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Abstract
The greatest and fastest advances in the computing world today require researchers to develop new problem-solving tech-
niques capable of providing an optimal global solution considering a set of aspects and restrictions. Due to the superiority 
of the metaheuristic Algorithms (MAs) in solving different classes of problems and providing promising results, MAs need 
to be studied. Numerous studies of MAs algorithms in different fields exist, but in this study, a comprehensive review of 
MAs, its nature, types, applications, and open issues are introduced in detail. Specifically, we introduce the metaheuristics' 
advantages over other techniques. To obtain an entire view about MAs, different classifications based on different aspects 
(i.e., inspiration source, number of search agents, the updating mechanisms followed by search agents in updating their posi-
tions, and the number of primary parameters of the algorithms) are presented in detail, along with the optimization problems 
including both structure and different types. The application area occupies a lot of research, so in this study, the most widely 
used applications of MAs are presented. Finally, a great effort of this research is directed to discuss the different open issues 
and challenges of MAs, which help upcoming researchers to know the future directions of this active field. Overall, this study 
helps existing researchers understand the basic information of the metaheuristic field in addition to directing newcomers to 
the active areas and problems that need to be addressed in the future.

1 Introduction

As the world moves towards competition in all fields, peo-
ple need to best use the limited resources to score a better 
result and thus achieve a better place in the competition. In 
this context, optimization is strongly needed. Optimization 
is a process of picking up the optimal values of the optimi-
zation problem's parameters from a given set of values to 

achieve the desired output, which specifically means output 
minimization or maximization. In other words, we need to 
obtain the best optimal solution under a set of limitations 
and constraints by tuning the parameters of the problem to 
be addressed. As mentioned in [1], the optimization pro-
cess includes a set of steps which starts with formulating 
the problem to be in the form of an optimization problem, 
constructing the objectives (cost or fitness) function, deter-
mining the decision variables and the restrictions on these 
variables, then simplifying the reality of the problem by gen-
erating the mathematical model that represents the prob-
lem. Finally, the problem solver seeks to generate the most 
acceptable solution by maximizing or minimizing the value 
of the objective function.

Stochastic optimization algorithms are the most promis-
ing type under the umbrella of optimization, which can be 
classified as heuristic Algorithms (HAs) and metaheuristic 
Algorithms (MAs). In simple words, stochastic optimization 
is the general class of algorithms that depends on the random 
nature in the process of getting the optimal or near-opti-
mal solution. HAs are iterative algorithms, iterating many 
times seeking a better solution than the solution obtained 
previously. HAs are used to find a feasible and reasonable 
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solution but may not be the optimal one. In addition, HAs 
do not provide any evidence of the optimality of the solu-
tion obtained. A set of issues can be found in HAs, such as 
being problem-dependent algorithms specifically designed 
for a particular problem [2]. Another challenge in HAs is 
immeasurable success as there is no information about how 
close the obtained solution is to the optimal. Finally, there is 
a dilemma in measuring the computational time. Disclosing 
these gaffes and achieving a trade-off between solution qual-
ity and computational time is a main purpose of the appear-
ance of metaheuristics [3]. As it is used to solve different 
types of problems, metaheuristics are the most preferable 
type of these algorithms. Metaheuristics were introduced 
for the first time by Glover in [4].

1.1  Understanding Optimization: What and Why?

In this section, we will help researchers understand the fasci-
nating world of optimization. First, we will present examples 
of what optimization is, then we will try to answer the ques-
tion, "Why do we study optimization?" Finally, this section 
will clarify how to optimize anything you have.

What is Optimization? In simple words, optimization is 
the art of perfectionism—how to perfectly make something 
in the best way. Optimization answers the question: how to 
obtain the best solution for a problem while applying a set 
of limitations? Maximizing profit, minimizing mass, pollu-
tion minimization, noise reduction, and drag reduction are 
all practical examples that can be achieved by using opti-
mization. In most cases, optimization helps in the design 
process as a replacement for the traditional approach, which 
depends mainly on trials or humans. To clarify the simplicity 
and practical power of optimization in the design process, 
a diagrammatic view of how optimization methods help in 
the design process is presented in Fig. 1.

Why Optimization? People may ask why we study opti-
mization. In most cases, we do not have the opportunity to 
physically perform trials; instead, we use optimization to 
simulate a solution for a specific problem to see what the 

result of this trial would be. Hence, we can decide whether 
this trial is applicable or not. People may benefit from apply-
ing optimization in the industry to achieve a better position 
in competition under limited resources.

1.2  Paper Structure

The rest of this paper is structured as follows: various 
metaheuristic taxonomies and the development process are 
illustrated in Sects. 2 and 3. Taxonomies of optimization 
problems based on many criteria and their performance 
assessment are introduced in Sects. 4 and 5. The applica-
tions of metaheuristic algorithms (MAs) in different fields 
are presented in Sect. 6. The open issues and challenges of 
MAs and the observations from the experiment are intro-
duced in Sect. 7. Finally, the research review is concluded 
in Sect. 8. The outline of the article is illustrated in Fig. 2.

2  Metaheuristics Optimization Algorithms 
Taxonomies

Due to the rapid growth of the optimization field, many 
metaheuristic (MA) algorithms have been proposed recently. 
These algorithms need to be classified according to four 
main taxonomies: inspiration source, number of search 
agents, the mechanisms followed in the optimization pro-
cess, and solution updating, in addition to the number of 
parameters included in the algorithm. In this section, these 
new algorithms will be classified.

2.1  Taxonomy According to the Inspiration Source

This is the most familiar and oldest classification of 
metaheuristic algorithms (MAs) and is suitable for study-
ing the subcategory of MAs, which are nature-inspired 
metaheuristic algorithms. In general, by including the source 
of inspiration in the calculation, different studies use differ-
ent classifications according to the inspiration, as illustrated 

Fig. 1  The optimization 
methods as a replacement of 
traditional method in the design 
process
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in Table 1. In this study, Fig. 3 shows a more comprehensive 
taxonomy for MAs.

As follows, the subcategories of the source of inspiration 
for MAs shown in Fig. 3 are illustrated in detail.

Swarm Intelligence (SI) is a self-organized system 
of collaborative behavior. SI has a set of characteristics, 
such as good communication skills between individuals, 
the ability to share information among its individuals, and 
the ability to learn from doing (adaptable beings). On the 
other hand, organisms do not have the ability to defend 
themselves against predators; they need to be in a swarm to 
perform the search or attack process for food. Mimicking 

the behavior of beings that live in flocks or herds seeking 
to hunt for prey or find food is the main inspiration for 
SI algorithms [8]. One of the most famous algorithms in 
this category is Particle Swarm Optimization (PSO) [9], 
which is inspired by mimicking the intelligent behavior 
of a flock of birds. Monkey Search Optimization (MSO) 
[10] is another example of SI algorithms that simulate 
the tree climbing process during the food discovery pro-
cess. Hunting strategy and hierarchy-based leadership are 
the inspiration for Grey Wolf Optimizer (GWO) [11], Ant 
Colony Optimization (ACO) [12], Cuckoo Search (CS) 
[13], Ant Lion Optimizer (ALO) [14], and Honey Badger 

Fig. 2  The outline of the article

Table 1  Different trials of classifying the MAs according to inspiration source

Optimization algorithms categories Authors

Metaheuristics optimization algorithms (MAs) Swarm intelligence (SI) based algorithms
Bio-inspired (not SI) based algorithms
Physics-chemistry based algorithms
Another algorithm

Fister Jr et al. [5]

Physics-based algorithms
Chemistry-based algorithms
Biology-based algorithms

Siddique and Adeli [6]

Breeding-based evolutionary algorithms
Swarm intelligence-based algorithms
Physics-chemistry-based algorithms
Human social behavior-based algorithms
Plant-based algorithms
Miscellaneous

Molina et al. [7]
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Algorithm (HBA) [15], which are well-known instances 
of SI algorithms.

