

Stream Warehousing with DataDepot
Lukasz Golab, Theodore Johnson, J. Spencer Seidel, and Vladislav Shkapenyuk

AT&T Labs – Research
180 Park Avenue, Florham Park, NJ, USA 07950

 {lgolab,johnsont,spence,vshkap}@research.att.com

ABSTRACT
We describe DataDepot, a tool for generating warehouses from
streaming data feeds, such as network-traffic traces, router alerts,
financial tickers, transaction logs, and so on. DataDepot is a
streaming data warehouse designed to automate the ingestion of
streaming data from a wide variety of sources and to maintain
complex materialized views over these sources. As a streaming
warehouse, DataDepot is similar to Data Stream Management
Systems (DSMSs) with its emphasis on temporal data, best-effort
consistency, and real-time response. However, as a data
warehouse, DataDepot is designed to store tens to hundreds of
terabytes of historical data, allow time windows measured in
years or decades, and allow both real-time queries on recent data
and deep analyses on historical data. In this paper we discuss the
DataDepot architecture, with an emphasis on several of its novel
and critical features. DataDepot is currently being used for five
very large warehousing projects within AT&T; one of these
warehouses ingests 500 Mbytes per minute (and is growing). We
use these installations to illustrate streaming warehouse use and
behavior, and design choices made in developing DataDepot. We
conclude with a discussion of DataDepot applications and the
efficacy of some optimizations.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration – Data
warehouse and repository.

General Terms
Algorithms, Design.

Keywords
Data stream warehousing, Real-time data warehousing.

1. INTRODUCTION
Data warehouses are used for complex off-line analysis of data
periodically collected from operational databases. On the other
hand, Data Stream Management Systems (DSMSs) process
relatively simple queries on “live” data feeds. Streaming
warehouses (also known as active warehouses [10]) combine
these two technologies for applications that perform data mining

and analysis in near real-time. For example, an Internet Service
Provider (ISP) may collect various data streams from its network,
including system logs and router CPU-usage measurements. By
capturing these streams in a warehouse, the ISP may compare
new results with historical patterns, correlate events across
streams, etc. Other examples of streaming data feeds include
financial tickers, point-of-sale purchase transactions, sensor data,
and results of scientific experiments.
Data streams are usually append-only. For example, a typical
stream of router CPU-usage polls may consist of three fields,
timestamp, router, and CPU_usage, with new records generated
by each router every minute and existing records never modified.
In that sense, a streaming warehouse is similar to a DSMS, with
its emphasis on append-only temporal (timestamped) data, best-
effort consistency (data may arrive out-of-order), and near real-
time response to newly arrived data. However, a streaming
warehouse must also manage tens to hundreds of terabytes of
historical data, allow time windows measured in years or decades,
and allow both real-time queries on recent data and deep analyses
on historical data.
In this paper, we describe DataDepot, a tool for generating
warehouses from streaming data feeds. DataDepot automates the
ingestion of streaming data and maintenance of complex
materialized views in an underlying relational database. We
discuss the architecture of DataDepot, its novel features, and the
issues which drove its design choices. Notable aspects include:
• An Extract-Transform-Load (ETL) process that treats raw

data as a non-materialized view—a useful flexibility for
understanding properties of data feeds before an expensive
ingest.

• DataDepot uses a timestamp-based horizontal partitioning
scheme for storing very large tables. However, most tables
have several timestamps (start time, end time, arrival time,
transaction time, etc.). We discuss a flexible timestamp
correlation mechanism which allows any of these timestamps
(contained in a user- or table-defining query) to constrain the
partitions used in answering the query.

• A flexible method for maintaining multiple layers of derived
tables (materialized views) using partition dependencies.

• Support for real-time tables, including a hierarchy-aware
update manager, which incorporates a novel real-time
scheduling algorithm [5], and architectural features for
performing real-time updates on historical tables (having
time windows measured in months or years).

• Query and table consistency issues that arise in a streaming
warehouse: Do we answer a query with the most recent
possible data, or with the most recent stable data? How do
we know when data are stable?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06...$5.00.

