
COSC 4330-Operating System Fundamentals
Assignment #3: The Bridge

(Due on Monday, May 2, 2011 at 11:59 pm)

OBJECTIVES
This rather short assignment should teach you
how to use (a) POSIX semaphores to provide
mutual exclusion and (b) UNIX shared memory
segments to store shared variables.

THE PROBLEM
A bridge is load-zoned and can only carry a total
weight of maxweight tons. Access to the
bridge will be controlled by two functions:
• enter_bridge(weight) and
• leave_bridge(weight),

where weight is the total loaded weight of
each vehicle rounded up to an integer number of
tons.

You are to implement these two functions
using P() and V()system calls to UNIX
semaphores and a shared memory segment
representing the total weight of the vehicles that
are already on the bridge.
Your two functions should:
1. ensure that the total weight of all vehicles on

the bridge will never exceed maxweight
tons,

2. ensure that all vehicle crossing the bridge
will cross it in strict FCFS order, and

3. avoid deadlocks.

YOUR PROGRAM
Your program should consist of one main
program, the two functions
enter_bridge(weight) and
leave_bridge(weight), and one child
process per vehicle arriving to the bridge.

The maxweight constant should be read
from the command line as in:
 ./a.out 10

All other parameters will be read from the
standard input. Each input line will describe one
vehicle arriving at the bridge and will contain
four parameters:
1. An alphanumeric string representing the car

license plate,
2. A positive integer representing the number

of seconds elapsed since the arrival of the
previous vehicle (it will be equal to zero for
the first vehicle arriving to the bridge);

3. A positive integer representing the total
loaded weight of the vehicle rounded up to
an integer number of tons,

4. A positive integer representing the number
of seconds the vehicle will take to cross the
bridge.

One possible set of input could be:
HIOFCR 0 1 10
STOL3N 3 10 20
10URED 8 1 30
2DIE4 7 1 5
BYOFCR 2 1 15

Your main program should read the input
line per line, wait for the appropriate amount of
time and fork a different child process for each
incoming vehicle. It should print out a
descriptive message including the vehicle
license number and the current bridge load
every time a vehicle:
1. Arrives at the bridge,
2. Starts crossing the bridge, and
3. Leaves the bridge.

Vehicles whose total loaded weight exceeds
the maximum load of the bridge should be
rejected and a descriptive message containing
the serial number of the vehicle printed out.

The current bridge load when a vehicle
starts crossing the bridge includes the weight of
that vehicle but the current bridge load after a
vehicle leaves the bridge does not.

POSIX SEMAPHORES
1. Don't forget the following includes:

#include <sys/types.h>
#include <sys/ipc.h>
#include <stdio.h>
#include <semaphore.h>
#include <sys/stat.h>
#include <fcntl.h>

2. To create a POSIX semaphore, or to connect to
an existing one, use:
sem_t *mysem;
char name[] = "/Sem Name";
unsigned int initial_value;
mysem = sem_open(name, O_CREAT,
0600, initial_value);

Note that sem_open does not reset the initial
value of a semaphore that already exists. To
check whether a semaphore exists, you can do:
$ ls /dev/shmem

You can delete your semaphores by “removing”
the pseudo-files named after them:
$ rm –i /dev/shm/sem.Sem\ Name

3. To do a P() operation on a semaphore, use:
sem_t *mysem;
sem_wait(mysem);

4. To do a V()operation on a semaphore, use:
sem_t *mysem;
sem_post(mysem);

5. To end the connection to an open semaphore and
cause it to be removed when the last process
closes it, use:
sem_t *mysem;
char name[] = "/Sem Name";
sem_close(mysem);
sem_unlink(name);

6. To check the value of a semaphore
sem_t *mysem;
sem_getvalue(mysem, &value);

7. Programs using POSIX semaphores on
bayou.cs.uh.edu must be compiled with
the library flag –lrt after the list of source
code modules as in
gcc bridge.c –lrt

UNIX SHARED MEMORY
1. A shared memory segment can be addressed by

a) Its key: an integer of type key_t
(use a phone number),

b) Its shared memory id: an integer assigned
by system.

2. Your program should have the above includes
plus:
#include <sys/shm.h>

3. There are four primitive operations on shared
memory segments:
a) int shmget (key_t key, int

nbytes, int flags)

Gets nbytes bytes of shared memory and
returns a shared memory id:

int shmid, nbytes;
shmid = shmget(key, nbytes,
0666 | IPC_CREAT);

The flag IPC_CREAT requests the creation
of the segment if it did not exist already.

b) char *shmat (int shmid, int
address, int flags)
Attaches the shared memory segment to an
address space:
char *pmem;
pmem = shmat(shmid, 0, 0);
To test for error, use
if (pmem == (char *)(-1))…
The shared memory segment looks now like
an array of characters created using
malloc();

c) int shmdt(char *pmem)
Detaches the shared memory segment,
which must be done before destroying it.

b) int shmctl (int shmid, int
cmd, int arg)
To destroy a shared memory segment use:
shmctl(shmid, 0, IPC_RMID);

HINTS
1. Create your semaphores and your shared

memory segment in your main program before
you fork any child process.

2. Be sure to terminate your vehicle processes as
soon as they exit from the bridge. You might
otherwise run out of processes.

3. Never terminate a child process with exit(0)
as it resets stdin. Use instead _exit(0).
Do not forget to delete your semaphores and
shared memory segments when you are done
with them.

This document was updated last on Sunday, April 17,
2011

