
Prefilter: Predicate Pushdown at Streaming Speeds

Lukasz Golab, Theodore Johnson, and Oliver Spatscheck
AT&T Labs–Research

180 Park Avenue, Florham Park, NJ, USA 07932
{lgolab,johnsont,spatsch}@research.att.com

ABSTRACT
This paper presents the prefilter: a predicate pushdown framework
for a Data Stream Management System (DSMS). Though early
predicate evaluation is a well-known query optimization strategy,
novel problems arise in a high-performance DSMS. In particu-
lar, (i) query invocation costs are high as compared to the cost
of evaluating simple predicates that are often used in high-speed
stream analysis; (ii) selectivity estimates may become inaccurate
over time; and (iii) multiple queries, possibly containing common
subexpressions, must be processed continuously. The prefilter ad-
dresses these issues by constructing appropriate predicates for early
evaluation as soon as new data arrive and before any queries are in-
voked. It also compresses the bit vector representing the outcomes
of pushed-down predicates over newly arrived tuples, and uses the
compressed bitmap to efficiently check which queries do not have
to be invoked. Using a set of network monitoring queries, we show
that the performance of AT&T’s Gigascope DSMS is significantly
improved by the prefilter.

1. INTRODUCTION
This paper describes the prefilter: a lightweight mechanism for

early predicate evaluation in a high-performance Data Stream Man-
agement System (DSMS). Predicate pushdown has been explored
in many forms; however, novel issues arise when evaluating multi-
ple continuous queries over very fast data streams, such as IP traffic
on a busy link.

For one, merely invoking a query (i.e., polling the scheduler,
pushing variables on the stack, etc.) becomes a significant source
of overhead. For instance, suppose that a stream arriving at a rate
of 200,000 packets/sec (800 Megabits/sec assuming a packet size
of 500 bytes) is monitored by 50 queries. Assuming that each
query invocation requires roughly 100 instructions, this overhead
amounts to a billion instructions per second. While invocation costs
are negligible in queries containing bulky operators such as joins,
they are significant in lightweight streaming query plans with sim-
ple predicates (e.g., scalar comparisons that require several instruc-
tions). Additionally, queries in a large stream analysis query set
often look for “needles in haystacks”, i.e., rare events or unusual

.

patterns. However, we must examine the entire stream in order to
detect these valuable rare events.

We thus aim to reduce the number of query invocations, and
thereby improve throughput, by “prefiltering” the data stream. That
is, we push down a set of inexpensive prefilter predicates and eval-
uate them as soon as a new stream tuple arrives (and before any
queries are instantiated). Based on the results of these predicates,
we do not invoke queries that cannot be satisfied with the new tu-
ple. Effectively, the prefilter achieves earlier and more aggressive
data reduction than traditional predicate pushdown, and incorpo-
rates multi-query optimization as prefilter predicates occurring in
multiple queries need to be evaluated only once.

We illustrate the challenges behind the prefilter with the follow-
ing subset of queries that monitor an IP traffic stream:

Q1: SELECT t, srcIP, destIP, sum(len), count(*)
FROM IPStream
WHERE protocol=UDP
GROUP BY time/60 as t, srcIP, destIP

Q2: SELECT t, srcIP, destIP, sum(len), count(*)
FROM IPStream
WHERE protocol=UDP AND dest_port=53 AND qr=0
GROUP BY time/60 as t, srcIP, destIP

Q3: SELECT t, srcIP, destIP, sum(len), count(*)
FROM IPStream
WHERE protocol=UDP AND src_port=53 AND qr=1
GROUP BY time/60 as t, srcIP, destIP

Q1 computes the bandwidth usage (sum of packet lengths) and
packet count of UDP traffic for each source-destination IP pair.
Q2 and Q3 compute the same aggregates over DNS requests
and responses, respectively (DNS uses the UDP transport pro-
tocol on port 53, while qr is a boolean field that distinguishes
DNS requests from responses). In order to unblock the aggrega-
tion, all three queries are evaluated over one-minute time epochs
(GROUP BY time/60). At the end of each epoch, each srcIP-
destIP group and its aggregates are flushed to the output stream.
Note that all the selection predicates in this query set involve in-
expensive scalar comparisons; the aggregation operations are more
expensive, but they operate over a reduced data stream, after the
respective selection predicates have been applied.

The first technical issue is: which predicates should be pushed
down to the prefilter? One possibility is the shared predicate
protocol=UDP, as per classical multi-query optimization tech-
niques that factor out common subexpressions [20]. Using recent
DSMS and publish-subscribe multi-query optimizations [4, 6, 10,
14, 15, 22], we could also build predicate indices and push down
predicates on common fields (e.g., qr=0 and qr=1). The nov-
elty in our context is that in addition to evaluating shared pred-

Figure 1: Processing Q1, Q2, and Q3 with the prefilter.

icates only once, we want to reduce the number of query invo-
cations. Therefore, even non-shared inexpensive predicates (e.g.,
src_port=53 and dest_port=53) are prefilter candidates.