847

• A Warehouse Dashboard allowing the DBA to track the
current status of hundreds of streaming tables, monitor data
feed errors and data quality problems, track resource usage,
and raise alerts about looming problems.

• Streaming data-quality monitoring tools, including
conditional integrity constraints [6], sampling very large
tables to estimate data quality [2], and detecting missing and
extraneous data.

DataDepot is currently being used for five very large warehousing
projects within AT&T; one of these warehouses ingests 500
Mbytes per minute (and is growing), another contains 400+ (and
growing) tables derived from complex streaming feeds and is
managed by a single DBA. We use these installations to illustrate
streaming warehouse use and behavior, and design choices made
in developing DataDepot. We conclude with some performance
measurements to illustrate the efficacy of some DataDepot
optimizations.

2. OVERVIEW
DataDepot is a stream-data warehouse, and its data-management
policies resemble those of a DSMS: pervasively temporal data, an
emphasis on materialized views (i.e., continuous queries), and
best-effort data consistency. In this section, we present an
overview of DataDepot warehouse definition and view
maintenance.
A DataDepot warehouse is a set of table definitions and database
management scripts. The system architecture of a typical
DataDepot warehouse is shown in Figure 1. We assume that an
external feed-management process delivers raw data files from
which the warehouse is (mostly) derived. Raw files may be
generated by any of a large number of external sources and may
arrive with widely varying frequencies. In our applications, the
data feeds include Netflow (http://www.cisco.com/go/netflow)
records, network-performance measurements (e.g., SNMP
(http://tools.ietf.org/html/rfc1157) polls), and various system logs
and alerts. In order to generate a DataDepot warehouse, the user
writes a set of configuration files containing the definitions of the
raw and derived tables, which will be discussed below. From the
user-supplied configuration files, DataDepot generates table
definitions as well as warehouse-maintenance scripts that are
executed by the update manager.

Figure 1. DataDepot warehouse model.

Each table maintained by DataDepot is horizontally partitioned on
a timestamp attribute, forming a contiguous temporal window. As
newer data arrive, new partitions are created as is necessary to
store the data. Correspondingly, the oldest partitions are dropped
to maintain a constant window size. While a DSMS might
maintain a view window of seconds to hours, DataDepot
maintains windows of months to years.
Currently, DataDepot uses Daytona [7] as its underlying database
but can be adapted to other relational databases. Users write
queries in EMF-SQL [8], which is an extension of SQL that
supports complex grouping conditions. DataDepot exploits
correlations between the partitioning attributes and other temporal
fields (as specified by users in the configuration files) to rewrite
queries in a way that minimizes the number of partitions that need
to be accessed (see Section 2.3.5). The rewritten queries are
processed by Daytona.
Daytona has two advantages that make it an attractive DBMS for
large-scale warehousing. First, it translates all of its queries to
efficient C code, making it a very fast database. Second, it
supports large-scale horizontal partitioning using a readily
accessible partition directory. Partition directories contain a
variety of useful metadata, such as the temporal range of the data
in each partition, time of last update, etc. DataDepot makes
extensive use of these partition directories.

2.1 Raw Tables
Data sources and their ETL processes are encapsulated as Raw
tables. In its most basic form, a Raw table is a non-materialized
view of the source data files that comprise a table. Creating a
non-materialized view of the raw data files comprises four tasks:
finding the raw data files (especially new data files), classifying
the files, extracting their contents, and organizing the contents as
a relational record. The last task is similar to a standard “create
table” statement that specifies attribute names, types, and various
constraints (not null, etc.). The first three tasks are described
below.
File finding: The source files for a table are generally placed in a
particular directory and have particular names. When updating a
Raw table, DataDepot calls a file finder that searches the specified
directory for all files matching the specified pattern. New files
(those not already in the Raw-table partition directory) comprise
the update delta to the Raw table. While DataDepot provides
default file finders, custom file-finding programs can be used
instead—e.g., search for only the most recent files (a significant
performance gain when the collection of raw files is large), or
ignore the newest file, which may be in the process of being
transferred by the feed management process.
File classification: The raw-file directory structure and naming
convention often contains useful metadata, which might not exist
in the data-file contents. For example, the data for the Raw table
WebHits might be stored in a file whose path has the pattern
/data/feeds/YYYY/MM/DD/Hits_source_hhmmss.dat.gz, where
YYYY-MM-DD, hh:mm:ss indicates the time at which the data was
gathered to be transmitted to the warehouse, and source indicates
the server farm where the data was gathered. DataDepot may be
instructed to extract this metadata, include it in the schema of the
raw table, and use the temporal information for partitioning.
Data extraction: A Raw-table configuration file must specify a
program to extract data from the raw files. Usually, the program

