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Abstract. In emerging data stream applications, data sources are typi-
cally distributed. Evaluating multi-join queries over streams from different
sources may incur large communication cost. As queries run continuously,
the precious bandwidths would be aggressively consumed without careful
optimization of operator ordering and placement. In this paper, we focus on
the optimization of continuous multi-join queries over distributed streams.
We observe that by partitioning streams into substreams we can signifi-
cantly reduce the communication cost and hence propose a novel partition-
based join scheme - PMJoin. A few partitioning techniques are studied. To
generate the query plan for each substream, a heuristic algorithm is pro-
posed based on a rate-based model. Results from an extensive experimental
study show that our techniques can sufficiently reduce the communication
cost.

1 Introduction

Many recently emerging applications, such as network management, financial mon-
itoring, sensor networks, stock tickers etc, fueled the development of continuous
query processing techniques over data streams. In these applications, the data
sources are typically distributed, e.g. the network hosts or routers in network man-
agement. Collecting all the data to a centralized server may not be cost-effective
due to the high communication cost. Clearly, a distributed stream processing sys-
tem is inevitable. Unlike traditional DBMS, where the processing in each node
involves expensive I/O operations, stream processing systems often perform main
memory operations. These operations are relatively inexpensive in comparison to
the communication cost. As both the queries and data streams are continuous, a
lot of existing work, such as [2], focus on minimizing the communication cost, espe-
cially when the source nodes are connected by a wide-area network. Furthermore,
as the streams are continuous and unbounded, a rate-based cost model has to be
used.

In this paper, we focus on multi-way window join query which is an impor-
tant and expensive type of continuous queries. These queries may involve multiple
streams from different source nodes. Let us look at an example drawn from the
network management application.

Example 1. We want to monitor the traffic that passes through three routers and
has the same destination host within the last 0.5 seconds. Data collected from the



Table 1. Distribution (tuples/ second)

Si S1 S2 S3 S1,2 S1,3 S2,3

λi 100.2 50.07 50.03 9.003 7.001 2.0008

λa
i 0.1 0.03 50 0.003 5 1.5

λb
i 0.1 50 0.01 5 0.001 0.5

λc
i 100 0.04 0.02 4 2 0.0008
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Fig. 1. Communication cost of plans

three routers feed three streams s1, s2 and s3 to three processing nodes n1, n2 and
n3. The content of each stream tuple includes the destination host ip dest of a data
packet and possibly other information. This task can be represented in a three-way
window join query S1 1S1.dest=S2.dest S2 1S2.dest=S3.dest S3 where the window size
of each stream is 0.5 seconds.2

In Table 1, λi denotes the rate of stream Si and λa
i denotes the rate of tuples

from Si whose value in the dest attribute is a. Furthermore, Si,j is the result stream
of Si 1 Sj and its rate is denoted as λi,j . The minimum communication cost that
can be achieved under different schemes are as follows:

1. Centralized scheme: The best plan in this category is to send both S2 and
S3 to n1. If we assume the tuple size of every stream is 1 byte, then this scheme
results in communication cost of λ2 + λ3 = 100.1(bytes/sec).

2. Distributed scheme: In this category, the best plan is to send S3 to n2 first
and then ship the result S2,3 to n1. If we assume the tuple size of a join result
tuple is the sum of the two input tuples, we can derive the communication cost of
this plan as λ3 + λ2,3 × 2 ≈ 54.03(bytes/sec).

3. Partitioned-based scheme: taking a closer look at the problem, we can find
that the arrival rates of tuples vary with different values in the joining attributes.
Furthermore, the popularity of the values in different streams also vary. Hence the
optimal plans for these tuples are also different. For example in Table 1, dest = a
is popular in S3 while it is unpopular in the other two streams. Hence the best plan
for these tuples is to ship them from S2 to n1 to join with S1 and then the resulting
tuples are sent to n3 to join with S3. This results in the cost of 0.036 (bytes/sec).
However, for those tuples with dest = b, the best plan is totally different: those
tuples from S3 should be sent to n1 and then to n2. By exploiting this characteristic,
the minimum communication cost that we can get for Example 1 is approximately
0.07 (bytes/sec).
In this paper, we focus on the static optimization of multi-join queries. Static opti-
mization can be applied to applications where the stream’s characteristics are rel-
atively stable and their changes are predictable. Moreover, given that our problem
has not been previously studied, it is important to examine how static optimization
can be performed before extending the work to a dynamic context. To summarize,
our main contributions are as follows:

– We formulate the problem and propose a heuristic-based optimization algo-
rithm to decide the join operation locations and the tuple routing orders based
on a rate-based cost model.