Next, we need to detect which queries do not have to be executed
based on the outcomes of the prefilter predicates. To do this, we as-
sign a bit signature to each query, specifying which prefilter predi-
cates it contains. The process is illustrated in Figure 1 for the three
queries from the motivating example. Suppose that the follow-
ing predicates are pushed down to the prefilter: protocol=UDP,
src_port=53, and dest_port=53. Let Si be the bit signa-
ture of query Qi. For instance, Q3 contains the first and second
prefilter predicates, therefore S3 = 110. When a new tuple arrives,
the three predicates are evaluated at the prefilter and their outcomes
entered into a bit vector B. In Figure 1, the new tuple is assumed
to satisfy the first two prefilter predicates, therefore B = 110. As-
suming that the WHERE clause of each query contains a conjunction
of predicates, we execute Qi only if B & Si = Si, where & is the
bitwise-AND operation. That is, Qi is invoked only if each of its
pushed-down predicates evaluates to true. The invoked query plans
(Q1 and Q3 in our example) then evaluate their remaining opera-
tors. Note that:

• the shared predicate protocol=UDP is evaluated only once
per tuple,

• we avoid the cost of invoking Q2 for this tuple,

• simple bit operations are sufficient to determine which query
plans to execute over a new tuple.

Since the prefilter is evaluated for each new tuple, its overhead
must be minimal in order to keep up with a massive data stream.
One way to guarantee efficiency of bit operations is via a hardware-
dependent cap on the number of bits in the prefilter and the query
signatures. For instance, a 64-bit processor can perform efficient
operations on up to 64 bits using one register-compare. Further-
more, we may want to evaluate the prefilter on specialized hard-
ware directly at the data source, e.g., a network interface card. In
this case, the bit budget may be even smaller to reflect the limited
processing capabilities of network hardware and to minimize the
overhead of transmitting a bitmap with every tuple (that satisfies at
least one prefilter predicate).

If the number of prefilter candidates exceeds the bit budget b,
then one solution is to choose the “best” b predicates with respect
to the expected query processing cost. However, making a rea-
sonable choice requires accurate estimates of predicate selectivity
[17]. Unfortunately, the selectivity estimates available to a DSMS
may become inaccurate over time due to the time-evolving nature
of streaming data and the long-running nature of streaming queries.

The main technical contribution of this paper is a solution to the
above problem. Rather than choosing predicates based on unre-
liable statistics, we retain all the candidates and attempt to repre-
sent them using a small number of bits. Recall Figure 1 and sup-
pose that we want to evaluate all five unique predicates in the pre-
filter, i.e., protocol=UDP, dest_port=53, src_port=53,
qr=0, and qr=1. A straightforward solution requires a prefilter
bit vector and query signatures of size five. However, instead of
spending one bit on each distinct predicate, we may assign a con-
junction of several predicates to a single bit, so long as we can still
avoid invoking a query if any one of its prefilter predicates fails.
In Figure 1, we can leave the first bit unchanged, change the sec-
ond bit to (src_port=53 AND qr=1), and change the third
bit to (dest_port=53 AND qr=0). This way, we can push
two more predicates into the prefilter without increasing the bit
budget. We will show that using the fewest possible bits to repre-
sent a set of predicates can be reduced to a bipartite graph covering
problem. We will prove that the problem is NP-hard and propose
efficient heuristics.

The second contribution of this paper is an experimental evalua-
tion of the prefilter within AT&T’s Gigascope DSMS [7, 8]. Using
a network monitoring query set, we show that the prefilter reduces
the CPU utilization by nearly one half, even without accurate se-
lectivity estimates.

The remainder of this paper is organized as follows. Section 2
describes the design of the prefilter, Section 3 presents experimen-
tal results, Section 4 compares the prefilter with previous work, and
Section 5 concludes the paper with suggestions for future research.

2. PREFILTER DETAILS
We now present the technical details behind the prefilter. Choos-

ing prefilter predicates is discussed in Section 2.1, followed by rep-
resenting the predicates using a small number of bits in Section 2.2.
Section 2.3 then discusses cases where the number of candidate
predicates exceeds the bit budget, and Section 2.4 presents opti-
mization techniques for efficient evaluation of prefilter predicates.

For the remainder of this paper, assume without loss of gen-
erality that a single data stream is being processed. Multiple in-
puts are handled by creating independent prefilters with predicates
over their respective streams, whereas join predicates over multi-
ple streams are computed by the join operators further up in the
processing tree. Each query is assumed to contain a conjunction
of zero or more base predicates. Two base predicates are said to
be equivalent if they are syntactically equal (after normalization).
Each base predicate is associated with a cost and, optionally, a se-
lectivity estimate, with the caveat that the latter may not be accurate
throughout the lifetime of the query set.

2.1 Choosing Prefilter Predicates
The first step in creating the prefilter is to choose which pred-

icates to push down. An exhaustive solution considers pushing
down each subset of the base predicates. However, in addition to
being prohibitively expensive to compute, the exhaustive technique
requires accurate selectivity estimates in order to compute the ex-
pected cost of each alternative. Instead, we use a simple and robust
heuristic. First, we set c to be the maximum cost of a base pred-
icate that may be considered “cheap”; e.g., a one-cycle operation
such as comparison of an attribute value to a constant. The value
of c should be much smaller than the cost of query invocation. The
remaining base predicates are labeled “expensive”. Then, we place
all the cheap base predicates (shared or otherwise) in the prefilter
candidate set.

An example is shown in Figure 2, illustrating plans for two

Figure 2: Translating individual query plans into a shared plan.

queries, Q1 and Q2 (only their predicates are shown). Suppose
that p1 through p3 are cheap and that the illustrated plans are lo-
cally optimal, i.e., the base predicates of both queries are ordered in
an optimal way. The right side of the illustration shows the corre-
sponding prefilter with all the cheap base predicates pushed down.