Evolutionary Algorithms (EA) simulate the behavior 
of evolution, including recombination, mutation, crossover, 
and selection. EA begins by generating a random popula-
tion; this population is then evaluated to choose the most fit 
individuals to contribute to the next generation. After several 
iterations, the population evolves to find the optimal solu-
tion. Genetic Algorithm (GA) [16] is the oldest algorithm 
in this class, mimicking Charles Darwin's theory of natural 
evolution. Other well-known EA methods include Differen-
tial Evolution (DE) [17], Genetic Programming (GP) [18], 
Coronavirus Disease Optimization Algorithm (COVIDOA) 
[19], Liver Cancer Algorithm [20], and Red Deer Algorithm 
(RDA) [21].

Human-based Algorithms (HA) is the main inspiration 
for this category. Mimicking the learning process between 
teachers and students led to the introduction of Teaching 
Learning-Based Optimization (TLBO) [22]. Tabu Search 
(TS) [23] enhances the search process through long and 

short memory. Other well-known HA algorithms include 
Group Leader Optimization Algorithm (GLO) [24], Stock 
Exchange Trading Optimization (SETO) [25], and Social 
Emotional Optimization Algorithm (SEOA) [26].

Physics-based Algorithms (PhA) are inspired by the 
physical laws or simulating a physical phenomenon such as 
gravitation, Big Bang, black hole, galaxy, and field. In other 
words, the physical rules are used in the process of generat-
ing new solutions. The most popular instances of this class 
are the Gravitational Search Algorithm (GSA) [27], Big 
Bang Big Chain (BBBC) [28], Heat Transfer Search [29], 
Henry Gas Solubility Optimization (HGSO) [30], Archi-
medes Optimization Algorithm [31], and Light Spectrum 
Optimizer (LSO) [32], which are some of the most common 
algorithms in the PhA category.

Chemistry based algorithms (ChAs) are algorithms 
that concentrate on the principle of chemical reactions 
such as molecular reaction, Brownian motion, molecular 
radiation. A list of algorithms that fall into this category 
are Chemical Reaction Optimization (CRO) [33], Gases 

Fig. 3  The proposed classification of MAs based on the source of inspiration
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Brownian Motion Optimization (GBMO) [34], Artificial 
Chemical Process (ACP) [35], Ions Motion Optimization 
Algorithm (IMOA) [36], and Thermal Exchange Opti-
mization (TEO) [37], are common instances of the ChA 
category.

Math-based algorithms (MathA) Math-based opti-
mization algorithms are algorithms that can be inspired 
from the mathematical theorems, concept and rules. Some 
algorithms fall into this group including; Gaussian Swarm 
Optimization (GSO) [38], Sine Cosine Algorithm (SCA) 
[39], Lévy flight distribution [40], Exponential Distribu-
tion Optimizer (EDO) [41], and Golden Sine Algorithm 
(GSA) [42], are common instances of the MathA category.

Plant-based Algorithms (PlA) The PLAs is relays on 
the simulation of the intelligent behavior of the plants. 
Specifically, a set of concepts in plant nature is used to 
inspire new metaheuristic optimization algorithms such 
as the flower flow pollination process, the phenomenon 
of colonization of invasive weeds in nature, the ecology 
and weed biology. Some algorithms fall into this group 
including; Flower Pollination Algorithm (FPA) [43], Inva-
sive Weed Optimization (IWO) [44], Paddy Field Algo-
rithm (PFA) [45], Artificial Plant Optimization Algorithm 
(APOA) [46], Plant Growth Optimization (PGO) [47], 
Root Growth Algorithm (RGA) [48], Rooted Tree Opti-
mization (RTO) [49] are common instances of the PlA 
category.

Sports and Game based Algorithms (SpGA) Depend-
ing in the information and rules applied in the sports and 
gaming, a set of optimization algorithms can be inspired 
from team game strategies used in football, Basketball, and 
volleyball, Ludo Game. Ludo Game-Based Swarm Intel-
ligence (LGSI) [50], Team Game Algorithm (TGA) [51], 
Football game algorithm (FGA) [52], World Cup Opti-
mization (WCO) [53], Soccer League Competition (SLC) 
algorithm [54], and League championship algorithm 
(LCA) [55] are common instances of SpGA algorithms.

Miscellaneous The rest of metaheuristics optimization 
algorithms can be collected to be belongs to the miscel-
laneous class, the purpose of using the term miscellane-
ous is the miscellaneous ideas such as politics, Artificial 
thoughts, atmosphere, trade and other topics. Work occur-
ring in clouds such as cloud movement, spread, and crea-
tion is the basic idea behind the inspiration of the Atmos-
phere Cloud Model Optimization Algorithm (ACMO) 
[56], the exchange of information in the stock market 
occurs, and is the basic motivation behind the Exchange 
Market Algorithm (EMA) [57]. The Grenade Explosion 
Method (GEM) [58], Passing Vehicle Search (PVS) [59], 
Small World Optimization (SWO) [60], Yin-Yang Pair 
Optimization (YYPO) algorithm [61], Political Optimizer 
(PO) [62], and the Great Deluge Algorithm (GDA) [63] 
are other examples of this category.

2.2  Taxonomy According to the Number of Search 
Agents

The classification according to the source of inspiration 
is the most familiar and is usually introduced in studies to 
summarize the concept of classification. However, this clas-
sification is not enough to tackle the classification process, 
as it does not provide any information about the internal 
mathematical structure or programming ideas of the algo-
rithms. Hence a new angle of classification is used. Meta-
heuristics can be categorized based on the number of search 
agents seeking to find the optimal into two groups of single-
solution-based MAs (SMAs), and population-based MAs 
(PMAs). The following two paragraphs provide more infor-
mation about each group. Figure 4 is a clarification view of 
this taxonomy.

Single-solution based MAs (SMAs) SMAs is also called 
Trajectory-based algorithms (TAs) as the algorithms in this 
class depends on single trajectory nature in its work. In other 
words, in each iteration, the solution is directed to a single 
trajectory. The optimization procedure (searching about the 
optimal solution) of SMAs is started with single solution 
(from one search agent), later, and in the subsequent itera-
tions, the solution is refined with the aim of achieving the 
optimal solution. We can say that the algorithm generates 
a single path to the optimal solution over the course of the 
iteration. For SMAs, the Simulated Annealing (SA) [64] is 
one of the familiar algorithms. where a single search agent 
moves through the design or search space of the problem 
being tackled. Over the course of iteration, a better solu-
tion or moves is accepted to participate in determining the 
optimal solution while the weak movements and solution 
are more likely to participate in the optimization process. 
Applying these actions guarantee generating an optimal path 
through the search space with a great probability of achiev-
ing a global optimal solution. Hill climbing (HC) reviewed 
in [65], Tabu Search (TS) [23], Great Deluge Algorithm 
(GDA) [63], Iterated Local Search (ILS) [66], and Greedy 
Randomized Adaptive Search Procedures (GRASP) [67] are 
some instances of this class.

Population-based MAs (PMAs) In contrast, and taking 
advantage of sharing information among agents, Collabora-
tive work and data remembering, the PMAs is introduced. 
First, we can say that more than one agent is superior to a 
single agent in achieving the optimal solution. Specifically, 
a great number of search agents work together to extensively 
explore the search space, so we can call PMAs explorative-
based algorithms. The optimization procedure starts with 
employing a population of search agents positioned at many 
distinct positions in the search space, and over the course 
of iterations, the population uses the advantage of sharing 
information to better achieve the best global solution. In 
simple words, a set of lines is drawn in the search space to 
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extensively search the search space in order to obtain the 
best optimal solution achieved by all search agents. One 
of the oldest and widely used algorithms in PMAs is the 
Genetic Algorithm (GA), Chemical reaction optimization 
(CRO), Particle Swarm Optimization (PSO), Archimedes 
Optimization Algorithm (AOA), Sine Cosine Algorithm 
(SCA), Exponential Distribution Optimizer (EDO), Grey 
Wolf Optimizer (GWO), Ant Colony Optimization (ACO) 
and Honey Badger Algorithm (HBA) are some instances 
from this category.