Raw files

DataDepot

- Scripts for updating
Raw & Derived tables
- Update manager
- Partition aware query
rewrite

Database

Raw and
Derived
tables

Queries Raw and Derived table definitions

Server

Data Feeds

848

is as simple as gzcat but in some cases involves data
transformation (e.g., convert timestamps to GMT).
Useful warehouses have many levels of dependent materialized
views; therefore, the Raw tables must supply enough information
to efficiently propagate updates. The DataDepot update
propagation process depends on two information structures: 1)
partitioning a table based on the value of a timestamp field, and 2)
marking the partitions of a table with a last-update timestamp.
In a streaming warehouse, each table contains one or more
timestamp fields. The values of these timestamp fields (e.g., a
datestamp and a clockstamp) should generally be larger in the
newer data than in the older data. Each table must specify a
monotonic increasing function by which one or more timestamp
fields may be mapped to an integer (e.g., to partition a table by
hour, convert the timestamp to Unix time and divide by 3600).
The value returned by this function is the temporal partitioning
attribute of a table.
As elaborated in Section 2.2, Derived tables must specify the
relationship between their partitions and the partitions of their
sources; when a source partition is updated, DataDepot
propagates changes to the appropriate partition(s) of the derived
table. Thus, when a Raw table is updated, we need to know
which of its partitions have changed.
First, suppose that the partitioning attribute is computed from file
paths and names during the file classification process; we call this
type of Raw table a direct Raw table. In this case, DataDepot
maintains the assignment of data files to partitions in the partition
directory. When the update manager executes an update of a Raw
table and the file finder identifies new files, the names of these
files are added to the metadata of the corresponding partitions,
and the last-update times of partitions that received new files are
set to the current time. A direct Raw table is not materialized
(records are extracted from new files only when updating a
derived table).
Now suppose that the partitioning attribute references timestamps
inside individual records. This necessitates a different kind of
table, what we call an indirect Raw table. In this case, DataDepot
must scan the contents of the raw files to determine the updated
partitions. Extracting data from raw files is generally very
expensive; we would prefer to perform this step only once.
Therefore, we extract the contents of the new files in an indirect
Raw table into a hidden “Loaded-to” table. The extraction query
is a “Select *” query, which has a simple and efficient algorithm
for an incremental materialized-view update: append the contents
of the Raw-table delta to the (partition-wise) end of the Loaded-to
table. As before, the partition directory of the Loaded-to table
must maintain the last-update times of each partition.

2.2 Derived Tables
While Raw tables are non-materialized views (aside from Loaded-
to derived products) representing data sources, Derived tables are
materialized views and are therefore the tables that users normally
query. A Derived table is defined by an EMF-SQL query over
one or more source tables, which may themselves be raw or
derived. The dependencies between tables may be of arbitrary
complexity and depth (system resources permitting) as long as the
dependency graph is acyclic (except for special cases). A
configuration file for a Derived table must specify the defining
query, the set of indices to build, the data and index directories,
the partitioning function, and the priority of the table..

