
IBM InfoSphere Streams for Scalable, Real-Time,
Intelligent Transportation Services

Alain Biem, Eric Bouillet, Hanhua Feng,
Anand Ranganathan, Anton Riabov,

Olivier Verscheure
IBM TJ Watson Research Center, Hawthorne,

NY 10532
{biem, ericbou, hanhfeng, arangana,

riabov,ov1}@us.ibm.com

Haris Koutsopoulos, Carlos Moran
KTH Royal Institute of Technology, Stockholm

{hnk, carlos}@infra.kth.se

ABSTRACT
With the widespread adoption of location tracking technolo-
gies like GPS, the domain of intelligent transportation ser-
vices has seen growing interest in the last few years. Ser-
vices in this domain make use of real-time location-based
data from a variety of sources, combine this data with
static location-based data such as maps and points of inter-
est databases, and provide useful information to end-users.
Some of the major challenges in this domain include i) scal-
ability, in terms of processing large volumes of real-time and
static data; ii) extensibility, in terms of being able to add
new kinds of analyses on the data rapidly, and iii) user inter-
action, in terms of being able to support different kinds of
one-time and continuous queries from the end-user. In this
paper, we demonstrate the use of IBM InfoSphere Streams,
a scalable stream processing platform, for tackling these
challenges. We describe a prototype system that generates
dynamic, multi-faceted views of transportation information
for the city of Stockholm, using real vehicle GPS and road-
network data. The system also continuously derives current
traffic statistics, and provides useful value-added informa-
tion such as shortest-time routes from real-time observed
and inferred traffic conditions. Our performance experi-
ments illustrate the scalability of the system. For instance,
our system can process over 120000 incoming GPS points
per second, combine it with a map containing over 600,000
links, continuously generate different kinds of traffic statis-
tics and answer user queries.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Systems and
Software; J.0 [Computer Applications]: General

General Terms
Performance, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

Keywords
Stream Processing, Transportation, Geostreaming

1. INTRODUCTION
The rapid growth of demand for transportation and high

levels of car dependency caused by urban sprawl have caused
great stresses to the transportation infrastructure in many
areas. This has resulted in severe traffic congestion, and as-
sociated productivity loss, environmental degradation, and
consumption of scarce resources. In urban areas, adding
capacity through construction of new facilities is a very dif-
ficult endeavor due to lack of space and prohibitive costs. In-
telligence Transportation Systems (ITS) is an umbrella term
encompassing sensor, communications and computing tech-
nologies to manage existing infrastructure and transporta-
tion systems more efficiently, and hence contribute to the
reduction of congestion. An important development within
ITS is the emergence and installation of different kinds of
sensor technologies for collecting data on the state of the
transport system [1]. An important example is the use of
GPS for traffic data collection. GPS data and other oppor-
tunistic sensors (e.g. smart phones) have great potential to
provide the large amounts of data that is needed to support
real time management of traffic systems.

Intelligent Transportation Systems can make use of these
data sources and data from other related sources (e.g.
weather, video cameras, etc) to enable real time traffic mon-
itoring and management with a broader scope and sustain-
ability than usually achieved. There are, however, major
challenges in building systems that are flexible and powerful
enough to handle diverse demands from a large user base.

The first challenge is one of scalability. As various kinds
of sensor technologies become available and adopted, the
data they produce must be fused and analyzed in real-time.
The rate of processing such data in cities can easily exceed
hundreds of thousands of points per second. In addition, the
GPS data must be integrated in large maps (road networks)
that can potentially contain hundreds of thousands of nodes
and links.

A second challenge is the development of the computing
infrastructure required to support the needed functionality
of ITS, especially given the large volumes and variety of data
available and the diverse set of parties involved (such as
government agencies, commercial enterprises and end-user
commuters). Studies have shown that developing and in-

1093

tegrating the various components of an ITS infrastructure
constitute a significant portion of the capital cost and com-
plexity of such systems [14]. These systems access different
types of data sources, that produce different kinds of con-
tent with different levels of quality. They may use different
kinds of software components to process the data. Also, the
systems developed by the different parties are not necessar-
ily developed for interoperability. These factors add to the
complexity of the system.

Furthermore, there are diverse needs of the traffic data,
coming from different kinds of end-users. These end-users
include commuters, highway patrols, public service vehicles
like fire-engines and ambulances, departments of transporta-
tion, urban planners, commercial vehicle operators, etc.
These users not only pose large numbers of simultaneous
analysis requests, but also require analyses of significantly
different natures. For example, dynamic traffic management
as performed by the department of transportation requires
real time processing of detailed traffic data across the urban
area. However, the analysis performed by urban planners re-
quires high level aggregation of the data and the updating of
historical databases. This further increases the complexity
of the system.

In this paper, we demonstrate the use of IBM InfoSphere
Streams 1, a scalable stream processing platform, for tack-
ling these challenges. Stream processing applications in Info-
Sphere Streams take the form of graphs of modular, reusable
software components (called operators) interconnected by
data streams. Each operator takes data of certain content
and format and perform various analysis. These applica-
tions can be deployed on a distributed runtime infrastruc-
ture to allow scalability via pipelining and parallelization.
InfoSphere Streams provides various services to manage the
infrastructure and the applications deployed on it so as to
support high-throughput, low-latency stream processing.

One of the key features of InfoSphere Streams is it’s
component-based programming model. This allows compos-
ing and reconfiguring individual components to create dif-
ferent applications that answer different kinds of queries or
perform different kinds of analysis. In addition, it enables
the creation and deployment of new applications without
disrupting existing ones. This facilitates the growth and in-
corporation of new technologies. Furthermore, InfoSphere
Streams allows the new applications to reuse intermediate
derived streams produced by existing applications in order to
minimize duplicate or redundant processing of data. These
different features help in tackling the challenges of dealing
with diverse data sources and diverse end-user needs.