– To further reduce the communication cost, we propose a novel join scheme:
PMJoin. We also study different partitioning strategies (e.g., rate-based, hash,
etc).

– We fully implemented the system and run a simulation study. The study shows
the efficiency of our techniques.

The rest of the paper is organized as follows. Section 2 reviews the related work.
Section 3 presents the proposed techniques. In Section 4, we perform extensive
performance studies on our implementation. Section 6 concludes the paper.

2 Related Work

Distributed processing of multi-way join have already been extensively studied in
the context of traditional relational database systems. [13] provides a thorough sur-
vey on this area. The optimizers in Distributed INGRES [9] and System R* [14]
consider both CPU and I/O cost as well as the communication cost of processing a
whole dataset. In these systems the I/O cost are so high that they cannot be omit-
ted. SDD-1 [7] uses heuristics to optimize the utilization of semi-join. Semi-join is
useful when a tuple is much larger than a single attribute and the selectivity is
low. However, semi-join is not readily applicable to window join processing. This
is because streams are normally continuous and queries should be evaluated in a
nearly real time manner. For example, a tuple ti may be pruned away because
there is no matching tuples in the opposite window. However, new tuples may
arrive at the opposite window which may match ti. Extra complicated mecha-
nisms have to be introduced to ensure the correctness. As shown in our study,
we believe our PMJoin, together with the optimization heuristics, is a promising
alternative to reduce the communication cost. Our techniques can also be adapted
for traditional passive data processing whose performance needs further study. The
above-mentioned systems and a considerable amount of work (e.g. [8, 16, 21]) have
also exploited horizontal fragmentation of relations to increase the parallelism and
consequently to reduce the response time. Static and dynamic data allocation [3,
17, 20] try to allocate replications to reduce communication cost or to balance the
load on servers. However, none of the above techniques exploit generating different
plans for different partitions. Furthermore, a rate-based cost model has to be used
in our problem.

[12] studies techniques for the evaluation of window join queries over data
streams. [19, 10] examine the processing of multiple joins over data streams. [4,
15, 5, 6] investigate the static and adaptive ordering of operators for continuous
queries over data streams. However, all these studies focus on centralized process-
ing. There are also several recent efforts devoted to extending centralized schemes
to distributed context. [1] proposes the design of a distributed stream system. [2]
studies the operator placement problem for stream processing. However, these ap-
proaches assume there is an already optimized query plan and then allocate the
operators, while our approach does not impose such an assumption. Furthermore,
they do not explore partitioning of the streams to further optimize the plans. In
[18], the operators are assumed to have been allocated, and the proposed scheme
adaptively decides the routing order of the tuples.



3 Distributed Multi-join

In this section, we first formulate the problem and then present the scheme to
generate a query plan for each substream. It also applies to the case without stream
partitioning. Then we study how stream partitioning can be applied to minimize
communication cost.

3.1 Problem Formulation

In our system, there is a set of geographically distributed data stream sources Σ =
{S1, S2, · · · , S|Σ|} and a set of distributed processing nodes N = {n1, n2, · · · , n|N |}
interconnected by a widely distributed overlay network. Since the data stream
sources in practice may not have the ability to communicate with multiple nodes,
we separate the data sources from the processing system by assigning nodes as
delegations of data sources. Streams are routed to the various processing nodes
through their delegated nodes. A multi-way window join query may involve streams
from multiple nodes. For simplicity, we assume the queries do not involve stored
tables.

As mentioned before, our main concern is to minimize the communication cost.
We adopt the unit-time cost paradigm and hence communication cost of a process-
ing scheme Ω can be computed as C(Ω) = Amount of communications (in bytes)

Observation period .

The formal problem statement is: Given a m-way window join (∀m < |Σ|)
query Q, which involves a set of streams Σ and they are located at a set of nodes
N , find a join scheme Ω so that the total communication cost C(Ω) is minimized.