The justification behind the proposed heuristic is as follows.
First, the cost of evaluating a predicate is expected to be more stable
over time than its selectivity. Additionally, even if selectivities are
known to be accurate and are used to generate optimal local plans,
cheap predicates are still ordered early in these optimal plans, un-
less they are very non-selective. Therefore, pushing down cheap
base predicates is likely to create an efficient and robust global plan.
Second, pushing down all the cheap base predicates induces com-
mon sub-expressions that would not exist if only the locally optimal
plans were considered. For instance, the two queries in Figure 2
share the cheap base predicate p2, but this predicate could not be
“factored out” unless we flipped the execution order of p1 and p2
in Q1’s plan. In other words, the heuristic implicitly considers lo-
cally non-optimal plans when building the global plan.

A disadvantage of preventing expensive predicates from being
evaluated at the prefilter is that shared expensive predicates are re-
executed redundantly; e.g., p5 in Figure 2 is computed by Q1 and
Q2. However, adding p5 to the prefilter may not be optimal as
it would reverse the order of evaluation of p4 and p5 in Q2. If
p5 is much more expensive and/or much less selective than p4,
then the resulting global plan could be inefficient despite the shared
evaluation of p5. One alternative is to push down p4 as well and
evaluate it in the prefilter before p5. However, this approach suffers
from two problems. First, in the worst case, all the base predicates
would have to be pushed down. This defeats the goals of keeping
the prefilter bit vector short and evaluating inexpensive predicates
at the prefilter. Second, the prefilter evaluation logic would have
to be more complex in order to avoid unnecessary evaluation of
expensive predicates; e.g., in Figure 2, first we compute the cheap
base predicates, then p4, then p5, but only if either p4 evaluated
to true, or p1 or p2 evaluated to true.

Rather than computing expensive predicates at the prefilter, our
solution is to cache the outcomes of shared expensive predicates in
a separate data structure. This way, if Q1 in Figure 2 is invoked and
computes p5, then Q2 can look up the result of p5 in the predicate
cache.

2.2 Compact Representation of Prefilter
Predicates

The next step in prefilter design is to assign a small number of
bits to represent the pushed-down predicates, while still being able
to avoid unnecessary query invocations. We define a composite
predicate as a conjunction of two or more base predicates. The

Figure 3: A minimum-sized rectangle covering of Q1 through
Q6.

idea is to assign bits to composite, rather than base, predicates.
Let n be the number of queries and p be the number of unique

base predicates that are candidates for the prefilter. Let M be a
p-by-n boolean matrix and M(i, j) be the entry in its ith row and
jth column. Define M(i, j) to be 1 if the ith base predicate is ref-
erenced in the query corresponding to the jth query. Otherwise,
M(i, j) = 0. The following definitions will be used in our formal-
ization.

Definition 1 Let P and Q be subsets of the rows and columns of
M , respectively. P and Q define a rectangle r(P, Q) if for each
i ∈ P and j ∈ Q, M(i, j) = 1.

Definition 2 A rectangle covering of M is a set of rectangles de-
fined over M such that each non-zero entry in M is in at least one
rectangle.

We express the problem of minimizing the length of the pre-
filter bit vector (and avoiding all the query invocations that would
be avoided if each base predicate had a separate bit) as finding
a minimum-sized rectangle covering of M . An example is illus-
trated in Figure 3, showing (the predicates of) six queries, the cor-
responding matrix, and a minimum-sized rectangle covering. The
four rectangles denote the following prefilter predicates: p1, (p2
AND p3), p4, and (p5 AND p6)1. The corresponding bit sig-
natures Li are: L1 = 1100, L2 = 1110, L3 = 1010, L4 = 1000,
L5 = 1001, and L6 = 0001. Thus, we require only four bits
(i.e., four composite predicates) to represent the six unique base
predicates. Furthermore, it is easy to show that this configuration
is equivalent, in terms of avoiding query invocations, to assigning
one bit per base predicate. Note that for simplicity, we have illus-
trated a minimum-sized rectangle covering that does not contain
overlapping rectangles; we will deal with overlap in Section 2.4.

Finding a minimum-sized rectangle covering of a boolean matrix
is NP-hard as it can be reduced to finding a minimum-sized bipar-
tite graph covering using complete subgraphs (see Appendix for
proof). Below, we present a heuristic for finding a near-optimal so-
lution; its efficiency and effectiveness are experimentally evaluated
in Section 3. The heuristic consists of two steps: finding rectangles
embedded in M and using them to create a covering of M .

Finding rectangles in M is accomplished by the algorithm shown
in Figure 4; recall that p be the number of prefilter candidate pred-
icates. The idea is to use rectangles representing i base predicates
to generate new rectangles with i + 1 base predicates. In steps
2 through 6, we initialize a set BASE corresponding to the base
predicates, as well as the target set of rectangles RECT. The latter
initially contains all the rows and columns of M . The loop in lines
7 through 12 creates rectangles of size i + 1 by attempting to add
every possible base predicate (i.e., every rectangle in BASE) to each
1Note that the rows and/or columns of a rectangle need not be
contiguous. For instance, the first and fourth row and the second
and third column form a rectangle defined by P = {1, 4} and
Q = {2, 3}.

1 BASE=RECT=∅
2 For each row i of M

3 Add rectangle corresponding to i to BASE
4 Add rectangle corresponding to i to RECT
5 For each column j of M

6 Add rectangle corresponding to j to RECT
7 For k = 1 to p − 1
8 For each rect. r(P, Q) ∈ RECT with |P | = k

9 For each rectangle b(P ′, Q′) ∈ BASE
10 If |Q ∩ Q′| > 1
11 Create rectangle r′(P ∪ P ′, Q ∩ Q′)
12 Add r′ to RECT
13 Return RECT

Figure 4: Rectangle finding algorithm.

rectangle of size i. Line 10 tests if each attempt actually creates a
new rectangle—all of its i + 1 base predicates must occur in more
than one query (otherwise, the “new” rectangle is contained in an
individual column of M already added to RECT in line 6). If so,
then we add the new rectangle r′ to RECT. Its base predicate set
is the union of the “old” rectangle’s base predicate set and the new
base predicate used in line 9. The query set of r′ consists of queries
that reference all of its predicates.