We describe a case study demonstrating the use of InfoS-
phere Streams for Intelligent Transportation Systems. This
case study consists of a set of stream processing applications
that process real-time GPS data, generate different kinds of
real-time traffic statistics, and perform customized analyses
in response to user queries. Examples of customized analy-
ses include continuously updated speed and traffic flow mea-
surements for all the different streets in a city, traffic volume
measurements by region, estimates of travel times between
different points of the city, stochastic shortest-path routes
based on current traffic conditions and real time prediction
of travel times and traffic conditions (prediction horizons
may vary from few minutes to an hour, depending on the

1InfoSphere Streams is the product name of the System S
stream processing research platform

application and the conditions), etc. Our performance ex-
periments illustrate the scalability of the system. For in-
stance, our system can process over 120000 incoming GPS
points per second, combine it with a map containing over
600,000 links, continuously generate different kinds of traffic
statistics and answer user queries. This system runs on a
cluster of four x86 blade servers.

In the rest of the paper, we describe the InfoSphere
Streams platform and our case study in the Intelligent Trans-
portation Systems space. Section 2 introduces InfoSphere
Streams and its features. Section 3 describes the ITS case
study and Section 4 goes into details of one of the critical
components in our system; viz. the stream visualization
framework. Section 5 provides some performance numbers
for our system.We then describe related work in Section 7
and finally conclude.

2. INFOSPHERE STREAMS
InfoSphere Streams [7] (or Streams) is a new IBM product

that supports high performance stream processing. It has
been used in a variety of sense-and-respond application do-
mains, from environmental monitoring to algorithmic trad-
ing. It offers both language and runtime support for im-
proving the performance of sense-and-respond applications
in processing data from high rate streams.

InfoSphere Streams (or just Streams) supports structured
as well as unstructured data stream processing and can be
scaled to a large number of compute nodes. The runtime
can execute a large number of long-running jobs (queries)
that take the form of data-flow graphs. A data-flow graph
consists of a set of operators connected by streams, where
each stream carries a series of Stream Data Objects (SDOs).
Each operator implements data stream analytics and resides
in execution containers called Processing Elements (PEs),
which are distributed over the compute nodes. The compute
nodes are organized as a shared-nothing cluster of worksta-
tions or as a large supercomputer (e.g., Blue Gene). The
operators communicate with each other via their input and
output ports, connected by streams. The operator ports as
well as streams connecting them are typed.

Spade [5] (Stream Processing Application Declarative En-
gine) is the declarative stream processing engine of Streams.
It is also the name of the declarative language used to pro-
gram Spade applications. Spade provides a rapid applica-
tion development (RAD) front-end for Streams. Concretely,
Spade offers:

1. An intermediate language for flexible composition of
parallel and distributed data flow graphs. This lan-
guage sits in-between higher level programming tools
and languages such as the Streams IDE or Stream SQL
and the lower level Streams programming APIs.

2. A toolkit of type-generic built-in stream processing op-
erators. Spade supports all basic stream-relational op-
erators with rich windowing semantics.

3. The ability to extend the set of built-in operators with
user-defined ones, programmable in either C++ or
Java.

4. A broad range of stream adapters. These adapters are
used to ingest data from outside sources and publish
data to outside destinations, such as network sockets,

1094

relational and XML databases, filesystems, as well as
proprietary platforms such as IBM Websphere Front
Office, and IBM DB2 Data Stream Engine, etc.

Spade uses code generation to fuse operators into PEs.
The PE code generator produces code that (1) fetches tu-
ples from the PE input buffers and relays them to the oper-
ators within, (2) receives tuples from operators within and
inserts them into the PE output buffers, and (3) for all the
intra- PE connections between the operators, it fuses the
outputs of operators with the inputs of downstream ones us-
ing function calls. In other words, when going from a Spade
program to the actual deployable distributed program, the
logical streams may be implemented as simple function calls
(for fused operators) to pointer exchanges (across PEs in
the same computational node) to network communication
(for PEs sitting on different computational nodes).This code
generation approach is extremely powerful because through
simple recompilation one can go from a fully fused applica-
tion to a fully distributed one, adapting to different ratios
of processing to I/O provided by different computational ar-
chitectures (e.g., blade centers versus BlueGene).

Spade supports a modular, component-based program-
ming model, which allows reuse, extensibility and rapid pro-
totyping. Apart from the built-in operators and stream
adapters that it provides, it also allows developers to cre-
ate new operators in either C++ or Java. It also allows
developing applications that offer high-availability through
replicated processing and operator checkpointing.

InfoSphere Streams includes a scheduler component that
decides how best to partition a data-flow graph across a
distributed set of physical nodes [15]. The scheduler uses
the the computational profiles of the operators, the loads on
the nodes and the priority of the application in making its
scheduling decisions.

2.1 Language Support via different kinds of
operators

Spade was conceived around the idea of providing toolkits
of operators. These operators can be used to implement any
relational query as well as windowing extensions commonly
required by streaming applications. Additional convenience
stream manipulation operators are also included, providing
workload partitioning capabilities and generation of window
boundaries, among other functionalities. We commonly re-
fer to these operators as built-in operators (as opposed to
user defined operators). The operators currently supported
in the stream-relational toolkit are:

1. Source A Source operator is used for creating a stream
of data flowing from an external source. This operator
is capable of performing parsing and tuple creation as
well as interacting with external devices.

2. Sink: A Sink operator is used for converting a stream
into a flow of tuples that can be used by components
that are not part of System S. Its main task consists
of converting tuples into objects accessible externally
through the file system or network.