3.2 Join Operation Locations and Tuple Routing Orders

Before processing the queries, we have to first decide the placement of the join
operators. Then we have to route the streams and the intermediate result streams
(if necessary) around the nodes. In this subsection, we focus on how to decide the
location of the join operations as well as the routing order of the tuples for each
substream. Since it also applies to streams without partitioning and we treat each
substream independently, we use the term “stream” instead of “substream” in the
following discussions. The evaluation of the join operations allocated to each node
can use any of the existing centralized join optimization and processing techniques,
e.g. [19, 10]. In this paper, we assume the join operations in each node are evaluated
using MJoin [19]. In this technique, one in-memory index structure, e.g. hash tables,
is built for each joining stream. The joining stream could be a source stream or
an intermediate result stream generated by another node. When a tuple from a
joining stream arrives, it would be inserted into its corresponding index structure,
and be used to probe other index structures one by one to evaluate the query.
The optimization of the probing order has already been studied in centralized
processing literatures [4, 6, 19] and would not be considered in this paper.

Notations and Cost Model. Let the set of streams and the set of nodes involved
in the query Q be Σ and N , respectively. The set of streams that are located in
ni ∈ N is denoted as Σi. The result stream of Si 1 Sj is denoted as Si,j and the
result stream of Si,j 1 Sk is denoted as Si,j,k and so on. If two streams are located



at one node, we say that they are co-located. A function coli,j is defined as follows:

coli,j =
{

0 : Si and Sj are co-located
1 : otherwise (1)

We adopt a rate-based cost model similar to the one developed in [5]. The
arrival rates of streams Si and Si,j are denoted as λi and λi,j , respectively. Let Wi

and Wj be the expected number of tuples in the window of Si and Sj , respectively.
For a tuple-based window, Wi is equal to the window size Ki, while for a time-
based window, Wi is equal to λi ·Ti, where Ti is the window size. To estimate λi,j ,
we note that for every unit time, λi tuples from Si and λj tuples from Sj would be
used to probe the windows of Sj and Si, respectively. Out of the λi ·Wj + λj ·Wi

pairs of tuples, f × (λi ·Wj +λj ·Wi) matches are expected to be found, where f is
the join selectivity. Therefore the expected number of tuples generated by Si 1 Sj

per unit time can be estimated as
λi,j = f × (λi ·Wj + λj ·Wi) (2)

The tuples in the active window of the result stream Si,j are composed of those
result tuples that are the join results of the tuples in the active window of Si

and Sj . Hence the expected number of tuples in the active window of Si,j can be
computed as Wi,j = f ·Wi ·Wj (3)

Eqs. (2) and (3) can be recursively applied to obtain the values for multiple
joins. Furthermore, it should be noted that the output rate and the window of the
join result of a set of streams are independent of how the join is performed. Hence
for a given distributed query plan, we can compute its unit-time communication
cost by computing the rates of the streams that are sent over the network.

A Heuristic Algorithm. Given the above cost model, we can use a specific
searching algorithm to search a specific solution space. For example, we can use
dynamic programming to select an optimal plan from all the left deep tree plans.
The computation complexity of the algorithm is O(n!). However, as we will see
soon, the search algorithm has to be applied several times in our partition-based
join approach. Hence we will propose a much cheaper algorithm which runs in
O(n2) time. Algorithm 1 shows the proposed stream join optimization algorithm.
The input of the algorithm is the set of streams Σ involved by the query as well
as the join graph representation G of the query. A join graph consists of a set
of vertices each representing a stream and a set of edges each representing a join
operation between the two connected streams. Furthermore, each vertex in the
graph is annotated with the source node of the corresponding stream. We use the
following example to illustrate.

Example 2. A query joins 5 streams: S0, S1, S2, S3 and S4 which are spread over 3
nodes. Figure 2(a) shows the join graph of this query. The location of each stream
is drawn around each vertex. The selectivities of the join operations are also drawn
around the corresponding edges. Columns 2− 6 in Table 2 list the arrival rates λi

and the expected number of tuples in the window Wi of these source streams.

For brevity, we assume that tuples from every stream (either a source stream
or an intermediate result stream) have the same sizes in the following discussions.
The adoption of this assumption does not lose any generality as we can always in-
corporate the tuple sizes in the calculation of cost without changing the algorithm.



