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ABSTRACT 
We describe DataDepot, a tool for generating warehouses from 
streaming data feeds, such as network-traffic traces, router alerts, 
financial tickers, transaction logs, and so on.  DataDepot is a 
streaming data warehouse designed to automate the ingestion of 
streaming data from a wide variety of sources and to maintain 
complex materialized views over these sources.  As a streaming 
warehouse, DataDepot is similar to Data Stream Management 
Systems (DSMSs) with its emphasis on temporal data, best-effort 
consistency, and real-time response.  However, as a data 
warehouse, DataDepot is designed to store tens to hundreds of 
terabytes of historical data, allow time windows measured in 
years or decades, and allow both real-time queries on recent data 
and deep analyses on historical data.  In this paper we discuss the 
DataDepot architecture, with an emphasis on several of its novel 
and critical features.  DataDepot is currently being used for five 
very large warehousing projects within AT&T; one of these 
warehouses ingests 500 Mbytes per minute (and is growing).  We 
use these installations to illustrate streaming warehouse use and 
behavior, and design choices made in developing DataDepot.  We 
conclude with a discussion of DataDepot applications and the 
efficacy of some optimizations.   

Categories and Subject Descriptors 
H.2.7 [Database Management]: Database Administration – Data 
warehouse and repository.  

General Terms 
Algorithms, Design. 

Keywords 
Data stream warehousing, Real-time data warehousing. 

1. INTRODUCTION 
Data warehouses are used for complex off-line analysis of data 
periodically collected from operational databases.  On the other 
hand, Data Stream Management Systems (DSMSs) process 
relatively simple queries on “live” data feeds.  Streaming 
warehouses (also known as active warehouses [10]) combine 
these two technologies for applications that perform data mining 

and analysis in near real-time.  For example, an Internet Service 
Provider (ISP) may collect various data streams from its network, 
including system logs and router CPU-usage measurements.  By 
capturing these streams in a warehouse, the ISP may compare 
new results with historical patterns, correlate events across 
streams, etc.  Other examples of streaming data feeds include 
financial tickers, point-of-sale purchase transactions, sensor data, 
and results of scientific experiments. 
Data streams are usually append-only.  For example, a typical 
stream of router CPU-usage polls may consist of three fields, 
timestamp, router, and CPU_usage, with new records generated 
by each router every minute and existing records never modified.  
In that sense, a streaming warehouse is similar to a DSMS, with 
its emphasis on append-only temporal (timestamped) data, best-
effort consistency (data may arrive out-of-order), and near real-
time response to newly arrived data.  However, a streaming 
warehouse must also manage tens to hundreds of terabytes of 
historical data, allow time windows measured in years or decades, 
and allow both real-time queries on recent data and deep analyses 
on historical data.   
In this paper, we describe DataDepot, a tool for generating 
warehouses from streaming data feeds.  DataDepot automates the 
ingestion of streaming data and maintenance of complex 
materialized views in an underlying relational database.  We 
discuss the architecture of DataDepot, its novel features, and the 
issues which drove its design choices.  Notable aspects include: 
• An Extract-Transform-Load (ETL) process that treats raw 

data as a non-materialized view—a useful flexibility for 
understanding properties of data feeds before an expensive 
ingest. 

• DataDepot uses a timestamp-based horizontal partitioning 
scheme for storing very large tables.  However, most tables 
have several timestamps (start time, end time, arrival time, 
transaction time, etc.).  We discuss a flexible timestamp 
correlation mechanism which allows any of these timestamps 
(contained in a user- or table-defining query) to constrain the 
partitions used in answering the query. 

• A flexible method for maintaining multiple layers of derived 
tables (materialized views) using partition dependencies. 

• Support for real-time tables, including a hierarchy-aware 
update manager, which incorporates a novel real-time 
scheduling algorithm [5], and architectural features for 
performing real-time updates on historical tables (having 
time windows measured in months or years). 