3. Functor: A Functor operator is used for performing
tuple-level manipulations such as filtering, projection,
mapping, attribute creation and transformation. In
these manipulations, the Functor operator can access
tuples that have appeared earlier in the input stream.

4. Aggregate: An Aggregate operator is used for group-
ing and summarization of incoming tuples. This oper-
ator supports a large number of grouping mechanism
and summarization functions.

5. Join: A Join operation is used for correlating two
streams. System S can be paired up in several ways
and the join predicate, i.e., the expression determining
when tuples from the two streams are joined, can be
arbitrarily complex.

6. Sort: A Sort operator is used for imposing an order on
incoming tuples in a stream. The ordering algorithm
can be tweaked in several ways.

7. Barrier: A Barrier operator is used as a synchroniza-
tion point. It consumes tuples from multiple streams,
outputting a tuple only when a tuple from each of the
input streams has arrived.

8. Punctor: A Punctor operator is used for performing
tuple-level manipulations, with the exception of filter-
ing. Unlike a Functor, a Punctor can insert punctua-
tions into the output stream based on a user supplied
punctuation condition.

9. Split: A Split operator is used for splitting a stream
into multiple output streams, based on a split con-
dition that is used to determine which of the output
streams a tuple is to be forwarded to.

10. Delay: A Delay operator is used for delaying a stream
based on a specified amount of delay, allowing time-
shifting of streams.

In addition to the existing relational algebra toolkit, the
language was designed to support extensions. Currently
there are three ways of extending the language:

1. The developer can create User-Defined Operators
(UDOPs), which are operators that can be used to
wrap legacy libraries and provide customized process-
ing. UDOPs are specialized for application-specific
stream schemas.

2. The developer can create User Builtin Operators
(UBOPs), which are fully templatized operators.
UBOPs’ names and associated syntax are recognized
by the Spade language parser. The templatization
makes these operators usable in a type- and stream
schema- generic fashion, similarly to regular built-in
operators. The UBOP support is the fundamental as-
pect that allows the language to provide support for
the creation of toolkits geared towards other applica-
tion domains like, for example, signal processing, sci-
entific computing, and stream data mining.

3. The developer also can create user-defined functions
that can be used in expressions within operators any-
where in the program. For example, the functions can
be used in the filtering predicates of a Functor, or they
may be used for parsing or formatting in Source and
Sink operators, etc.

1095

2.2 Compiler and Runtime Support
Given an application specification in Spade’s interme-

diate language, the Spade compiler generates optimized
code that will run on InfoSphere Streams. Spade’s effec-
tive code generation and optimization framework enables
it to fully exploit the performance and scalability of Info-
Sphere Streams. The reliance on code generation provides
the means for the creation of highly optimized platform- and
application-specific code. In contrast to traditional database
query compilers, the Spade compiler outputs code that is
tailored to the application at hand as well as system-specific
aspects such as: the underlying network topology, the dis-
tributed processing topology for the application (i.e., where
each piece will run), and the computational environment.
In most cases, applications created with Spade are long-
running queries. Hence the long running times amortize the
build costs. Nevertheless, the Spade compiler has numerous
features to support incremental builds, reducing the build
costs as well.

3. THE INTELLIGENT TRANSPORTA-
TION SYSTEMS PILOT

In the last few years, there has been an explosion in
the number and variety of data sources that are available
for monitoring the transportation system. These include
GPS devices on different kinds of vehicles, GPS-enabled cell-
phones, video-cameras monitoring roads, loop-detectors, toll
booths, congestion pricing portals, etc. As a result, trans-
port agencies and organizations have moved from a state of
no data, to a state of data overload, and are ill prepared to
deal with the challenges of the new environment and take
full advantage of the opportunities.

The goal of the Intelligent Transportation Systems Pilot
was to show city transport agencies the possibilities of pro-
cessing the large amounts of streaming data in real time. In
this pilot, we focused on the city of Stockholm. We obtained
historical vehicle GPS data from Trafik Stockholm, as well
as information on the road network. We identified a set of
useful, real-time services for both individual drivers and for
the transport agency, and developed stream processing ap-
plications on Infosphere Streams to support these services.
These services included monitoring the current traffic con-
ditions in different parts of the city (on a link or over a re-
gion), comparing these conditions with historical statistics,
estimating travel times between different points in the city,
and computing stochastic shortest paths between different
points in the city. For demonstration purposes, we replayed
and processed the historical data. In the future, though, we
will be able to directly access the real-time feeds from the
data sources.

3.1 Input Data
We obtained historical GPS data traces from Trafik Stock-

holm [13] for the year of 2008. This data included traces
from about 1500 taxis and 400 trucks that plied the streets
of Stockholm. In total, there was about 170 million GPS
probe points for the whole year. Each taxi produces a GPS
probe reading once every 60 seconds that includes taxi iden-
tification and location information. Also, for privacy rea-
sons, taxis produce the readings only when they are not
carrying any passengers. Trucks use more recent and more
accurate GPS devices, that produce readings once every 30

seconds and include identification location, speed and head-
ing information. The peak data rate for the whole city was
over 1000 GPS readings per minute. In our pilot,though, we
often replayed the data at several times the actual rate, just
to demonstrate the scalability of the system.

Another information we obtained was information about
the city road network. The road network contained about
628,095 directed links spread over a 80km x 80km area
around Stockholm. Each link represented a uni-directional
road segment, hence two-ways roads are represented with
two parallel links in opposite directions.

3.2 Overall Application Description
Having large numbers of vehicles sending real-time GPS

data for the city allows us to create a picture of the traffic
condition in time and space [9]. We now describe the stream
processing applications that allow us to come up with the
traffic information, as well as provide various value-added
services on top of the basic information.