In general, no class is totally better than the other where 
PMAs escape from the local optima dilemma in contrast to 
SMAs, also SMAs consume less computational time than 
PMAs, for a Itr number of iterations, the SMAs perform a 
lower number of objective function evaluation which equals 
1 × Itr while the PMAs perform N × Itr evaluation of the 
objective function. N here stands for the number of search 
agents employed by the algorithm to obtain the optimal solu-
tion. But overall, the scientists prefer to use the PMAs as it 
has a greater probability of achieving global optimal solution 
in a considerable amount of time.

2.3  Taxonomy According to Updating Mechanisms

However, the classification according to the number of 
search agents provides information about the internal struc-
ture of the algorithm, but it cannot be treated as a uniform 

classification due to the few algorithms belonging to one 
group while the remainder (majority) falls under the other 
group. In this context, we need to provide a different clas-
sification angle to achieve an acceptable degree of uniform 
classification. According to the most important step of any 
algorithm, which is the solution update process. From this 
prospective MAs can be classified as solution creation-based 
algorithms (SCBAs) and differential vector movement-based 
algorithms (DVMs) [68]. In the following paragraph, we 
introduce a simple classification based on the behavior of the 
algorithms. Figure 5 is a clarification view of this taxonomy.

Solution Creation Based Algorithms (SCs) In SCs, 
A set of parent solutions are merged to generate the new 
solution, in other words no single solution is used to create 
the fresh solution. Furthermore, the SCs can be catego-
rized into two subcategories which are combination-based 
algorithms and stigmergy-based algorithms. In combina-
tion-based algorithms several solutions are combined or 
crossover-ed. Genetic Algorithm (GA), Gene Expression 
(GE), Harmony Search (HS), Bee Colony Optimization 
(BCO), Cuckoo Search (CS), Dolphin Search (DS) are 
some examples of this subcategory. On the other hand, 
in strategy-based solutions different solutions are indi-
rectly coordinated by intermediate structure to generate 
new solutions. Ant Colony Optimization (ACO), Ter-
mite Hill Algorithm (THA), River Formation Dynamics 
(RFD), Intelligence Water Drops Algorithm (IWDA), 

Fig. 4  The classification of 
MAs based on the number of 
search agents
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Water-Flow Optimization Algorithm (WFOA), and Virtual 
Bees Algorithm (VBA) are some examples of the second 
subcategory.

Differential Vector Movement Based Algorithms 
(DVMs) Applying the mutation or shifting operation on 
the algorithm in order to generate a new solution is called 
Differential Vector Movement method. The fresh generated 
solution needs to be fitted to the previous one to participate 
in the next iteration of the optimization procedure. In this 
context, DVMs is categorized into three subcategories. In 
the first subcategory, the whole population's solution is used 
to generate the new solution, such operation occurs in Fire-
fly Algorithm (FA) Gravitational Search Algorithm (GSA), 
Central Force Optimization (CFO), Human Group Forma-
tion (HGF) and Charged System Search (CSS). In the second 
sub-category, a small number of solutions (neighbourhoods) 
in population is employed to generate a new solution such 
as Artificial chemical process (ACP), Thermal Exchange 
Optimization (PSO), Group Search Optimizer (ALO), and 
Group Search Optimizer (GWO). In the last sub-category, 
only the relevant (best/worst) solutions are employed to gen-
erate the new solution such as Differential Evolution (DE), 
Artificial Bee Colony (ABC), Particle Swarm Optimization 

(PSO), Ant Lion Optimizer (ALO), and Grey Wolf Opti-
mizer (GWO).

2.4  Taxonomy According to Number of Parameters

To deeply consider the internal configuration of the algo-
rithm for this type of classification. Tuning the parameter 
of the algorithm plays a vital role in the performance of the 
algorithm when solving a specific problem. As mentioned 
in [1], it is a complicated task to choose the best values 
of the parameter that scores a better solution. Furthermore, 
the parameters can enhance the robustness and flexibility 
of the MAs if they are adjusted correctly. The optimization 
problem plays a vital role in defining the values of param-
eters. From a complexity perspective, the complexity of an 
algorithm is affected by the number of parameters. In this 
context and taking into account the importance of the param-
eters, this classification is introduced. Kanchan Rajwar et al. 
in [68] first classify the MAs according to the number of 
primary parameters employed in the MAs as illustrated in 
Fig. 6.

The number of parameters changes from one algorithm 
to another, which can be 0, 1, 3, 4, etc. For simplicity we 

Fig. 5  The classification of MAs based on population update mechanisms
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will consider four main groups holding algorithm param-
eter numbers up to 3 and the rest fall into the miscellaneous 
group. The following paragraphs provide a detailed explana-
tion of the five groups in this classification.

Zero-parameter-based algorithms (ZPAs): The ZPAs 
do not have any parameter in their internal configuration so 
it also called Free-parameter-based algorithms. The absence 
of parameters in ZPAs gives the user the opportunity to eas-
ily adapt the algorithm to be utilized in different optimiza-
tion problems. Hence, the algorithms belong to this group 
considered as flexible, adaptive, and easy-to-use algorithms. 
Teaching–Learning-Based Optimization (TLBO) [22], Black 
Hole Algorithm (BH) [69], Multi-Particle Collision Algo-
rithm (M-PCA) [70], Symbiosis Organisms Search (SOS) 
[71], Vortex Search Optimization (VS) [72], Forensic-Based 
Investigation (FBI) [73], and Lightning Attachment Proce-
dure Optimization (LAPO) [74] are some examples of ZPAs.

Single-parameter-based algorithms (SPAs): SPAs is 
the type of algorithms that own a single primary parameters 
in their internal configuration. So, it also is called monopa-
rameter-based algorithms. Mostly, this single parameter 
has the ability to change the amount of exploration and 
exploitation that occurred in the algorithm. For example, 
in the Artificial Bee Colony (ABC) algorithm the single 

parameter Limit is used to determine the amount of food 
source left [75], in the Salp Swarm Algorithm (SSA) c1 
is the parameter used to achieve a better balance between 
explorative and exploitative capabilities [76], and in Harris 
Hawks Optimizer (HHO) [77] the switch between soft and 
hard besiege is achieved by the magnitude value parameter 
E. Cuckoo Search (CS), Killer Whale Algorithm (KWO), 
and Social Group Optimization (SGO) are another example 
of this group.

Two-parameter-based algorithms (TPAs): In TPAs 
only two primary parameters exist in the internal struc-
ture of the algorithm. For example, in the Grey Wolf Opti-
mizer (GWO), the two primary parameters a and c must be 
adjusted. The a is adjusted to be equal to 2 to 0, allowing 
the algorithm to perform a smooth transition from explora-
tion and exploitation while the c parameter is used to allow 
the algorithm to reach distinct locations around the optimal 
agent relative to the current location, In the Marine Predators 
Algorithm (MPA), P and FADs are the two primary control 
parameters. To overstate the predator or prey move, P is 
adjusted, while FADs is used to manage exploration behav-
ior. Finally, in the Whale Optimization Algorithm (WOA) 
the two primary parameters A and C need to be modified 
to perform the exploration-to-exploitation transition and to 

Fig. 6  The classification of MAs according to the number of primary parameters
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allow the algorithm to explore several positions around the 
optimal agent relative to the present location. Differential 
Evolution (DE), Simulated Annealing (SA), Grasshopper 
Optimization Algorithm (GOA), Political Optimizer (PO), 
and Artificial Chemical Reaction Optimization Algorithm 
(ACROA) are just a few instances of TPAs.