The number of rectangles in M may be large, but a variety of
pruning rules may be applied. For instance, we can remove rect-
angles contained in a newly created rectangle. Recall the rect-
angle in the bottom-right corner of Figure 3, defined as: P =
{5, 6}, Q = {5, 6} and corresponding to the composite predi-
cate (p5 AND p6). This rectangle contains two smaller rectan-
gles, corresponding to base predicates p5 and p6, respectively, i.e.,
P = {5}, Q = {5, 6} and P = {6}, Q = {5, 6}. Once the large
rectangle is found, the smaller ones may be removed.

Another simple optimization is to only consider rectangles con-
taining a small number of base predicates, say up to j (i.e., modify
line 7 to iterate from 1 to j). The reasoning behind this rule is
that we do not expect a very large number of base predicates to be
shared across a group of queries.

Finally, having generated a set of rectangles embedded in M , we
apply the greedy heuristic for set covering problems in order to find
an approximate solution for the minimum-sized rectangle covering.
That is, at each step, we choose the rectangle which covers the most
uncovered “ones” in M . Each rectangle in the covering is then
translated into the predicate that it represents.

2.3 Handling a Large Number of Predicates
Recall that the number of prefilter bits is limited in order to

reduce overhead. For workloads containing many queries and
unique predicates, there may be more predicates than available bits,
even after compressing the predicates using the rectangle covering
heuristics. Suppose the number of available bits is k. In this sit-
uation, we use one of the following two solutions. The first is to
push down the first k rectangles returned by the rectangle cover-
ing heuristic. The second solution is used when accurate predicate
selectivity estimates are available; e.g., if statistics are collected
periodically and selectivities are known not to change over time.
In this case, rather than building the covering by always choosing
the rectangle which covers the most uncovered “ones” in M , we
choose the rectangle (i.e., composite predicate) which yields the
biggest decrease in the expected number of query invocations. As-
suming that all the predicates are independent, we can calculate the
expected number of invocations of a particular query as the product

Figure 5: Two minimum-sized rectangle coverings of Q1
through Q6.

of the selectivities of all of its predicates evaluated at the prefilter.
We then take the first k rectangles returned by the modified heuris-
tic, eliminate rectangle overlap, and place the resulting k predicates
in the prefilter.

Note that another way to reduce the number of bits used is to as-
sign bits to disjunctions of (base or composite) predicates. For sim-
plicity, we do not consider this possibility in this paper. Intuitively,
a disjunction of two or more predicates is more likely to evaluate to
true than a conjunction, in which case no query invocations can be
avoided.

2.4 Efficient Evaluation of Prefilter Predi-
cates

At this point, we have a set of (base and/or composite) predicates
marked for evaluation at the prefilter. The next issue we discuss
is how to efficiently evaluate the predicates. A “default” strategy
computes the prefilter predicates sequentially and in arbitrary or-
der whenever a new tuple arrives. Then, the prefilter bit vector is
compared with each query signature (again, sequentially and in ar-
bitrary order). Additionally, the prefilter framework is compatible
with many orthogonal techniques for speeding up predicate evalua-
tion, among them predicate indexing (we will discuss these in more
detail in Section 4). However, such techniques may complicate the
implementation of the prefilter and incur additional overhead. In-
stead, in what follows, we discuss two “compile-time” optimiza-
tions that do not add any overhead.

The first optimization deals with base predicates repeated in sev-
eral bits (composite predicates) in the prefilter. This occurs if the
covering produced in the previous step contains overlapping rectan-
gles. For example, Figure 5 shows two minimum-sized coverings
for the workload from Figure 3; the first is the non-overlapping
covering already shown in Figure 3 and the second contains over-
lapping rectangles. The latter consists of four rectangles: the first
row of M corresponding to p1, the circled region corresponding to
(p1 AND p2 AND p3), the union of the two dotted regions giv-
ing (p1 AND p4), and the bottom-right rectangle corresponding
to (p5 AND p6). Observe that the overlapping covering induces
three prefilter predicates containing p1. As a result, p1 is evaluated
redundantly in the prefilter.

We solve this problem by adding a post-processing step that
eliminates overlap whenever possible. The idea is to remove a set
of base predicates from a composite predicate if a conjunction of
those base predicates already has its own bit. In Figure 5, p1 has its
own bit and occurs inside two composite predicates. With p1 re-
moved, these two predicates simplify to (p2 AND p3), and p4,
respectively. At this point, all the rectangles in the covering are
non-overlapping, though in the general case, more than one iter-

ation of this procedure may be required to make all the possible
simplifications. Finally, we revise the query signatures to account
for the changes in predicate definitions.

The second improvement concerns efficient attribute “unpack-
ing”, i.e., extracting attribute values from raw stream tuples.
This process may be relatively expensive for variable-offset and
variable-length fields. However, a set of attributes can often be
unpacked more efficiently as a group (as compared to on-demand
unpacking of individual fields done separately by each query). For
instance, in the context of IP traffic streams, it is easy to unpack
all the TCP header attributes from an IP packet once the beginning
of the header is found. Since the prefilter needs to extract all the
fields referenced in all of its predicates prior to evaluating them, it
can take advantage of group unpacking. To do this, we compute
two parameters for each attribute of the stream: the cost of unpack-
ing it separately and the cost of unpacking it along with a set of
other attributes (e.g., those at the same protocol layer in the context
of network traffic streams). These parameters are straightforward
to estimate; e.g., extracting a fixed-offset field costs one operation,
given random access into the packet. We can now model the prob-
lem of group unpacking in terms of weighted set covering and use
a greedy heuristic to obtain the answer: at each step, we choose the
group of fields which gives the cheapest overall unpacking cost per
field.

