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Abstract: The harmonic motion of pendulum swinging centered at a pivot point is mimicked in
this work. The harmonic motion’s amplitude at both side of the pivot are equal, damped, and
decreased with time. This behavior is mimicked by the agents of the pendulum search algorithm
(PSA) to move and look for an optimization solution within a search area. The high amplitude
at the beginning encourages exploration and expands the search area while the small amplitude
towards the end encourages fine-tuning and exploitation. PSA is applied for a vaccine distribution
problem. The extended SEIR model of Hong Kong’s 2009 H1N1 influenza epidemic is adopted
here. The results show that PSA is able to generate a good solution that is able to minimize the total
infection better than several other methods. PSA is also tested using 13 multimodal functions from
the CEC2014 benchmark function. To optimize multimodal functions, an algorithm must be able to
avoid premature convergence and escape from local optima traps. Hence, the functions are chosen
to validate the algorithm as a robust metaheuristic optimizer. PSA is found to be able to provide
low error values. PSA is then benchmarked with the state-of-the-art particle swarm optimization
(PSO) and sine cosine algorithm (SCA). PSA is better than PSO and SCA in a greater number of test
functions; these positive results show the potential of PSA.

Keywords: harmonic motion; pendulum; optimization; search

1. Introduction

Optimization problems occur in all branches of studies, from engineering to health
science to logistics planning to computer science to finance, and many others. Optimization
problems often involve maximization of gain or/and minimization of lost with respect
to some constraints. Many of these problems are complex and solving them using exact
optimization algorithms is impractical due to the computational cost and time taken.

Metaheuristics provide the answer of this problem. Metaheuristics are approximation
algorithms that provide optimal or near-optimal solutions within reasonable time and
computational constraints. Metaheuristics are general purpose and can be adapted to
various problems.

Much research has been conducted in this field and many algorithms have been
proposed. The majority of the algorithms proposed are nature-inspired. In fact, the state
of the art and most researched algorithms–namely the genetic algorithm (GA) [1], ant
colony optimization (ACO) algorithm [2], and particle swarm optimization (PSO) [3]–are
all inspired by nature. The GA is inspired by genetic evolution like the selection of the
fittest, mutation, and crossover to generate a new and superior generation. Meanwhile,
the ACO is inspired by the foraging behavior of ants where a trail of pheromones is left as
information for the colony’s members. PSO, on the other hand, is inspired by the social
behavior observed among flock of birds, swarm of bees, and school of fishes. PSO mimics
how the cognitive and social factors influence the individuals’ decision.
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Although many metaheuristic algorithms have been proposed in recent years–for
example the sine cosine algorithm (SCA) [4], gravitational search algorithm (GSA) [5], bat
algorithm (BA) [6], artificial bee colony (ABC) [7], grey wolf optimization (GWO) [8], and
many others–the no free lunch theorem (NFL) motivates researchers to keep introducing
new algorithms or improving those existing. NFL states that no supreme algorithm that
can provide the best solution for all optimization problems exists. An algorithm might be
able to give the best solution for a set of problems but not for another set.

In this work, a new metaheuristic named the Pendulum Search Algorithm (PSA) is
proposed. PSA is a population-based algorithm where the solution of an optimization
problem is searched for by a group of agents. The agents in PSA move around the search
space looking for the optimal solution according to pendulum harmonic motion. A pen-
dulum centered at a pivot point swings in a harmonic motion, with the amplitude of the
swing decreasing with time. The proposed algorithm is validated using 13 multimodal
test functions and benchmarked with PSO and SCA. The findings show that PSA is a good
optimization algorithm, outperforming PSO in 8 out of 13 functions and 12 out of 13 for
SCA. PSA is then applied for the optimization of vaccine distribution using the case of
Hong Kong’s 2009 H1N1 influenza endemic. The distribution percentage found by PSA is
better in lowering the number of infections when compared with three traditional strategies
usually used in health science.

This paper is divided into five sections. The following section investigates existing
algorithms with similar framework. The PSA is introduced in Section 3. Section 4 presents
the experiment conducted including details of the H1N1′s extended SEIR and the findings
obtained. Finally, the work is concluded in Section 5.