• Query and table consistency issues that arise in a streaming 
warehouse: Do we answer a query with the most recent 
possible data, or with the most recent stable data? How do 
we know when data are stable? 
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• A Warehouse Dashboard allowing the DBA to track the 
current status of hundreds of streaming tables, monitor data 
feed errors and data quality problems, track resource usage, 
and raise alerts about looming problems. 

• Streaming data-quality monitoring tools, including 
conditional integrity constraints [6], sampling very large 
tables to estimate data quality [2], and detecting missing and 
extraneous data. 

DataDepot is currently being used for five very large warehousing 
projects within AT&T; one of these warehouses ingests 500 
Mbytes per minute (and is growing), another contains 400+ (and 
growing) tables derived from complex streaming feeds and is 
managed by a single DBA.  We use these installations to illustrate 
streaming warehouse use and behavior, and design choices made 
in developing DataDepot.  We conclude with some performance 
measurements to illustrate the efficacy of some DataDepot 
optimizations. 

2. OVERVIEW 
DataDepot is a stream-data warehouse, and its data-management 
policies resemble those of a DSMS: pervasively temporal data, an 
emphasis on materialized views (i.e., continuous queries), and 
best-effort data consistency.  In this section, we present an 
overview of DataDepot warehouse definition and view 
maintenance. 
A DataDepot warehouse is a set of table definitions and database 
management scripts.  The system architecture of a typical 
DataDepot warehouse is shown in Figure 1.  We assume that an 
external feed-management process delivers raw data files from 
which the warehouse is (mostly) derived.  Raw files may be 
generated by any of a large number of external sources and may 
arrive with widely varying frequencies.  In our applications, the 
data feeds include Netflow (http://www.cisco.com/go/netflow) 
records, network-performance measurements (e.g., SNMP 
(http://tools.ietf.org/html/rfc1157) polls), and various system logs 
and alerts.  In order to generate a DataDepot warehouse, the user 
writes a set of configuration files containing the definitions of the 
raw and derived tables, which will be discussed below.  From the 
user-supplied configuration files, DataDepot generates table 
definitions as well as warehouse-maintenance scripts that are 
executed by the update manager. 

 
Figure 1.  DataDepot warehouse model. 

Each table maintained by DataDepot is horizontally partitioned on 
a timestamp attribute, forming a contiguous temporal window. As 
newer data arrive, new partitions are created as is necessary to 
store the data.  Correspondingly, the oldest partitions are dropped 
to maintain a constant window size.  While a DSMS might 
maintain a view window of seconds to hours, DataDepot 
maintains windows of months to years. 
Currently, DataDepot uses Daytona [7] as its underlying database 
but can be adapted to other relational databases.  Users write 
queries in EMF-SQL [8], which is an extension of SQL that 
supports complex grouping conditions.  DataDepot exploits 
correlations between the partitioning attributes and other temporal 
fields (as specified by users in the configuration files) to rewrite 
queries in a way that minimizes the number of partitions that need 
to be accessed (see Section 2.3.5).  The rewritten queries are 
processed by Daytona.  
Daytona has two advantages that make it an attractive DBMS for 
large-scale warehousing.  First, it translates all of its queries to 
efficient C code, making it a very fast database.  Second, it 
supports large-scale horizontal partitioning using a readily 
accessible partition directory.  Partition directories contain a 
variety of useful metadata, such as the temporal range of the data 
in each partition, time of last update, etc.  DataDepot makes 
extensive use of these partition directories. 