3. EXPERIMENTAL EVALUATION

3.1 Setting
We implemented the default version of the prefilter (which evalu-

ates the predicates sequentially in arbitrary order, without any pred-
icate indices) in the Gigascope DSMS [7, 8]. Gigascope divides
each query plan into a low-level and high-level component, denoted
LFTA and HFTA, respectively. An LFTA evaluates fast operators
over the raw stream, such as projection, simple selection, and par-
tial group-by-aggregation using a fixed-size hash table. Early filter-
ing and pre-aggregation by the LFTAs are crucial in reducing the
data volume fed to the HFTAs, which are scheduled separately and
execute complex operators (e.g., user-defined functions, joins, and
final aggregation).

Tests were performed on a live network data feed from an AT&T
data center tap. All of our experiments monitor a high-speed
DAG4.3GE Gigabit Ethernet interface, which receives approxi-
mately 105,000 packets per second (about 400 Mbits per second).
Experiments were conducted on dual-processor 2.8 GHz P4 server
with 4 GB of RAM running FreeBSD 4.10.

We tested the prefilter on a network monitoring query set de-
veloped for an AT&T application. The set contains 24 complex
queries, i.e., 24 output streams to which applications may sub-
scribe. This gives rise to 50 LFTAs (some queries merge the output
of many LFTAs). The LFTAs contain 47 unique cheap predicates,
where a predicate is considered cheap if its estimated cost is less
than 10 instructions (raising this threshold up to 100 did not appear
to have any performance effect on the available query sets). Thus,
the prefilter contains 47 predicates and bit signatures for 50 queries
(LFTAs).

Though we are unable to reveal the details of the query set, we
illustrate the corresponding matrix M (of size 47x50) in Figure 6.
The first 14 rows correspond to shared predicates, e.g., referencing
common protocols such as TCP or UDP. This motivates the multi-
query optimization goal of the prefilter. The remaining 33 prefilter
predicates occur in one query each and are used to find specific
packets, e.g., DNS requests and responses, as in the example from
Section 1. This reflects the data reduction goal of the prefilter as

Figure 6: Matrix representation of the query set used in the
experiments.

these more specific predicates may be highly selective. We remark
that our query set is the largest among the Gigascope applications
we have, and is similar to our other query sets (having shared inex-
pensive predicates for selecting data of common interest, as well as
query-specific predicates for selecting rate packets or events).

Also note that four columns of M are all-zeros, therefore of
the 50 LFTAs, only 46 contain at least one inexpensive predicate.
Moreover, observe that the matrix is quite sparse. It contains 116
rectangles, which can be reduced to 44 if the pruning rule from
Section 2.2 is used to remove smaller rectangles contained in larger
ones. The height of the tallest rectangles is six (i.e., corresponding
to rows 1, 3, 6, 7, 8, and 14, and columns 19 and 20).

Finally, we note that our query set is expected to grow over time.
We anticipate that newly added queries will contain some exist-
ing predicates (e.g., on common protocols) as well as some new
ones. Since the current query set already exceeds the 16 and 32-bit
budgets, we expect to reach the 64-bit limit in the near future (of
course, another way to deal with a very large query set is to parti-
tion it across several Gigascope machines, but that requires making
multiple copies of a high-volume data stream).

3.2 Performance of Rectangle Covering
Heuristic

We begin by showing the efficiency and effectiveness of the rect-
angle covering heuristic from Section 2.2. Recall that the cost of
finding a covering consists of two parts: finding rectangles in M

and generating the covering. Figure 7 plots the time taken by our
heuristic and an exhaustive approach as a function of the number
of rectangles in the matrix representation of the query workload.
The exhaustive approach examines every permutation of the rect-

Figure 7: Running times of the rectangle covering heuristic and
the exhaustive solution.

Figure 8: Effectiveness of the rectangle covering heuristic.

angles, starting with all sets of one rectangle each and working up-
wards. Therefore, its time complexity is exponential in the number
of rectangles. As shown on the graph, the exhaustive technique
requires over 1000 seconds (over 20 minutes) to find a covering
when M contains 27 rectangles. Therefore, the optimal algorithm
is intractable over our query set, even if rectangle pruning is used.
In contrast, our heuristic can handle hundreds of rectangles in a
fraction of a second 2.

In Figure 8, we show the effectiveness of the rectangle covering
heuristic by comparing the number of bits it requires versus the op-
timal solution and the number of base predicates. The first set of
bars on the left corresponds to our query set; note that we were un-
able to obtain the optimal solution in a reasonable time. As shown,
the rectangle covering heuristic can represent the 47 prefilter pred-
icates using only 36 bits. The remaining three sets of bars corre-
spond to subsets of our query set that monitor different properties
of the IP stream; e.g., the second set of bars from the left reflects
a subset of 29 queries with 28 base predicates, 96 rectangles, and
27 main rectangles (which is small enough to compute the optimal
solution in under one hour). In all cases, our heuristic is only one
bit away from the optimal solution.