Algorithm 1: StreamJoinOpt(Σ, G)

Input: Σ: A set of streams;
G: A join graph over Σ;
begin1

for each ni ∈ N do2

Sort Σi in increasing arrival rates;3

for j = 0; j < |Σi|; j + + do4

for k = j + 1; k < |Σi|; k + + do5

if λΣi[j]1Σi[k] < λΣi[j] then6

Label the join between Σi[j] and Σi[k] as local;7

Σi[j]← Σi[j] 1 Σi[k];8

Σi ← Σi −Σi[k];9

Sort Σ in increasing arrival rates;10

while |Σ| > 1 do11

Σp ← the slowest stream Si;12

Σ− = Si;13

repeat14

cost←MaxNumber;15

for each stream Sj joinable with any stream in Σp do16

if C(Σp + Sj) < cost then17

k ← j;18

cost← C(Σp + Sj);19

label the edges that connect any stream in Σp and Sj as pending;20

if case (1) is chosen then21

assign all the pending join operations to the node of Sj ;22

Sp ← Collapse Σp and Sk to one node ;23

Σp ← Sp;24

else25

Σp+ = Sk; Σ− = Sk;26

until |Σp| = 1;27

Insert Σp into Σ;28

end29

At the first step (lines 2 - 9) of the algorithm, we find whether there is any
locally evaluable join operation which can result in a stream whose rate is smaller
than both joining streams. Evaluating these joins locally tends to reduce the po-
tential communication cost if some of the streams need to be shipped out to other
sites. For Example 2, there are two locally evaluable joins: S0 1 S1 and S2 1 S3.
By using Equations (2) and (3), λS01S1 and λS21S3 can be estimated as 70 and
15, respectively. Hence we choose to allocate S2 1 S3 to n1 and we label the corre-
sponding edge with n1. For ease of processing, once a join operation is allocated,
we would collapse the two connected vertices in the join graph and the resulting
vertex represents their join result stream. By applying this to Figure 2(a), we can
derive Figure 2(b). The rate and window size of S2,3 are also listed in column 6 of
Table 2.
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Table 2. Parameters of streams
Si S0 S1 S2 S3 S4 S2,3 S0,2,3

λi 10 35 25 30 15 15 9

Wi 100 350 250 300 150 75 30

1

S2 S3

S0

S4 S

Fig. 3. The plan tree

In the second part (lines 10 - 28) of the algorithm, we employ a heuristic
approach to allocate the remaining join operations. There are two nested loops in
this part. For each iteration of the outer loop, we will determine the location of a
subset of join operations. First, we pick a stream with the smallest rate, say Si. This
is because it may result in less communication cost if Si has to be transmitted over
the network. Next, to evaluate the join between Si and each of the other streams
Sj that are joinable with Si, we have two cases:

1. Send Si to the node of Sj . The potential communication cost of this case is
equal to the sum of the cost of sending Si to the node of Sj and the potential
cost of sending out the result stream of Si 1 Sj , i.e. λi ·coli,j +λi,j . The second
term is to count the potential cost of sending out the result stream to perform
other join operations.

2. Send both Si and Sj to a third site. The potential cost of this case is λi + λj .

For each stream, the case with smaller cost is used. We greedily choose a stream
Sk with the smallest estimated cost and move it from Σ to Σp. If case (1) is chosen
for Sk, that means the join operation is already allocated. We will remove streams
Si and Sk from Σ and add the result stream Si,k to Σ and start a new iteration.
Correspondingly, in the join graph, we will collapse nodes Si and Sk into one node
Si,k. However, if case (2) is chosen for Sk, that means the join operation is still
pending for allocation. We will search for another stream Sl that is joinable to
any stream in Σp with the smallest cost. The cost estimation is similar to the
above analysis. To ease the presentation of the algorithm, we define the following
function:

C(Σp + Sj) = min{
∑

Si∈Σp

λi + λj ,
∑

Si∈Σp

λi · coli,j + λΣp,i} (4)