The application processes the data in three distinct
phases. The first phase consists of real-time processing of
the data. This includes obtaining, cleaning, de-noising, and
matching the GPS data to the underlying road network or
specified regions. In the second phase, the data is aggregated
to produce traffic statistics per link and per time interval.
The traffic statistics are in the form of medians and quartiles
of vehicle speeds and vehicle counts on the link or region for
the time interval. In the final phase, we make use of the
statistics to compute different kinds of derived information
such as the estimated travel times and shortest paths be-
tween different parts of the city. The final outputs can be
sent to the user on different kinds of visualization platforms
such as Google Earth, or may be stored in a database for
additional offline analysis. A high level flow graph of the
application is depicted in Figure 1.

Figure 1: Application Flowgraph

3.3 Real-time GPS data processing
The GPS data is first received by the source operator and

converted to tuples with time stamps, GPS device identi-
fication, latitude, longitude, heading (i.e. direction), and
instantaneous speed attributes. The heading and speed at-

1096

tributes are null when not available. Following the source,
we have a preprocessing operator that extracts the time of
day and day of week, in tandem with an operator that filters
entries whose time stamps, latitudes or longitudes are out
of range.

For the GPS data to be useful for measuring traffic condi-
tions on roads, it must be matched with the underlying road
network. An important issue with GPS data is its accuracy.
There are two kinds of errors that we encounter with GPS
data: measurement error caused by the limited GPS accu-
racy, and the sampling error caused by the sampling rate.
The measurement error of GPS devices is typically in the or-
der of a few meters. While this may seem small, this causes
a problem when the GPS reading is located close to differ-
ent links, such as at an intersection. The sampling error
causes uncertainty in the vehicle’s movement. To illustrate
the impact of the sampling rate on the imprecision of the
interpolated trajectory data, consider sampling the position
of a vehicle every 30 seconds, which is the typical sampling
rate for the trucks in our data. At a speed of 100km/h,
the traveled distance between position samples is over 833
meters. Since we do not know the positions in-between two
consecutive position samples, the best we can do is to limit
the possibilities of where the moving vehicle could have trav-
eled. In order to correct the effect of both kinds of errors
the application processes the GPS data in two steps, called
geo-matching and geo-tracking.

Geo-matching (also called Map-matching) consists of find-
ing a set of links that are within a distance d meters from
the GPS probe. The parameter d denotes the maximum ex-
pected measurement error, and is set to d = 10 meters. For
the case where the GPS heading is available, the search is
further restricted to links that are within 45 degrees of the
heading. The algorithm uses the Harversine formula [12] to
calculate geodetic distances in the WGS84 coordinate sys-
tems. Our implementation of this formula is accurate to
within one meter, but is also computationally intensive and
calculating the distance to all the links in order to deter-
mine the nearest one is not a tractable solution. Instead
the algorithm employs a divide and conquer approach, illus-
trated in Figure 2, in which it divides the map into a grid of
equal areas, and focus its search to the nearest links within
the area that contains the GPS coordinates. Included in
the search are links that are up to a distance d from the
area’s perimeter to account for eventual errors in the GPS
measurements. The grid is sized to cap the number of links
per area, and the list of links contained in each area can be
computed offline. As a result it takes a constant time com-
plexity for the method to find the nearest links to a given
location, independently of the size of the road network.

For our particular purpose, a single geo-matching opera-
tor is sufficient to handle the Stockholm road network size.
But if needed, the algorithm can easily be distributed into a
hierarchy of operators, whereby the upstream operator dis-
tributes the GPS data by means of the grid-based method
into downstream operators, each of which applies the geo-
matching algorithm on a sub-region of the road-network.
Since the operators can be deployed on separate machines,
such decomposition makes it possible to handle arbitrarily
large road networks, and take advantage of parallel process-
ing to handle higher data rates. In other work [4], we de-
scribe how we can scale the geo-matching operation, so as

to be able to match GPS data arriving at a rate of 1 million
points per second onto a map with 1 billion links.

Figure 2: Illustration of a grid-based geo-matching
algorithm. The algorithm first identifies the area
that contains the GPS coordinates (+) out of a W×H
grid, it then searches for the nearest links up to a
distance d (to take into account GPS measurement
errors) around the area.

After matching each GPS reading to the map, the next
operation consists of estimating the trajectory of each ve-
hicle, and removing the bad readings. This is achieved by
means of a geo-tracking operator that looks for a sequence
of GPS probes and compares all possible path combinations
connecting the matching links. Our current implementation
considers the last two GPS probe readings and finds the pos-
sible paths connecting them. In order to minimize sampling
errors, the operator only considers probes that are less than
75 seconds apart, which corresponds to the maximum aver-
age sampling interval of the GPS devices plus a 25% margin
to account for possible fluctuations in the transmission la-
tency. Given the paths, the operator derives the average
speed from the path lengths and time stamp information,
and selects the path that results in the most realistic speed.
The operation is illustrated in Figure 3.

The SPADE code snippet below shows the implementa-
tion of this operation. It uses a User-Defined Built-in Op-
erator (or UBOP) called GpsTrack, which takes as input
a stream of map-matched GPS points, and generates the
heading, estspeed and other attributes. The UBOP is pa-
rameterized by the maxinterval, the map information, etc.
There is also a node annotation, which instructs the Spade
compiler to place the operator in the first node in a defined
pool of nodes.

stream geoTrackStream(schemaFor(geoRichStream),
avgheading : Long,
estspeed : Float,
confidence : Float)
:= GpsTrack(geoRichStream)[

maxinterval : 75 ;
map : "/data/stockholm.lnk"

]{} -> node(mainpool,1)

Another use of the GPS data is to match it to regions
instead of links. Such information can be used, for instance,
to count the number of vehicles in a parking area or other
enclosures that cannot be represented with line segments.
The method is reminiscent of the geo-matching algorithm,
with the exception that matching is done by detecting if a

1097

Figure 3: Illustration of the geo tracking process.
The same vehicle appears at different points in time
joined by the estimated trajectory.

point is inside a polygon delineating the region instead of
computing distances to the links.

