
Data & Knowledge Engineering 69 (2010) 424–443
Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier .com/ locate/datak
A new look at generating multi-join continuous query plans: A
qualified plan generation problem

Yali Zhu a, Venkatesh Raghavan b,*, Elke A. Rundensteiner b,1

a Oracle Corporation, 400 Oracle Parkway, Redwood Shores, CA 94065, USA
b Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 5 February 2009
Received in revised form 13 November 2009
Accepted 13 November 2009
Available online 24 November 2009

Keywords:
Multi-constraint query optimization
Continuous queries
Streaming databases
0169-023X/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.datak.2009.11.001

* Corresponding author. Tel./fax: +1 508 410 729
E-mail addresses: yali.zhu@oracle.com (Y. Zhu),

1 Tel.: +1 508 831 5815; fax: +1 508 831 5776.
State-of-the-art relational and continuous algorithms alike have focused on producing opti-
mal or near-optimal query plans by minimizing a single cost function. However, ensuring
accurate yet real-time responses for stream processing applications necessitates that the
system identifies qualified rather than optimal query plans – with the former guaranteeing
that their utilization of both the CPU and the memory resources stays within their respec-
tive system capacities. In such scenarios, being optimal in one resource usage while out-of-
bound in the other is not viable. Our experimental study illustrates that to be effective a
qualified plan optimizer must explore an extended plan search space called the jtree space
composed not only of the standard mjoin and binary join plans, but also of general join trees
with mixed operator types. While our proposed dynamic programming-based JTree-Finder
algorithm is guaranteed to generate a qualified query plan if such a plan exists in the search
space, its exponential time complexity makes it not viable for continuous stream environ-
ments. To facilitate run-time optimization, we thus propose an efficient yet effective two-
layer plan generation framework. The proposed framework first exploits the positive corre-
lation between the CPU and memory usages to obtain plans that are minimal in at least one
of the two resource usages. In our second layer we propose two alternative polynomial-time
algorithms to explore the negative correlation between the resource usages to successfully
generate query plans that adhere to both CPU and memory resource constraints. Effective-
ness and efficiency of the proposed algorithms are experimentally evaluated by comparing
them to each other as well as state-of-the-art techniques.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Continuous query plan generation

State-of-the-art query optimization algorithms in static databases [1–5] primarily focus on generating an optimal or
near-optimal plan by minimizing a single cost function, typically the total processing costs comprised of I/O or CPU [6].
Continuous query processing [7,8] differs from its static counterpart in several aspects. First, the incoming streaming data
is unbounded and the query lifespan is potentially infinite. Therefore, run-time output rate is a better metric than the total
CPU time needed to handle all input data [9]. When the per-unit-time CPU usage of a query plan is less than the available
system CPU capacity, the query execution is able to keep up with incoming tuples and produce real-time results at an
optimal output rate [10].
. All rights reserved.

6.
venky@cs.wpi.edu (V. Raghavan), rundenst@cs.wpi.edu (E.A. Rundensteiner).

http://dx.doi.org/10.1016/j.datak.2009.11.001
mailto:<xml_chg_old>ali.zhu@oracle.com</xml_chg_old><xml_chg_new>yali.zhu@oracle.com</xml_chg_new>
mailto:venky@cs.wpi.edu
mailto:rundenst@cs.wpi.edu
http://www.sciencedirect.com/science/journal/0169023X
http://www.elsevier.com/locate/datak

Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443 425
Second, real-time response requirements make continuous queries memory resident [7]. Stateful operators, such as joins,
store input tuples in states with which future incoming tuples of other streams will join. In time-critical applications, such as
fire-sensor monitoring, it is common to have multi-join queries with large numbers of participant streams with high input
rates. In such scenarios, the size of the in-memory operator states could potentially grow to be very large, making memory a
precious resource. Memory overflow can result in unacceptable outcomes, such as temporary halt of query execution
[9,11,12], approximation of query results [13] and in some cases thrashing.

To summarize, generating a query plan that is optimal in one resource usage while out-of-bound in the other is not an
acceptable solution. Therefore, the aim is to generate a query plan with both resource consumptions within their respective
system resource capacities, henceforth called a qualified plan [10]. All qualified plans are guaranteed to produce results at the
same output rate [10].

To address this qualified plan generation problem, one could attempt to design a combined (singular) cost function that
captures both resource usages. This would be beneficial as we could then capitalize on state-of-the-art optimization tech-
niques. However, such an approach suffers from drawbacks that make it unsuitable. First, a singular cost function that cap-
tures both CPU and memory usages and their correlation a priori is in practice hard to obtain [14]. This is because the
problem is no longer a minimization problem but rather a system resource constraint satisfaction problem. Also, there is
no monotonic clearly characterizable relationship between the resources. On the contrary, we show that these resources
in parts of the search space may be positively correlated and in others negatively correlated. Second, a query plan that is
minimal by this new singular function need not be optimal or near-optimal in either resource usage nor guaranteed to be
qualified. Additionally we note that the problem is NP-hard [15], yet efficient algorithms are a must in the streaming context
for run-time optimization. Thus, we now set out in this work to provide a fresh approach to this qualified plan generation
problem.

1.2. Relationship between resource usages

Similar to other multi-objective optimizations [16,17,14], we first characterize the relationship among the determining
cost factors. The observation that a query plan with less data (less memory) typically requires less CPU processing time is
well known. This direct correlation is referred to in this work as a positive correlation. State-of-the-art optimizers in static
databases [1–3,5,18] as well as streaming databases [9,15,19] exploit this positive correlation by minimizing intermediate
results (memory) with the assumption that this will also reduce CPU costs.

To illustrate this, consider the two commonly used methods for executing continuous joins: binary join trees (bjtree) [20]
and multi-way join operators (mjoin) [19,9,15,10]. A bjtree is composed of binary join operators that store intermediate re-
sults, while an mjoin is a single operator that takes as input all participant streams. The new tuples from each stream in
mjoin are joined with the remaining streams in a particular order. Existing optimization techniques for both these join meth-
ods aim to minimize the total number of intermediate results [15]. In bjtree, this reduces the memory required to store inter-
mediate results as well as the CPU costs for future joins. On the other hand, in mjoin, this reduces the CPU costs needed to
recompute intermediate tuples.

However, negative correlation between CPU and memory usage could also arise for multi-join query plan optimization.
In other words, an increase in the usage of one resource may decrease the usage of the other. While the concept of negative
correlation is well known, to the best of our knowledge none of the state-of-the-art approaches exploit both positive and neg-
ative correlations to generate a query plan that is both CPU and memory resource adherent. More precisely, rather than only
considering different bjtrees by exploiting only positive correlation, our approach explores removing some intermediate
states to reduce memory usage at the expense of increasing the re-computation CPU costs, thus also exploiting the negative
correlation between resources. Conversely, rather than choosing between different mjoin orderings, some input streams can
be combined to form binary joins whose results are stored in intermediate states and fed into the mjoin operator. This re-
duces CPU costs incurred by the re-computation at the expense of increasing memory usage. In Section 2.4 we present a for-
mal analysis highlighting these resource trade-offs.

State-of-the-art algorithms in multi-join query optimization stay within one join method by exploiting only the positive
correlation in each join method. That is, they explore either solely within the bjtree [5,2,10] or the mjoin [19,15] solution
space. [9], which were the first to introduce the idea of mjoin, also observed that there is a limit in the number of input
streams for an mjoin to be effective. They considered decomposing a single mjoin operator into two smaller mjoin operators
as in Fig. 1d. [9] does not consider memory resource utilization (assuming it to be always sufficient) and follows the tradi-
tional approach of optimizing the query by simply reducing CPU processing time. Thus [9] fails to explore a general join plan,
as in Fig. 1e, composed of a mixture of both mjoin and binary join operators at any level henceforth referred to as jtrees. In
our experimental analysis, we observe that these existing algorithms thus may not generate qualified query plans even when
a qualified plan exists in the solution space Fig. 2.

1.3. The proposed approach

We first present our dynamic programming-based JTree-Finder algorithm that explores the complete jtree search space
and guarantees the generation of a qualified plan. This guarantee comes at a high complexity cost, making it not practical for
run-time optimization needed for streaming applications.

Fig. 1. JTree solution space: (a) and (b) traditional bjtrees, (c) mjoin [9], (d) de-composed mjoin [9], (e) a jtree plan not considered in literature.

Memory Increasing

CPU Increasing

MJoin BJTree

A B F E D C

ABCDEF

A B C D E F

Fig. 2. Migrating between mjoin and bjtree.

MJoin Ordering

Multi-Join Query

MJoin

A B F E D C

ABCDEF

JTree State-Selection

BJ-Tree Ordering

Multi-Join Query

BJTree

A B C D E F

State-Removal

F E D

CDE

C B A

ABCDEF

Fig. 3. Two strategies in optimization.

426 Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443
We thus design a polynomial-time qualified plan generation solution in the form of a two-layer framework. In the first
layer, the 2-dimensional problem is transformed into a 1-dimensional minimization problem. This allows us to employ
state-of-the-art solutions [15,19,1,5,10] that exploit positive correlation among the two resources to generate a good mjoin
or a good bjtree plan respectively. This layer either returns (1) a qualified mjoin or bjtree plan, if found, or (2) a negative
result to denote that the available resources are too limiting and hence no qualified plan exists, or (3) triggers the second
layer of plan generation into action.