2.1 Raw Tables 
Data sources and their ETL processes are encapsulated as Raw 
tables.  In its most basic form, a Raw table is a non-materialized 
view of the source data files that comprise a table.  Creating a 
non-materialized view of the raw data files comprises four tasks: 
finding the raw data files (especially new data files), classifying 
the files, extracting their contents, and organizing the contents as 
a relational record. The last task is similar to a standard “create 
table” statement that specifies attribute names, types, and various 
constraints (not null, etc.).  The first three tasks are described 
below. 
File finding: The source files for a table are generally placed in a 
particular directory and have particular names.  When updating a 
Raw table, DataDepot calls a file finder that searches the specified 
directory for all files matching the specified pattern.  New files 
(those not already in the Raw-table partition directory) comprise 
the update delta to the Raw table.  While DataDepot provides 
default file finders, custom file-finding programs can be used 
instead—e.g., search for only the most recent files (a significant 
performance gain when the collection of raw files is large), or 
ignore the newest file, which may be in the process of being 
transferred by the feed management process. 
File classification: The raw-file directory structure and naming 
convention often contains useful metadata, which might not exist 
in the data-file contents.  For example, the data for the Raw table 
WebHits might be stored in a file whose path has the pattern 
/data/feeds/YYYY/MM/DD/Hits_source_hhmmss.dat.gz, where 
YYYY-MM-DD, hh:mm:ss indicates the time at which the data was 
gathered to be transmitted to the warehouse, and source indicates 
the server farm where the data was gathered.  DataDepot may be 
instructed to extract this metadata, include it in the schema of the 
raw table, and use the temporal information for partitioning. 
Data extraction:  A Raw-table configuration file must specify a 
program to extract data from the raw files.  Usually, the program 
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is as simple as gzcat but in some cases involves data 
transformation (e.g., convert timestamps to GMT). 
Useful warehouses have many levels of dependent materialized 
views; therefore, the Raw tables must supply enough information 
to efficiently propagate updates.  The DataDepot update 
propagation process depends on two information structures: 1) 
partitioning a table based on the value of a timestamp field, and 2) 
marking the partitions of a table with a last-update timestamp. 
In a streaming warehouse, each table contains one or more 
timestamp fields.  The values of these timestamp fields (e.g., a 
datestamp and a clockstamp) should generally be larger in the 
newer data than in the older data.  Each table must specify a 
monotonic increasing function by which one or more timestamp 
fields may be mapped to an integer (e.g., to partition a table by 
hour, convert the timestamp to Unix time and divide by 3600).  
The value returned by this function is the temporal partitioning 
attribute of a table. 
As elaborated in Section 2.2, Derived tables must specify the 
relationship between their partitions and the partitions of their 
sources; when a source partition is updated, DataDepot 
propagates changes to the appropriate partition(s) of the derived 
table.  Thus, when a Raw table is updated, we need to know 
which of its partitions have changed. 
First, suppose that the partitioning attribute is computed from file 
paths and names during the file classification process; we call this 
type of Raw table a direct Raw table.  In this case, DataDepot 
maintains the assignment of data files to partitions in the partition 
directory.  When the update manager executes an update of a Raw 
table and the file finder identifies new files, the names of these 
files are added to the metadata of the corresponding partitions, 
and the last-update times of partitions that received new files are 
set to the current time.  A direct Raw table is not materialized 
(records are extracted from new files only when updating a 
derived table). 
Now suppose that the partitioning attribute references timestamps 
inside individual records. This necessitates a different kind of 
table, what we call an indirect Raw table.  In this case, DataDepot 
must scan the contents of the raw files to determine the updated 
partitions.  Extracting data from raw files is generally very 
expensive; we would prefer to perform this step only once.  
Therefore, we extract the contents of the new files in an indirect 
Raw table into a hidden “Loaded-to” table.  The extraction query 
is a “Select *” query, which has a simple and efficient algorithm 
for an incremental materialized-view update: append the contents 
of the Raw-table delta to the (partition-wise) end of the Loaded-to 
table.  As before, the partition directory of the Loaded-to table 
must maintain the last-update times of each partition. 

2.2 Derived Tables 
While Raw tables are non-materialized views (aside from Loaded-
to derived products) representing data sources, Derived tables are 
materialized views and are therefore the tables that users normally 
query.  A Derived table is defined by an EMF-SQL query over 
one or more source tables, which may themselves be raw or 
derived. The dependencies between tables may be of arbitrary 
complexity and depth (system resources permitting) as long as the 
dependency graph is acyclic (except for special cases).  A 
configuration file for a Derived table must specify the defining 
query, the set of indices to build, the data and index directories, 
the partitioning function, and the priority of the table..   