3.3 Performance of the Prefilter
Next, we report the performance of Gigascope, with and without

the prefilter. Our experiments consisted of two stages. First, we
obtained selectivity estimates of the 47 base predicates by creating
47 COUNT(*) queries, each with one of the base predicates in its
2Given that the rectangle covering heuristic is very fast, it may
be feasible in many circumstances to simply rebuild the prefilter
whenever new queries are added or existing queries removed over
time.

Figure 9: Expected performance of the prefilter (with and with-
out selectivity estimates).

WHERE clause. Next, we implemented two versions of the prefilter:
one that chooses the rectangle covering without considering selec-
tivities, and one that chooses rectangles according to the expected
number of LFTA invocations (as described in Section 2.3). For each
version, we experimented with several bit budgets, ranging from
one to 36 (which is enough to represent all 47 base predicates).

Prior to discussing the observed performance, we show the ex-
pected performance of the two versions of the prefilter in terms of
the expected number of LFTA invocations per tuple, assuming that
our selectivity estimates remain accurate. Results are plotted in
Figure 9 for various numbers of bits in the prefilter, up to 36. When
the number of bits is zero, the prefilter is disabled, therefore all 50
LFTAs are invoked for each new tuple. Using 36 bits, fewer than
ten LFTAs are expected to be invoked; at this point, using predi-
cate selectivities does not matter as all 36 composite predicates fit
in the prefilter anyway. If fewer than 36 bits are available, then
the knowledge of (accurate) selectivities can potentially improve
performance, but not by a significant margin. Moreover, note that
even using as few as ten bits is expected to yield a noticeable per-
formance improvement.

After gathering the selectivity estimates, we immediately ran the
experiments with the two versions of the prefilter. Each experiment
was performed serially on live traffic data, and hence there is a sig-
nificant amount of noise error in our results. However, the network
feed represents an aggregation of many users, and tends to be stable
over short periods of time (but not over the long run; e.g., mornings
vs. evenings or weekdays vs. weekends). As a result, the selec-
tivity estimates obtained just before running the experiments were
still accurate, aside from ignoring correlations across base predi-
cates due to the independence assumption.

For each experiment, we report the CPU utilization of the Gigas-
cope runtime system, which executes the prefilter and the LFTAs;
the CPU consumption of all the HFTAs combined amounted to less
than 25 percent and is not affected by the prefilter. We do not re-
port response time because it is not affected by the prefilter (similar
to the example queries in Section 1, all the queries in our set flush
their results at the end of each time epoch). For each data point,
we collected the average packet rate as well as the CPU utilization.
We then normalized the CPU utilization by the average packet rate
to obtain the equivalent utilization at 105,000 packets/sec (the most
common packet rate over the course of the experiments). We ob-
served that the CPU utilization of the runtime system alone (i.e.,
processing every packet, but not running any queries) was 8.8 per-
cent with the prefilter, and 8.7 percent with the prefilter turned off.
Thus, the prefilter is not a source of overhead.

Figure 10 shows the CPU utilization using the two versions of

Figure 10: Observed performance of the prefilter (with and
without selectivity estimates).

the prefilter described above and with various bit budgets. Without
the prefilter (i.e., when the number of bits is zero), the CPU us-
age is over 80 percent. However, we noticed that there was packet
loss at the LFTAs during periods of bursty arrivals (i.e., reduced
throughput). There was also packet loss with one bit (with or with-
out selectivity estimates). However, increasing the bit budget to
four already brought the CPU utilization down below 70 percent
and eliminated packet loss. Increasing the bit budget further caused
a gradual decrease of CPU utilization, down to 47 percent when all
36 composite predicates were included. As expected, selectivity
knowledge yielded moderate improvement of less than ten percent.
Again, this improvement is likely to vanish (or even become nega-
tive) as time goes on and the selectivity estimates become stale.

The dotted line in Figure 10 represents the CPU utilization
(roughly 58 percent) achieved by evaluating only the 14 shared
cheap predicates at the prefilter. This technique may be thought
of as corresponding to traditional multi-query optimization. How-
ever, further reduction in CPU usage is obtained if the prefilter also
includes non-shared cheap predicates. This is because even more
LFTA invocations can be avoided and more opportunities for effi-
cient attribute unpacking may arise (recall Section 2.4).

3.4 Lessons Learned
Based upon the results of our experiments, we draw the follow-

ing conclusions about the performance of the prefilter in Gigas-
cope:

• The rectangle covering heuristic finds near-optimal solutions
in terms of the number of bits needed to represent a set of
prefilter predicates.

• The prefilter significantly reduces the CPU utilization of
the LFTAs, even if only a subset of candidate predicates is
pushed down. This means that 1) the prefilter may be eval-
uated efficiently on network hardware, where the bit budget
is smaller, and 2) even if the query set is very large, we are
likely to find a small set of (composite) predicates that greatly
reduce the number of LFTA invocations.

• The prefilter is likely to be effective even if the query set does
not contain shared predicates, as evidenced by the additional
drop in CPU usage when non-shared cheap predicates were
used in Figure 10.

4. RELATED WORK
We now describe previous work related to the two goals of the

prefilter: early data reduction and multi-query optimization.

In terms of early data reduction, the prefilter is based upon the
classical idea of predicate pushdown. The novelty of the prefilter
is that inexpensive predicates are pushed down “outside” the query
plan in order to avoid the overhead of instantiating query opera-
tors. This overhead is negligible in complex relational queries, but
noticeable in lightweight streaming query plans.

In addition to predicate migration, early data reduction may be
accomplished by dropping tuples (random sampling or semantic
load shedding [3, 21]). Alternatively, approximate query answers
may be obtained by summarizing the stream using limited space
(via sketching, histograms, etc. [18]). All of these techniques are
orthogonal to the prefilter.