The second layer of optimization piggybacks on the first layer by using the generated best possible mjoin or bjtree plans
as the starting point as they provide lower bounds on memory or CPU utilization respectively. For the second layer we pro-
pose two polynomial-time hill-climbing search algorithms, named state-selection and state-removal. Both exploit the nega-
tive correlation between CPU and memory usage to generate a qualified jtree. More precisely, state-selection starts with the
previously generated mjoin-based plan (i.e., guaranteed to be minimal in memory usage) and reduces the excessive CPU re-
source utilization by sacrificing some memory resources (Fig. 3). In this process, we aim to save on CPU costs wasted on the
re-computations of intermediate results. On the other hand, state-removal starts with a good bjtree-based plan (i.e., optimal
or near-optimal in CPU usage), and aims to reduce the excessive memory usage by selecting intermediate states to be re-
moved at the expense of increasing CPU resources needed for their re-computation.

1.4. Summary of contributions

� We position the generation of multi-join continuous query plans as a qualified plan generation problem with the aim of
generating a query plan whose usages of both CPU and memory resources are within the system capacities.

Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443 427
� We consider the extended search space of qualified plans that incorporates general jtree-based plans. We employ the JTree-
Finder algorithm for exploring this search space. Our experimental evaluation demonstrates the need to indeed consider
this extended plan space. It further highlights the need for a polynomial-time approach. In this performance study, this
dynamic programming technique is not feasible for stream processing systems due to its exponential time complexity.

� We propose an alternative polynomial-time two-layer plan generation framework, which exploits existing technologies to
first generate an mjoin and a bjtree plan that are minimal in memory and CPU resources respectively, exploiting the posi-
tive correlation between the resources usages.

� We present two new hill-climbing algorithms, namely state-selection and state-removal that exploit the negative trade-offs
between CPU and memory usages. The former uses the mjoin plan and the latter uses the bjtree plan, both generated in
our first layer of optimization, as their respective starting point.

� We show the effectiveness and efficiency of our algorithms through our second set of experiments that compares them
against each other and to popular approaches. Our proposed two-layer optimization is shown to as effective in a large vari-
ety of testing scenarios as the exhaustive approach in finding a qualified plan. Additionally, due its polynomial-time exe-
cution it is able to generate qualified plan even when for a large number of streams, when the dynamic programing
solution is to expensive.
1.5. Organization

In Section 7 we survey the related work. We analyze the CPU and memory cost models to reveal the conditions under
which these resources have a positive versus a negative correlation in Section 2. In Section 3, we present various resource
settings that would require the search space to be extended to include general jtrees. Additionally, here we also present
our dynamic programming-based JTree-Finder algorithm. Section 4 experimentally highlights the high time complexity of
JTree-Finder. We propose our polynomial-time two-layer plan generation framework in Section 5. The effectiveness of
our approach is presented in Section 6 through our experiments. Section 8 concludes the paper.

2. Preliminaries

In this section, we analyze the CPU and memory costs for the state-of-the-art methods of implementing multi-join con-
tinuous queries, namely mjoin and bjtree. This comprehensive analysis reveals the conditions under which CPU and memory
usage have a positive or a negative correlation.

2.1. Join method basics

The join graph ðJGÞ (in Fig. 4a) represents a multi-join query along with statistical information such as input rates, selec-
tivities, etc. A vertex in the join graph represents an input stream, marked by its stream name and arrival rate. An edge be-
tween two vertices indicates a join predicate between the two streams and is marked by the join selectivity. For simplicity,
henceforth we assume independent join selectivities. In principle a richer selectivity estimation-model [21,22] could also be
utilized. However, this would further complicate the already NP-Hard problem considered in this work.

Fig. 4b and c show mjoin and bjtree respectively, two common practices used for executing multi-join queries over win-
dowed streams. [9] proposed a multi-way join operator called mjoin to process a multi-join query over windowed streams.
An mjoin operator is a single multi-way operator that takes as input the continuous streams from all join participants. Two
benefits of mjoin are that the order in which the inputs tuples from each stream are joined with remaining streams can be
dynamic, and intermediate tuples are no longer stored, saving space. To illustrate, in Fig. 4b new tuples from A (DA for short)
are first inserted into the state of A (denoted as SA), then used to probe the state of B ðSBÞ, and the resulting join tuples then go
on to probe the state of stream C ðSCÞ to produce the final output result. The key idea is that the order in which the new tuples
from stream A are processed (joined) is independent from the order in which tuples from streams B and C are processed.
(b) MJoin Operator and Sample Join Ordering (c) BJTree(a) Join Graph

B

A

C

0.1

0.3
(50)

(20)

(100) A B C

SA SB

SC SAB A B C

ABC
SA SC SB

A
Probe

Probe

Insert

Output

SA

SB SC

Fig. 4. Commonly used join methodologies.

Table 1
Terms used in cost models.

Term Meaning

Ci Cost of inserting a tuple to a state (ms)
Cd Cost of deleting a tuple from a state (ms)
Cj Cost of joining a pair of tuples (ms)
kX Average input rate from stream X (tuples/s)
rXY Selectivity of join X ffl Y
W Sliding time-based window constraint measured in seconds
jSX j Number of tuples in state SX

428 Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443
Alternative t mjoin a traditional plan (as shown in Fig. 4c) containing binary join operations can also be used to process con-
tinuous multi-join queries.

The algorithms proposed in this work are general and not restricted by any particular physical implementation of mjoin
or bjtree like hash vs. nested-loop or particular window type like count- vs. time-based. To anchor our analysis, our cost anal-
ysis below makes use of the widely adopted symmetric stream hash join [9] with time-based windows [23,8]. Prior work has
shown that for most cases of a hash based join implementation is superior to other implementations such as tree-based and
nested-loop join [10]. Each join operator keeps one state per input stream, storing tuples in one window frame for future
joins. For ease of discussion, we assume all join predicates to have the same window size, though the techniques proposed
in this work are not restricted by it.

We apply the commonly adopted per-unit-time cost metric [23], in which the CPU cost is the CPU processing time re-
quired to process all tuples arriving in one time unit. Table 1 explains the terms used in our cost model. The cost function
CPU ðP; JGÞ returns the CPU utilization and Memory ðP; JGÞ returns the memory resources needed to execute the query plan
P realizing the user query captured by the join graph JG.

2.2. Cost analysis for mjoin

CPU costs for the mjoin in Fig. 4b is the cumulative cost of processing tuples from streams A, B and C. Based on the optimal
join orderings in Fig. 4b, a new tuple from A is first inserted into state SA (at cost Ci). Existing tuples that are now outside the
window frame are purged2 from SA (at cost Cd). This inserted tuple is then joined with tuples in state SB and the resulting tuples
are used to join with tuples in state SC . A similar process applies to tuples from B and C. The CPU costs for input A in a unit time
are CPUA ¼ kAðCi þ CdÞ þ kAjSBjrABCj þ kAjSBjjSC jrABCCj, where rABC ¼ rABrBC ; jSBj ¼ kBW , and jSC j ¼ kCW .
2 We
CPUA ¼ kAðCi þ CdÞ þ kAkBrABWCj þ kAkBrABkCrBCW2Cj: ð1Þ
The total CPU processing costs for our mjoin are:
CPUmjoin ¼ CPUA þ CPUB þ CPUC ¼ ðkA þ kB þ kCÞðCi þ CdÞ þ kBkCrBCWCj þ 3kAkBkCrABCW2Cj þ 2kAkBrABWCj: ð2Þ
The memory cost of an mjoin, immaterial of the chosen join ordering, is the same and fixed to be the total state size for
maintaining input stream tuples. This cost is relatively stable through out the life span of the query. The run-time memory
costs may fluctuate as intermediate tuples temporarily exist and can be minimized by choosing the optimal join orderings.
The memory costs for the mjoin (Fig. 4b) thus is estimated as:
MEMmjoin ¼ jSAj þ jSBj þ jSC j ¼ kAW þ kBW þ kCW ð3Þ
2.3. Cost models for bjtree

Similarly, the CPU costs of a bjtree are the cumulative cost of processing tuples from each input stream in one time unit. In
Fig. 4, a new tuple from A is first inserted into the state SA and old tuples from SA are deleted. The new tuple then joins with
tuples in state SB. The joined tuples are inserted into intermediate state SAB and older tuples in SAB are deleted. These joined
tuples finally join with tuples in state SC . Tuples from input B follow similar steps while tuples from input C directly join with
tuples in state SAB. The cost models to compute the unit CPU costs for input A is CPUA ¼ kAðCi þ CdÞþ kAjSBjrABðCj þ Ci þ CdÞþ
kAjSBjjSC jrABCCj. The CPU costs for input B are identical to A. However the CPU costs of stream C is CPUC ¼ kCðCi þ CdÞþ
kC jSABjrBCCj. Given jSABj ¼ kAkBrABW2 and jSBj ¼ kBW we have,
CPUbjtree ¼ ðkA þ kB þ kCÞðCi þ CdÞ þ 3kAkBkCrABCW2Cj þ 2kAkBrABWðCj þ Ci þ CdÞ: ð4Þ
Estimated memory costs is given by the total state size:
MEMbjtree ¼ jSAj þ jSBj þ jSC j þ jSABj ¼ MEMmjoin þ kAkBrABW2: ð5Þ
assume self-purge, while cross-purge is also applicable.