The queries used to define Derived tables may be of arbitrary 
complexity, and therefore might not be an efficient incremental 
view maintenance algorithm for the table.  Therefore, DataDepot 
completely recomputes some Derived table partitions during the 
table update process.  To ensure efficient updates, we rely on 
partition sizes being set such that partitions rarely get recomputed, 
and on precisely identifying which partitions need to be 
recomputed.  To do so, the configuration must specify, for each 
source table, a lower bound and an upper bound of range of 
source partitions that affect data in a destination partition of the 
derived table.  These bounds are expressed as source lower bound 
(SLB) and source upper bound (SUB) functions.  Three examples 
are shown in Figure 2. Suppose the source table S has eight 
partitions of size one hour each.  In the first example, the Derived 
table D also has eight one-hour partitions.  In the second, D has 
four 2-hour partitions, and in the third, D is a five-hour moving 
average over the data in S. 

SLB(p; S) = p
SUB(p; S) = p

S

D

SLB(p; S) = 2p
SUB(p; S) = 2p + 1

SLB(p; S) = p - 3 
SUB(p; S) = p

 
Figure 2.  Examples of Source Dependencies 

When a source table S of Derived table D is updated, we need to 
determine which partitions of D need to be recomputed.  In 
principle, we can do this using the following algorithm: 
Update_Set = {} 
For each partition p in D’s partition directory 
  For each partition p’ between SLB(p) and SUB(p) 
    If p’ in S’s partition directory has a larger        
    last-update timestamp than that of p in D’s  
    partition directory 
      Add p to the Update_Set 

 
In practice, we compute the inverse of SLB and SUB (denoted 
SLB-1 and SUB-1) and use them to compute Update_Set as 
follows: 
Update_Set = {} 
For each partition p in S’s partition directory 
  For each partition p’ between SLB-1(p) and  
  SUB-1(p) 
    If p in S’s partition directory has a larger       
    last-update timestamp than that of p’ in D’s  
    partition directory, or if p’ does not exist  
    in D’s partition directory 
      Add p’ to the Update_Set 

 
Using SLB-1 and SUB-1 to compute Update_Set has the advantage 
of being a simpler procedure for determining when D’s window 
advances in response to S’s window advancing.  The disadvantage 
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is that SLB and SUB must be invertible.  We have not yet 
encountered a case in which SLB and SUB were not invertible. 
 

2.3 Issues and Features 
In this section, we summarize a variety of issues and features in 
DataDepot and the concerns which drove them. 

2.3.1 Data Loading Via Files and Queries 
In DataDepot, all Derived tables are defined by queries over other 
tables, ultimately over Raw tables, which are derived from raw 
data files.  This architecture incurs some limitations—all data are 
generated externally, and there are no user inserts, deletes or 
updates.  However, the benefits outweigh these limitations.  Since 
all processing after the arrival of raw data is defined by explicit 
queries, the provenance of the data in all Derived tables is 
documented.  This makes table definitions easier to understand, 
and makes the warehouse self-documenting.  Furthermore, the 
completely declarative specification of the warehouse enables 
optimizations, especially multi-query optimizations.  Finally, the 
loading-by-query architecture enables inexpensive but effective 
concurrency control and recovery, as discussed below. 

2.3.2 Late Data 
DataDepot is designed with the assumption that data generally 
arrive in temporal order, i.e., that the new data for a table will be 
placed in partitions whose temporal partitioning attribute has a 
value larger than those of existing partitions.  Ideally, partitions 
should be sized so that their contents are computed only once.  
However, one cannot in general count on data arriving in order—
our experience is that delays of hours to days are common.  The 
problem of late data is the motivation for indirect Raw tables, 
where individual record timestamps may be different from the file 
timestamp. 