2. Related Works

Metaheuristic algorithms are iterative procedure where search agents repeatedly
evaluate and improve their solution in each iteration. The success of a metaheuristic
algorithm depends on the ability of the search agents to explore or expand their search
area and to exploit or fine-tune the search around the current search area [9]. Many
research show that exploration is desired at the early stage of the iterative procedure
while exploitation is important towards the end of the iteration [10]. Exploration widens
the search area of an agents so that a region containing an optimal solution is identified,
whereas exploitation narrows down the search within the identified region so that the
location with an optimal solution is found.

A time decreasing inertia weight is an example of a mechanism frequently adopted
by researchers to control agents’ behaviour to favour exploration at the start of the search
before switching to exploitation [11–13]. The time decreasing inertia weight reduces the
step size as the iteration increases. Among the common patterns applied by researchers are
linearly decreasing and exponentially decreasing inertia weight [12].

Metaheuristic search agents often face the challenge of premature convergence where
the agents are trapped in local optima [14]. In [15], crossover operation is introduced to the
cat swarm optimization algorithm to overcome the local optima trap and increase diversity.
Meanwhile, in [16] a simple re-initialization method is proposed for PSO. Mutation is also a
popular method to avoid premature convergence, where various mutation strategies have
been adopted by researchers [17,18]. Overall, all these strategies are introduced to create a
disturbance to the agents’ convergence so that the premature convergence can be avoided.

The most relevant algorithm to this work is SCA. Mirjalili adopted the sine cosine
function to guide the search for the optimal solution by fluctuating around the best solution.
To ensure convergence, SCA envelopes the sine and cosine function using a linearly de-
creasing function mirrored by the time axis. However, despite the fluctuation and linearly
decreasing envelope, both [19,20] listed premature convergence as the drawback of SCA.
Additionally, [21] highlighted that the solution update equations of SCA result in a bias
towards the origin, causing SCA to work very well for optimization problems where the
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global solution is located at the origin. The performance declines with shifted problems.
Three random numbers are needed in SCA.

In this work, a physical phenomenon–namely the harmonic motion of a pendulum–
is mimicked to move the search agents so that an optimal solution is achieved. Unlike
SCA, the harmonic motion of the pendulum slows down with exponential function. Expo-
nential function had been observed to provide good exploration–exploitation balance in
metaheuristics [22,23]. The PSA agents do not randomly select between sine and cosine
functions; rather, they follow the harmonic motion function. The harmonic motion function
determines the maximum limit for the random numbers that controls the PSA agents’
stochastic search, with respect to current solution and best solution.

3. Pendulum Search Algorithm
3.1. Source of Inspiration

An idealized pendulum swings left and right with equal height endlessly. However,
this is unrealistic, as fluid drag causes by air dampens the pendulum’s movement, which
eventually reach to a standstill [24].

Pendulum damped harmonic motion is the inspiration for PSA. The weight swings
back and forth, while the oscillation amplitude declines with time until equilibrium is
reached. The air resistance dampens and slows down the pendulum motion. Figure 1
illustrate a swinging pendulum hanged by a string and its typical harmonic oscillation. The
harmonic oscillation equation is also shown in the figure. The maximum displacement from
the equilibrium is represented as A, the angular frequency is ω, and ϕ is the initial phase.
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Figure 1. Pendulum Harmonic Motion.

The pendulum harmonic motion is chosen here to control the search step of PSA agents
due to the oscillating pattern observed. This pattern that expands and contracts alternately
while decreasing the amplitude throughout the time is desirable. This behaviour is pre-
dicted to support agents’ exploration at the beginning, and to be balanced by exploitation
as the search progress.

3.2. The Algorithm

PSA is a population-based metaheuristic, where the search for the optimal solution
is driven by a group of agents. In PSA, each of the agents acts like a pendulum with
independent parameters. They move around the search space looking for the optimal
solution, driven by the pendulum movement that centres around their own current position.

