
 1

Lab2 — Producer-Consumer Problem

Due: 2:30 pm. Fr iday, 15th Feb
Group Size: 1, which means you can finish this lab assignment by yourself .
Note: This lab assignment is based on the project in Chapter 6 with slightly modification
and more helpful information. For the cited figures/sections, you need to refer to the
corresponding part in the textbook.

Introduction
In this project, we will design a programming solution to the bounded-buffer problem
using the producer and consumer processes shown in Figure 6.10 and Figure 6.11. The
solution presented in Section 6.6.1 uses three semaphores: empty and full, which count
the number of empty and full slots in the buffer, and mutex, which is a binary (or mutual
exclusive) semaphore that protects the actual insertion or removal of items in the buffer.
For this project, standard counting semaphores will be used for empty and full, and, rather
than a binary semaphore, a mutex lock will be used to represent mutex. The producer and
consumer – running as separate threads – will move items to and from a buffer that is
synchronized with these empty, full, and mutex structures. You are required to use the
pthread package to solve this problem in this project.

The Buffer
Internally, the buffer will consist of a fixed-size array of type buffer_item (which will be
defined using a typedef). The array of buffer_item objects will be manipulated as a
circular queue. The definition of buffer_item, along with the size of the buffer, can be
stored in a header file such as the following:
 /* buffer.h * /
 typedef int buffer_item;
 #define BUFFER_SIZE 5

The buffer will be manipulated with two functions, insert_item() and remove_item(),
which are called by the producer and consumer threads, respectively. A skeleton
outlining these functions appears as:
 #include “ buffer.h”

 /* the buffer * /
 buffer_item buffer[BUFFER_SIZE] ;

 int insert_item(buffer_item item) {
 /* insert an item into buffer * /

 printf (“ producer produced %d\n” , item);

 /* return 0 if successful, otherwise
 return -1 indicating an error condition * /

 }

 2

 int remove_item(buffer_item * item) {
 /* remove an object from buffer and placing it in item*/

 printf(“ consumer consumed %d\n” , rand);

 /* return 0 if successful, otherwise
 return -1 indicating an error condition * /
 }
The insert_item() and remove_item() functions will synchronize the producer and
consumer using the algorithms outlined in Figure 6.10 and 6.11. The buffer will also
require an initialization function that initializes the mutual exclusive object mutex along
with the empty and full semaphores.
 The main() function will initialize the buffer and create the separate producer and
consumer threads. Once it has created the producer and consumer threads, the main()
function will sleep for a period of time and, upon awakening, will terminate the
application. The main() function will be passed three parameters on the command line:

1. How long to sleep before terminating.
2. The number of producer threads
3. The number of consumer threads

A skeleton for this function appears as:
 #include “ buffer.h”

 int main(int argc, char*argv[]) {
 /* 1. Get command line arguments argv[1] , argv[2] , argv[3] * /
 /* 2. Initialize buffer, mutex, semaphores, and other global vars * /
 /* 3. Create producer thread(s) * /
 /* 4. Create consumer thread(s) * /
 /* 5. Sleep * /
 /* 6. Release resources, e.g. destroy mutex and semaphores * /
 /* 7. Exit * /
 }

Producer and Consumer Threads
The producer thread will alternate between sleeping for a random period of time and
inserting a random integer into the buffer. Random numbers will be produced using the
rand_r(unsigned int *seed) function, which produces random integers between 0 and
RAND_MAX safely in multithreaded processes. The consumer will also sleep for a
random period of time and, upon awakening, will attempt to remove an item from the
buffer. An outline of the producer and consumer threads appears as:

 #include <stdlib.h> /* required for rand_r(…) * /
 #include “ buffer.h”

 3

 void *producer(void *param) {
 buffer_item rand;

 while (1) {
 /* sleep for a random period of time * /
 sleep(…);

 /* generate a random number * /
 rand = rand_r(…);
 if (insert_item(rand) < 0)
 printf(…); // report error condition
 }
 }

 void *consumer(void *param) {
 buffer_item rand;

 while (1) {
 /* sleep for a random period of time * /
 sleep (…);

 if (remove_item(&rand) < 0)
 printf(…); // report error condition
 }
 }

Thread Creation in the pthread package
The following code sample demonstrates the pthread APIs for creating a new thread:
 #include <pthread.h>

 void * thread_entry(void *param) { /* the entry point of a new thread * /
 …
 }

 int main(…) {
 pthread_t tid;
 pthread_attr_t attr;