2.3.3 Multi-version Concurrency Control (MVCC) 
A data warehouse must ensure atomicity and recoverability.  The 
simple update model adopted by DataDepot enables MVCC via 
partition directory swapping.  When a table is being updated, a 
temporary partition directory is created that points to temporary 
copies of all the partitions that must be added or recomputed.  At 
the end of the update, the temporary partition directory is 
swapped in place of the old directory in an atomic step.  When a 
query accesses a table, it locks the partition directory via a shared 
lock, copies the locations of the necessary partitions, and releases 
the lock immediately.  Thus, queries that started before an update 
continue to use the old directory.  This model is similar to 
previous work on concurrency control in data warehouses, which 
describes maintaining multiple logical versions of the warehouse 
so that updates do not interfere with long-running queries (see, 
e.g., [11]).  However, DataDepot implements partition-level 
versioning, not tuple-level versioning. 
Since all of the data products in DataDepot are derived via a chain 
of one or more queries over raw data sources, recovery ultimately 
depends on the raw data.  Late data are handled by indirect Raw 
tables.  If a file needs to be deleted or replaced, the corresponding 
Raw table partition must be recomputed, and the normal update 
process propagates the revised data to all affected Derived tables. 

2.3.4 Temporal Metadata  
The “star schema” layout of a data warehouse assumes that while 
the fact table might be temporal, the dimension tables are 

generally static.  We have found that this assumption generally 
does not hold, though the metadata tables might change slowly.  
For example, SNMP data feeds from various routers may not 
contain router names but rather the IP addresses of the router 
interfaces.  A separate table contains the interface IP address-to-
router name mapping, which may change from day to day.  Thus, 
the only way to reliably model the state of the network in the past 
is to maintain this dimension table as another streaming table. 

2.3.5 Temporal Correlation 
Streaming data typically have more than one timestamp.  A record 
might represent an interval of time (e.g., Netflow data, customer 
interaction) and therefore has both a start and an end timestamp.  
Timestamps may also be assigned by several entities: the local 
server, the data poller, and so on.  A data record might have a 
Unix timestamp as well as a date stamp; users typically prefer to 
query using easily understood datestamps rather than cryptic Unix 
timestamps.  Each of these timestamps tends to be highly 
correlated, e.g., start and end times may be at most 30 minutes 
apart.  A Derived-table configuration file allows the user to 
specify which temporal fields are correlated.  Using this 
information, DataDepot rewrites queries with range predicates on 
the correlated timestamps by adding range predicates on the 
partitioning fields, which reduces the number of partitions that 
need to be accessed. 

3. REAL TIME AND HISTORICAL DATA 
A fundamental feature of a streaming warehouse is that it allows 
queries on both real-time (very recent) as well as historical (aged) 
data.  Real-time data warehouses require specializations that can 
conflict with the needs of historical warehouses.  In this section, 
we describe how DataDepot supports both real-time and historical 
data. 

3.1 Variable Partitioning 
A major component of the cost of adding data to a warehouse is 
index rebuilding.  We can overcome this cost by using small 
partitions; e.g. if we update a table every five minutes, we use 
five-minute partitions.  However, very small partitions impose a 
significant overhead for historical tables, for which large 
partitions are preferable.  If we want to store a 2-year window on 
a table using 5-minute partitions, we would need 210,240 
partitions total. Such a large number of partitions slows down 
queries, e.g., to retrieve data for a particular day the warehouse 
would need to scan 288 separate indices.  By using daily 
partitions, we can reduce the number of partitions to an easily 
manageable 730. 
DataDepot offers a combined real-time/historical table, which 
uses variable partitioning to manage a historical (e.g. 2-year) table 
with real-time (e.g. 5 minute) updates.  The most recent portion of 
the table is finely partitioned (say, 5-minutes), while the older part 
is coarsely partitioned (say, 4 hours or one day).  When a 
collection of fine-grained partitions ages out of the real-time 
window (say, the most recent 3 days), it is rolled up into a coarse 
partition.  The DataDepot update propagation algorithm (Section 
2.2) and the temporal attribute correlations (Section 2.3.5) all 
work with variable partitioning. 