The queries used to define Derived tables may be of arbitrary
complexity, and therefore might not be an efficient incremental
view maintenance algorithm for the table. Therefore, DataDepot
completely recomputes some Derived table partitions during the
table update process. To ensure efficient updates, we rely on
partition sizes being set such that partitions rarely get recomputed,
and on precisely identifying which partitions need to be
recomputed. To do so, the configuration must specify, for each
source table, a lower bound and an upper bound of range of
source partitions that affect data in a destination partition of the
derived table. These bounds are expressed as source lower bound
(SLB) and source upper bound (SUB) functions. Three examples
are shown in Figure 2. Suppose the source table S has eight
partitions of size one hour each. In the first example, the Derived
table D also has eight one-hour partitions. In the second, D has
four 2-hour partitions, and in the third, D is a five-hour moving
average over the data in S.

SLB(p; S) = p
SUB(p; S) = p

S

D

SLB(p; S) = 2p
SUB(p; S) = 2p + 1

SLB(p; S) = p - 3
SUB(p; S) = p

Figure 2. Examples of Source Dependencies

When a source table S of Derived table D is updated, we need to
determine which partitions of D need to be recomputed. In
principle, we can do this using the following algorithm:
Update_Set = {}
For each partition p in D’s partition directory
 For each partition p’ between SLB(p) and SUB(p)
 If p’ in S’s partition directory has a larger
 last-update timestamp than that of p in D’s
 partition directory
 Add p to the Update_Set

In practice, we compute the inverse of SLB and SUB (denoted
SLB-1 and SUB-1) and use them to compute Update_Set as
follows:
Update_Set = {}
For each partition p in S’s partition directory
 For each partition p’ between SLB-1(p) and
 SUB-1(p)
 If p in S’s partition directory has a larger
 last-update timestamp than that of p’ in D’s
 partition directory, or if p’ does not exist
 in D’s partition directory
 Add p’ to the Update_Set

Using SLB-1 and SUB-1 to compute Update_Set has the advantage
of being a simpler procedure for determining when D’s window
advances in response to S’s window advancing. The disadvantage

849

is that SLB and SUB must be invertible. We have not yet
encountered a case in which SLB and SUB were not invertible.

2.3 Issues and Features
In this section, we summarize a variety of issues and features in
DataDepot and the concerns which drove them.

2.3.1 Data Loading Via Files and Queries
In DataDepot, all Derived tables are defined by queries over other
tables, ultimately over Raw tables, which are derived from raw
data files. This architecture incurs some limitations—all data are
generated externally, and there are no user inserts, deletes or
updates. However, the benefits outweigh these limitations. Since
all processing after the arrival of raw data is defined by explicit
queries, the provenance of the data in all Derived tables is
documented. This makes table definitions easier to understand,
and makes the warehouse self-documenting. Furthermore, the
completely declarative specification of the warehouse enables
optimizations, especially multi-query optimizations. Finally, the
loading-by-query architecture enables inexpensive but effective
concurrency control and recovery, as discussed below.

2.3.2 Late Data
DataDepot is designed with the assumption that data generally
arrive in temporal order, i.e., that the new data for a table will be
placed in partitions whose temporal partitioning attribute has a
value larger than those of existing partitions. Ideally, partitions
should be sized so that their contents are computed only once.
However, one cannot in general count on data arriving in order—
our experience is that delays of hours to days are common. The
problem of late data is the motivation for indirect Raw tables,
where individual record timestamps may be different from the file
timestamp.

2.3.3 Multi-version Concurrency Control (MVCC)
A data warehouse must ensure atomicity and recoverability. The
simple update model adopted by DataDepot enables MVCC via
partition directory swapping. When a table is being updated, a
temporary partition directory is created that points to temporary
copies of all the partitions that must be added or recomputed. At
the end of the update, the temporary partition directory is
swapped in place of the old directory in an atomic step. When a
query accesses a table, it locks the partition directory via a shared
lock, copies the locations of the necessary partitions, and releases
the lock immediately. Thus, queries that started before an update
continue to use the old directory. This model is similar to
previous work on concurrency control in data warehouses, which
describes maintaining multiple logical versions of the warehouse
so that updates do not interfere with long-running queries (see,
e.g., [11]). However, DataDepot implements partition-level
versioning, not tuple-level versioning.
Since all of the data products in DataDepot are derived via a chain
of one or more queries over raw data sources, recovery ultimately
depends on the raw data. Late data are handled by indirect Raw
tables. If a file needs to be deleted or replaced, the corresponding
Raw table partition must be recomputed, and the normal update
process propagates the revised data to all affected Derived tables.