Table 2
Parameter configurations.

Parameter Set 1 Set 2 Set 3 Set 4

Ma (MB) 300 300 30 30
kA (tuples/s) 20 20 10 20
kB (tuples/s) 20 20 10 20
kC (tuples/s) 20 50 10 20
kD (tuples/s) – – 10 20
rAB 0.05 0.02 0.1 0.02
rBC 0.5 0.5 0.15 0.2
rCD – – 0.1 0.05
W (ms) 5000 15,000 15,000 50,000

Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443 429
The first two terms in Eq. (4) are identical for bjtrees of any shape. The third term, 2jSABjðCj þ Ci þ CdÞ, is join order depen-
dent. Choosing a better join ordering lowers the size of intermediate states, which decreases the memory cost as indicated by
Eq. (5), and also lowers the CPU costs as indicated by Eq. (4). Hence in bjtree, CPU and memory costs are positively correlated.

2.4. Condition for negative correlation

As indicated by Eqs. (3) and (5), MEMbjtree is always larger than MEMmjoin as the bjtree stores all intermediate states. So a
negative correlation between CPU and memory may exist when the CPU costs of bjtree are smaller than the CPU costs of mjoin.
At first glance, this seems to always hold, because without storing intermediate results, mjoin requires extra CPU resources for
re-computation. However, bjtree also needs extra CPU resources to maintain intermediate states. The re-computation of the
state BC requires CPUmjoin recomput while CPUbjtree maintain is the cost to maintain the state AB. From Eqs. (2) and (4), we have:
CPUmjoin recomput ¼ kBkCrBCWCj; ð6Þ
CPUbjtree maintain ¼ 2kAkBrABWðCi þ CdÞ: ð7Þ
From this, several key observations can be drawn,

1. When CPUmjoin recomput > CPUbjtree maintain, a bjtree by storing intermediate results uses more memory but is able to reduce
the CPU usage as no re-computations are needed.

2. When CPUmjoin recomput < CPUbjtree maintain, an mjoin by having extra re-computation CPU costs saves valuable memory
resources needed to store them as well as the CPU resources needed to maintain them.

In this work, we exploit this phenomenon of sacrificing one resource to gain another.

3. Qualified plan solution space

3.1. The basics on optimal vs. qualified plans

Definition 1. A query plan P for the join graph JG is an optimal plan with respect to CPU (or memory) usage, if there does
not exist a plan P0 – P for JG such that CPU ðP0; JGÞ < CPUðP; JGÞ (or MemoryðP0; JGÞ < MemoryðP; JGÞ).

State-of-the-art algorithms in traditional [1–5] and continuous query systems [15,9,19] focus on generating a query plan
that is minimal in one cost function (such as in CPU or in memory usage). They however do not tackle the problem addressed
in this work of generating qualified plans that adhere to both CPU and memory usage constraints. To elaborate, assume the
query Q represented by a join graph JG and the available system resources CPUavail and Memavail. Let P1 be the optimal and P2

be a near-optimal plan for JG in regards to CPU resources. Let us also assume that both plans meet the system CPU threshold,
i.e., CPUðP1; JGÞ < CPUðP2; JGÞ < CPUavail. It is easy to envision a scenario where the near-optimal plan P2 meets the memory
threshold while the optimal plan P1 exceeds the system memory resources, i.e., MemoryðP2; JGÞ < Memavail < Mem-
oryðP1; JGÞ. In such scenarios the state-of-the-art algorithms that minimize CPU costs will produce query plan P1 that does
not adhere to both the resource constraints, while missing the qualified plan P2.

Definition 2. Given the available system resources CPUavail and Memavail, a plan P for JG is a qualified plan if CPUðP; JGÞ 6
CPUavail and MemoryðP; JGÞ 6Memavail.

The objective of this work is to design algorithm(s) that generate a qualified plan as in Definition 2.

3.2. The jtree solution space

To better understand the entire solution space, we investigate all possible scenarios depicted in Figs. 5 and 6 where we
vary the system capacities CPUavail and Memavail, and the CPU and memory utilization of popular join methods bjtree and

0 Memavail

CPUavail

(a)

bjtree

mjoin

0 Memavail

CPUavail

(b)

bjtree

mjoin

0 Memavail

CPUavail

(c)

bjtree

mjoin

0 Memavail

CPUavail

(d)

bjtree

mjoin

jtree

0 Memavail

CPUavail

(e)

bjtree

mjoin

jtree

Qualified Plan
Un-Qualified Plan

0

CPU

Memory

Notations

Fig. 5. Various system resource settings.

A B C D

{A, B}

A B

….

{A, B, C}

C B

….

{A, B} C {A, B} {A, C}

{A, B, C} {B, C, D} ….

Join Subsets Base Input Streams Possible Permutation

Step 1:

Step 2:

Step 3:

B A

{A, C}

A C C A

{E, F}

C D D C

A B C

ABC

{A, B, C}

D A

….

{A, B, C} D {A, B, C} {B, C, D}

{A, B, C} {B, C, D} …. Step 4:

A B D

ABCD

C

E F

Fig. 6. Steps in jtree-finder for 6-way join.

430 Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443
mjoin. In Fig. 5a–c the estimated CPU and memory usages of bjtree and/or mjoin lie below their respective system con-
straints. In such situations the existing optimization techniques can be successfully applied. That is, in the case of Fig. 5.a
we can pick either the mjoin or the bjtree, as both are qualified. However, in Fig. 5b only the bjtree and in Fig. 5c only
the mjoin solution is a qualified solution and therefore we choose accordingly.

Now consider the scenario in Fig. 5d where the CPU utilization of mjoin and the memory utilization of the bjtree are above
their respective available system resources. We observe that in such scenarios where neither mjoin nor bjtree query plans
are qualified, a qualified plan may nonetheless exist. This is achieved by exploiting the negative correlation that arises be-
tween CPU and memory utilization (as discussed in Section 2.4). To elaborate, in Fig. 5d the CPU utilization of mjoin
ðCPUmjoinÞ is above the system CPU threshold. While the memory utilization of mjoin ðMemmjoinÞ is well below the available
system memory resources. In such scenarios we can sacrifice memory resources by storing some intermediate results and
therefore saving CPU resources that would have otherwise been wasted for their re-computation. The resulting query plan
is a jtree whose memory and CPU resource consumptions meet their respective resource constraints (as in Fig. 5d). As neither
the pure mjoin operator nor a pure bjtree are viable at all times, we now introduce a generalization of a join plan that enables
us to profit from this negative resource correlation.

Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443 431
Definition 3. A join tree (jtree) for a query Q represented by a join graph JG is a query plan where each node is a join with
arity, k P 2. k ¼ 2 implies that it is a symmetric binary join, while k P 3 means that the node is an mjoin operator.

The intuition is to have a join solution that now exploits the benefits of both mjoin and bjtree join methods. Our experimen-
tal evaluation supports the claim that considering jtrees in the solution space increases the possibility of finding qualified plans
(see Section 4). Lastly, scenarios (as depicted in Fig. 5e) where the available system resources are too restrictive, no qualified
plan exists. In such cases, a deployed system would have to resort to applying more drastic approaches such as load shedding
[13] and memory-spilling [11,12] to reduce the load of the system. These techniques incur loss of result accuracy or delays due
to the addition of I/O costs. Since these strategies are orthogonal to our topic of generation of query plans that are CPU and
memory resource adherent, we refer the reader to the literature to learn more about these methodologies [11,13,12].

In summary, state-of-the-art techniques avoid including general jtree shaped plan as this makes the search space consid-
erably bigger and therefore have longer execution time. However, generating an optimal plan for one resource usage while
being out-of-bound in another resource is not a viable solution in our context. Fig. 5 clearly demonstrates that exploring the
extended search is indeed useful and can potentially avoid the repeated triggering re-optimization or load shedding.

3.3. Dynamic programming-based exploration of jtree space

To understand the search space and provide the baseline to compare our polynomial-time heuristics, we now extend the
classical bottom-up dynamic programming approach [2] to now search the extended jtree solution space and generate qual-
ified plans. Henceforth, it is called JTree-Finder. For a given user query and system resource constraints, if a qualified jtree
plan exists in the solution space, JTree-Finder is guaranteed to find it. In this work, we primarily introduce JTree-Finder
and its results as a benchmark for evaluating the effectiveness our heuristic-based two-layer qualified plan generation
framework presented in Section 5. In principle, other dynamic programming techniques [24,5] and pruning techniques
[25] could similarly be employed.

JTree-Finder differs from the classical algorithm [2,5,24] in several aspects. First, rather than just looking into left-deep
bjtrees [2], the proposed algorithm explores the much richer jtree solution space. The complete search space contains
all possible query plan shapes, including bushy bjtrees, mjoins and jtrees, as in Fig. 1.