Three-parameter-based algorithms (TrPAs): In TPAs 
only three primary parameters exist in the internal structure 
of the algorithm. For example, the mutation rate mr, the 
crossover rate cr, and the new population selection crite-
rion are the three parameters used in the Genetic Algorithm 
(GA) to allow the algorithm to escape from the local optima, 
improve the accuracy of the solution, and generate a most 
fit new generation, respectively. The randomization, attrac-
tiveness, and absorption are the three parameters included 
in the Firefly Algorithm (FA) to manage the execution of 
the algorithm and the random walks of fireflies. Finally, the 
distance bandwidth (BW), the harmony memory consider-
ing rate (HMCR), and the pitch adjusting rate (PAR) are the 
three primary parameters used in Harmony Search (HS) to 
increase the opportunity of achieving a global search and 
improve the local search problem. Squirrel Search Algo-
rithm (SSA), Krill Herd (KH), Spring Search Algorithm 
(SSA), Artificial Algae Algorithm (AAA), Gases Brown-
ian Motion Optimization (GBMO), Hurricane-Based Opti-
mization Algorithm (HOA), Orca Optimization Algorithm 
(OOA), Social Spider Algorithm (SSA), Water Cycle Algo-
rithm (WCA), Equilibrium Optimizer (EO), Parasitism Pre-
dation Algorithm (PPA), and Heap-Based Optimizer (HBO) 
are few instances of this group.

Miscellaneous: The rest of algorithms that own over 
three parameters in their internal configuration fall under the 
category of the miscellaneous group. It is not easy to cover 
all three-parameter algorithms. so, only three subgroups are 
introduced. the first subgroup is the four parameter-based 
algorithms such as Ant Colony Optimization (ACO), Sine 
Cosine Algorithm (SSA), Archimedes Optimization Algo-
rithm (AOA), and Gravitational Search Algorithm (GSA). 
The second subgroup holds algorithms that employed five 
primary parameters in their internal structure such as Parti-
cle Swarm Optimization (PSO), Cheetah Chase Algorithm 
(CCA) and Farmland Fertility Algorithm (FFA). The last 
subgroup is algorithms with more than five primary param-
eters in their internal configuration. Biogeography-Based 
Optimization (BBO) with six parameters, Henry Gas Solu-
bility Optimization (HGSO) with twelve primary param-
eters and the Camel Algorithm (CA) with seven} primary 
parameters are the most familiar algorithms in this subgroup. 
Cheetah Chase Algorithm (CCA), Exchange Market Algo-
rithm (EMA), and Forest Optimization Algorithm (FOA) are 
also instances of this subgroup.

In general algorithms with few parameter-based MAs 
are easy to be adapted and hence the applicability of these 

algorithms to handle any optimization problem will increase 
and, on the other hand, large parameter-based MAs cause 
a disability of these algorithms to handle the optimization 
problems, as we encounter a problem in adapting all of their 
parameters to be suited for problem being tackled. hence the 
applicability will be decreed.

2.5  Metaheuristic Algorithms Merits

The MAs have a priority to be studied by the researcher than 
HAs, as they have four characteristics [78], which can be 
summarized as follows.

Metaheuristics simplicity It is painless to inspire a 
MAs as we can use a natural concept, physical phenomena 
or an animal behavior in the inspiration process. Utilizing 
the merit of simplicity, the researchers Seize the opportu-
nity to make an extension in the metaheuristics works as 
they develop a new method by mimicking a natural idea, 
use the ability of search enhancement techniques to boost 
the performance of an existing algorithm, or even take the 
advantages in two metaheuristics algorithms and generate 
a new metaheuristics algorithm by applying a hybridiza-
tion process. Furthermore, simplicity encourages computer 
scientists and other researchers to easily study the existing 
MAs and then apply them to solve a wide range of problems.

Metaheuristics flexibility In the other techniques there 
is a need to modify the structure of the algorithm to be 
matched with the problem being solved, unlike these tech-
niques metaheuristics flexibility virtue allows the research-
ers to easily apply the MAs on any problem as the MAs 
have the capability of treating the problem as black box, in 
other words it need the input(s), output(s) of a problem on 
hand. No effort is used in modifying the structure; all effort 
is directed towards formulating the problem being solved in 
the form of an optimization problem.

Metaheuristics stochastic nature Computing the deriva-
tion of the search space of the problem is a necessity for the 
gradient-based optimization techniques to achieve an opti-
mal solution. Dissimilar to these techniques, the preponder-
ance of MAs is considered as a derivative-free mechanism 
when applying the process of optimization, specifically the 
MAs follow a stochastic nature during the search process 
as they start the optimization process by employing a set of 
search agents to generate random solutions without com-
puting the derivative of the search space. The collaborative 
work of these search agents allows the algorithm to get the 
optimal solution. This merit allows researchers to easily use 
the MAs algorithms to perfectly tackle compound, expen-
sive, and difficult problems that suffer from the trouble of 
obtaining the derivative information.

According to the previous features, the research com-
munity has increased, and researchers from different fields 
and application areas have been using the metaheuristic 
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optimization algorithm in their work. About 4,476 docu-
ments founded in the Scopus have used the word metaheuris-
tics in the last decade. Figure 7a is introduced to visualize 
the distribution of research studies according to the subject 
area, while Fig. 7b is used to depict the number of studies 
generated in each year of the previous decade.

3  Development Process of Metaheuristic 
Optimization Algorithms

The simplicity merit of MAs allows researchers to easily 
develop a large number of algorithms in different appli-
cation areas. To develop a new metaheuristic algorithm, 
a researcher can follow one of the following development 
processes according to the type of algorithm that is being 
developed, and some processes can also be used together.

Develop a new optimization algorithm The most of 
work for developing an optimization algorithm done by 
inspire the main idea of the algorithm from a different meta-
phors or concepts. These metaphors or concepts are mainly a 
simulation of rules or processes in different disciplines such 
as Chemistry, Physics, Biology, Psychology, Computation, 
Maths, and Human. Figure 3 is used to visualize a differ-
ent source of inspiration with examples in each category. In 

general, most metaheuristics have been designed to mimic 
the system of living and survival of beings such as animals, 
birds, and insects, in addition to mimicking natural evolu-
tion. Insects (specifically, bees and ants) are the most pop-
ular metaphor for the development of a new optimization 
method by researchers.

Develop a new optimization algorithm from existing 
one One of the most popular ways to develop a new optimi-
zation method is to benefit from the operators of a specific 
algorithm in enhancing the structure of another algorithm. In 
simple words, the operators of other algorithms can emerge 
into the basic structures of the algorithm to boost the perfor-
mance of the previously developed algorithm, and hence use 
it in solving different types of problems and issues. There 
are many enhancement operators used in the field; one of the 
most used ones is opposition-based learning (OBL). OBL is 
a machine learning mechanism that is used to increase the 
performance of the optimization algorithm by considering 
the opposite position of the solution in the search space. 
Specifically, two values are computed, the main and opposite 
positions, according to the objective function value, one of 
the two values maintained in the optimization process, and 
the other discarded. Taking into account only the best values, 
the optimization process became more accurate and a high 
level of performance is achieved. The orthogonal learning 
(OL) strategy is another example of an operator used as an 
enhancement strategy for MAs. The OL strategy mainly 
improves the exploitation capabilities. For example, the OL 
strategy was used to improve the Archimedes optimization 
algorithm, the cuckoo search algorithm and the artificial bee 
colony optimization algorithm, respectively. Enhanced solu-
tion quality (ESQ) is another mechanism used in the MA 
enhancement process. The ESQ was used to improve the 
performance of the reptile search algorithm and the Harris 
Hawks optimization (HHO) algorithm, respectively. Finally, 
the Local Escaping Operator (LEO) is used to develop an 
optimized version of the MPA called the enhanced marine 
predator algorithm (EMPA).