2.3.4 Temporal Metadata
The “star schema” layout of a data warehouse assumes that while
the fact table might be temporal, the dimension tables are

generally static. We have found that this assumption generally
does not hold, though the metadata tables might change slowly.
For example, SNMP data feeds from various routers may not
contain router names but rather the IP addresses of the router
interfaces. A separate table contains the interface IP address-to-
router name mapping, which may change from day to day. Thus,
the only way to reliably model the state of the network in the past
is to maintain this dimension table as another streaming table.

2.3.5 Temporal Correlation
Streaming data typically have more than one timestamp. A record
might represent an interval of time (e.g., Netflow data, customer
interaction) and therefore has both a start and an end timestamp.
Timestamps may also be assigned by several entities: the local
server, the data poller, and so on. A data record might have a
Unix timestamp as well as a date stamp; users typically prefer to
query using easily understood datestamps rather than cryptic Unix
timestamps. Each of these timestamps tends to be highly
correlated, e.g., start and end times may be at most 30 minutes
apart. A Derived-table configuration file allows the user to
specify which temporal fields are correlated. Using this
information, DataDepot rewrites queries with range predicates on
the correlated timestamps by adding range predicates on the
partitioning fields, which reduces the number of partitions that
need to be accessed.

3. REAL TIME AND HISTORICAL DATA
A fundamental feature of a streaming warehouse is that it allows
queries on both real-time (very recent) as well as historical (aged)
data. Real-time data warehouses require specializations that can
conflict with the needs of historical warehouses. In this section,
we describe how DataDepot supports both real-time and historical
data.

3.1 Variable Partitioning
A major component of the cost of adding data to a warehouse is
index rebuilding. We can overcome this cost by using small
partitions; e.g. if we update a table every five minutes, we use
five-minute partitions. However, very small partitions impose a
significant overhead for historical tables, for which large
partitions are preferable. If we want to store a 2-year window on
a table using 5-minute partitions, we would need 210,240
partitions total. Such a large number of partitions slows down
queries, e.g., to retrieve data for a particular day the warehouse
would need to scan 288 separate indices. By using daily
partitions, we can reduce the number of partitions to an easily
manageable 730.
DataDepot offers a combined real-time/historical table, which
uses variable partitioning to manage a historical (e.g. 2-year) table
with real-time (e.g. 5 minute) updates. The most recent portion of
the table is finely partitioned (say, 5-minutes), while the older part
is coarsely partitioned (say, 4 hours or one day). When a
collection of fine-grained partitions ages out of the real-time
window (say, the most recent 3 days), it is rolled up into a coarse
partition. The DataDepot update propagation algorithm (Section
2.2) and the temporal attribute correlations (Section 2.3.5) all
work with variable partitioning.

3.2 Real-Time Scheduling
A typical streaming warehouse ingests dozens to hundreds of data
feeds and supports several times that many Derived tables. The
stream sources can be highly bursty, at times providing several

850

times more data than average. While the warehouse server might
be a large parallel and/or clustered server, we still need to enforce
resource control to avoid overwhelming resources and incurring
(memory, disk-arm, CPU cache) thrashing. The real-time aspect
of DataDepot warehouses requires that the resource controller be
a real-time scheduler to ensure that the important tables (as
determined via user-defined priorities specified in the
configuration files) are kept as fresh as possible.
DataDepot faces an unusual real-time scheduling problem. For
one, update tasks (increments to a table) can be deferred but
cannot be dropped. The scheduler must account for frequent
overload conditions during which low-priority tables can be
deferred, but important tables must be kept fresh. The natural
periodicity of the table updates in a typical warehouse can range
from one minute to one day, with corresponding variations in
update execution times. Finally, Derived tables form a loads-
from hierarchy; therefore, the table update tasks also form a
hierarchy as a Derived table can be updated only when all of its
source tables have been updated.
We have developed new real-time scheduling algorithms [5] that
minimize the weighted staleness (difference between the current
time and the most recent data in a table) of a streaming
warehouse. We have incorporated the best algorithm into the
Update Manager, which also ensures that only one update of a
table runs at a time, understands table dependencies so that a table
update is invoked only when beneficial, and provides informative
logs of update status.