Second, JTree-Finder makes use of the two-dimensional cost model described in Section 2 which calculates both CPU and
memory resource utilizations. While traditional optimizers [24,5,2] instead only use the one-dimensional CPU or IO process-
ing costs. The dual-constraints cost model enables us to prune sub-plans whose memory or CPU usage is greater than their
respective system thresholds at an early stage.

Lastly, termination condition. JTree-Finder terminates either by (1) returning a positive result in the form of a set of qual-
ified plans to choose from, or (2) returning a negative result when the available system resources are too limiting and thus no
qualified plan exists in the solution space. When the available system resources are too restrictive, the algorithm can termi-
nate early without having to explore the full search space. More precisely, the iterative process of the algorithm can termi-
nate at some iteration k, where k < n, if no sub-plans of size k are found to be qualified.

Algorithm 1. JTree-Finder for exploring jtree solution space

Input: Join Graph JG over U ¼ fA;B;C . . .g; Dual-Resource Constraints: CPUavail;Memavail

Output: Set of Qualified Query Plans ðQÞ or �1

1:
 SubPlans½ � ¼ ;; SubPlans½k�: set of plans of size k
2:
 Add all input streams in U to SubPlans[1]

3:
 for pSize = 2 to jUj do

4:
 for all V #U and jV j ¼ pSize do

5:
 PT Find all distinct partitions of V

6:
 for each partition PT½i� 2 PT do

7:
 P ¼ Generate PlansðPT½i�; SubPlans½ �Þ

8:
 for each Pi 2 P do

9:
 if ðMemoryðPi; JGÞ 6MemavailÞ AND ðCPUðPi; JGÞ 6 CPUavailÞ then

10:
 if pSize ¼ jUj then

11:
 Add Pi to Q
12:
 else

13:
 Add Pi to SubPlans[pSize]

14:
 if ðSubPlans½pSize� ¼ /Þ then return�1

15:
 return Q // Return Qualified Plans
Algorithm 1 presents the pseudo-code of JTree-Finder. Given a multi-join over a set of input streams, U ¼ fA;B;C;D; E; Fg
and represented by a join graph JG. The available system resources are CPUavail and Memavail. In the kth iteration of the
algorithm, all combinations of input streams of size k over the set U are considered (Line: 4). V ¼ fA;B;C;Dg is one such
combination of size 4. We then partition V into pairwise disjoint subsets (of V) whose union is V. The total number of

432 Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443
partitions for V is given by the Bell number ðBkÞ, where k ¼ jV j. For V ¼ fA;B;C;Dg, the various partitions ðPTÞ are
fðDÞ; ðA;B;CÞg, fðA;BÞ; ðC;DÞg; fðAÞ; ðBÞ; ðCÞ; ðDÞg, etc. A partition PT½i� 2 PT is made up of subsets whose size is less than k. Par-
tition fðDÞ; ðA;B;CÞg of V is made of two subsets (D) and ðA;B;CÞ. All possible implementations of sub-plans of size less than k
have already been generated in the previous iterations.

The algorithms then generates all possible query plans for the partition fðDÞ; ðA;B;CÞg. We defined a function called
Generate Plans (Line: 7) that takes as input arguments, a partition PT½i� and all query plans generated in the previous iterations
ðSubPlans½ �Þ and returns a set of valid query plans that implement the partition PT½i�. Query plans of the partition fðDÞ; ðA;B; CÞg
whose CPU or memory consumptions are within their respective available system resources are retained and added to
SubPlans½k� (Line: 13). While the plans whose CPU or memory resource consumptions are above their respective thresholds
are pruned. If a qualified plan exists in the solution space, JTree-Finder is guaranteed to generate it in the nth iteration.

The algorithm returns a set of qualified plans found in the search (Line: 15). The choice of which qualified query plan to
use is dependent on the end-applications. A few such decision policies are: (1) randomly choose one qualified query plan, (2)
choose a query plan that is minimal in one of the resource usages (either CPU or memory), or (3) choose any one query plan
that is not dominated with respect to both resource consumptions. Other choices among qualified plans may also be worth
considering in special context, such as when handling multiple user queries, which we leave for future work (Section 8).

3.3.1. Time complexity
Traditional optimizers [2] that use dynamic programming to generate optimal plans have an exponential time complexity

[5]. Similarly, JTree-Finder has an exponential time complexity and therefore is not practical for stream query processing.

4. Evaluation of JTree-finder

4.1. Experimental methodology

4.1.1. Objectives
The goals of the first experiment are: (1) Verify the cost analysis used (Section 2) by comparing the performance of best

mjoin and bjtree plans against the general jtree-based plans generated by JTree-Finder under different resource constraints,
and (2) show that the inclusion of jtrees in the solution space increases the possibility of finding a qualified plan.

4.1.2. Environment
The proposed plan generation framework is implemented in the continuous query processing system, [26]. Algorithms

proposed in this work were implemented in Java. All experiments are conducted on an Intel 1.5 GHz machine with a 512 MB.

4.1.3. Organization
Our experiments are categorized into four sets by adjusting (1) availability of system resources CPUavail and Memavail and

(2) input stream arrival rates and selectivities. Our aim is to reproduce the four distinct scenarios presented in Section 3.1
(Fig. 5a–d), where a qualified plan exists in the solution space. The experimental sets are: (1) memory and CPU resources are
sufficient for executing both bjtree and mjoin (Fig. 5a), (2) where CPU resources are sufficient for executing the bjtree but
insufficient for mjoin (Fig. 5b), (3) memory is configured such that it is sufficient for mjoin but not for bjtree (Fig. 5c), (4)
both CPU and memory resources are insufficient for either bjtree or mjoin, hence needing to include general jtrees
(Fig. 5d) in the solution space.

4.1.4. Experimental setup
A continuous query processing engine is stable when it can process the tuples accumulated in the each of its queues with

none to little delay. By the cost-per-unit-time CPU metric, we mean the CPU time required by the query plan to process the
tuples accumulated in all of its queues within one unit time. In this work, this is denoted as CPUreqd. Therefore for a stable
query processing the required CPU ðCPUreqdÞmust be 61 unit time (implying CPUavail ¼ 1). In our query engine, the time unit
is seconds and thus CPUavail ¼ 1 s. If CPUreqd > 1 s then the system will be saturated, with more and more tuples accumulating
in the input queues making it infeasible to keep up with the new tuples coming from input streams.

We measured the per tuple run-time average costs of join ðCjÞ, insert ðCiÞ and delete ðCdÞ using our query engine [26] run-
ning on a machine with 1.5 MHz processor and 516 MB memory. The results are displayed in Table 3. Given the per tuple
cost metrics, for an mjoin, bjtree or jtree plan we compute the CPU utilization by our cost model. The effect of different
CPU availabilities is achieved by increasing or decreasing parameters, like window sizes, stream arrival rates, and join selec-
tivities. The available memory resource Memavail is controlled by setting the maximum Java heap size. Table 2 lists the
parameter settings in the 4 sets of experiments.
Table 3
CPU cost (ms) of basic tuple operations.

Cj Ci Cd

2:2� 10�3 2:0� 10�4 2:0� 10�4

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

9e+05

1e+06

 0 10000 20000 30000 40000 50000 60000 70000

A
cc

um
ul

at
ed

 T
hr

ou
gh

pu
t (

tu
pl

es
)

Time (ms)

BJTree
MJoin

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r

of
 T

up
le

s
in

 S
ta

te
s

Time (ms)

BJTree
MJoin

(b)(a)

 0

 100

 200

 300

 400

 500

 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r

of
 T

up
le

s
in

 Q
ue

ue
s

Time (ms)

BJTree
MJoin

(c)

Fig. 7. Experiment set 1: (a) accumulated throughput (b) tuples in states (c) tuples in states queues.

Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443 433
4.2. Analysis of different plan types

4.2.1. Experiment set 1
When both mjoin and bjtree are qualified plans they have similar accumulated throughput3 as shown in Fig. 7a. Sufficient

CPU ensures that new tuples can be processed quickly without delay, which is true for both mjoin and bjtree, as in Fig. 7c and b
clearly displays the much larger memory usage of bjtree for storing intermediate results in comparison to mjoin.

4.2.2. Experiment set 2
In this scenario, the stream characteristics (input rate and selectivity) and window size make the best mjoin plan not

qualified while the best bjtree plan be qualified. Fig. 8a shows that bjtree has a much higher throughput (>100% improve-
ment) than mjoin. Since mjoin is not qualified, new tuples cannot be processed right away and thus accumulate quickly
in stream input queues (Fig. 8b), while bjtree processes new tuples right away keeping up with the input queues. Thus,
the queue sizes are kept small on an average.

4.2.3. Experiment set 3
When given enough CPU resources but limited memory, both mjoin and bjtree have similar throughput in the beginning

(Fig. 8c). As the memory of bjtree accumulates (Fig. 8d) it reaches the threshold ðMa ¼ 30 MBÞ at around 50,000 ms. Once
the memory threshold is reached the bjtree crashes due the lack of additional memory resources. In comparison, the memory
consumed by mjoin is smaller and averages around 12 MB after the start-up. Memory usage fluctuations in mjoin are due to
memory temporarily used by the intermediate results.