The agent’s position updated equation is shown in Equation (1):

Pd
i (t) = Pd

i (t− 1) + pendd
i (t)

(
Bestd − Pd

i (t− 1)
)

(1)
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where Pd
i (t) represents position of agent ith at dimension dth for time tth, while Bestd is

the best solution found so far since the start of the search by the entire population. The
agent moves towards or away from the best solution based on pendd

i (t), which is a random
number with maximum amplitude oscillates obeying the pendulum harmonic equation
as illustrated in Figure 2. Different agents have a different pendd

i (t) value. The pendd
i (t) is

calculated according to Equation (2).

pendd
i (t) = 2 exp(−t/tmax)(cos(2π ∗ rand)) (2)
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This equation mimics the harmonic equation, tmax is the maximum number of iter-
ations, and rand is a random number between 0 to 1.0 drawn from uniform distribution.
The maximum displacement amplitude 2 is chosen so that exploration is favoured during
the early iterations. Once the pendd

i (t) is below 1, the agents switch to favour exploitation.
Additionally, pendd

i (t) oscillates between the positive and negative range. A positive value
pendd

i (t) encourages an agent to move towards the direction of the best solution, while a
negative pendd

i (t) drives the agents towards the opposite direction from the best solution.
There are only two simple mathematical equations employed in PSA with two pa-

rameters to be selected, namely the number of agents and maximum number of iterations.
This makes PSA a very simple optimization algorithm with low computational cost. The
pseudocode of PSA is shown in Algorithm 1.

Algorithm 1 Pseudocode of PSA

Initialize the agents’ parameters and positions randomly.
For i = 1: maximum iteration

For each agent
Update agents using Equation (1) & (2)
Evaluate agent’s fitness

End
Identify the best agent

End
Solution: best agent

4. Experiment, Results & Discussion
4.1. Optimization of Benchmark Problems

The performance of the proposed PSA is studied using 13 multimodal functions
from the CEC2014 benchmark test suite, function 4–16. These functions are minimization
problems that are shifted and rotated from their original basic functions. The shift and
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rotation avoids the issue of origin bias. Multimodal functions have many local optima and
one ultimate global optimum. Multimodal functions are suitable to observe whether an
algorithm is able to perform and avoid premature convergence or not, as well as observing
the algorithm’s exploration and exploitation ability. Therefore, only the 14 multimodal
functions are adopted here. The names and ideal fitness of the functions are listed in Table 1;
other details of the 13 benchmark functions such as their mathematical functions can be
found in [25]. In this work, the dimension of the functions is set to 10.

Table 1. List of Benchmark Functions.

Function Name Ideal Fitness

f4 Shifted and Rotated
Rosenbrock’s Function 400

f5 Shifted and Rotated Ackley’s
Function 500

f6 Shifted and Rotated
Weierstrass Function 600

f7 Shifted and Rotated
Griewank’s Function 700

f8 Shifted Rastrigin’s Function 800

f9 Shifted and Rotated
Rastrigin’s Function 900

f10 Shifted Schwefel’s Function 1000

f11 Shifted and Rotated
Schwefel’s Function 1100

f12 Shifted and Rotated Katsuura
Function 1200

f13 Shifted and Rotated
HappyCat Function 1300

f14 Shifted and Rotated HGBat
Function 1400

f15
Shifted and Rotated Expanded
Griewank’s plus Rosenbrock’s

Function
1500

f16 Shifted and Rotated Expanded
Scaffer’s F6 Function 1600

4.1.1. Number of Agents

There are only two parameters to be selected for PSA. The first is the number of
iterations. This is related to the computational ability of the computing platform and the
complexity of the problems. Hence, for this experiment the number of iteration is set to
1000. The second parameter is the number of agents. In this section the effect of the number
of agents is investigated. The number of agents tested are 10, 20, 30, 40, and 50. All the
settings are run 30 times; the best results of the run are tabulated in Table 2. Since the
benchmark functions are minimization problems, the best results are the minimum value
from the 30 runs of each setting. It can be seen that there is no one number of agents that
works best for all test functions. However, the number of agents equal to 50 obtained a
higher number of best results compared to the others.

The Friedman signed rank test of 1 × N is then conducted to identify the best number
of agents using this set of benchmark functions. The Friedman signed rank test is a statistical
method commonly used to provide an unbiased analysis of metaheuristics’ performance [26–28].
The lower the Friedman rank of an algorithm, the better the algorithm is. A 1×N test compares
the best-ranked algorithm with the other algorithms. If the Friedman statistic value–which
is distributed according to χ2 with k− 1 degrees of freedom, where k is the number of test
(here k = 5, i.e.,: 5 number of agents tested)–has p-value of lesser than the significance level
adopted, α, then the null hypothesis that states that all settings tested are on par with each other
is rejected. In order to identify the significant difference, a post hoc procedure known as the
Holm post hoc procedure is adopted. In this work, α = 0.05 is adopted. Other than 0.05, 0.1
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is also commonly used by researchers. The smaller the value, the stricter the statistical test in
accepting the null hypothesis.