4. DATA CONSISTENCY
By design, a streaming data warehouse attempts to load new data
as frequently as possible. Thus, it is not clear which subset of the
data is “consistent” or “stable”. DataDepot determines data
stability using the concepts of a trailing edge and a leading edge.
A reasonable definition of data consistency is as follows: a query
on any table T must return the same answer as an equivalent
query directly on T’s sources at some point in the past or present.
Suppose that T is derived from a sliding window join of tables T1
and T2, which have been updated at times 10:00 and 10:05,
respectively, and that these updates have been propagated to T
immediately. If T1 and T2 can incur arbitrary updates (inserts,
deletes, or modifications), it may not be possible to “consistently”
answer a query on T such that the result reflects the state of T1
and T2 as of, say, 10:00 (unless we stored each version of every
record and were able to “roll back” the state of T2 to time 10:00).
Fortunately, the append-only nature of data streams simplifies
consistency issues in a streaming warehouse. For now, suppose
that all data arrive in timestamp order. When evaluating a query
on T, we can “extract” the state of T2 as of time 10:00 by
ignoring records with T2-timestamps greater than 10:00 (we
assume that all timestamps are retained when creating derived
tables from multiple sources).
Formally, let Fi(τ) be the freshness of (a raw or derived) table i at
time τ, defined as the maximum timestamp of any record in table i
at that time. We define the leading edge of a set of tables Τ at
time τ as the maximum timestamp of any record in any of the
tables, i.e., maxi in Τ(Fi(τ)). We also define the trailing edge of Τ
at time τ as mini in Τ(Fi(τ)), i.e., the freshness of the least-fresh
table in the set. Note that DataDepot loads all the available data
(i.e., up to the leading edge). However, a consistent value for the
trailing edge point (with respect to the above definition) may be
computed by inserting timestamp predicates into the query.

Now, suppose that data may arrive out of order. Typically, there
is a limit on the degree of disorder, e.g., SNMP data arrive at most
one hour late (and are discarded if they arrive more than an hour
late). Some sources may insert punctuations [12] into the data
stream to explicitly inform the warehouse that, e.g., no more
records with timestamps older than t will arrive in the future. We
define the safe trailing edge of a set of tables Τ as mini in Τ(F’i(τ)),
where F’i is the “safe” freshness of table i, i.e., the maximum time
value such that no record with a smaller timestamp can arrive in
the future. Returning to the above example, suppose that T1 has
been updated at time 10:00 and we know that no more records
with timestamps smaller than 9:58 will arrive. Further, T2 has
been updated at time 10:05, and no more records with timestamps
smaller than 10:01 will arrive. Answering queries with respect to
the safe trailing edge of 9:58, rather than the trailing edge of
10:00, provides a consistent answer even with out-of-order
arrivals.