4.2.4. Experiment set 4
Neither mjoin nor bjtree are qualified plans, while a general jtree is found to be qualified. Fig. 8e and f compares the accu-

mulated throughput and memory consumptions of the three plans. BJTree has the highest initial throughput. However, it
3 accumulated throughput: total number of output tuples produced thus far.

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

 0 10000 20000 30000 40000 50000 60000 70000

Ac
cu

m
ul

at
ed

 T
hr

ou
gh

pu
t (

tu
pl

es
)

Time (ms)

BJTree
MJoin

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000 70000

Tu
pl

es
 in

 In
pu

t Q
ue

ue
 (T

up
le

s)

Time (ms)

BJTree
MJoin

(a) Set 2: Accumulated Throughput (b) Set 2: Tuples in Input Queues

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0 50000 100000 150000 200000

Ac
cu

m
ul

at
ed

 T
hr

ou
gh

pu
t (

tu
pl

es
)

Time (ms)

BJTree
MJoin

 0

 5

 10

 15

 20

 25

 30

 35

 0 50000 100000 150000 200000

M
em

or
y

C
on

su
m

pt
io

n
(M

B)

Time (ms)

BJTree
MJoin

(c) Set 3: Accumulated Throughput (d) Set 3: Memory Consumption

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 50000 100000 150000 200000

Ac
cu

m
ul

at
ed

 T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

Time (ms)

BJTree
MJoin
JTree

 0

 5

 10

 15

 20

 25

 30

 35

 0 50000 100000 150000 200000

M
em

or
y

C
on

su
m

pt
io

n
(M

B)

Time (ms)

BJTree
MJoin
JTree

(e) Set4: Accumulated Throughput (f) Set 4: Memory Consumption

Fig. 8. Experiment set 2: (a and b), experiment set 3 : (c and d) and experiment set 4: (e and f).

434 Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443
quickly runs out of memory at around 80,000 ms. Although jtree has a lower initial throughput than bjtree, it has a higher
throughput than mjoin. Since jtree requires less memory than bjtree, it is able to continuously produce results.

In summary, the above results confirm our cost analysis, and demonstrate the need to extend the search space to also
include general jtrees.

4.2.5. Comparative study
In Section 6, we present an extensive comparative study of the proposed polynomial-time techniques by varying the

number of streams N in between 3 and 20 streams.

Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443 435
5. Our approach: two-layer plan generation

5.1. Overview

Qualified plan generation is an exponential time-complexity problem even with richer pruning techniques [25]. We
therefore now put forth an efficient hill-climbing based two-layer plan generation framework that generates qualified
query plans. Algorithm 2 presents the pseudo-code of our framework.

The first layer utilizes the positive correlation between memory and CPU by transforming the two-dimensional problem
into a one-dimensional minimization problem, this way focusing on minimizing one of the two cost metrics. This offers three
benefits. First, it allows us to employ state-of-the-art algorithms to optimize mjoin [15,9,19,27] (Line: 2) and bjtrees [5,1]
(Line :7). Second, the generated mjoin is guaranteed to utilize the minimum memory resources of all possible plans, while
the generated bjtree has the least amount of CPU usage as no re-computation is required. By piggybacking on the mjoin and
bjtree plans generated by the first layer we identify starting points for our hill-climbing algorithm in our second layer of opti-
mization. Third, early termination can often be achieved, namely when either a qualified plan is found (Lines: 5 and 10), or
when the minimal bounds on the required system resources are larger than their respective system thresholds (Lines: 6 and
11). For example, consider the scenario when the memory resources needed by the mjoin, MemoryðPmjoin; JGÞ are larger than
the available memory, Memavail. In such cases no plan exists in the search space with a lesser memory utilization than Pmjoin.
If the first layer is unable to return a qualified plan yet does not determine the in-feasibility of the problem, the second layer
is triggered to explore the jtree search space.

Algorithm 2. Two-layer plan generation

Input: Join Graph JG; S ¼ fA;B;C . . .g Resource Constraints: CPUavail;Memavail

Output: Qualified Query Plan P or �1

1:
 // Layer-One

2:
 Pmjoin ¼ Find MJoin OrderingðJGÞ

3:
 if MemoryðPmjoin; JGÞ 6Memavail then

4:
 if CPUðPmjoin; JGÞ 6 CPUavail return Pmjoin
5:
 else return �1 // Memavail Bound Restrictive

6:
 Pbjtree ¼ Find BJTree OrderingðJGÞ

7:
 if CPUðPbjtree; JGÞ 6 CPUavail then

8:
 if MemoryðPbjtree; JGÞ 6Memavail return Pbjtree
9:
 else return �1 // CPUavail Bound Restrictive

10:
 // Layer-Two

11:
 P ¼ State SelectionðJG;CPUavail;Memavail;PmjoinÞ

12:
 Memr ¼MemoryðP; JGÞ; CPUr ¼ CPUðP; JGÞ

13:
 if ðMemr 6MemavailÞ AND ðCPUr 6 CPUavailÞreturnP

14:
 P ¼ State RemovalðJG;CPUavail;Memavail;PbjtreeÞ

15:
 Memr ¼MemoryðP; JGÞ; CPUr ¼ CPUðP; JGÞ

16:
 if ðMemr 6MemavailÞ AND ðCPUr 6 CPUavailÞ return P
17:
 return �1 // No Qualified Plan Found
Intuitively, the aim of the second layer is to decrease one cost factor while increasing the other, until both are under the

system thresholds. In this regard, we present two polynomial-time algorithms that start from either Pmjoin or Pbjtree plan gen-
erated in the previous layer. Our state-selection algorithm (Section 5.2) starts with an mjoin plan Pmjoin and selects interme-
diate states to be materialized. In contrast, our state-removal algorithm (Section 5.3) starts with a bjtree Pbjtree and selects
smaller binary joins to be merged into a single mjoin. In either case, the result is a jtree. The choice of which algorithm
is dependent on several factors such as where Pmjoin and Pbjtree lie in the solution space (Fig. 5d). If no qualified plan can
be generated by the second layer of plan generation, the only alternative is to invoke more radical adaptation techniques,
such as memory-spilling [11,12,9], load shedding [8,10] or query distribution [28,29].

In summary, the plan generation framework will have one of four possible results: (1) a qualified mjoin, (2) a qualified
bjtree, (3) a qualified jtree, or (4) a negative result indicating that the system resources are not sufficient. The first layer
either outputs (1), (2) or (4), or triggers the second layer. The second layer either identifies a qualified jtree (3), or terminates
without a result (4).

5.2. The state-selection algorithm

We now describe our state-selection algorithm that iteratively selects intermediate results to be stored thereby saving
valuable CPU resources otherwise spent on re-computation. The pseudo-code for the algorithm is presented in Algorithm 3.

The algorithm takes as input arguments a user query represented by its join graph JG, system resource constraints CPUavail

and Memavail and the mjoin plan Pmjoin generated by the first layer of plan generation. Mjoin plan only stores the tuples from

436 Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443
each of the input streams in states, thus Pmjoin has the least memory utilization. However, since the mjoin plan has to recom-
pute all intermediate results, the CPU resource usage needed to recompute the intermediate tuples is high. In this technique,
we apply the principle of negative correlation of sacrificing memory resources by storing some intermediate results, there-
by saving on the corresponding re-computation CPU costs.

Selecting which intermediate state(s) to be stored can be viewed as selecting edges in a join graph. The choice of which
intermediate states to store is determined by two factors: edge frequency and edge weight. The edge frequency is the number
of times an edge appears in the join sequences. In Fig. 9b, for input stream A the first layer of optimization generates the best
possible join order (in polynomial time) to process the input tuples from A, similarly we have a join ordering for the input
stream B, and so on. In Fig. 9b, the edge between input stream A and C appears 6 times in the set of join orders, while the
edge between D and C appears twice. Therefore, storing the intermediate results of A ffl C would be of more benefit than stor-
ing results of D ffl E. Thus, heuristically, the higher the edge frequency, the more likely it is that storing the corresponding
intermediate results can save CPU costs.

The edge weight connecting vertices Vx and Vy is the estimated intermediate state size, kVx kVyrVxVy . The aim of the algo-
rithm is to reduce the CPU resource consumption by using the least amount of memory resources. Therefore, the state-selec-
tion algorithm chooses the edge with the largest (frequency/weight) ratio.

To illustrate, for the join graph in Fig. 9a and the join ordering in Fig. 9b we can derive the edge frequency as described in

Fig. 9c. In each iteration the algorithm selects an edge with the max frequency
weight

� �
ratio as the next state to be stored.

For each edge VxVy, the algorithm accesses the benefits of storing its intermediate states. Vertices Vx and Vy are merged
into one vertex with input rate of kVx kVyrVxVy , i.e., we create a binary join Vx ffl Vy whose output is now fed to the mjoin oper-
ator. Now, for the mjoin with one less input stream, we employ the popular polynomial-time mjoin ordering algorithm
[15,19,9] to generate the best possible join ordering for each of its input streams. If CPU costs of the new mjoin are smaller
than the current plan, the state SVxVy is stored. The algorithm proceeds iteratively until: (1) no intermediate states can further
be stored to reduce the CPU usage, or (2) memory usage of jtree exceeds Memavail.