3.4 Traffic Statistics Generation
Once the GPS data is matched with a road network link,

we want to use this information to generate statistics such
as average vehicle speeds and unique vehicle counts per link
at various times of the day. For this purpose, the applica-
tion uses an Aggregator operator to slice the data every five
minutes. In this time frame, this operator computes, for ev-
ery link, the average estimated speeds of vehicles and also,
the number of vehicles (each vehicle being counted once dur-
ing the time frame). This operation is easily implemented
in InfoSphere Streams using built-in Aggregators with per-
link tumbling windows which are shifted (i.e., tumbled) each
time the time stamp attribute enters a new five minute in-
terval since midnight. In order to work properly, this ap-
proach requires that the time-stamp attribute of the tuples
is accessed in increasing order. This requirement is satisfied
with a Sort operator, which holds onto the tuples for a brief
period of time and reorders them within that time window
before sending them to the aggregator.

The code snippet below shows an implementation of the
aggregation operator. The window slides whenever the ab-

sTimeIndex field is incremented (i.e., when the difference of
the current absTimeIndex value compared with the value
in the previous tuple is greater than 0). The absTimeIn-

dex is incremented by 1 every 5 minutes. The output of
the operator is a stream called roadAttributeStream with
the schema as shown, containing 8 fields. The input stream
is a sortedGeoTrackStream that contains the mapping of
each GPS point mapped to a link, and the instantaneous
estimated speed of the vehicle. The Aggregate operator
groups by timeIndex and shapeid (which is the link id).

For each unique pair of timeIndex and shapeid, it gener-
ates the avgSpeed, minSpeed and maxSpeed over a 5 minute
period. Finally, there is a partition annotation, which tells
the Spade compiler to fuse this operator with any other op-
erator that has the same annotation value.

stream roadAttributeStream(
timestamp : Long,
shapeid : Long,
timeIndex : Long,
weekDay : Integer,
monthId : Integer,
avgSpeed : Float,
minSpeed : Float,
maxSpeed : Float,
)
:= Aggregate(sortedGeoTrackStream

<attrib(absTimeIndex, 0l), perGroup>)
[timeIndex . shapeid]

{
timestamp := Any(timestamp),
shapeid := Any(shapeid),
timeIndex := Any(timeIndex),
weekDay := Any(weekDay),
monthId := Any(monthId),
avgSpeed := Avg(estspeed),
minSpeed := Min(estspeed),
maxSpeed := Max(estspeed),
estRoute := Any(estroute)

} -> partition["GpsAggregation"]

The speed and the vehicle count estimates are then fed
to another type of operator, called Inter-Quartiles Range or
IQR operator. The role of this operator is to gather primary
first-order statistics of the speeds and vehicle counts. Every
five minutes during a day for every link, the IQR operator
computes the speed and vehicle count summaries (smallest
non-outlier, lower, median, upper quartiles and largest non-
outlier) from historical observations collected over a several
months period. Due to obvious differences in the traffic pat-
terns between working days and non-working days we keep
separate set of statistics for week days and week-ends. This
is easily implemented in InfoSphere Streams with the help of
a generic Split operator, which directs the data flow to one
of several IQR operators depending on an expression of the
day of week tuple attribute. If desired, this expression can
be improved to include holidays or other scheduled events
that are known to impact the traffic conditions.

The IQR operator, in combination with the output of the
per-link and time interval aggregation, allows us to generate
views for each link in which we can compare the current
road conditions on the link with statistical measurements
collected over longer time period on the same link. This
allows us to detect, for instance, whether the road conditions
are normal for that time of the day or not. An example of
such a view is illustrated in Figure 4.

3.5 Additional User-Specific Computations -
Travel Times and Shortest Paths

The traffic statistics generated are used to compute differ-
ent kinds of derived information such as the estimated travel
times and traffic-dependent shortest paths between different
parts of the city. These computations are performed contin-
uously for each individual end-user query that contains in-
formation on the source and destination points. In the next
section, we describe how the queries are actually obtained
from the end-user and used to direct these computations.

In order to compute the travel times and the shortest

1098

Figure 4: Illustration of the traffic statistics gener-
ation that shows a time series of the average speed
(dotted line) measured at five minutes intervals dur-
ing the day on a given link. The average speed is
compared to historical measurement (area plot).

paths, we first compute the stochastic travel times for each
link. This involves computing a time-varying probability
distribution of the time taken to traverse each link. This
distribution information for each link can then be used to
compute the distribution information for a whole path using
a convolution operation.

The stochastic travel times for each link are also used to
calculate the shortest path (in terms of travel time) between
any two points. This calculation uses the A algorithm. Since
the shortest path calculation is computationally expensive,
we split the computation across different operators that can
be placed on different hosts. Spade offers declarative ways
of doing the splitting that makes it easy for developers to
parallelize various kinds of computations. For example, the
code snippet below shows the use of for loops to first split
the stream of shortest path requests by destID and then
calculate shortest paths using sp_num different operators:

Split
for_begin @part 1 to sp_num
stream gpsSPQueryStream_P@part

(schemaFor(gpsJoinStream))
for_end

:= Split(gpsSPQueryStream)
[hashCode(mod(destId,sp_numl))]{}

Shortest path operators. Each operator gets a
part of gpsSPQueryStream
for_begin @part 1 to sp_num

stream shortestPathStream_P@part
(gpsId : Long, fromArc : Long, toArc : Long ,
path : LongList, starttime : Long,
endtime : Long, traveltime : Long)

:= ShortestPath(gpsSPQueryStream_P@part;
roadUpdateStream)[]{}

for_end

4. END-USER INTERACTIONS WITH
STREAM PROCESSING APPLICA-
TIONS

End-users can interact with the ITS application in differ-
ent ways. They can visualize traffic statistics for the whole
city of Stockholm on Google Earth. They can also submit
specific queries, such as to view the average speed on dif-
ferent links, the estimated travel time between two different
points, and the shortest path between two different points
that takes into account the current traffic conditions.