For example, in Figure 2(b), we first add the slowest stream S0 to Σp. Then for
the three joinable streams S1, S2,3 and S4, using Eqs. (2), (3) and (4), we can find
that C(Σp +S2,3) is the smallest. Furthermore, case (1) should happen, i.e. S0 will
be sent to node n1 to perform the join with S2,3. Hence we label the edge between
S0 and S2,3 with n1. Then we collapse nodes S0 and S2,3 to one node S0,2,3. This
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results in Figure 2(c). The rate and window of S0,2,3 is computed using Eqs. (2)
and (3) and listed in column 7 of Table 2. Now a new iteration of the outer loop in
the second part of the algorithm has to be started. The currently slowest stream
is S0,2,3, hence it is added to Σp. Among the two joinable streams S1 and S4, the
potential cost of adding S4 is smaller. This time, case (2) is chosen, i.e. S0,2,3 and
S4 have to be sent to a third site. We label the edge between node S0,2,3 and S4

with a P to indicate that the join operation is pending for allocation. Then the
last stream S1 has to be chosen and S1 and S0,2,3 have to be sent to n0 to perform
the joins. Now the two join operations can be labeled with n0. Then all the join
operations have already been allocated.

The output plan of Algorithm 1 can be represented using a tree. In the tree,
each leaf node is a source stream and each intermediate node is an MJoin operator.
Each MJoin operator is located in one node and has two or more input streams. We
order these streams in the order such that the right most stream (or abbreviated
as the right stream) have the same location with the MJoin operator. That means
all the other input streams of this MJoin operator would be sent over to the
location of the right stream to perform the join operations. Figure 3 shows the tree
representation of the output plan of Example 2.

3.3 Stream Partitioning

In a partition-based scheme, each stream Si may be partitioned into D substreams
S1

i , S2
i , . . . , SD

i based on the values on the joining attribute. This is based on the
observation that the arrival rates of tuples with different values may vary much
inside each single stream. Hence the optimal scheme for these tuples are different.
We denote the rate of a substream Sk

i as λk
i .

PMJoin. In this subsection, we will look at how the partition-based join can be
applied to a multi-way equijoin query whose join predicates are specified on a single
attribute, say attr. This kind of queries is common in a lot of applications, such
as Example 1 in Section 1. Furthermore, these could also be a subset of predicates
in a multi-way join query that are specified on the same attribute. We propose a
scheme that is called Partition-based Multi-way Join (PMJoin) to evaluate this set
of join predicates. Every stream involved in these join predicates is partitioned into
multiple substreams on attr. The substreams of all the streams can be grouped into
D groups. The kth group of substreams is {Sk

1 , Sk
2 , . . . , Sk

|N |}. For each group of
substreams, we can use Algorithm 1 to decide the allocation of the join operations.

We illustrate the plan of PMJoin by using Example 1. First, based on the value
of the dest attribute, we partition each stream into three substreams Sa

i , Sb
i and Sc

i .
These streams are grouped into three groups. Then for each group of substreams,
we use Algorithm 1 to optimize the plan. The resulting plans for the three groups
of substreams are shown in Figure 4.



To get the lowest cost, we can partition each stream into as many substreams
as possible. For example, we can put tuples with each distinct value in the joining
attribute into one substream. Let the number of these values be R then we could
partition the stream into R substreams. However, it is clear that with more par-
titions, more plans have to be generated and it complicates the processing. So we
adopt a more flexible approach where the number of partitions can be specified
as any D. This can be viewed as clustering the above finest substreams (i.e., one
substream per value) into D partitions. In the following discussions, we refer to
these finest substreams as FStreams. FSk

i stands for the kth FStream from stream
Si. And the unique attr value of the tuples of a FStream is called the value of the
FStream. We consider three approaches:

1. Hash partition. A hash function can be applied to hash the values of the
FStreams into one of the D buckets. The FStreams in each bucket compose a
substream. This is actually a random partitioning method.

2. Range partition. Divide the data range into D sub-ranges. FStreams whose
values fall into the ith sub-range compose the ith substream.

3. Rate-based partition. The above two approaches ignore the arrival rates of
the various FStreams. A good partitioning method should put those groups of
FStreams whose optimal plans are similar to each other in one partition. In this
way, the generated plan for that partition would be good for all its FStreams. Here
we use an approximate approach to estimate the similarity of the optimal plans
of two groups of FStreams. For each group of FStreams, {FSk

1 , FSk
2 , . . . , FSk

|N |},
we sort them in increasing order of their arrival rates. Then we create a vector
Vk where the ith element indicates the position of FSk

i in the above sorted list.
For example, if we have a sorted list as 〈FSk

3 , FSk
1 , FSk

2 〉, then Vk = 〈2, 3, 1〉.
So the distance between the kth and the lth groups of FStreams is measured by
the distance between Vk and Vl, which is measured as |Vk − Vl|. The intuition
is that the more similar the sorted lists of the two groups of FStreams are, the
more similar their optimal plans would be. Now we can employ any clustering
techniques to cluster the groups of FStreams into D clusters. In this paper, we
adopt the k-Means approach [11].