Algorithm 3. State-selection algorithm

Input: Dual-Resource Constraints: CPUavail;Memavail; Join Graph JG;Pmjoin

Output: Qualified JTree Plan P or �1

1:
 P ¼ Pmjoin
2:
 CPUr ¼ CPUðP; JGÞ; Memr ¼MemoryðP; JGÞ

3:
 while ðCPUr > CPUavailÞANDðMemr < MemavailÞ do

4:
 E = Set of candidate edges in JG

5:
 while (E != null) do � �

6:
 Choose Ei 2 E with max frequency

weight
7:
 Let Ei be an edge that connect vertices Vx and Vy
8:
 JGnew ¼ Merge vertices Vx and Vy to Vxy in JG

9:
 OptimizeðVxy; JGnew;CPUavail;MemavailÞ

10:
 Pnew MJoin OrderingðJGnewÞ

11:
 CPUnew ¼ CPUðPnew; JGnewÞ

12:
 if ðCPUnew < CPUrÞ then

13:
 P ¼ Pnew; CPUr ¼ CPUnew; JG ¼ JGnew

14:
 if MemoryðP; JGnewÞ > Memavail then

15:
 return �1; // No qualified plan found

16:
 Remove Ei from E

17:
 if ðjEj ¼¼ 0Þ then return �1

18:
 return P // Exist loop when qualified plan found
B

A

C

E

D

0.1

(10)

(30)

(100) (100)

(50)

0.08

0.1

0.1

F

(20)

0.25

(a) Join Graph

A C D B E F

B A C D E F

C A D B E F

D C A B E F

E D C A B F

F D C A B E
(b) MJoin - Join Sequences (c) Edge Frequencies

B

A

C

E

D

4 6

2

5

F

1

Fig. 9. Counting edge frequencies.

Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443 437
To elaborate, let the edge DE in Fig. 10a be the candidate edge to be merged. The mjoin with six input streams is now
transformed into an mjoin with five inputs where one of its inputs is the results from the binary join D ffl E (Fig. 10b).
The output rate of the merged vertices DE is kDkErDE.

The process described so far ends up generating binary join nodes for the merged vertices. We now add further steps to
merge several binary joins into an mjoin. This is done only when both memory and CPU costs can be saved. Let the edge
between vertex C and DE in Fig. 11a be chosen as the next edge to be merged. The new merged vertex can either be imple-
mented as a bjtree or a single mjoin as shown in Fig. 11b and c respectively. In the state-selection algorithm, we define a
function called Optimize (Line: 9) that takes as inputs the merged vertex, the modified join graph and the system resource
constraints to return a qualified implementation of the merged vertex.

5.2.1. Time complexity
A join graph with n streams has at most nðn� 1Þ=2 edges. After merging an edge, we select a state-of-the-art ordering

algorithm [9,15] having a time complexity of Oðn2 logðnÞÞ to recompute the join sequences. Thus state-selection has a worst
case time complexity of Oðn3 logðnÞÞ.

5.3. The state-removal algorithm

We now present the state-removal algorithm that aims to save precious memory resources by removing intermediate
states and merging the join operators into an mjoin operator that does not store intermediate states. The pseudo-code for
the algorithm is presented in Algorithm 4. The algorithm takes as input arguments a user query represented by its join graph
JG, system resource constraints CPUavail and Memavail and the bjtree plan Pbjtree generated by the first layer of plan generation.
This bjtree plan has the least amount of CPU resources usage as it does not perform any re-computation of intermediate re-
sults as in an mjoin plan. However, the memory resources needed to store these intermediate results is very high. Therefore,
this technique of state removal aims to use the principle of negative correlation and removes some intermediate results
thereby saving on the memory resources utilized but in turn increasing the total CPU consumption.
B

A
C

E

D

F

A B C E F D

MJoin

Join Graph

A B C

E

F

D

DE

B

A C

DE

F

AB

C

DE

F

A B

C

E

F

D

DE AB

ABCDEF ABCDEF ABCDEF

(a) (b) (c)

Fig. 10. Generating jtree by state selection.

A B C

E

F

D

DE

B

A
C

DE

F

A B

C

E

F

D

DE

CDE A B

C E

F

D

CDE

B

A

CDE

F

(a) (b) (c)

ABCDEF ABCDEF ABCDEF

Fig. 11. Operator breaking and merging.

CD

BC DE

EF

A

C D

E F

AB

B

CD

DE

EF A C D

E F

ABC

B

CDE

EF

A C D E F

ABC

B

(a) (b) (c)

Fig. 12. Removing state by merging joins.

438 Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443
Fig. 12 illustrates the application of the state-removal techniques for a bjtree with four intermediate states (represented
by a rectangle in Fig. 12a). To remove the intermediate state at join operator BC the algorithm merges operators AB and BC
into a single mjoin operator ABC (as in Fig. 12b). A state-of-the-art mjoin ordering algorithm [15,19,9] is then used to find the
join orderings for the new mjoin operator ABC. This process is repeated until a qualified jtree is found, or all states have been
explored.

Algorithm 4. State-removal algorithm

Input: Dual-Resource Constraints: CPUavail;Memavail; Join Graph JG;Pbjtree

Output: Qualified JTree Plan P or �1

1:
 P ¼ Pbjtree
2:
 S = set of all intermediate states in Pcurrent
3:
 while S–/ do

4:
 CPUr ¼ CPUðP; JGÞ; min ratio ¼ 1

5:
 for (each Si 2 S) do

6:
 op1 = join operator contains Si
7:
 op2 = join operator with feeds tuples to Si
8:
 Pnew ¼ MergeðP; op1; op2Þ

9:
 // 1. Merges op1 and op2 into newOp;

10:
 // 2. Generates join ordering for newOp

11:
 CPUnew = CPUðPnew; JGÞ

12:
 state-ratio ¼ ðCPUnew � CPUrÞ=ðjSijÞ

13:
 if ðstate-ratio < min ratioÞ then

14:
 min ratio ¼ state-ratio; state ¼ Si;Ps ¼ Pnew
15:
 Remove state from S;P ¼ Ps
16:
 if (CPUðP; JGÞ 6 CPUavailÞ AND (MemoryðP; JGÞ 6MemavailÞ then

17:
 return P // A Qualified Plan

18:
 return �1 // No Qualified Plan Found
For each candidate intermediate state to be removed, two factors must be considered, namely, the memory saved by

removing the state and the additional CPU resources needed to recompute the intermediate results. If CPUcurrent and
CPUnew represent the CPU resource utilization of the current plan and the new candidate plan after operator merging respec-
tively, the increase in CPU costs can be computed as DCPU ¼ CPUnew � CPUcurrent. The memory saved is in fact the size of the
removed intermediate state. State quality ratio is defined as DCPU=jS½i�j. Intuitively, in each iteration of the algorithm the inter-
mediate state with the smallest state quality ratio is removed. The intermediate states are removed by merging two corre-
sponding join operators into a larger mjoin operator. In scenarios when the CPU costs of maintaining intermediate states
surpasses the cost of recomputing the state, the DCPU factor is negative.

5.3.1. Time complexity
A join graph with n vertices has at most n� 1 intermediate states. Therefore, state-selection and operator merging pro-

cess may be repeated at most n� 1 times. If the chosen state-of-the-art mjoin ordering algorithm [15,9,19] has the time
complexity of Oðn2 logðnÞÞ, the total running time is bounded by Oðn3 logðnÞÞ.

6. Comparative study

6.1. Experimental methodology

6.1.1. Objectives
The goals of this second experimental evaluation include the comparison of: (1) the average time required by the pro-

posed algorithms to generate a qualified plan, and (2) the effectiveness of the proposed algorithms to find a qualified query

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

 [L
og

 S
ca

le
]

Number Of Input Streams

Two-Layered-w/c-State-Selection
Two-Layered-w/c-State-Removal

JTree-Finder

 20

 40

 60

 80

 100

 2 3 4 5 6 7

Q
ua

lif
ie

d
Pe

rc
en

ta
ge

 (%
)

Number Of Input Streams

Two-Layered-w/c-State-Selection
Two-Layered-w/c-State-Removal

JTree-Finder

(a) (b)

(c)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

%
 o

f S
ce

na
rio

s
W

he
n

a
Q

ua
lif

ie
d

Pl
an

s
Ex

is
ts

Number Of Input Streams

Two-Layered-w/c-State-Removal
Two-Layered-w/c-State-Selection

JTree-Finder

Fig. 13. (a) Avg. execution time (b) qualified percentage (c) percentage of scenarios when a qualified plan exists.

Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443 439
plan if one such plan exists in the solution space. (3) the memory and CPU resource utilization of the qualified plans gener-
ated by the state-selection versus by the state-removal algorithms.