3.2 Real-Time Scheduling 
A typical streaming warehouse ingests dozens to hundreds of data 
feeds and supports several times that many Derived tables. The 
stream sources can be highly bursty, at times providing several 
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times more data than average.  While the warehouse server might 
be a large parallel and/or clustered server, we still need to enforce 
resource control to avoid overwhelming resources and incurring 
(memory, disk-arm, CPU cache) thrashing.  The real-time aspect 
of DataDepot warehouses requires that the resource controller be 
a real-time scheduler to ensure that the important tables (as 
determined via user-defined priorities specified in the 
configuration files) are kept as fresh as possible. 
DataDepot faces an unusual real-time scheduling problem.  For 
one, update tasks (increments to a table) can be deferred but 
cannot be dropped.  The scheduler must account for frequent 
overload conditions during which low-priority tables can be 
deferred, but important tables must be kept fresh.  The natural 
periodicity of the table updates in a typical warehouse can range 
from one minute to one day, with corresponding variations in 
update execution times.  Finally, Derived tables form a loads-
from hierarchy; therefore, the table update tasks also form a 
hierarchy as a Derived table can be updated only when all of its 
source tables have been updated. 
We have developed new real-time scheduling algorithms [5] that 
minimize the weighted staleness (difference between the current 
time and the most recent data in a table) of a streaming 
warehouse.  We have incorporated the best algorithm into the 
Update Manager, which also ensures that only one update of a 
table runs at a time, understands table dependencies so that a table 
update is invoked only when beneficial, and provides informative 
logs of update status. 

4. DATA CONSISTENCY 
By design, a streaming data warehouse attempts to load new data 
as frequently as possible.  Thus, it is not clear which subset of the 
data is “consistent” or “stable”.  DataDepot determines data 
stability using the concepts of a trailing edge and a leading edge. 
A reasonable definition of data consistency is as follows:  a query 
on any table T must return the same answer as an equivalent 
query directly on T’s sources at some point in the past or present.  
Suppose that T is derived from a sliding window join of tables T1 
and T2, which have been updated at times 10:00 and 10:05, 
respectively, and that these updates have been propagated to T 
immediately.  If T1 and T2 can incur arbitrary updates (inserts, 
deletes, or modifications), it may not be possible to “consistently” 
answer a query on T such that the result reflects the state of T1 
and T2 as of, say, 10:00 (unless we stored each version of every 
record and were able to “roll back” the state of T2 to time 10:00).  
Fortunately, the append-only nature of data streams simplifies 
consistency issues in a streaming warehouse.  For now, suppose 
that all data arrive in timestamp order.  When evaluating a query 
on T, we can “extract” the state of T2 as of time 10:00 by 
ignoring records with T2-timestamps greater than 10:00 (we 
assume that all timestamps are retained when creating derived 
tables from multiple sources). 
Formally, let Fi(τ) be the freshness of (a raw or derived) table i at 
time τ, defined as the maximum timestamp of any record in table i 
at that time.  We define the leading edge of a set of tables Τ at 
time τ as the maximum timestamp of any record in any of the 
tables, i.e., maxi in Τ(Fi(τ)).  We also define the trailing edge of Τ 
at time τ as mini in Τ(Fi(τ)), i.e., the freshness of the least-fresh 
table in the set.  Note that DataDepot loads all the available data 
(i.e., up to the leading edge).  However, a consistent value for the 
trailing edge point (with respect to the above definition) may be 
computed by inserting timestamp predicates into the query. 