To apply all the above mechanisms, we need to know the rate of each FStream.
To reduce the cost of maintaining such statistics, we can use traditional histogram
approaches. Only statistics of histogram buckets are maintained, and the rates of
an FStream is estimated based on the statistics of the bucket it belongs to.

Multi-join on different attributes. For a generic multi-join query whose joins
involve multiple attributes, our approach works as follows. We first run Algorithm 1
to determine the plan for the scheme without partitioning. Given the output plan
of Algorithm 1, we will try to find out several sets of join predicates where we can
apply PMJoin.

We call a MJoin operator to be partitionable on attr if the join predicates in
the Mjoin operator are all (equalities) on the same attribute attr. The procedure
to find the subset of join predicates to apply partitioning works in two steps. In the
first step, from the output plan of Algorithm 1, we try to aggressively determine
the subsets of join predicates that can be partitioned by using Algorithm 2. The
algorithm starts from the root. If the current operator is found to be partitionable



Algorithm 2: FindPartition(Oi)

Input: Oi: an MJoin operator ;
R: an boolean array, R[i] is true if Oi is the right child of its parent;
begin1

if !R[i] AND Oi is partitionable on an attribute attr then2

Mark Oi as PMJoin ;3

for each child operator Oj of Oi do4

if Oj is partitionable on attr then5

Merge Oj to Oi;6

for each child operator Oj of Oi do7

FindPartition(Oj);8

end9

on an attribute, say attr, it would be marked as a PMJoin operator. Then if any
child of the current operator is also partitionable on attr, it would merge that
child with the current operator. Note that after the merge, the prior grandchildren
would become children of the current operator. These new children would also be
searched to see if they can be merged. After the merging attempt, we recursively
call the algorithm on each child of the current operator.

In the second step, we try to select some of the PMJoins from those found by
the above algorithm. Note that the output stream of a PMJoin consists of a number
of substreams that would be located at several sites. For example, the result stream
S1,2,3 of Example 1 consists of three substreams that are located at n1, n2 and
n3. Now suppose the result stream has to join with another steam, say Si, on
another attribute. If PMJoin is used to join S1,2,3 and Si, we have to repartition
the substreams of S1,2,3 that are located at the three nodes. Furthermore, the
substreams of Si may have to be sent to all these three nodes. This results in high
communication cost. Therefore, we opt to impose two constraints on the application
of PMJoin. (1) The input streams of a PMJoin should be located at a single node.
That means a PMJoin cannot be the child of another PMJoin. (2) The right child
of a MJoin operator cannot be a PMJoin operator. Otherwise, the other input
streams of the MJoin operator have to be sent over to the output nodes of that
PMJoin.

Our heuristic, which is given below, favors those PMJoins that have high input
stream rates. This is because they may provide more opportunities to reduce the
communication cost by using PMJoin.

1. Sort all the PMJoins on the total input stream rates.
2. Remove the one with the largest input stream rate.
3. Remove the parent PMJoin (if any) from the sorted list, and restore it back to

one or more MJoin operators.
4. If the list is not empty go to step 2.

4 Performance Study
In this section, we present a performance study of our techniques. We fully imple-
mented the system using Java. To ease the control of experiments, we use a discrete
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Fig. 5. Performance of the Heuristic Algorithm

event simulation package JavaSim to simulate the distributed processing effect. For
each experiment, we would collect the total communication cost for every second.
Without loss of generality, we assume that tuples from all the streams and the join
result tuples have the same sizes. Hence we only count the number of tuples that
are transmitted over the network. Without loss of generality, we assume the joining
attributes are of integer values and the windows are all time-based windows spec-
ified in seconds. All the arrival rates are specified in the unit of tuples/second. To
model different data frequencies, we use various types of distributions. The value
distributions are chosen from the following distributions: (1) Uniform distribution,
(2) Normal distribution with the mean being the mid value and varied standard
deviation, (3) Zipf distribution with the skew parameter θ varied from 0.1 to 1.5,
(4) Self-Similar with the skew parameter h varied from 0.1 to 0.9. (For integers
1 . . . N , the first h·N integers gets 1−h of the weight.) To examine the performance
of our heuristic algorithm, we compare it with two algorithms: (1) Simple: send
the other streams to the location of the stream with the highest rate; (2) Optimal:
exhaustively enumerate the possible plans and choose the best one.