Hybridizing two or more optimization algorithm As a 
trial for enhancing the performance and applicability of the 
optimization method, researchers can benefit from hybridiz-
ing two or more optimization algorithms together in order to 
take the main strengths of each algorithm. The idea behind 
hybridization is to choose one algorithm better in explora-
tion capabilities and another better in exploitation capabili-
ties. Many challenges are encountered when we develop a 
new algorithm using the hybridization process, such as how 
to select the algorithm and how to merge them together, and 
is the new algorithm better than each one separately?

As shown in the previous paragraphs, there is a differ-
ent development process for developing a new optimiza-
tion method, although there is a set of limitations that must 
be considered during the development process such as the Fig. 7  Scopus statistics from 2014 to 2023
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difficulty of transforming all the concepts with details into 
a mathematical form, how the algorithm totally manages 
the change in information about the source of inspiration, in 
addition to how people with low familiarity with the inspira-
tion sources develop new methods.

3.1  Criteria for Comparative Algorithms

To gauge the effectiveness of newly developed algorithms, 
it is crucial for research to present the process of comparing 
them with existing algorithms. This should include a dis-
cussion of the selection criteria for comparative algorithms 
and the methodology used for comparison. The selection 
criteria for comparative algorithms depend mainly on the 
nature of the algorithm and the development process fol-
lowed in developing the algorithm. In all cases, compara-
tive algorithms should contain common criteria, which are 
state-of-the-art algorithms, newly developed algorithms, 
CEC winner algorithms, and high-performance algorithms. 
Specifically in case of developing the algorithm using the 
inspiration of a phenomenon process, the comparative algo-
rithms list must contain algorithms with the same inspira-
tion source or concept if there exist in addition to the com-
mon criteria algorithms. In case of developing an algorithm 
using the restructure method (i.e., merging a new operator or 
strategy), the comparative algorithms must contain the basic 
algorithm, algorithms developed using the same strategy if 
exists, algorithms that contain the strategy itself, in addition 
to the common criteria algorithms. In the case of developing 
algorithms using the hybridization process, the comparative 
algorithm list must contain the two basic algorithms that 
participate in the hybridization process, in addition to the 
common criteria algorithms.

3.2  Novelty Claims of Metaphor‑Based Methods

The different ways of developing an optimization algorithm 
and the simplicity merit of the metaheuristic allow research-
ers to easily develop a large number of MAs. But a question 
must be asked here: Does this inspiration convey a novelty? 
In this section, we will present a set of claims and myths 
in the inspiration process of the metaheuristic optimization 
algorithms. As introduced in [79] a six widely used algo-
rithms have been analyzed to prove that all components of 
the six (grey wolf, moth-flame, whale, firefly, bat and ant 
lion) are equivalent to a component of well-known tech-
niques such as evolutionary algorithms and particle swarm 
optimization. Hence the authors called these algorithms 
misleading or tricky optimization algorithms, as they were 
inspired by bestial or duplicated metaphors and did not bring 
any novelty or useful principles in the metaheuristics field. 
We will present what considerations must be taken when 
developing a new novel algorithm and how to judge about 

the novelty of the new proposed algorithm in the field of 
metaheuristics.

Recently, a large number of publications have developed 
self-proclaimed or novel metaphor-based methods, but it is 
not obvious why they used them and what the novelty ideas 
are behind these methods. The set of all negative points, 
criticizes about novelty claims of various metaphor-based 
methods, can be introduced in the following points:

– The metaphor-based methods redefine a well-known con-
cept in the field of optimization and deliver it as a new 
concept or under new terminologies.

– weak translation of the metaphors into a mathematical 
model or equations, and the model cannot be used totally 
to reflect the metaphors correctly. Finally, the proposed 
algorithm does not translate the mathematical model 
obtained from the metaphor correctly.

– There is a myth in introducing the motivations behind 
the use of metaphor where instead of delivering the moti-
vations as a sound or scientific basis they use accurate 
motivations such as a new metaphor "has never been used 
before" or a new mathematical model "has never been 
appeared in the past". Additionally, there is no concentra-
tion on the optimization process itself and how this pro-
cess is employed to introduce effective design choices.

– Instead of applying the evaluations of the proposed 
algorithms mainly on the state-of-the-art problems, the 
authors of these methods depend on the comparison 
with other algorithms or experimental analysis of low 
complexity problems in evaluating the performance or 
applicability of the proposed algorithm.

To prevent these negative points, the authors must apply 
two metrics analyses of the proposed algorithm before nam-
ing it as a "novel", which are:

– Usefulness: in which the author must clearly introduce 
what are the useful ideas that come from the metaphor 
and how this metaphor helps in solving the optimization 
problems.

– Novelty: When proposing a new method in the field of 
metaheuristics, was this new metaphor novel used to con-
vey ideas?

4  Optimization Problems Overview

Achieving an acceptable solution is the main goal of any 
algorithm. Due to the rapid expansion of the complexity of 
the problem, scientists need to develop new methods that 
can cover this rapid extension. In this context, scientists are 
working to formulate any problem as an optimization prob-
lem to be easily tackled by optimization algorithms, as they 
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provide better solutions than other traditional methods. In 
different fields, a great number of problems are formulated 
as an optimization problem, such as genetic algorithms used 
to automatically find and classify solitary lung nodules \
cite{de2014automatic}, perform a classification for web 
pages, mining the web content, and dynamic organizing of 
the web content by ant colony optimization [80], In [81] 
Hussein et al., use the HHO to discover and design the drug 
through chemical descriptor selection and chemical com-
pound activities. Applying HHO in microchannel heat sinks 
to minimize entropy generation [82], COVID-19 prediction 
[83], finally applying image segmentation and thresholding 
in [84, 85].

4.1  Basic Structure of Optimization Problems

In this section, we will try to support the readers who may 
not be familiar with optimization methods with the basic 
definitions and terms related to the optimization field. 
The process of solving an optimization problem using a 
metaheuristic algorithm starts with identifying the real-
world problem, after that we move to the problem descrip-
tion stage in which we define the characteristics of the prob-
lem, determining the functional requirement in addition to 
analysis of nonfunctional requirements. After completing the 
problem description stage, we move to the research stage, 
in which the researcher first concentrates on how to math-
ematically formulate the problem in a mathematical form. 
To formulate the problem, we need to determine the design 
variables and parameters, formulating the objective function, 
determining the basic constraints on the variables, analyzing 
the complexity of the problem, and finally justifying the use 
of a metaheuristic algorithm. In the following paragraphs, 
the three main components which exist in any optimization 
problem are the objective function, the decision variables, 
and a set of constraints on these variables are discussed in 
detail.

Optimization model: Every system can be considered 
as a set of inputs producing one or more input, The system 
uses the set of constraints to minimize the number of inputs, 
in other words, we consider only the inputs that obey the 
constraint (i.e., valid inputs) and discard the other which 
does not match with the constraints (i.e., invalid inputs). The 
system performs processing on the valid inputs to produce 
the optimal solution, which can be evaluated using the objec-
tive function to obtain the minimum or maximum output 
value. In fact, the optimization algorithm will not find the 
optimal values of constraints; instead, it uses the constraints 
to produce the optimal solutions and construct the feasible 
solution area. The feasible solution area can be considered as 
the area which contains an infinite number of feasible solu-
tions and one or more can be classified as the optimal one.

Formulating the optimization model as an optimiza-
tion problem: When we solve the problem using the opti-
mization algorithm, we look for all possible combinations 
of inputs. For example, if we have 3 inputs each with 10 
discrete values, then we get 1000 combinations of inputs. 
The initial test to solve and evaluate the input is to use brute-
force techniques. The brute force techniques will do bet-
ter to obtain the optimal solution, but what about the large 
sized problems. Certainly, we will find a big problem in 
handling these problems using the brute-force techniques; 
hence searching all possible combinations for most real-
world problems is impossible.