Now, suppose that data may arrive out of order.  Typically, there 
is a limit on the degree of disorder, e.g., SNMP data arrive at most 
one hour late (and are discarded if they arrive more than an hour 
late).  Some sources may insert punctuations [12] into the data 
stream to explicitly inform the warehouse that, e.g., no more 
records with timestamps older than t will arrive in the future.   We 
define the safe trailing edge of a set of tables Τ as mini in Τ(F’i(τ)), 
where F’i is the “safe” freshness of table i, i.e., the maximum time 
value such that no record with a smaller timestamp can arrive in 
the future.  Returning to the above example, suppose that T1 has 
been updated at time 10:00 and we know that no more records 
with timestamps smaller than 9:58 will arrive.  Further, T2 has 
been updated at time 10:05, and no more records with timestamps 
smaller than 10:01 will arrive.  Answering queries with respect to 
the safe trailing edge of 9:58, rather than the trailing edge of 
10:00, provides a consistent answer even with out-of-order 
arrivals. 

5. DATA QUALITY MONITORING 
DataDepot benefits from a number of data-quality tools for very 
large data sets that have been developed at AT&T.  Typically, 
data semantics are expressed using some integrity constraints such 
as functional dependencies (FDs), inclusion dependencies, or 
aggregate constraints.  Data-quality issues manifest themselves as 
violations of these constraints.  For instance, we may expect each 
interface on each router to report its traffic at least five times an 
hour.  The corresponding aggregate constraint may be expressed 
as a group-by query on router, interface and hour of day, having a 
count of at least five.  Conversely, some measurements should 
arrive at most every fifteen minutes (to avoid overloading the 
routers), in which case router, interface, and Unix_time/(15*60) 
should be a key.  In either case, we may tolerate a small number 
of violations, i.e., the constraints are approximate. 
Streaming data are naturally heterogeneous—they are generated 
from multiple sources and may change over time.  Thus, a 
constraint may not hold on an entire table and/or over a long 
period of time.  The idea of a pattern tableau was proposed in [3] 
to concisely represent the subset of a table on which an FD 
applies.  For each attribute participating in the constraint, a 
pattern consists of a value from the attribute's domain or a 
wildcard pattern, represented as a dash.  We have developed an 
algorithm for mining pattern tableaux from the data in order to 
determine which subsets satisfy and fail an FD or an aggregation 
constraint [6].  For instance, recall the above aggregation 
constraint on traffic reports.  A possible tableau indicating subsets 
that fail the constraint (i.e., those interfaces which are sending out 
fewer than five reports per hour) is shown in Table 1.  The first 
pattern matches all interfaces on all routers of type backbone as 
reporting fewer than five traffic polls per hour at all times.  The 
second pattern identifies all interfaces on a particular edge router, 
namely Edge_router_5, as being problematic. The third pattern 
matches all measurements, regardless of the router or interface, 
received between 10:00 and 10:59 on January 5, 2009.  This 
concise representation of offending subsets is easier to understand 
and analyze than a raw stream of report counts for each router, 
interface and hour. 
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Table 1.  Example of a Pattern Tableau for a Conditional 
Integrity Constraint 

Router Interface Router type Timestamp Hour 
- - backbone - 
Edge_router_
5 

- edge - 

- - - 2009-01-05, 10:00 
 
In addition to data heterogeneity, the large volume of data in a 
streaming warehouse makes it difficult to characterize data 
quality.  Many data warehouses store random samples for 
(approximately) answering simple queries [1]. While random 
samples are sufficient to estimate simple data quality checks, such 
as counts of records belonging to particular routers or interfaces, 
they are inadequate for reliably estimating the degree to which 
FDs and Conditional FDs (CFDs) hold.  In [2], we have 
developed new sampling algorithms that produce compact 
summaries for estimating the confidence of FDs and CFDs with 
bounded error. 