In this pilot, we support a web-based visualization and
interaction mechanism. For this, we make use of the web
browser integrated within Google Earth. The overall inter-
action framework includes a Visualization Server, which is
a standalone web-server using the Java Servlet framework,
running outside of InfoSphere Streams. In addition to the
HTTP port, this Visualization Server listens to a data port
for incoming connections from various stream processing ap-
plication. The Visualization Server maintains a buffer for
each user-requested output of the application, e.g. the traf-
fic statistics for a single link. Each buffer stores a time-series
of some kind (e.g. average vehicle speeds on a link). Each
buffer is also associated with a query ID. So, a browser can
query the time series from any buffer, and it is possible to
share the same server to show subsequences of one or more
streams in one or more browsers.

The visualization component comprises several types of
visualizers, which can show data in different ways. All these
visualizers are AJAX-based, using XMLHttpRequest to pe-
riodically get data from the same data servlet, which re-
sponds with the data from one of the buffers. Users have
to specify the data identifier in URLs to select the buffer
they want to see. In order to save bandwidth, we use CSV-
formatted text for these XMLHttpRequest connections. On
the browser side, this format can be handled by a very short
piece of Javascript code. The CSV format consumes much
less bandwidth than other formats such as JSON or XML.

In visualizer URLs, users can specify the window size, the
columns they want to see (so that other columns can be
removed by the server to save bandwidth), and refresh rate
of data (i.e., the frequency of XMLHttpRequest), among
others. Almost all configurable parameters can be specified
in a URL, as long as there are no security issues, and most
of them have default values; the requirements for server-side
customization are then minimized.

Queries from the end-users are handled via a servlet in
the visualization component that allows web clients to send
a tuple to interact with InfoSphere Streams. The tuple is
sent to a remote TCP or UDP port that the stream process-
ing application listens to. This allows us to establish a feed
back control mechanism that allows the web-client to specify
the desired output to the application. This mechanism is il-
lustrated in Figure 5 and works as follows: the client queries
a time series from the visualization server. In the query the
client describes the desired output in a form that the data
streams processing application understands. This can be the
unique numerical identifier of given road network link. The
client also specifies the identifier of a circular buffer in which
the results will be stored in the visualization server. This
URL is decoded and both identifiers are included in a tuple
that is sent to the data streams processing application. The
application uses the description of the output to control the

1099

flow of data and ensure that at the sink operator connecting
to the visualization component, only the output matching
this description is sent. As shown in Figure 5, this can be
done with the help of a Join operator that selects only tu-
ples that match the output description (e.g. matching link
identifiers). If historical data is required, such as time series
since the start of the current day, the window Join operator
can be used instead. The Join operator inserts the speci-
fied buffer identifier in the tuple, so that the visualization
components stores the time series in the appropriate buffer,
from where the client can later retrieve it.

Figure 5: Architecture of visualization component.

This query servlet can be either used through AJAX or
with a page, or frame, or iframe URL. For the latter case,
the query servlet automatically redirect the returned page
to a visualization URL. After the results from InfoSphere
Streams arrive, they are sent to the browser in the same
page or frame for visualization.

5. PERFORMANCE EVALUATION
For the performance measurements we deployed the ITS

application on a cluster of 64bit Intel Xeon R© quad-core ma-
chines running at 3Ghz with 16G bytes of memory each.
The tested application consists of a total of 46 operators, 10
of which are UBOPs (user-defined built-in) operator, and
others are built-in operators. Figure 6 shows a screenshot
of the deployed application. In the figure, boxes repre-
sent operators, interconnections represent data streams, and
the resulting topology represents the entire application flow-
graph. It also shows how the operators are fused together to
form a PE (Processing Element), represented as large dark
background rectangles that contain one or more individual
operators.

Figure 7 shows how those PEs are distributed across vari-
ous hosts (nodes). In this example, the distribution is based
on instructions in the Spade program assigning different op-
erators to various nodes, but it can also be done automati-
cally by the InfoSphere Streams scheduler.

Finally, Figure 8 shows the performance of the ITS appli-
cation with changing hardware infrastructure. The metric
is the throughput, measured as the number of tuples per
second processed by the source operators as we increase the
total number of hosts used for the entire application. Here
each tuple corresponds to one GPS point. As we increase
the number of hosts, the InfoSphere Streams runtime can
distribute the different operators across different hosts. For
example, Figure 7 shows how the runtime distributes the
operators in the ITS application on 4 different hosts.

Figure 8 shows that the throughput scales well as we in-
crease the number of nodes. The data-pipelining and par-
allelization features of InfoSphere Streams play a key role
in achieving this scaling property. In this particular instan-

Figure 7: Application flow graph showing PE within
hosts.

tiation of the application, we used up to 4 different source
operators to read the GPS data from files in parallel. When
run on one single node, the system performance is the worst
as all the software components share that single resource,
even though that single resources is made of various cores.
Increasing the number of nodes addresses the bottleneck due
to resource limitation. Hence, we see a steady increase in
performance as the number of nodes increases. The through-
put achieved by our application is more than enough for our
current needs. We are also confident that the throughput
can be increased even more with additional tuning of the
application, including tuning the placement of the different
operators on the available nodes, tuning the structure of the
application to take further advantage of the parallelism of-
fered by the system, and tuning the operators themselves.
Note that InfoSphere Streams can support a distributed
cluster containing over a hundred nodes, which offers plenty
of scope for improving the performance of the application.
In other work [4], we describe a different example where we
used up to 10 nodes to map-match GPS data and in that
application, we were able to achieve a throughput of 1 mil-
lion GPS points per second, mapped onto a road network
containing 1 billion links.