We evaluated the prefilter in Gigascope, which divides each
query plan into an LFTA and an HFTA, and schedules the two
components separately. However, the prefilter is applicable to
any DSMS that needs to process lightweight queries over massive
streams, irrespective of the query processing and scheduling archi-
tectures. The only requirement is that for each new tuple, the pre-
filter must be executed before the query processor and scheduler
are invoked.

In the context of multi-query optimization, a fundamental prob-
lem is that the optimal global query plan is typically different from
the union of locally optimal plans for individual queries due to the
presence of common sub-expressions [19, 20]. Our heuristic for
pushing down cheap predicates is similar to traditional multi-query
optimization heuristics that perturb locally optimal plans in order
to induce common subexpressions. On a related note, our heuris-
tic also resembles efforts in robust query optimization that attempt
to produce query plans which are resistant to changes in estimated
parameters such as selectivities [2].

Closely related to the prefilter is the work on shared execution
of many selection predicates in DSMSs and publish-subscribe sys-
tems. Most of this work proposes variants of predicate indexing
[4, 6, 10, 14, 15, 22] and can be easily incorporated into the pre-
filter framework. Other orthogonal techniques for efficient predi-
cate execution include caching expensive predicates [9] and adap-
tive execution [17], whereby the outcome of the currently executed
predicate determines which predicate to evaluate next.

In particular, we note that predicate indexing is effective if
queries contain many similar predicates over the same attribute,
which has a large domain, e.g., simple predicates of the form at-
tribute op constant, with op ∈ {=, <, >} and constant ∈ N. This
is not the case in the network analysis workloads currently han-
dled by Gigascope. First, many attributes in an IP data packet are
boolean—recall queries Q2 and Q3 from the Introduction, which
reference the boolean attribute qr that distinguishes DNS requests
from resposes. There are at most two unique predicates over a
boolean attribute, and they are both very cheap to evaluate. Second,
even those attributes which have very large domains—the source
and destination IP addresses—are not referenced by predicates of
the form IP-address op constant. Instead, these types of predicates
are similar to

longest_prefix_match(IP, table_name, id)

which denotes that the source or destination IP address must con-
tain a prefix of at least one entry in table table_name with a
given id. Thus, a longest prefix match table is a form of a predi-
cate index for hierarchical domains such as IP addresses. In light of
these observations, we leave the issue of incorporating index-like
optimizations into the prefilter for future work.

[5, 13] discuss predicate pushdown versus pullup for continuous
queries with joins. For example, suppose that n queries have the
same join predicate, but each has a different single-input selection

predicate on one of the input streams. Maintaining a shared join re-
sult may be beneficial, but single-input predicates would have to be
pulled above the join. It may be more efficient to push down a pred-
icate that contains a disjunction of the n single-input predicates so
that unnecessary join tuples are not materialized. This strategy is
compatible with the prefilter—we remove the n single-stream pred-
icates from consideration by the prefilter and instead evaluate the
disjunction at the prefilter if its cost is below the threshold. Then,
the shared join operator (followed by the n query plans) is invoked
only if the disjunction evaluates to true.

We also note that multi-query optimization in Gigascope was
specifically addressed in [23]. However, that work only consid-
ered overlapping sets of group-by columns and is orthogonal to the
prefilter.

Finally, we remark that the rectangle representation of prefilter
predicates is similar to Karnaugh maps used to find minimal ex-
pressions of Boolean functions [12]. The main difference is that a
Karnaugh map refers to a single predicate, while our rectangle cov-
ering heuristic finds overlap among composite predicates found in
a set of queries. Furthermore, the rectangle finding algorithm from
Figure 4 is related to frequent itemset mining algorithms [1], which
build large itemsets by extending smaller ones. The fundamental
difference is that itemsets must be found by scanning disk-resident
data, therefore the goal is to reduce the number of passes over the
database. Our algorithm assumes that the rectangle set RECT fits in
main memory, therefore making p “passes” over memory-resident
data (recall line 7 of Figure 4), where p is the number of unique
predicates in the prefilter, is not a concern.

5. CONCLUSIONS
This paper presented the prefilter—a lightweight predicate push-

down mechanism for a high-performance Data Stream Manage-
ment System. We motivated two goals of the prefilter in the con-
text of a set of stream analysis queries: early data reduction and
multi-query optimization. We accomplished the first goal by eval-
uating inexpensive predicates as soon as a new tuple arrives and
before any queries are invoked. We also formalized the problem
of representing a set of predicates using the fewest possible bits,
proved its NP hardness, and designed a heuristic that finds a near-
optimal solution. Additionally, we showed that efficient extrac-
tion of attributes from data stream packets may be performed at
the prefilter. The second goal was accomplished by pushing down
inexpensive shared predicates and evaluating them only once, as
well as caching the results of shared expensive predicates. Exper-
imental results showed that the prefilter improves the performance
of AT&T’s Gigascope DSMS on a network monitoring query set,
without the need to maintain selectivity estimates.

Future work includes the following two directions. Having stud-
ied the optimization of simple predicates in this paper, we now
want to investigate multi-query optimization in the context of ex-
pensive streaming operators, such as user-defined functions. Sec-
ond, we want to study the capabilities of network interface cards
and content-addressable memories in order to determine which op-
erators (in addition to simple predicates) may be pushed down all
the way to the network hardware level.

6. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association

rules between sets of items in large databases. SIGMOD
1993, 207–216.

[2] B. Babcock and S. Chaudhuri. Towards a robust query
optimizer: a principled and practical approach. SIGMOD
2005, 119–130.