To avoid confusion for non-familiar people with the area 
of optimization, in this study, we will introduce the basic and 
most frequent terminologies used in the field:

– The search space: it is the area in which all possible com-
binations of inputs are located.

– The search landscape: it is the set of all possible com-
binations of inputs with their corresponding objective 
values.

– Decision variables: it is the unknown quantities that need 
to be determined by assigning values to them. It is also 
known as the design variables. All possible values that 
can be assigned to these variables are named variable 
scope or domain. It can be mathematically as Xi where 
i = 1,2,3…N.

– The objective function: This is the equation of the deci-
sion variables. In which all the decision variables exist 
with different parameters. It is used to judge the qual-
ity of the solution obtained for the problem being han-
dled. In other words, after calculating the values of the 
decision variables, we substitute them in the objective 
function to obtain the objective value. The minimum 
objective value is the optimal solution for minimization 
problems, and the maximum is the optimal solution for 
the maximization problem.

Mathematically the single objective optimization problem 
can be formulated as Eq. (1) while the Multi objective opti-
mization problem can be formulated as Eq. (2).

The optimization problems can be categorized in different 
ways. Categorizing optimization problems is an important 
step in choosing the algorithm that provides the optimal 
solution. It is not easy to introduce a rigorous or compre-
hensive taxonomy for optimization problems. This is due 
to the multiplicity of the classification term. But due to the 
important role of this taxonomy, in this paper we present 
a simplified and summarized version of the available tax-
onomies, illustrated in Fig. 8. In the following subsections, 
the different subcategories of the optimization problem are 
discussed in detail.
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4.2  Taxonomy According to the Objective Function

In terms of the number of objectives, there are two types. If 
the number of objectives is greater than one, the problem is 
called a multi-objective optimization problem; otherwise, the 
problem is named a single-objective optimization problem. 
Usually, real-world optimization problems are multi-objective. 
For example, if we need to design a table, we will consider 
two objectives, for example, minimizing the weight and the 
price of the table.

Single-objective optimization Only one global optimal 
solution exists in single-objective optimization. The objec-
tive function only considers one objective; therefore, the 
best optimal solution can be easily determined by compar-
ing the obtained solutions using basic comparison opera-
tors < , > , ≤ , ≥ , and = , the nature of this type allows the algo-
rithm to easily tackle optimization problems. Without loss 
of generality, Eq. (1) is used to determine the mathematical 
structure of a single-objective optimization problem.

(1)

Minimize ∶ f (x1, x2, x3, … , xn−1, xn)

Subject to ∶

g1
(

x1, x2, x3, … , xn−1, xn
)

≥ 0, i = 1, 2, 3…m

h1
(

x1, x2, x3, … , xn−1, xn
)

= 0, i = 1, 2, 3… p

lbi ≤ xi ≤ ubi, i = 1, 2, 3… n

where the problem decision variable is symbolized by n, 
m and P exist to represent the number of inequality and 
equality constraints, respectively. For the ith variable, ubi 
and lbi are used to represent the upper and lower boundaries, 
respectively.

Multi-objective optimization In contrast to single objec-
tive optimization, A set (more than one) of objectives need to 
be optimized simultaneously in the multi-objective optimiza-
tion problems. Usually, these objectives are a conflict with 
each other, so most of work in this type is paid to achieving a 
trade-off between these objectives. The set of solutions in this 
type is called a Pareto optimal solution. The Pareto optimal 
dominance is employed to compare the solutions obtained 
in order to determine the optimal solutions. Extra storage is 
needed to hold the Pareto optimal solutions. Without loss of 
generality, Eq. (2) is used to determine the mathematical struc-
ture of a single objective optimization problem.

(2)

Minimize ∶

F(x) =
[

f1(x), f2(x), f3(x),… , fo(x)
]

Subject to ∶

g1(x) ≥ 0, i = 1, 2, 3…m

h1(x) = 0, i = 1, 2, 3… p

li ≤ xi ≤ ui, i = 1, 2, 3… n

Fig. 8  Optimization problem taxonomy
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where the problem decision variable is symbolized by n, 
m and P exist to represent the number of inequality and 
equality constraints respectively. For the variable ith, Ui and 
Li are used to represent the upper and lower limits, respec-
tively. The number of objectives is denoted by o, and the gi 
and hi are the ith inequality and equality constraints, respec-
tively. In general, the clash among objectives enforces the 
problem designer to consider more than one criterion in the 
comparison of obtained solutions and therefore the classical 
comparison operator does not perform better, instead, the 
Pareto dominance Eq. (3) is used to define the best optimal 
solutions.

Here the two solutions are represented by the vectors x 
and y. The x is said to dominate y denoted as (x ≤ y) if x has 
at least one better value in all objectives.

4.3  Taxonomy According to Function Form

From another angle, classification can be done according to 
function form. If we have a real-world optimization problem, 
the constraints are linear qualities and inequalities and the 
objective function formed as linear then the problem is said 
to be a linear optimization problem. In nonlinear optimiza-
tion, one or both of the objective functions and constraints 
are nonlinear, and this is the realistic and complex one [86].

4.4  Taxonomy According to the Design Variable

According to the nature of the design variables, we can 
present three different types of optimization problems, as 
detailed in the following points.

Discrete optimization problems In discrete optimiza-
tion problems the values of the design variables are discrete 
and in which there is a finite set of values. The shortest path 
problem and the minimum spanning tree problem are two 
instances of this type. For more details, we can mention that 
the discrete optimization consists of integer programming 
and combinatorial optimization. Integer programming deals 
with the formulation and solution of discrete integers (or 
binary integers) valued in the design variables. On the other 
hand, combinatorial optimization emphasizes the combina-
torial origin, formulation, or solution of a problem. Mainly 
it seeks to achieve pairs (i.e., Assignments, groupings, order-
ings) of discrete and finite values under the influence of spe-
cific constraints. These pairs involve a component of solu-
tions of potential combinatorial problem solutions [87]. In 
Bioinformatics, Artificial intelligence and other fields com-
binatorial optimization can be applied such as identifying 
propositional formula models or defining the 3D structure 

(3)

∀i ∈ {1, 2,… ,O} ∶ fi(x) ≤ fi(y)Λ∃i ∈ {1, 2,… , k} ∶ fi(x) < fi(y)

Where x⃗ =
(

x1, x2,… , xk
)

, and y⃗ =
(

y1, y2,… , yk
)

of protein, finding the shortest path in graphs, the travel-
ling salesman problem, the knapsack problem in addition to 
the pin packing problem, the quadratic assignment problem 
which has been tackled in this study.

Continuous optimization problems In continuous opti-
mization problems, A range of values is assigned to the 
design variables, so every design variable has an infinite 
set of values. These problems have two types constrained 
continuous optimization problems which there is a constant 
on the variables. For unconstrained continuous optimization 
problems there is an absence of these constraints maximiza-
tion the general yield for differential amplifiers, optimiza-
tion of the mechanical system of shock absorption are two 
examples of this type [88].

Mixed discrete–Continuous optimization problems 
In many problems a design variable has a mixture of dis-
crete and continuous values, in this case we call the prob-
lem mixed discrete–continuous type. This type is the most 
widely used one, where numerous real-world problems are 
complex and possess a mixed quantitative and qualitative 
input. In [89], a set of instances is addressed using black-box 
optimization techniques.

4.5  Taxonomy According to Constraints

Furthermore, the classification can be according to the 
restrictions on the design variables.

Unconstrained Optimization Problem If there are 
no constraints on the design variables we call this type as 
unconstrained optimization problem, the unconstrained opti-
mization can be viewed as iterative methods stating with 
initial estimation for the optimal solution then a set of itera-
tion is used to reach for the optimal solution. Usually, the 
solutions were reduced iteratively to an optimal solution. In 
[90], Fletcher and Roger mentioned that the unconstrained 
optimization methods differ according to how much infor-
mation the user provides, such as the gradient method, the 
second derivative method, and the non-derivative method.