Table 2. Effect of Number of Agents.

Number of Agents

Function
Name 10 20 30 40 50

f4 400.0557 400.0003 400.001 400.0008 400.0013
f5 519.997 519.996 519.9923 519.983 519.9913
f6 601.5922 601.0678 600.3217 600.3587 600.0771
f7 700.0595 700.027 700.0418 700.0591 700.0517
f8 801.9904 800 800 800 800
f9 905.9708 905.9698 904.9748 905.9698 904.9748
f10 1007.031 1000.375 1000.25 1003.602 1000.25
f11 1247.431 1226.78 1140.238 1222.493 1131.949
f12 1200.059 1200.006 1200.012 1200.01 1200.017
f13 1300.138 1300.132 1300.1 1300.043 1300.137
f14 1400.171 1400.144 1400.123 1400.079 1400.052
f15 1500.94 1500.575 1500.499 1500.578 1500.417
f16 1602.263 1602.072 1602.032 1601.511 1601.108

Friedman
Rank 5 2.9615 2.3462 2.5769 2.1154

In this work, the statistical test is carried using Knowledge Extraction based on Evolu-
tionary Learning (KEEL), which is an open-source tool with statistical analysis modules [26].
KEEL is a user friendly software developed by a group of researchers for research and
academic purposes [26–28].

The Friedman ranks are listed in the last row of Table 2. The Friedman statistical
value (distributed according to χ2 with 4 degrees of freedom) is 28.030769 and its p-value is
0.000012, which is less than a significance level of 0.05. Therefore, a significant difference
exists among the five settings. The Holm post-hoc is used to determine which setting is
on par or worse than the best-ranked number of agents. Table 3 shows the p-value and
Holm value of the post hoc test. The Holm’s procedure rejects those hypotheses that have a
p-value < Holm. Hence, a number of agents equal to 10 is significantly worse than 50, and
the others are on par with each other. Thus, it can be concluded that a number of agents
above 20 is recommended for PSA.

Table 3. Holm Post Hoc for Number of Agents.

i Number of Agents p Holm

4 10 0.000003 0.0125
3 20 0.172447 0.016667
2 40 0.45675 0.025
1 30 0.709815 0.05

Figure 3 further illustrates the results of the experiment. The results are converted
into error values for better graph representation. The error value is the difference between
the fitness of the solution found with the ideal fitness. At the top left of the figure is the
close-up of the graph. Similar to what is observed in Table 2, it can be seen that the number
of agent equal to 50 gives the least error in most of the functions, but not in all functions.
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4.1.2. PSA vs PSO and SCA

The PSA is benchmarked with PSO and SCA. PSO is selected due to its reputation
as the state-of-the-art metaheuristic algorithm. Additionally, like PSA, PSO also only has
two mathematical equations to be updated at each iteration. Thus, both algorithms have
similar computational complexity. The SCA is chosen due to its similarity with PSA as
discussed before. Based on the findings from the previous section, all three algorithms are
run with 50 agents and for 1000 iterations. Since the algorithms are stochastic algorithms
with randomness incorporated into them, the algorithms are run 30 times. In addition to
the best result found–i.e., the minimum value; the lower the value, the better the result–the
maximum, mean and standard deviation of the algorithms are recorded and tabulated in
Table 4, and their convergence curves are presented in Figure 4. Similar to the last section,
statistical analysis is conducted using the best results.

Table 4. Performance of PSA vs PSO and SCA.

PSA PSO SCA

Min Max Mean Std
Dev Min Max Mean Std

Dev Min Max Mean Std
Dev

f4 400.01 438.72 421.30 17.32 400.15 442.94 429.58 16.54 431.09 490.65 458.46 14.61
f5 519.83 520.00 519.99 0.03 520.11 520.45 520.29 0.08 517.81 520.56 520.32 0.48
f6 600.03 606.29 602.33 1.46 600.00 606.87 601.35 1.51 604.51 609.45 606.50 1.30
f7 700.03 700.66 700.22 0.16 700.03 700.23 700.13 0.06 706.04 718.41 711.08 3.57
f8 800.00 802.98 800.83 0.79 800.99 803.98 802.50 0.96 827.23 855.40 839.57 7.99
f9 902.98 924.87 911.18 5.96 903.98 916.47 909.30 3.21 935.95 957.31 943.53 6.08