[3] B. Babcock, M. Datar, and R. Motwani. Load shedding for
aggregation queries over data streams. ICDE 2004, 350–361.

[4] S. Chandrasekaran and M. J. Franklin. PSoup: a system for
streaming queries over streaming data. The VLDB Journal,
12(2):140–156, 2003.

[5] J. Chen, D. DeWitt, and J. Naughton. Design and Evaluation
of Alternative Selection Placement Strategies in Optimizing
Continuous Queries. ICDE 2002, 345–357.

[6] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
scalable continuous query system for Internet databases.
SIGMOD 2000, 379–390.

[7] G. Cormode et al. Holistic UDAFs at streaming speeds.
SIGMOD 2004, 35–46.

[8] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: High performance network monitoring with an
SQL interface. SIGMOD 2003, 647–651.

[9] M. Denny and M. Franklin. Predicate result range caching
for continuous queries. SIGMOD 2005, 646–657.

[10] F. Fabret et al. Filtering algorithms and implementation for
very fast publish/subscribe systems. SIGMOD 2001,
115–126.

[11] M. Garey and D. Johnson. Computers and Intractability. A
Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

[12] M. Karnaugh. The map method for synthesis of
combinational logic circuits. Journal of Symbolic Logic,
20(2):197, 1955.

[13] S. Krishnamurthy, M. Franklin, J. Hellerstein, and
G. Jacobson. The case for precision sharing. VLDB 2004,
972–986.

[14] H.-S. Lim et al. Continuous query processing in data streams
using duality of data and queries. SIGMOD 2006, 313–324.

[15] S. Madden, M. Shah, J. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over streams.
SIGMOD 2002, 49–60.

[16] R. Motwani et al. Query processing, approximation, and
resource management in a data stream management system.
CIDR 2003, 245–256.

[17] K. Munagala, U. Srivastava, and J. Widom. Optimization of
continuous queries with shared expensive filters. PODS
2007, 215–224.

[18] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2):1–67, 2005.

[19] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient
and extensible algorithms for multi query optimization.
SIGMOD 2000, 249–260.

[20] T. Sellis. Multiple-query optimization. ACM Trans. Database
Sys., 13(1):23–52, 1988.

[21] N. Tatbul et al. Load shedding in a data stream manager.
VLDB 2003, 309–320.

[22] K.-L. Wu, S.-K. Chen, and P. Yu. Interval query indexing for
efficient stream processing. CIKM 2004, 88–97.

[23] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava. Multiple
aggregations over data streams. SIGMOD 2005, 299–310.

Appendix
We now prove the NP-hardness of minimizing the number of bits
required to represent the prefilter predicates. This problem may be
reduced to finding a bipartite graph covering by complete bipartite
subgraphs, abbreviated CCBS, defined as follows.

Figure 11: Transforming an instance of CCBS to an instance of
rectangle covering.

Definition 3 Let G(V, E) be a bipartite graph and K be a positive
integer such that K ≤ |E|. We define the decision problem of
“covering by complete bipartite subgraphs” (CCBS) as follows:
are there k ≤ K subsets V1, V2, . . . , Vk of V such that each Vi

induces a complete subgraph of G and such that for each edge
{u, v} ∈ E there is some Vi that contains both u and v?

Theorem 1 CCBS is NP-complete [11].

We prove the following theorem, from which it follows that our
original problem is NP-hard.

Theorem 2 Let M be a Boolean matrix with p rows and q

columns. The following “rectangle covering” decision problem is
NP-complete: given a positive integer K such that K ≤ p, is there
a rectangle covering (as defined in Section 2.2) of M with size less
than or equal to K?

First, we observe that the rectangle covering problem is in NP
as we can verify if a given set of rectangles is a covering of M

in polynomial time. Next, let {G(V, E), K} be an instance of
CCBS and assume that G is represented by an adjacency matrix;
i.e., G(i, j) = 1 if there exists an edge from vertex i to vertex j,
and zero otherwise. Given that G is bipartite, we can divide V into
two disjoint sets, call them VL and VR. Without loss of generality,
assume that G is a directed graph such that all the edges originate
at a vertex in VL and terminate at a vertex in VR. Furthermore,
assume that all the vertices in VL are ordered first, followed by
the vertices in VR. This way, all the non-zero entries of G are in
its upper-right quadrant. The transformation from CCBS to rect-
angle covering is simple (and clearly polynomial-time): we assign
M to be the upper-right quadrant of G. An example is shown in
Figure 11.

To complete the proof, we show that G has a complete bipar-
tite subgraph covering of size K if and only if M has a rectangle
covering of size K. First, suppose that G has a complete bipar-
tite subgraph covering of size K and let G′ be any one of these K

subgraphs. Since G′ is complete and bipartite, it must link every
vertex in some non-empty set V ′

L ∈ VL with every vertex in some
non-empty set V ′

R ∈ VR. Hence, G′ induces a rectangle in G with
V ′

L and V ′

R as its sets of rows and columns, respectively. Since
every edge of G is contained in at least one subgraph forming the
covering, every non-zero entry in G is contained in at least one cor-
responding rectangle. Since M is contained in G, the K subgraphs
that cover G correspond to K rectangles that also form a rectangle
covering of M .

Conversely, assume that M has a rectangle covering of size K.
As per our transformation, every rectangle in M is defined by sets

of rows and columns corresponding to subsets of VL and VR, re-
spectively. Hence, every rectangle in M induces a complete bi-
partite subgraph of G. Since there exist K rectangles that cover
every non-zero entry of M (and also of G), it follows that the K

corresponding (complete bipartite) subgraphs cover every edge of
G.