Constrained optimization problem If there is one or 
more constraints, the optimization problem falls under 
the constrained optimization problem class. Furthermore, 
there are two subclasses of this type. The first subclass 
is equality constraint problem in which the values of the 
design variables are restricted to be equal to the specific 
value. The second subclass is inequality-constrained prob-
lem the design variables are restricted to greater / smaller 
than a specific value. From a formulation perspective, every 
equality constraint can be mathematically transformed to 
two inequality constraints. For example, ϕ(x) = 0 is equiva-
lent to ϕ(x) < 0 and ϕ(x) > 0 [86]. Mainly, the constrained 
optimization covers three types of optimizations which are 
network optimization, bound constraints optimization, and 
the global optimization. Global optimization includes one of 
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the most widely used problems, which is engineering design 
optimization problems.

5  Performance Assessment of Optimization 
Algorithms

First of all, we must refer to an important term, the efficiency 
of the algorithm, which means how the algorithm responds 
against finding the optimal solutions for the problem to be 
solved. Achieving an optimal solution is not the only pur-
pose of a good optimization algorithm; instead, the algo-
rithm must be high quality and achieve a better situation in 
the applicability process on different classes of problems. 
To judge the quality and applicability of the algorithm, the 
algorithm must be compared against a set of qualitative and 
quantitative measures. The good quality algorithm performs 
better and achieves better results when tested against quali-
tative and quantitative measures. In this section, we will 
present the whole assessment environment used to test the 
quality and applicability of the algorithm.

CEC Test suite CEC stands for Congress on evolution-
ary computation. Mainly the CEC holds a different class 
of problems, which may be uni-model, multi-modal, fixed-
dimension multi-modal, and composite. CEC is usually used 
to test the performance of the algorithm and its ability to 
solve different classes of problems. In the art of optimiza-
tion almost all studies perform the CEC function as a fitness 
function to test algorithm's performance itself and to com-
pare the algorithm's performance against other algorithms.

Statistical Measures In this metric, the Best, Worst, 
Mean, and standard deviation are computed to the obtained 
solutions to judge about the quality of all solutions obtained 
together. The best solution is the one with a minimum value 
of fitness function in minimization optimization and the 
opposite is right for maximization optimization. The Worst 
is the solution which has a maximum value of fitness func-
tion on the minimization optimization and the opposite 
is right for maximization optimization. while the mean is 
used to compute the average value of all obtained solutions 
(obtained from executing the algorithm many times), and the 
small value of the mean means that the algorithm is doing 
better. Finally, the standard deviation or STD is the statisti-
cal measure that gives the reader insight into the differences 
among the obtained solutions, and the algorithm with small 
STD value is also better than the other with large value. 
There is also an important statistical measure, which is capa-
ble of measuring the whole performance of algorithms for 
any number of functions. This measure uses the mean rank 
sum value to rank the algorithms. Ranking these values in 
ascending order enables us to say that the algorithm with the 
lowest value is the best among all algorithms participating 
in comparison for all functions together.

Convergence curve Drawing a relation between the 
solutions scored by the algorithm and the number of itera-
tions or number of function evaluations is the primary goal 
of the convergence curve. To summarize the behavior of 
the algorithm, the convergence curve is drawn to judge 
the speed of the algorithm in reaching the global optimal 
solution. For the minimization problem and to compare the 
performance of many algorithms. The lower convergence 
curve is better than the upper one. Also, we can compute 
how fast the algorithm converges towards the optimal solu-
tion through the rate of convergence measure.

Diversity Diversity measure is one of the measures 
related to the algorithm’s convergence behavior. In sim-
ple words, diversity means how the search agents of the 
algorithm are distributed in the search space. A high diver-
sity value of the algorithm can be translated into a great 
exploration ability of the algorithm, and a low value can 
be translated into a great exploitation ability of the algo-
rithm. Hence the diversity values of the algorithm must be 
smoothly transited from high value in the first iterations of 
the algorithm to low value in the rest of iterations of the 
algorithm. In this context, we can say that the good diver-
sity of the algorithm leads to avoiding premature conver-
gence and achieve a good speed in achieving the optimal 
solution hence score a high level of efficiency.

Trajectory diagram In order to test the behavior of 
a specific agent of the algorithm over the curse of itera-
tions the trajectory diagram is used. The fluctuations of 
the curve are an indication of the better performance of 
that agent and its ability to explore and exploit the search 
space better.

Search history diagram To visualize the history of posi-
tions scored by the search agent during the process of opti-
mization, the search history curve is drawn.

Exploration and exploitation The exploration and 
exploitation (EXPL-EXPT) curves are used to visualize the 
exploitative and explorative capabilities of the algorithm. 
Usually, the overlaps between the two curves exist to tell us 
about the shifting between exploration and exploitation, and 
therefore an EXPL-EXPT balance.

Real-world problems To test the ability of the algorithm 
in solving different classes of problem the real-world prob-
lem is tackled. Engineering design problems are the most 
widely used problems as many algorithms use the (pressure 
vessel, welded beam, 15/3/25/52-bar truss system, tension/
compression spring…etc.) classical design problems to quiz 
the algorithm performance.

Operation platforms Alongside the previous measures, 
the algorithm quality can be affected by the environment 
setup in which the algorithm is executed. The good envi-
ronment in both software and hardware capabilities leads 
to good behavior of the algorithm. In this context, we must 
mention that when we compare more than one algorithm to 
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judge which is better, we must execute the algorithms in the 
same environment to achieve a fair comparison.

6  Metaheuristics Applications

As mentioned above, MAs have a great degree of applicabil-
ity, as they operate better in solving different problems that 
involve a computation time restriction, a high-dimensional 
problem, and other kinds of problems. Specifically, MAs 
are capable of dealing with different classes of optimization 
problems in different fields. In the following subsections, the 
applicability of MAs in some of these fields are illustrated 
in detail.

6.1  IEEE Congress on Evolutionary Computation 
(IEEE CEC)

CEC stands for Congress on evolutionary computa-
tion. Mainly the CEC holds a different class of problems, 
which may be uni-model, multi-modal, fixed-dimension 

multimodal, and composite. CEC is usually used to test the 
performance of the algorithm and is considered as an indi-
cation of the capabilities of the algorithm to solve differ-
ent classes of problems. In the art of optimization, almost 
all studies perform the CEC function as fitness functions to 
test the algorithm's performance itself and to compare the 
algorithm's performance against other algorithms. Almost 
a different version of the CEC test suite is introduced every 
year. Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 are pre-
sented below to provide the reader with the basic informa-
tion on each version of the CEC benchmark function and 
how metaheuristic algorithms are applied to solve these 
benchmark functions.