Figure 8: Performance of the ITS Application with
increasing number of nodes. The y-axis shows the
throughput and the x-axis shows the total number
of nodes used for the entire application.

1100

Figure 6: Application flow graph of operators, with labels describing the operations performed by different
groups of operators. The figure also shows the fusion of some sets of operators into Processing Elements
(PEs). PEs are shown by the blue background boxes containing one or more individual operators.

6. EXPERIENCES
We have already seen how we can scale the ITS applica-

tion using various InfoSphere Streams features, such as dis-
tributing the computation over different nodes and fusing
operators into PEs to reduce communication cost. In this
section, we describe some of our experiences in using the
Spade language and compiler in developing the application.
We describe how various features of Spade and InfoSphere
Streams facilitate the development of stream processing ap-
plications. As an example, our team, consisting of 5 de-
velopers, was able to develop the ITS application within a
month. These features are particularly important when we
develop large ITS applications that tap onto diverse sources
of data and meet diverse user needs.

6.1 Component-based model
InfoSphere Streams allows applications to be developed

as a graph of reusable components (or operators). This
makes it easy to develop new applications by reusing ex-
isting components. It also encourages developers to develop
their component in as general a manner as possible. Info-
Sphere Streams supports “User-defined Built-in Operators”
(or UBOPs), which are operators that can operate on input
data of different formats and be used in different contexts
and implemented in either C++ or Java.

In our prototype, for example, we were able to build a
number of reusable map-matching operators that used differ-

ent algorithms. We were easily able to plug these operators
into the overall ITS application. More generally, we have a
toolkit of various geo-spatial operators like map-matching,
vehicle tracking, road traffic statistics generation, shortest-
path route generation, stochastic travel time computation,
etc. that we have been able to reuse in different applications.

6.2 Modular application development
InfoSphere Streams supports two different models of

stream interconnections between operators. The applica-
tion data flow-graph in Spade can specify the interconnec-
tions explicitly, or it can use a publish-subscribe mechanism
supported by Streams for the interconnections to be estab-
lished. This publish- subscribe mechanism can be based on
either names of streams or based on the properties of the
streams.

In addition, InfoSphere Streams allows separate applica-
tions to communicate with one another via streams. In this
mechanism, one application can export streams, and another
application can then import these streams, either explicitly
by name, or implicitly by specifying properties of the desired
input streams. These features of Streams are extremely use-
ful in decomposing potentially large and complex applica-
tions into a number of smaller pieces that can communicate
with one another. For example, we actually organized the
ITS application as a set of multiple independent applica-
tions. One application does the basic GPS data processing.
There are then one or more statistics computing applica-

1101

tions that take the processed GPS data streams as input.
There are also many user-specific applications that take the
streams of statistics as input and perform different computa-
tions, such as calculating the shortest route and travel time.
These different applications can be composed together dy-
namically using exported and imported streams.

The component based model and modular application de-
velopment features of InfoSphere Streams allows a large
group of developers to collaborate in developing the appli-
cations. Once the types of the input / output streams of
components and the imported and exported streams of ap-
plications are agreed upon, the developers can program inde-
pendently and later integrate fairly easily. Also, stream pro-
cessing by its very nature, limits interactions between com-
ponents to the streams interconnecting them. This means
that there is no need to maintain any global state, which
often complicates software integration in many other kinds
of systems.

One outcome of these two features is that Spade allows
having developers of two different roles work together : op-
erator developers and application developers. The operator
developers write operators to perform a specific task in C++
or Java, and typically supply samples and test-cases showing
how their operators can be invoked. The application devel-
opers compose these developers’ operators along with Spade
built-in operators to come up with an application that meets
some end-user’s need.

6.3 Declarative Application Configuration
The Spade language includes constructs to specify how

the application is to be deployed on the runtime.

1. Spade allows specifying the degree of parallelization of
an operation.This is achieved by a Spade pre-processor
which allows specifying for-loops in the Spade pro-
gram. The pre-processor unrolls the for-loop and al-
lows creates an expanded Spade graph that then gets
compiled. Also, Spade allows grouping streams into
“bundles” so that they can all be referred as a single
entity. This is useful, e.g. in specifying all the inputs
to a barrier operator as a single bundle.

2. Spade allows specifying operator fusion constraints.
For example, it allows specifying that a certain set
of operators must be fused into the same partition,
or must be located in different partitions. Note that
this is optional; the Spade compiler can automatically
compute the best operator fusion sets by using profiles
of each operator’s computational characteristics [8].

3. Spade allows specifying the assignment of operators
to physical nodes. Again this is optional; InfoSphere
Streams includes a scheduler component that can make
such placement decisions based on the load on each
physical node [15].

Thus, we can easily change the application deployment
configuration by simply changing a few lines of the Spade
program, and then recompiling and redeploying it. This
facilitates rapid prototyping, which is immensely useful in
fine-tuning the application to meet various performance ob-
jectives. This proved particularly useful when we tuned our
map-matching, source and aggregation components to im-
prove their performance.

6.4 Rich set of built-in operators
Spade supports a very rich set of built-in operators, in-

cluding different kinds of filters, joins, aggregations, etc. It
also comes with a number of built-in operators for access-
ing external sources and sending data to external sinks. It
also supports different ways of creating and updating win-
dows that can be used in some of the built-in operators.
The different variations include tumbling and sliding win-
dows, count-based and time-based windows, windows based
on differences in attribute values, punctuation based (where
punctuations can be inserted by preceding operators), etc.
In fact, most of the operators we use in the ITS application
were built-in operators, which significantly saved develop-
ment time.