f10 1003.41 1140.72 1026.81 40.76 1003.72 1365.82 1133.64 113.59 1744.35 2388.44 1994.61 173.71
f11 1225.66 2166.99 1574.51 214.47 1106.89 1881.69 1482.65 198.60 1658.50 2876.79 2400.37 279.23
f12 1200.03 1200.24 1200.11 0.06 1200.08 1201.40 1200.61 0.38 1200.91 1201.72 1201.30 0.19
f13 1300.13 1300.48 1300.29 0.11 1300.06 1300.22 1300.13 0.04 1300.50 1300.84 1300.62 0.08
f14 1400.07 1400.84 1400.32 0.20 1400.07 1400.32 1400.15 0.06 1400.38 1401.52 1400.92 0.34
f15 1500.45 1503.31 1501.54 0.76 1500.49 1502.69 1501.16 0.45 1505.01 1513.12 1507.42 1.64
f16 1601.24 1603.22 1602.39 0.56 1600.74 1603.14 1602.15 0.48 1602.72 1603.79 1603.37 0.22

Friedman
Rank 1.3846 1.7692 2.8462
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Table 5. Holm Post Hoc for Number of Agents.

i Algorithm p Holm

2 SCA 0.000194 0.025
1 PSO 0.3268 0.05

The standard deviation of PSA is less than 1 for 8 out of the 13 test functions. Low
standard deviation shows the consistency of the algorithm’s performance. This is also seen
for the state-of-the-art PSO. On the other hand, SCA has a greater number of standard
deviations bigger than 1. The same findings are observed through the small difference
between the maximum and minimum solution of PSA.

The convergence curves of PSA show that PSA converges gradually at the beginning
and found its best solution faster than PSO and SCA. This pattern shows that further
improvement focusing on enhancing agents’ exploration is needed

4.2. PSA for Vaccine Distribution Optimization

During a pandemic, an efficient vaccine distribution strategy is important to ensure
that objectives such as achieving heard immunity and lowering the transmissibility rate
is achieved. As observed during the current COVID-19 pandemic as well as the 2009
H1N1 outbreak, vaccination is an important measure to combat the outbreak of infectious
diseases. However, vaccine production is frequently costly and time-consuming, causing
limited supply [29]. Therefore, the distribution of vaccines to susceptible persons must be
optimized in order to achieve the optimum effects [30].
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In this work, we proposed the application of PSA for vaccine distribution optimization.
The 2009 Hong Kong’s H1N1 epidemic [31] is used here as the case study. In [31], an
extended SEIR model with vaccination (SEIR-V) is proposed. The SEIR model where, S—
susceptible, E—exposed, I—infected, and R—recovered, is a compartmental mathematical
model frequently adopted to model dynamics of infectious diseases. The SEIR model
can be extended to include other aspects such as vaccination effect (V), death (D), and
hospitalization (H). The model adopted here characterizes the infection dynamics according
to five age groups and the contact rate of the individuals. The SEIR-V model is represented
by nonlinear differential Equations (3)–(7).

dSg

dt
=
(
−λg

)
·
(
Sg − ∆vg

)
+
(
−∆vg

)
(3)

dEg

dt
= (−γ)·Eg + λg·

(
Sg − ∆vg

)
(4)

dIg

dt
= (−τ)·Ig + γ·Eg (5)

dRg

dt
= τ·Ig (6)

dVg

dt
= ∆vg (7)

The subscript g in the equations represents age group, where g = {1, 2, 3, 4, 5}. The
population is divided to five age groups as follows; A1(5− 14), A2(15− 24), A3(25− 44),
A4(45− 64), and A5(65+). Children between the age of 0–4 are not included as they do not
have independent social contact. The contact frequency matrix, C =

{
cg1,g2

∣∣g1, g2 ∈ (1, 5)
}

,
between individuals from different and same age groups is presented in Table 6. The
numbers are decided based on the work conducted in [32].

Table 6. Contact frequency matrix.

A1 A2 A3 A4 A5

A1 8.27 1.395 4.165 1.51 0.715
A2 1.395 5.65 2.385 1.83 0.895
A3 4.167 2.385 6.55 3.425 1.383
A4 1.51 1.83 3.425 4.2 2.055
A5 0.715 0.895 1.383 2.055 2.66

In Equation (3), (4), and (7), ∆vg is the amount of vaccine released in the current step.
Meanwhile, λg represents infection risk of the susceptible individuals in group Ag which is
formulated in Equation (8).