6.1.2. Environment
We use the same testing environment that was presented in Section 4.

6.1.3. Organization
To determine the effectiveness of the proposed algorithms and observe trends we varied the number of input streams N

from 3 to 20. For each N, the setup process involves: (1) randomly generate an input rate for each stream within the range of
[1,100] tuples/second, (2) joins among input streams are randomly selected, and (3) the corresponding join selectivities are
randomly generated within the range of (0,1)4. This setup process is repeated 100 times for each N. Therefore, a total of
ð20� 3þ 1Þ � 100 ¼ 1800 different parameter settings, which is a sufficiently large sample set to illustrate performance
trends studied. The CPU threshold defined as the maximum amount of time needed to process the tuples arriving within
the time unit of 1 s, thus CPUavail ¼ 1 s.

6.2. Effectiveness of proposed algorithms

Fig. 13 compares the average execution times needed for our proposed algorithms to generate a qualified plan. JTree-Fin-
der, due to its exponential time complexity is much slower in comparison to our polynomial-time strategies, and runs out of
resources for a smaller N. Since the JTree-Finder algorithm is searching the much larger qualified plan solution space, it can
4 Join selectivity ¼ ðnum of outputsÞ=ðnum of possible outputsÞ:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300

C
PU

 C
os

t (
se

c)

Memory Cost (tuples)

Two-Layered-w/c-State-Selection
Two-Layared-w/c-State-Removal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500

C
PU

 C
os

t (
se

c)

Memory Cost (tuples)

Two-Layered-w/c-State-Selection
Two-Layered-w/c-State-Removal

(a) (b)

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000

C
PU

 C
os

t (
se

c)

Memory Cost (tuples)

Two-Layered-w/c-State-Selection
Two-Layered-w/c-State-Removal

Fig. 14. Distribution of qualified plans: (a) N = 3 (b) N = 5 and (c) N = 10.

440 Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443
only support a smaller N that other state-of-the-art dynamic programming techniques [5,24]. Also, all algorithms are imple-
mented in Java.

Definition 4. Given X different experimental settings where a qualified plan exists in the solution space, if an algorithm finds
a qualified query plan in Y ðY 6 XÞ such settings, the qualified percentage of the algorithm is ðY=X � 100Þ.

The effectiveness of an algorithm is quantified by its qualified percentage. Fig. 13b illustrates the effectiveness of the pro-
posed algorithms. JTree-Finder is guaranteed to find a qualified plan by searching the entire general jtree solution space, if
one such plan exists. We observe that our heuristic-based state-selection and state-removal algorithms have identical qual-
ified percentage (=100%) to JTree-Finder for various N. Comparison of our heuristic-based algorithms cannot be done for lar-
ger N as JTree-Finder fails due to its exponential time complexity.

We note that for some stream characteristics and system resource threshold settings a qualified plan may not exist in the
solution space. This is reflected in Fig. 13c where JTree-Finder is unable to find a qualified plan – given that JTree-Finder ex-
plores the full search space, this implies that no solution exists. No trends can be drawn from Fig. 13c as it merely reflects the
state of the particular solution space we studied.

6.3. Resource utilization of generated plans

Lastly, we compare the memory and CPU usages of the qualified plans generated by state-selection and state-removal.
Fig. 14a–c depicts the distributions of memory and CPU costs for all qualified query plans found for N equal to 3, 5 and
10, respectively. Qualified plans generated by state-selection generally tend to have smaller memory costs but larger CPU
costs as compared to the qualified plans generated by state-removal. This trend becomes apparent as N increases. In
Fig. 14a when N = 3, the qualified plans from both algorithms are mixed on the plot. As N increases, the qualified plans gen-
erated by state-selection tend to be located more at the upper-left area, while the qualified plans generated by state-removal
tend to be located more at the lower-right area. The two sets of qualified plans are clearly separated from each other. This is
due to in part their differences in the starting points of the two strategies. An mjoin usually has smaller memory costs but

Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443 441
larger CPU costs than a bjtree for the same query. Optimizing from each starting point has the tendency to reach a qualified
plan that is closer to that starting point.

6.4. Discussion: statistic gathering and plan migration

The focus of this work is to design efficient algorithms for finding qualified continuous query plans at run-time. We employ
existing methods [30,15] to collect statistics at run-time. When a better plan is found by any one of our proposed algorithms,
we apply migration strategies [31,32] to safely transfer the current query plan to the new plan. These migration strategies
which focus on binary join plans can be easily extended to handle the movement of join states across our general jtree plans.

7. Related work

The growing number of on-line users as well as the increased usage of sensors and RFID networks in various real-world
scenarios has increased the availability of data streams on the web [33]. This phenomenon has resulted in the development
of alternative streaming database systems [34–38]. The CQL continuous query language by Arasu et al. [39] is a general SQL-
based language proposed to express continuous queries against streams and updatable relations.

State-of-the-art techniques [1,2,9,15,19] have focused on the optimization of a single cost function by exploiting the po-
sitive correlation between memory and CPU usages. However, qualified plan generation has largely been ignored. Multi-join
query optimization in static databases has focused on bjtrees [1–3,5]. In contrast, the mjoin operator [9,19] is popular in
streaming databases, supported by several heuristic-based ordering algorithms [15,19]. After inventing the mjoin for stream
processing, [9] acknowledges the problem of excessive re-computation costs of intermediate states. While [9] suggests that a
large mjoin with P5 streams may need to be split into two smaller mjoins, they do not concern themselves with memory
constraints. Their experiments all deal with extremely small join selectivities ðr ¼ 0:0005%Þ and therefore the total number
of intermediate results are relatively small in their experiments – thus memory overflow is not dealt with in their work.
Therefore, [9] does not tackle the open problem of qualified plan generation – the focus of our work. The Eddy approach
[7] simulates an mjoin operator by introducing the STEM structure to enable dynamic join ordering at the tuple granularity.
However, like mjoin, it suffers from the additional re-computation CPU costs.

The A-Caching algorithm [30] optimizes a single mjoin operator by adding/removing temporary caches for certain inter-
mediate results. Our proposed algorithms differ significantly from A-Caching in several aspects. First, A-Caching only deals
with equi-join predicates, relying on value-based hashing to detect a cache hit/miss. Our two-layer plan generation frame-
work is general and can work with any physical implementation of multi-join queries. Second, A-Caching restricts the prob-
lem space by only considering solutions with a set of non-overlapping caches. In other words, two caches cannot have
common joins. Our proposed algorithms do not have this restriction, thus broadening the range of intermediate results that
can be simultaneously stored. Lastly, A-Caching is a novel operator-level join implementation strategy of a single mjoin oper-
ator. Our solution instead looks at the query plan-level, exploring the entire jtree solution space.

Handling multiple resources has been studied in distributed systems for parallel query optimization and task scheduling
[40,17,16,41,14]. Parallel optimization proposed in [40] minimizes CPU costs at compile time, and delays the decision on buf-
fer size to run-time. At run-time, based on observed cardinalities, one of the sub-plans is chosen. In contrast, our algorithms
considers both CPU and memory costs factors when generating qualified query plans. Mariposa [14] optimizes a parallel
query plan based on a concrete user-defined cost-delay curve. In our work, we do not assume that the relationship between
CPU and memory is given a priori. In fact, in practice this is hard to capture, as elaborated in Section 1. [41] distributes oper-
ators of a plan to several processors while exploring the trade-offs among multiple system resources. Our work instead finds
a plan that satisfies multiple resource constraints within a central system.

8. Conclusions and future work

In this work, we recast that continuous query plan generation, no longer a minimization problem as typically approached
by state-of-the-art techniques, but rather as a constraint satisfaction problem. For this, we expand the traditional search
space of pure mjoin- or pure bjtree-based query plans to include general jtrees. We explore the trade-offs and correlations
between CPU and memory usage functions, both positive and negative. In this effort, we first present our JTree-Finder algo-
rithm that is guaranteed to generate a qualified plan. Second, to provide an efficient run-time solution we present a two-lay-
ered plan generation framework. In our framework, we propose two polynomial-time algorithms state-selection and state-
removal exploit the correlations to generate a qualified plan. Our experimental evaluation using an existing continuous query
engine verifies our cost model and measures the CPU and memory resource usages of the generated plans. The experimental
results clearly demonstrate: (1) the need to search the entire solution space including general jtrees so not to miss poten-
tially qualified plans and (2) the effectiveness of our algorithms over the state-of-the-art techniques.

Many directions for future work are possible. We could consider the constraint problem for handling multiple queries.
Two alternatives for addressing this problem may be to: (1) first allocate a fixed amount of the CPU and memory resources
to each query, and then to directly apply the strategies presented in this work to each of the queries, or (2) to simultaneously
build the plans for the different queries such that their collective resource consumptions are within bounds. While the for-
mer alternative can be easily achieved, the latter may be more practical as the criteria for pre-allocation of resources is a

442 Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443
challenging problem in itself. Another avenue for future work is to add additional constraints such as latency and then to
identify their correlations to CPU and memory resource usages.

Acknowledgment

This work is supported by the National Science Foundation under Grant Nos. IIS-0633930, CRI-0551584 and IIS-0414567.