7. RELATED WORK
There has been plenty of work in the areas of acquiring

GPS and other traffic data, mapping it to road-networks, us-
ing the data for traffic prediction, and determining shortest
paths. Most works however tackle these problems indepen-
dently, while we have developed an end-to-end application
that takes raw GPS data to provide useful real-time ser-
vices to end-users. Also, many of these works focus more on
accuracy rather than throughput. For example, most pub-
lications in map matching focus on the accuracy of map-
matching, rather than the on improving the throughput of
map-matching as the size of the underlying map increases
and as the rate of incoming GPS data increases.

A number of approaches have been proposed in the area
of matching GPS positions of a moving vehicle to a map.
Brakatsoulas et al [2] proposed incremental and global algo-
rithms that consider the trajectory of the moving vehicle and
try to minimize the Frechet distance between the trajectory
and the sequence of mapped links. Greenfeld [6] introduced
a map-matching strategy based on distance and orientation
that does not assert any further knowledge about the move-
ment besides the position samples. Civilis et al. [3] in their
work in location-based services introduce a map-matching
algorithm that is based on edge distance and direction simi-
lar to [6]. Yin and Wolfson [16] propose an algorithm based
on a weighted graph representation of the road network in
which the weights of each edge represent the distance of
the edge to the trajectory. Marchal et al [11] describe an
approach that maintains a set of candidate paths as GPS
data are fed in and to update, constantly, their matching
scores. Lou et al [10] propose a global map-matching al-
gorithm called ST-Matching for GPS trajectories with low
sampling rate. Our approach is most similar to the incre-
mental algorithm proposed by Brakatsoulas, where we use
shortest-path trajectories between successive GPS points to
estimate the path taken by the vehicle.

Various approaches have also been proposed for calculat-
ing travel times and shortest paths. Our key contribution
in this paper is not in the individual algorithms (like map
matching or shortest paths), but in demonstrating how these
different algorithms can be deployed on a distributed stream
processing infrastructure for purposes of scalability. A num-
ber of map-matching and route planning systems have been
deployed in the real world (for example, the systems behind
services like Google Maps and Google Earth, various navi-
gation guidance systems, etc.). However, we have not been
able to get a hold of the descriptions of these systems.

1102

8. CONCLUSION
In this paper, we described the use of IBM InfoSphere

Streams, a component-based distributed stream processing
platform, for tackling the challenges of scalability, extensi-
bility and user interaction in the domain of Intelligent Trans-
portation Services. We described a prototype system that
generates dynamic, multi-faceted views of transportation in-
formation for the city of Stockholm, using real vehicle GPS
and road-network data. We also described some of our ex-
periences in using InfoSphere Streams for this application.

9. ACKNOWLEDGMENTS
We would like to thank IngaMaj Eriksson from the

Swedish Road Administration and Tomas Julner from Trafik
Stockholm for their support, feedback, and provision of the
data for this study and Erling Weibust of IBM for facilitat-
ing the IBM/KTH collaboration.

10. REFERENCES
[1] C. Antoniou, R. Balakrishna, and H. Koutsopoulos.

Emerging data collection technologies and their impact
on traffic management applications. ASCE Journal of
Transportation Engineering, 2009. To be submitted.

[2] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
map-matching vehicle tracking data. In VLDB, pages
853–864, 2005.

[3] A. Civilis, C. S. Jensen, J. Nenortaite, and
S. Pakalnis. Efficient tracking of moving objects with
precision guarantees. In Mobiquitous, 2004.

[4] E.Bouillet and A.Ranganathan. Scalable, Real-time
Map-Matching using IBM’s System S. In Proceedings
of Mobile Data Management Conference (MDM 2010),
2010.

[5] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and
M. Doo. SPADE: the System S declarative stream
processing engine. In SIGMOD 2008, pages
1123–1134, 2008.

[6] J. Greenfield. Matching GPS observations to locations
on a digital map. In 81th Annual Meeting of the
Transportation Research Board, 2002.

[7] IBM InfoSphere Streams. http://www-
01.ibm.com/software/data/infosphere/streams/.

[8] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. L.
Wolf, K.-L. Wu, H. Andrade, and B. Gedik. COLA:
Optimizing stream processing applications via graph
partitioning. In Middleware, pages 308–327, 2009.

[9] R. Kuehne, R.-P. Schaefer, J. Mikat,
K. Thiessenhusen, U. Boettger, and S. Lorkowski. New
approaches for traffic management in metropolitan
areas. In Proceedings of IFAC CTS Symposium, 2003.

[10] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and
Y. Huang. Map-matching for low-sampling-rate GPS
trajectories. In GIS ’09: Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, 2009.

[11] F. Marchal, J. Hackney, and K. Axhausen. Efficient
map matching of large global positioning system data
sets: tests on speed-monitoring experiment in Zurich.
Transportation Research Record, 1935:93–100, 2005.

[12] R. W. Sinnott. Virtues of the haversine. Sky and
Telescope, 68(2):159, 1984.

[13] Trafik Stockholm. http://www.trafikstockholm.com.

[14] US Department of Transportation. Intelligent
transport services benefits, costs and lessons learned
databases,
http://www.itscosts.its.dot.gov/its/benecost.nsf, 2005.

[15] J. Wolf et al. SODA: an optimizing scheduler for
large-scale stream-based distributed computer
systems. In Middleware, pages 306–325, 2008.

[16] H. Yin and O. Wolfson. A weight-based map matching
method in moving objects databases. In 16’th SSDBM
conference, 2004.

1103