4.1 The Heuristic Optimization Algorithm

In the first experiment, we consider the following different situations: (1) streams
with lower arrival rates have smaller window sizes (LASW); (2) streams with higher
arrival rates have smaller window sizes (HASW). Both situations would be studied
under two senarios: similar data distribution (SD) and different data distributions
(DD). For the similar distribution scenarios, we randomly choose 10 zipfian distri-
butions with the skew parameters varied from 0.1 to 0.3. For the case with different
distributions, we randomly choose 10 distributions from all those listed above. We
vary the data ranges from 1-10 to 1-100000. Note that query selectivities would
be smaller with larger data ranges. Each stream is from a different node. Figure 5
presents the results of this experiment. From the figures, we can see that the com-
munication cost of the Simple approach is constant to various data ranges. That is
because this approach simply chooses to send all the other 9 streams to the location
of the fastest stream. Thus, the communication cost is equal to the sum of these 9
streams. For the heuristic and the optimal approach, when data range is small, the
communication cost are the same as that of Simple. The reason is the selectivities
of the join operations are high and any intermediate result streams would have
relatively large rates. Hence the best plan here is the same as Simple. However the
communication cost of the heuristic and optimal approach drops with the increase
in data ranges. That is because the join operations become more selective, hence
it brings more benefits to perform distributed processing to minimize the commu-
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nication cost. Furthermore, we can see that our heuristic algorithm performs very
close to the optimal approaches under the 4 different situations.

In the second experiment, we study the effect of the number of streams. We
fix the data range at 1-1000 and all the arrival rates at 100 tuples/second. We
vary the number of streams and randomly choose the window sizes from 10 to 100
seconds. Data distributions are also randomly chosen. We compare our heuristic
algorithm with the Simple method and the Optimal algorithm. Due to the long
running time of the Optimal algorithm, we can only get the results up to 14
streams. The results are presented in Figure 6. We can see that the cost of the
Simple method increases proportionally as the number of streams increases. The
improvements of the heuristic approach and Optimal approach over the Simple
method is larger with larger number of streams. That is because more steams
provide more opportunities to optimize allocation of join operations to reduce the
communication cost. Furthermore, we can see that the heuristic approach is very
close to the Optimal algorithm.

In the third experiment, we examine the effect of the number of streams on
each node, which is handled by the first step of our heuristic algorithm. We fix the
number of nodes in this experiment to 5. The streams are randomly allocated to the
nodes and their arrival rates are varied from 100 to 500. The other configurations
are similar to the earlier experiment. We compare our heuristic to (a) Optimal:
the optimal scheme and (b) Local: the one with the first step replaced by simply
joining all the local streams. When the total number of streams increases, the
average number of streams in each node also increases. The results are shown in
Figure 7. We can see that our heuristic works better than Local. That is because
it would only perform those joins that would reduce the rates, while Local would
perform also those that may increase the rates.

4.2 PMJoin

In the first experiment, all the join predicates are equalities on a single attribute.
Hence PMJoin can be used here. We use 10 streams with arrival rates varying
from 10 to 1000 and window sizes randomly chosen from 10 to 100. We fix the
data range of all the streams to 1-1000. Each stream is located at one node. We
vary the partition number of our partition functions to examine the sensitivity of
the PMJoin. Note that when the partition number is equal to 1, it is the same as
the scheme without partitioning. When the partition number is the same as the
data range, there is only one value in each partition. To examine the effect of the
different partition methods, we study two cases: (1) the values in a “hot spot” is
randomly spread over the data range (Random Hot Spot: RHS); (2) the values are
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Fig. 8. Performance of PMJoin
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contiguously located in the data range (Contiguous Hot Spot: CHS). Under each
case, we also study two senarios: similar distribution (SD) and different distribution
(DD) mentioned in Section 4.1. The results are shown in Figure 8. When streams
have similar distributions, PMJoin has only moderate improvement over the non-
partitioning approach. That is because the frequent values among the streams are
similar. That means most of the substreams would have similar plans as that of the
non-partitioning scheme. However, in the case of different distributions, we found
that large communication cost can be saved even when the streams are partitioned
into only two substreams. The reason is the optimal plans of the substreams are
much different from each other. PMJoin optimizes their plans independently, hence
results in less communication cost. Furthermore, as we can see, finer granularities
of the partition function can result in larger improvements.

