 633–634, 2002.

[4] B. Babcock, M. Datar, and R. Motwani. Load-shedding for aggre-
gation queries over data streams. In Proc. of the 2004 Intl. Conf. on
Data Engineering, 2004. To appear.

[5] S. Chaudhuri, R. Motwani, and V.R. Narasayya. On random sam-
pling over joins. In Proc. of the 1999 ACM SIGMOD Intl. Conf. on
Management of Data, pages 263–274, June 1999.

[6] W. G. Cochran. Sampling Techniques. John Wiley & Sons, 1977.

[7] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing
over data streams. In Proc. of the 2003 ACM SIGMOD Intl. Conf.
on Management of Data, June 2003.

[8] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream
statistics over sliding windows. In Proc. of the 2002 Annual ACM-
SIAM Symp. on Discrete Algorithms, pages 635–644, 2002.

[9] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Processing
complex aggregate queries over data streams. In Proc. of the 2002
ACM SIGMOD Intl. Conf. on Management of Data, pages 61–72,
2002.

[10] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Fast, small-space algorithms for approximate histogram
maintenance. In Proc. of the 2002 Annual ACM Symp. on Theory of
Computing, 2002.

[11] L. Golab and M. Ozsu. Issues in data stream management. SIGMOD
Record, 32(2):5–14, June 2003.

[12] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms.
In Proc. of the 2001 Annual ACM Symp. on Theory of Computing,
pages 471–475, 2001.

[13] J. Kang, J. F. Naughton, and S. Viglas. Evaluating window joins
over unbounded streams. In Proc. of the 2003 Intl. Conf. on Data
Engineering, March 2003.

[14] S. Krishnamurthy et al. TelegraphCQ: An Architectural Status Re-
port. IEEE Data Engineering Bulletin, 26(1):11–18, March 2003.

[15] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[16] SQR – A Stream Query Repository. http://www-
db.stanford.edu/stream/sqr.

[17] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M. Stone-
braker. Load-shedding in a data stream manager. In Proc. of the
2003 Intl. Conf. on Very Large Data Bases, September 2003.

[18] The STREAM Group. STREAM: The Stanford Stream Data Man-
ager. IEEE Data Engineering Bulletin, 26(1):19–26, March 2003.

[19] T. Urhan and M.J. Franklin. Xjoin: A reactively-scheduled pipelined
join operator. IEEE Data Engineering Bulletin, 23(2):27–33, June
2000.

[20] J. Xie, J. Yang, and Y. Chen. On joining and caching stochastic
streams. Technical report, Duke University, Durham, North Car-
olina, November 2003.

[21] A. C. Yao. Probabilistic computations: Towards a unified measure of
complexity. In Proc. of the 1977 Annual IEEE Symp. on Foundations
of Computer Science, pages 222–227, 1977.

[22] S. Zdonik et al. The Aurora and Medusa Projects. IEEE Data Engi-
neering Bulletin, 26(1), March 2003.

[23] G. E. Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley Press, Inc., 1949.