λg =
1
5
·
(

5

∑
j=1

(
cg, g2·

Ig2
Pg2

))
· Sg
Pg
·βg (8)

The size of population according to age group is represented by Pg while βg is the age-
based infection rate. γ and τ represent the incubation and recovery rate. These parameters
are set according to the setting of [31], which is shown in Table 7.

The objective of the PSA is to minimize the total infections by minimizing the peak of
the infection curve. The position of PSA’s agent, Pg

i , represents the distribution percentage
of the vaccine according to age group, g. The dimension of the agent follows the number of
age group. The objective function is as shown in Equation (9).
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Table 7. Parameters of 2009 Hong Kong’s H1N1 epidemic.

Age Group Population Pi Infection Rate βi Incubation Rate γ Recovery Rate τ

A1 0.94 m 0.434 0.25 0.334
A2 0.94 m 0.158 0.25 0.334
A3 2.30 m 0.118 0.25 0.334
A4 1.86 m 0.046 0.25 0.334
A5 0.85 m 0.046 0.25 0.334

f iti = min
(

5
∑

i=1
Ig(peak)

)
subject to : ∑5

g=1 Vg = Vmax, Vg = Pg
i ×Vmax

5
∑

g=1
Pg

i = 1

1 ≤ peak ≤ endob

(9)

where f iti is fitness of agent i, Ig(peak) is the peak of infection number from the start of the
outbreak to the end of the outbreak, endob. Vmax is the total number of vaccines available.
The infection number is calculated using Equation (5). Since day of the outbreak, t, is a
discrete value (t ∈ (1, endob)), the differential equation is approached using the discrete
calculus method, where the I is calculated using summation.

The performance of the PSA in solving the vaccine distribution problem is compared
with the three traditional strategies implemented in [31], which are based on transmissibility
(S1), vulnerability (S2), and infection risk (S3). Three conditions are used here, where the
number of vaccines is set to small, medium, and large quantity which are 5%, 10%, and
20% of the total population. The vaccine is assumed to be given during the infection
dispersing stage, which is at day 50. The duration of the outbreak is endob = 300 days and
the initial exposed individual are 30 from A2. The experimental parameter settings are
tabulated in Table 8.

Table 8. Experimental parameter settings.

Parameter Value

No. of vaccine (0.3 m = 5%, 0.6 m = 10%, 1.2 m = 20%)
Administered day 50
Outbreak duration 300

Initial exposed individuals {E1E2, E3, E4, E5} {0, 30, 0, 0, 0}

The results of vaccine distribution using PSA are illustrated in Figures 5–7. The
results show that for small and medium vaccination coverage, PSA can find much better
vaccination distribution percentages that the other three traditional strategies. The peaks of
the infection outbreak are lowest using the percentage determined by PSA compared to the
other strategy. Meanwhile, when the number of vaccines is large, the performance of PSA,
S2, and S3 are close to one another.

Overall, the findings show that PSA is a good optimization algorithm that can solve
a complex nonlinear differential problem like the vaccination distribution problem. In
addition, it is observed that increasing the number of vaccines lowers and flattens the
infection curve faster.
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5. Conclusions

A new metaheuristic algorithm, PSA, is proposed in this work. PSA is a population-
based algorithm where the agents move in the search space by mimicking pendulum
movement. The performance of the algorithm is studied using 13 multimodal mathematical
functions. The findings found that the algorithm is able to look for a good solution and
performs as well as the state-of-the-art PSO and significantly better than SCA. The PSA
is then applied to the vaccine distribution optimization problem. Three conditions are
tested and the results of PSA are better than that of traditional strategies. Nonetheless,
convergence curves show that PSA converges faster than PSO. This contributes to PSO
obtaining better results in the functions where it outperformed PSA. Hence, further work
should focus on improving the exploration ability of PSA so that a better performance can
be achieved. For example, a move towards a randomly selected agent by some agents
may be incorporated to encourage exploration. In addition, a mechanism that allows the
algorithm to self-adapt the number of agents as well as the iteration number is desirable.
Finally, the work also points to the potential benefits in developing smart decision support
systems that can enhance authorities’ ability to take the most optimum strategic decisions
when addressing complex problems such as vaccine distribution to combat a pandemic.
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