5.1 Warehouse Dashboard 
A perpetual problem in warehouse management is ensuring the 
continued availability, quality, and freshness of the warehouse.  
While the scheduling and data-quality monitoring tools described 
in Sections 3.2 and 5 are of invaluable help, many problems 
remain.  Ensuring the quality and delivery of a single data feed 
from a single source can be problematic; ensuring the quality and 
delivery of hundreds of data feeds collected globally is generally 
quite difficult.  Other problems arise: table updates encounter 
problems for a variety of reasons, the warehouse server becomes 
overloaded and cannot update all tables, and so on. 
We have developed a Warehouse Dashboard to provide an at-a-
glance view of the current state of the warehouse.  The most 
critical view is the freshness of each of the tables—essential 
information for the DBA and the database user alike.  Additional 
views show error logs of the raw feed ingest processes, and the 
volume of data in a table over time.  The Warehouse Dashboard is 
also a metadata repository, much of which is automatically 
collected from DataDepot configurations and user-defined 
function archives.  We are continuing to add informative views of 
the warehouse contents, with additional data statistics and data 
quality reports. 

6. APPLICATIONS 
We have used DataDepot to build five very large data warehouses 
thus far.  Four of these are production data warehouses ingesting 
upwards of 500 Mbytes/minute and growing.  The most complex 
warehouse is maintained by AT&T Labs-Research to correlate 
many network performance, configuration, and status feeds that 
were previously maintained separately. 
The network warehouse was developed to enable research on a 
variety of issues that cross the usual “silos” of network-data 
repositories.  Currently, this warehouse loads more than 140 data 
feeds from 25 distinct silos, giving rise to over 140 Raw and 260 
Derived tables.  The shallow hierarchy reflects the research nature 
of the warehouse: the emphasis is on providing researchers with 
access to the data rather than on generating specific reports.  
Tables of special interest tend to have deeper layers of Derived 
tables—a continuing process as we gain expertise with the data.  
One-third of the tables are loaded at about 15 minute intervals; the 

others are loaded at about 8 hour intervals.  Based on the many 
requests we have received, we plan to move many tables to 5-
minute or 1-minute update schedules.  The temporal windows on 
the tables range from 1 month to 2 years. 
Being a project in Research, the network warehouse is run with 
limited resources.  There is only one DBA for the project.  Many 
of the tables have been defined by the researchers who are 
familiar with the feed and need the data.  The Do-It-Yourself, 
low-budget aspect of this project was a strong impetus for the 
Warehouse Dashboard (Section 5.1), as auto-documentation and a 
clear readout of the warehouse status are critical. 
The production applications of DataDepot tend to be better 
planned and supported.  A typical silo’ed application will have 
perhaps a dozen raw feeds, ingested at 5 minute intervals, and 
deep levels of Derived tables corresponding to the variety of 
reports required for the application. 
Although this paper is about the architecture of DataDepot rather 
than specific optimizations, we can report of the effectiveness of 
the temporal correlation optimization described in Section 2.3.5.  
One table, storing SNMP measurements, contains 410 Gbytes of 
data and is partitioned on the Unix timestamp.  However, users 
typically query on the datestamp, so we added a correlation 
between datestamp and Unix timestamp in the warehouse 
configuration.  Using the correlation, a query for a single day’s 
worth of data takes 125 seconds; without the correlation the same 
query takes 7401 seconds. 

7. CONCLUSIONS 
We have described DataDepot—a tool for generating and 
maintaining streaming data warehouses in an underlying 
relational database.  We have highlighted several issues that must 
be handled by a streaming warehouse, including loading new data 
in near real-time, combined queries against recent and historical 
data, maintenance of complex derived tables, dealing with 
multiple timestamps and with out-of-order data, data consistency, 
and streaming data quality. 
We are continuing to develop DataDepot in order to improve its 
efficiency and meet the needs of our users.  For instance, we are 
interested in distributing DataDepot across multiple machines to 
speed up data ingestion (DataDepot already allows very large 
tables to be distributed across file systems).  We are also 
interested in optimization techniques for updating materialized 
views.  The simple update propagation technique currently 
employed by DataDepot always recomputes partitions.  However, 
there has been a great deal of work on incremental view 
maintenance that is applicable to our problem, e.g., [4].  
Similarly, multi-query optimization strategies can help improve 
the efficiency of update propagation if multiple derived tables are 
defined on a single source table, e.g., [9].  Other research issues 
include streaming data consistency, streaming data quality, and 
refinements to the real-time infrastructure. 
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