5. DATA QUALITY MONITORING
DataDepot benefits from a number of data-quality tools for very
large data sets that have been developed at AT&T. Typically,
data semantics are expressed using some integrity constraints such
as functional dependencies (FDs), inclusion dependencies, or
aggregate constraints. Data-quality issues manifest themselves as
violations of these constraints. For instance, we may expect each
interface on each router to report its traffic at least five times an
hour. The corresponding aggregate constraint may be expressed
as a group-by query on router, interface and hour of day, having a
count of at least five. Conversely, some measurements should
arrive at most every fifteen minutes (to avoid overloading the
routers), in which case router, interface, and Unix_time/(15*60)
should be a key. In either case, we may tolerate a small number
of violations, i.e., the constraints are approximate.
Streaming data are naturally heterogeneous—they are generated
from multiple sources and may change over time. Thus, a
constraint may not hold on an entire table and/or over a long
period of time. The idea of a pattern tableau was proposed in [3]
to concisely represent the subset of a table on which an FD
applies. For each attribute participating in the constraint, a
pattern consists of a value from the attribute's domain or a
wildcard pattern, represented as a dash. We have developed an
algorithm for mining pattern tableaux from the data in order to
determine which subsets satisfy and fail an FD or an aggregation
constraint [6]. For instance, recall the above aggregation
constraint on traffic reports. A possible tableau indicating subsets
that fail the constraint (i.e., those interfaces which are sending out
fewer than five reports per hour) is shown in Table 1. The first
pattern matches all interfaces on all routers of type backbone as
reporting fewer than five traffic polls per hour at all times. The
second pattern identifies all interfaces on a particular edge router,
namely Edge_router_5, as being problematic. The third pattern
matches all measurements, regardless of the router or interface,
received between 10:00 and 10:59 on January 5, 2009. This
concise representation of offending subsets is easier to understand
and analyze than a raw stream of report counts for each router,
interface and hour.

851

Table 1. Example of a Pattern Tableau for a Conditional
Integrity Constraint

Router Interface Router type Timestamp Hour
- - backbone -
Edge_router_
5

- edge -

- - - 2009-01-05, 10:00

In addition to data heterogeneity, the large volume of data in a
streaming warehouse makes it difficult to characterize data
quality. Many data warehouses store random samples for
(approximately) answering simple queries [1]. While random
samples are sufficient to estimate simple data quality checks, such
as counts of records belonging to particular routers or interfaces,
they are inadequate for reliably estimating the degree to which
FDs and Conditional FDs (CFDs) hold. In [2], we have
developed new sampling algorithms that produce compact
summaries for estimating the confidence of FDs and CFDs with
bounded error.

5.1 Warehouse Dashboard
A perpetual problem in warehouse management is ensuring the
continued availability, quality, and freshness of the warehouse.
While the scheduling and data-quality monitoring tools described
in Sections 3.2 and 5 are of invaluable help, many problems
remain. Ensuring the quality and delivery of a single data feed
from a single source can be problematic; ensuring the quality and
delivery of hundreds of data feeds collected globally is generally
quite difficult. Other problems arise: table updates encounter
problems for a variety of reasons, the warehouse server becomes
overloaded and cannot update all tables, and so on.
We have developed a Warehouse Dashboard to provide an at-a-
glance view of the current state of the warehouse. The most
critical view is the freshness of each of the tables—essential
information for the DBA and the database user alike. Additional
views show error logs of the raw feed ingest processes, and the
volume of data in a table over time. The Warehouse Dashboard is
also a metadata repository, much of which is automatically
collected from DataDepot configurations and user-defined
function archives. We are continuing to add informative views of
the warehouse contents, with additional data statistics and data
quality reports.

6. APPLICATIONS
We have used DataDepot to build five very large data warehouses
thus far. Four of these are production data warehouses ingesting
upwards of 500 Mbytes/minute and growing. The most complex
warehouse is maintained by AT&T Labs-Research to correlate
many network performance, configuration, and status feeds that
were previously maintained separately.
The network warehouse was developed to enable research on a
variety of issues that cross the usual “silos” of network-data
repositories. Currently, this warehouse loads more than 140 data
feeds from 25 distinct silos, giving rise to over 140 Raw and 260
Derived tables. The shallow hierarchy reflects the research nature
of the warehouse: the emphasis is on providing researchers with
access to the data rather than on generating specific reports.
Tables of special interest tend to have deeper layers of Derived
tables—a continuing process as we gain expertise with the data.
One-third of the tables are loaded at about 15 minute intervals; the