Furthermore, in Figure 8(a), range partition works the best most of the time.
That is because in this situation, the groups of FStreams in a contiguous range
would have similar optimal plans. Rate-based partition works better only when
there are two partitions. The bad performance of Rate-based partition is due to the
fact that the data distributions are all zipfian distributions. When there are more
than two partitions, most of the groups of FStreams would have the same sorted list
and hence the same vector Vk. So the distances between them are all 0. As a result,
the k-Means clustering algorithm randomly places them into different partitions.
However, for the other three conditions, rate-based partition works persistently the
best. This is attributed to its ability to identify those groups of FStreams that have
similar optimal plans. Range partition loses its advantage because those groups of
FStreams having similar optimal plans are not contiguous. It works worse than
hash partition when the hot spot is randomly spread over the data range.

One may worry that PMJoin would bring too much routing overheads due to
its more complicated routing mechanisms (each substream has a different routing
order). Here we conduct another experiment to measure its overhead. The con-
figurations are the same as the experiment above. We use our implementation to
compare the routing cost of PMJoin with different number of partitions. Figure 9
shows the cpu time used for routing in each second. Surprisingly, most of the time,
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PMJoin has even lower routing cost than the scheme without partitioning (i.e. par-
tition number = 1). This can be attributed to the ability of PMJoin to minimize
the communication cost. Because fewer tuples are routed in PMJoin, its routing
cost is smaller. PMJoin is more powerful in the case of different data distribution,
hence its routing cost is much lower than the scheme without partitioning in this
case. In addition, a better partitioning scheme further reduces more routing cost.

In the third experiment, we study the sensitivity of PMJoin to the number of
streams. The distributions of the streams are randomly selected which is similar
to the “Different Distributions” above. The results are presented in Figure 10. We
only present the results when the partition number is 1, 500 and 1000, respectively.
The others would lie between them. We can see that with increasing number of
streams, PMJoin has larger improvement over the scheme without partitioning.
Rate-based partition works the best under various number of streams. Range par-
tition works better than hash partition for contiguous hot spot, while the reverse is
true for randomly spread hot spot. Interestingly, with the increase in the number
of streams, the cost of the scheme without partitioning increases while those of
most of the PMJoin schemes decrease. Note that the distributions of the streams
in this experiment are different, hence with more number of streams, the selectivity
of the query is decreased. That means more tuples can be dropped before reach-
ing the output, which can save the communication cost. PMJoin provides more
opportunities to exploit this effect by using different plans for different group of
substreams.

4.3 Multi-Joins on Different Attributes

In this section, we examine our techniques for multi-join queries whose equality
predicates involve different attributes. We compare our heuristics to select the
PMJoin operator with two other approaches: (1) Random: replace the step 1 and
2 in the heuristic with a random selection; (2) Alternative: choose from those not
selected by the heuristic algorithms. We randomly select 20 streams with different
distributions. Their arrival rates vary from 100 to 1000 tuples/second and their
window sizes vary from 10 seconds to 100 seconds. These streams are randomly
allocated to 10 nodes. 200 random queries are generated with the number of joining
attributes varied from 3 to 7. We get the average resulting cost of these queries
under the three approaches. Figure 11 shows the results under different data ranges.
In all the cases, the scheme without partitioning performs the worst. With larger
data ranges (i.e. lower selectivity), the partition-based scheme is more beneficial.
Furthermore, our heuristic outperforms the other two approaches.



5 Conclusion

In this paper, we studied the optimization of multi-join queries over distributed
data streams. We proposed a heuristic optimization algorithm to minimize the
communication cost. Furthermore, a partition-based join scheme: PMJoin was
presented. Different partition techniques were discussed and heuristics to utilize
PMJoins were also proposed. Our performance study showed that our techniques
can sufficiently reduce the communication cost of the system. Although we propose
the techniques under the context of distributed stream processing, the techniques
can also be adapted to traditional distributed database systems. Further perfor-
mance study in this context is required.
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