 /* get the default attribute * /
 pthread_attr_init(&attr);

 /* create a new thread * /
 pthread_create(&tid, &attr, thread_entry, NULL);

 …

 4

 }

The pthread package provides pthread_attr_init(…) function to set the default attributes
for the new thread. The function pthread_create(…) creates a new thread, which starts
the execution from the entry point specified by the third argument.

Mutex Locks in the pthread package
The following code sample illustrates how mutex locks available in the pthread API can
be used to protect a critical section:
 #include <pthread.h>
 pthread_mutex_t mutex;

 /* create the mutex lock * /
 pthread_mutex_init(&mutex, NULL);

 /* acquire the mutex lock * /
 pthread_mutex_lock(&mutex);

 /* ** critical section *** /

 /* release the mutex lock * /
 pthread_mutex_unlock(&mutex);

 The pthread package uses the pthread_mutex_t data type for mutex locks. A mutex
is created with the pthread_mutex_init(&mutex, NULL) function, with the first parameter
being a pointer to the mutex. By passing NULL as a second parameter, we initialize the
mutex to its default attributes. The mutex is acquired and released with the
pthread_mutex_lock(…) and pthread_mutex_unlock(…) functions. If the mutex lock is
unavailable when pthread_mutex_lock(…) is invoked, the calling thread is blocked until
the owner invokes pthread_mutex_unlock(…). All mutex functions return a value of 0
with correct operation; if an error occurs, these functions return a nonzero value.

Semaphores in the pthread package
The pthread package provides two types of semaphores – named and unnamed. For this
project, we use unnamed semaphores. The code below illustrates how a semaphore is
created:
 #include <semaphore.h>
 sem_t sem;

 /* create the semaphore and initialize it to 5 * /
 sem_init(&sem, 0, BUFFER_SIZE);

 The sem_init(…) creates a semaphore and initialize it. This function is passed three
parameters:

1. A pointer to the semaphore
2. A flag indicating the level of sharing

 5

3. The semaphore’s initial value
 In this example, by passing the flag 0, we are indicating that this semaphore can
only be shared by threads belonging to the same process that created the semaphore. A
nonzero value would allow other processes to access the semaphore as well. In this
example, we initialize the semaphore to the value 5.

 For the semaphore operations wait (or down, P) and signal (or up, V) discussed in
class, the pthread package names them sem_wait(…) and sem_post(…), respectively. The
code example below creates a binary semaphore mutex with an initial value of 1 and
illustrates its use in protecting a critical section: (Note: The code below is only for
illustration purposes. Do not use this binary semaphore for protecting cr itical
section. Instead, you are required to use the mutex locks provided by the pthread
package for protecting cr itical section.)
 #include <semaphore.h>
 sem_t sem_mutex;

 /* create the semaphore * /
 sem_init(&sem_mutex, 0, 1);

 /* acquire the semaphore * /
 sem_wait(&sem_mutex);

 /* ** critical section *** /

 /* release the semaphore * /
 sem_post(&mutex);

Compilation:
You need to link two special libraries to provide multithreaded and semaphore support
using the command “gcc <files> -lpthread –lrt” .

Test:
You can start use one producer thread and one consumer thread for testing, and gradually
use more producer and consumer threads. For each test case, you need to make sure that
the random numbers generated by producer threads should exactly match the random
numbers consumed by consumer threads (both their orders and their values).

Submission:
You can put all of your code into one file, say main.c, and submit that file using the
command “submit c660ab lab2 main.c” . If you have multiple files, for example buffer.h,
buffer.c, and main.c, you need submit all of them together using the command “submit
c660ab lab2 buffer.h buffer.c main.c” . In main.c, please put you name, how to compile
your file, run your compiled program, and make sure your instructions working. Please
also br ing a pr intout of your code with some sample runs for submission dur ing the
class on 15th Feb.