others are loaded at about 8 hour intervals. Based on the many
requests we have received, we plan to move many tables to 5-
minute or 1-minute update schedules. The temporal windows on
the tables range from 1 month to 2 years.
Being a project in Research, the network warehouse is run with
limited resources. There is only one DBA for the project. Many
of the tables have been defined by the researchers who are
familiar with the feed and need the data. The Do-It-Yourself,
low-budget aspect of this project was a strong impetus for the
Warehouse Dashboard (Section 5.1), as auto-documentation and a
clear readout of the warehouse status are critical.
The production applications of DataDepot tend to be better
planned and supported. A typical silo’ed application will have
perhaps a dozen raw feeds, ingested at 5 minute intervals, and
deep levels of Derived tables corresponding to the variety of
reports required for the application.
Although this paper is about the architecture of DataDepot rather
than specific optimizations, we can report of the effectiveness of
the temporal correlation optimization described in Section 2.3.5.
One table, storing SNMP measurements, contains 410 Gbytes of
data and is partitioned on the Unix timestamp. However, users
typically query on the datestamp, so we added a correlation
between datestamp and Unix timestamp in the warehouse
configuration. Using the correlation, a query for a single day’s
worth of data takes 125 seconds; without the correlation the same
query takes 7401 seconds.

7. CONCLUSIONS
We have described DataDepot—a tool for generating and
maintaining streaming data warehouses in an underlying
relational database. We have highlighted several issues that must
be handled by a streaming warehouse, including loading new data
in near real-time, combined queries against recent and historical
data, maintenance of complex derived tables, dealing with
multiple timestamps and with out-of-order data, data consistency,
and streaming data quality.
We are continuing to develop DataDepot in order to improve its
efficiency and meet the needs of our users. For instance, we are
interested in distributing DataDepot across multiple machines to
speed up data ingestion (DataDepot already allows very large
tables to be distributed across file systems). We are also
interested in optimization techniques for updating materialized
views. The simple update propagation technique currently
employed by DataDepot always recomputes partitions. However,
there has been a great deal of work on incremental view
maintenance that is applicable to our problem, e.g., [4].
Similarly, multi-query optimization strategies can help improve
the efficiency of update propagation if multiple derived tables are
defined on a single source table, e.g., [9]. Other research issues
include streaming data consistency, streaming data quality, and
refinements to the real-time infrastructure.

8. REFERENCES
[1] P. Brown and P. Haas. Techniques for Warehousing of

Sample Data. ICDE 2006, 6.

[2] G. Cormode, L. Golab, F. Korn, A. MacGregor, D.
Srivastava, and X. Zhang. Estimating the Confidence of
Conditional Functional Dependencies. SIGMOD 2009, to
appear.

852

[3] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing data
inconsistencies. TODS 33(2) (2008).

[4] N. Folkert, A. Gupta, A. Witkowski, S. Subramanian, S.
Bellamkonda, S. Shankar, T. Bozkaya, and L. Sheng.
Optimizing refresh of a set of materialized views. VLDB
2005, 1043-1054.

[5] L. Golab, T. Johnson, and V. Shkapenyuk. Scheduling
Updates in a Real-Time Stream Warehouse. ICDE 2009, to
appear.

[6] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu. On
generating near-optimal tableaux for conditional functional
dependencies. PVLDB, 1(1): 376-390 (2008).

[7] R. Greer. Daytona and the fourth-generation language
Cymbal. SIGMOD 1999, 525-526.

[8] T. Johnson and D. Chatziantoniou. Extending complex ad-
hoc OLAP. CIKM 1999, 170-179.

[9] W. Lehner, B. Cochrane, H. Pirahesh, and M. Zaharioudakis.
fAST refresh using mass query optimization. ICDE 2001,
391-398.

[10] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis,
and N.-E. Frantzell. Supporting Streaming Updates in an
Active Data Warehouse. ICDE 2007, 476-485.

[11] D. Quass and J. Widom. On-line warehouse view
maintenance. SIGMOD 1997, 393-404.

[12] P. Tucker Punctuated Data Streams. Ph.D. Thesis, Oregon
Health & Science University, 2005.

853

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