References

[1] T. Ibaraki, T. Kameda, On the optimal nesting order for computing n-relational joins, TODS 9 (3) (1984) 482–502.
[2] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, T.G. Price, Access path selection in a relational database management system, in: SIGMOD,

1979, pp. 23–34.
[3] A.N. Swami, B.R. Iyer, A polynomial time algorithm for optimizing join queries, in: ICDE, 1993, pp. 345–354.
[4] Y.E. Ioannidis, Y.C. Kang, Left-deep vs. bushy trees: an analysis of strategy spaces and its implications for query optimization, in: SIGMOD, 1991, pp.

168–177.
[5] D. Kossmann, K. Stocker, Iterative dynamic programming: a new class of query optimization algorithms, TODS 25 (1) (2000) 43–82.
[6] M. Steinbrunn, G. Moerkotte, A. Kemper, Heuristic and randomized optimization for the join ordering problem, VLDB J. 6 (3) (1997) 191–208.
[7] S. Madden, M.A. Shah, J.M. Hellerstein, V. Raman, Continuously adaptive continuous queries over streams, in: SIGMOD, 2002, pp. 49–60.
[8] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, S.B. Zdonik, Monitoring streams – a new class of data

management applications, in: VLDB, 2002, pp. 215–226.
[9] S. Viglas, J.F. Naughton, J. Burger, Maximizing the output rate of multi-way join queries over streaming information sources, in: VLDB, 2003, pp. 285–

296.
[10] A. Ayad, J.F. Naughton, Static optimization of conjunctive queries with sliding windows over infinite streams, in: SIGMOD, 2004, pp. 419–430.
[11] B. Liu, Y. Zhu, E.A. Rundensteiner, Run-time operator state spilling for memory intensive long-running queries, in: SIGMOD, 2006, pp. 347–358.
[12] T. Urhan, M.J. Franklin, Xjoin: a reactively-scheduled pipelined join operator, IEEE Data Eng. Bull. 23 (2) (2000) 27–33.
[13] N. Tatbul, U. Çetintemel, S.B. Zdonik, M. Cherniack, M. Stonebraker, Load shedding in a data stream manager, in: VLDB, 2003, pp. 309–320.
[14] M. Stonebraker, P.M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, A. Yu, Mariposa: a wide-area distributed database system, VLDB J. 5 (1)

(1996) 48–63.
[15] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, J. Widom, Adaptive ordering of pipelined stream filters, in: SIGMOD, 2004, pp. 407–418.
[16] C.H. Papadimitriou, M. Yannakakis, Multiobjective query optimization, in: PODS, 2001, pp. 52–59.
[17] W. Hasan, R. Motwani, Optimization algorithms for exploiting the parallelism-communication tradeoff in pipelined parallelism, in: VLDB, 1994, pp.

36–47.
[18] C. Monma, J. Sidney, Sequencing with series–parallel precedence constraints, in: Maths of Operations Research, vol. 4, 1979, pp. 215–224.
[19] L. Golab, M.T. Özsu, Processing sliding window multi-joins in continuous queries over data streams, in: VLDB, 2003, pp. 500–511.
[20] M.A. Hammad, M.J. Franklin, W.G. Aref, A.K. Elmagarmid, Scheduling for shared window joins over data streams, in: VLDB, 2003, pp. 297–308.
[21] L. Getoor, B. Taskar, D. Koller, Selectivity estimation using probabilistic models, in: SIGMOD, 2001, pp. 461–472.
[22] A. Deshpande, M.N. Garofalakis, R. Rastogi, Independence is good: dependency-based histogram synopses for high-dimensional data, in: SIGMOD,

2001, pp. 199–210.
[23] J. Kang, J.F. Naughton, S. Viglas, Evaluating window joins over unbounded streams, in: ICDE, 2003, pp. 341–352.
[24] G. Moerkotte, T. Neumann, Dynamic programming strikes back, in: SIGMOD, 2008, pp. 539–552.
[25] S. Ganguly, W. Hasan, R. Krishnamurthy, Query optimization for parallel execution, in: SIGMOD, 1992, pp. 9–18.
[26] E.A. Rundensteiner, L. Ding, T.M. Sutherland, Y. Zhu, B. Pielech, N. Mehta, Cape: continuous query engine with heterogeneous-grained adaptivity, in:

VLDB, 2004, pp. 1353–1356.
[27] V. Raghavan, Y. Zhu, E.A. Rundensteiner, D.J. Dougherty, Multi-join continuous query optimization: covering the spectrum of linear, acyclic, and cyclic

queries, in: BNCOD, 2009, pp. 91–106.
[28] Y. Xing, S.B. Zdonik, J.-H. Hwang, Dynamic load distribution in the borealis stream processor, in: ICDE, 2005, pp. 791–802.
[29] F. Tian, D.J. DeWitt, Tuple routing strategies for distributed eddies, in: VLDB, 2003, pp. 333–344.
[30] S. Babu, K. Munagala, J. Widom, R. Motwani, Adaptive caching for continuous queries, in: ICDE, 2005, pp. 118–129.
[31] Y. Yang, J. Krämer, D. Papadias, B. Seeger, Hybmig: a hybrid approach to dynamic plan migration for continuous queries, TKDE 19 (3) (2007) 398–411.
[32] Y. Zhu, E.A. Rundensteiner, G.T. Heineman, Dynamic plan migration for continuous queries over data streams, in: SIGMOD, 2004, pp. 431–442.
[33] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, M.A. Shah,

Telegraphcq: continuous dataflow processing for an uncertain world, in: CIDR, 2003.
[34] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, S.B. Zdonik,

The design of the borealis stream processing engine, in: CIDR, 2005, pp. 277–289.
[35] M.H. Ali, W.G. Aref, R. Bose, A.K. Elmagarmid, A. Helal, I. Kamel, M.F. Mokbel, Nile-pdt: a phenomenon detection and tracking framework for data

stream management systems, in: VLDB, 2005, pp. 1295–1298.
[36] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream systems, in: PODS, 2002, pp. 1–16.
[37] R. Avnur, J.M. Hellerstein, Eddies: continuously adaptive query processing, in: W. Chen, J.F. Naughton, P.A. Bernstein (Eds.), SIGMOD, 2000, pp. 261–272.
[38] J. Chen, D.J. DeWitt, F. Tian, Y. Wang, Niagaracq: a scalable continuous query system for internet databases, in: SIGMOD, 2000, pp. 379–390.
[39] A. Arasu, S. Babu, J. Widom, The cql continuous query language: semantic foundations and query execution, VLDB J. 15 (2) (2006) 121–142.
[40] W. Hong, M. Stonebraker, Optimization of parallel query execution plans in xprs, in: PDIS, 1991, pp. 218–225.
[41] M.N. Garofalakis, Y.E. Ioannidis, Multi-dimensional resource scheduling for parallel queries, in: SIGMOD, 1996, pp. 365–376.
Yali Zhu obtained her doctoral degree in Computer Science from Worcester Polytechnic Institute in 2006. Her dissertation
research work was focused on dynamic query optimization and migration strategies for continuous queries over data streams.
She also worked on distributed query processing system that supported parallel query processing and runtime query adapta-
tions for continuous queries. She currently works at Oracle.

Venkatesh Raghavan is a Ph.D. student in the Computer Science Department at Worcester Polytechnic Institute. He received his
Masters in Computer Science from Worcester Polytechnic Institute and his Bachelors in Computer Engineering from University

of Mumbai. He was awarded the Sigma Xi Associate Membership in 2008 for his ongoing Ph.D. research. His current research
interests are the efficient handling of multi-criteria decision support queries over static and streaming databases, and stream
query optimization.

Y. Zhu et al. / Data & Knowledge Engineering 69 (2010) 424–443 443
Rundensteiner is Full Professor in Computer Science at Worcester Polytechnic Institute. She is an internationally recognized
expert in databases and information systems, having spend 20 years of her career on scalable data management technology for
advanced applications. She has well over 300, often widely cited, publications, and her research has been funded by NSF, NIH,
DOE, and others. She has been recipient of numerous honors, including NSF Young Investigator, Sigma Xi Outstanding Senior
Researcher, and WPI Trustees’ Outstanding Research and Creative Scholarship awards. She has been editor of IEEE Transactions
on Data and Knowledge Engineering Journal and VLDB Journal.

	A new look at generating multi-join continuous query plans: A qualified plan generation problem
	Introduction
	Continuous query plan generation
	Relationship between resource usages
	The proposed approach
	Summary of contributions
	Organization

	Preliminaries
	Join method basics
	Cost analysis for mjoin
	Cost models for bjtree
	Condition for negative correlation

	Qualified plan solution space
	The basics on optimal vs. qualified plans
	The jtree solution space
	Dynamic programming-based exploration of jtree space
	Time complexity

	Evaluation of JTree-finder
	Experimental methodology
	Objectives
	Environment
	Organization
	Experimental setup

	Analysis of different plan types
	Experiment set 1
	Experiment set 2
	Experiment set 3
	Experiment set 4
	Comparative study

	Our approach: two-layer plan generation
	Overview
	The state-selection algorithm
	Time complexity

	The state-removal algorithm
	Time complexity

	Comparative study
	Experimental methodology
	Objectives
	Environment
	Organization

	Effectiveness of proposed algorithms
	Resource utilization of generated plans
	Discussion: statistic gathering and plan migration

	Related work
	Conclusions and future work
	Acknowledgment
	References