6.2  Engineering Design Problems

It is easy to provide an optimal design for a simple problem 
that contains a small number of design variables with a small 
range of values. In contrast to complex problems with many 
components, algorithms consume a huge amount of time 
to develop an optimal design. For example, the mechanical 

Table 2  Metaheuristics optimization algorithms for solving CEC 2005 benchmark functions

Basic information Number of problems 25
Dimensions 2, 10, 30, and 50

Problem types Uni-model F1, F2, F3, F4
Multi Model F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, 

F22, F23, F24, F25
Meta-heuristic algorithms Single objective 1) Light spectrum optimizer (LSO) [91]

2) IOrchard Algorithm (IOA) [92]
3) K-means optimizer (KO) [93]
4) Criminal search optimization (CSO)[94]
5) Geyser inspired algorithm (GIO) [95]
6) The cheetah optimizer (CO) [96]
Cooperation search algorithm [97]

Multi objective 1) Multi-objective bonobo optimizer (MOBO) [98]
2) Multi-hybrid algorithm (MHA) [99]
3) Multi objective enhanced Harris Hawks optimizer (MO-EHHO) [100]
4) Chemical reaction partial swarm optimization [101]
5) Multi-objective bonobo optimizer (MOBO) [98]

Table 3  Metaheuristics 
optimization algorithms for 
solving CEC2009 test function

Basic information Number of problems 30
Dimensions 2, 10, and 30

Problem types Two-objective functions UF1—UF2—UF3—UF4 –
UF5—UF6—UF7

Three-objective functions UF8—UF9—UF10
Multi objective metaheuris-

tics algorithms
1) Multi‐objective sunflower optimization [102]
2) Multi-strategy genetic algorithm [103]
3) Multi-objective whale optimization algorithm [104]
4) Multi-objective invasive weed optimization [105]
5) Multi-objective stochastic fractal search [106]
6) Multi-objective modified symbiotic organisms search algorithm [107]
7) Multi-objective equilibrium optimizer algorithm [108]
8) Multi-objective hybrid CSA-PSO optimization algorithm [109]
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problem with different components and multiple objectives 
and constraints. Another example for complex problems is 
the engineering design problems in which the design process 
starts with exploiting the experience of designers to guess 
an optimal design for any problem, but this is not the opti-
mal direction. In order to treat this poor thinking, we need 
systematic work that guarantees achieving an optimal design 
that is better than any other human design. Automatic tech-
niques or, in other words, metaheuristics algorithms (MAs) 
are used to effectively diversify the search space with large 
parameters, minimizing the cost, and improving the prod-
uct life cycle. Mainly, the MAs tune the parameters of the 
problem to produce the best optimal values of the design 
variables, hence achieving the optimal design. Table 13 is 

used to highlight the work of single-objective metaheuris-
tics optimization algorithms in solving engineering design 
problems; also, Table 14 is introduced to clarify the tries 
of multi-objective optimization algorithms in tackling engi-
neering design problems.

6.3  NP‑Hard Problems

In NP-hard problems the NP stands for nondeterministic 
polynomial time where the nondeterministic refers to nonde-
terministic Turing machines which apply the idea of brute-
force search method. On the other hand, the polynomial is 
used to refer to the amount of time required to apply the 
quick search to get the single solution of the deterministic 

Table 4  Metaheuristics optimization algorithms for solving CEC 2013 test functions

Basic information Number of problems 28
Dimensions 10, 30, and 50

Problem types Uni-modal functions F1, F2, F3, F4, and F5
Basic multimodal functions F6, F7, F8, F9, F10, 

F11, F12, F13,
F14, F15, F16, F17, 

F18, F19, F20
Composition functions F21, F22, F23, F24,

F25, F26, F27, F28
Meta-heuristics algorithms 1) success history-based adaptive differential evolution hybrid with modified Whale optimization 

algorithm [110]
2) comprehensive learning JAYA algorithm (CLJAYA) [111]
3) Hybrid variable mesh optimization and DE algorithm [112]
4) Search and Rescue Optimization Algorithm (SAR) [113]
5) Elephant Herding Optimization Algorithm (EHA) [114]
6) Hybrid firefly and particle swarm optimization algorithm [115]
7) Harmony Search Algorithm (HSA) [116]
8) Dual Population Genetic Algorithm [117]
9) Five Phases Algorithm (FPA) [118]
10) Improved African vultures optimization algorithm [119]

Table 5  Metaheuristics 
optimization algorithms for 
solving CEC 2014 test functions

Basic information Number of problems 30
Dimensions 10, 30, 50, and 100

Problem types Uni-modal functions F1, F2, and F3
Basic
multimodal functions

F4,F5, F6, F7, F8, F9, F10, F11,
F12, F13, F14, F15, and F16

Hybrid functions F17, F18, F19, F20, F21, and F22
composition functions F23, F24, F25, F26, F27,

F28, F29, and F30
Meta-heuristics algorithms 1) The solar system algorithm [120]

2) Young's double-slit experiment optimizer [121]
3) Queuing search algorithm [122]
4) Geyser inspired algorithm [95]
5) Enhanced particle swarm optimization algorithm [123]
6) Nutcracker optimizer [124]
7) Kepler optimization algorithm [125]
8) Simulated Kalman filter [126]
9) Electromagnetic field optimization [127]
10) Light spectrum optimizer [32]
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algorithm, or the time consumed by the nondeterministic 
Turing machines to perform extensive search. P is the set of 
all decision problems solvable in polynomial time. Specifi-
cally, the decision problem has two answers YES and No. 
Consequently, if all YES answers are checked in polynomial 
time, then the problem belongs to set of NP problems; on 
the other hand, co-NP is used for NO answer. If the poly-
nomial-time solution obtained for a specific problem leads 
to a polynomial-time solution for all problems in the NP in 
this case the problem is said to be NP-hard. Also, a problem 
is NP-Complete iff it is NP-Hard, and it is in NP itself. Due 
to the high computational complexity, the exhaustive search 
methods do not have the ability of getting the best solution.

Quadratic Assignment Problem (QAP) As mentioned 
in [195] the QAP is NP-hard, as the polynomial time is 
not sufficient to obtain the approximate solution from 
optimal solution. QAP was first introduced by Koopmans 

and Beckmann in 1957 [196] as an extension of the linear 
assignment problem. QAP is considered a combinatorial 
optimization problem that has been considered and tack-
led by many research studies in the last three decades. 
However, the good results obtained in these studies but 
until now the QAP is not well solved as there is no exact 
algorithm capable of solving problems with more than 
20 input sizes in a reasonable amount of computational 
time [197]. In QAP we seek to locate the facilities in its 
appropriate location under the condition that it is an exact-
one-to-exact-one problem, that is, each site can only grasp 
only one facility and each facility must be placed in only 
one site where the distances between facilities and sites 
are determined. The main optimization goal of QAP is 
to minimize the distance and flow between each pair of 
facilities delegated to their relevant sites. Recently, QAP is 
addressed by many books, studies and reviews, as listed in 

Table 6  Metaheuristics 
optimization algorithms for 
solving CEC 2015 test functions

Basic information Number of problems 15
Dimensions 10, 30, 50, and 100

Problem types Uni-modal functions F1, F2
Basic multimodal functions F3, F4, F5
Hybrid functions F6, F7, F8
Composition functions F9, F10, F11, F12, 

F13, F14, F15
Meta-heuristics algorithms 1) Self-defense Techniques of Natural Plants Algorithm [128]

2) Smart Flower Optimization Algorithm [129]
3) Differential Evolution algorithm combined with fuzzy logic 

[130]
4) Numeric Crunch Algorithm [131]
5) Walrus Optimization Algorithm (WaOA) [132]
6) hybrid firefly particle swarm optimization algorithm [115]
7) Group teaching optimization algorithm [133]
8) Enhanced Jaya algorithm [134]
9) Spherical search optimizer [135]
10) Clouded Leopard Optimization [136]

Table 7  Metaheuristics 
optimization algorithms for 
solving CEC 2017 test functions

Basic information Number of problems 30
Dimensions 10, 30, 50, and 100

Problem types Uni-modal functions F1, F2, and F3
Basic multimodal functions F4, F5, F6, F7, F8, F9, F10
Hybrid functions F11, F12, F13, F14, F15, F16,

F17, F18, F19, F20
Composition functions F21, F22, F23, F24, F25,

F26, F27, F28, F29, F30
Meta-heuristics algorithms 1) Marine Predators Algorithm [137]

2) Emperor Penguin and Salp Swarm Algorithm [138]
3) Atomic orbital search [139]
4) Chaos game optimization [140]
5) Archimedes optimization algorithm [31]
6) Coati Optimization Algorithm [141]
7) Mother optimization algorithm [142]
8) One-to-One-Based Optimizer [143]
9) Lévy flight distribution [40]
10) Wild horse optimizer [144]



4503Metaheuristics for Solving Global and Engineering Optimization Problems: Review,…

Table 15. From another angle, there are several problems 
that are considered as special types of QAP (Table 16). 

The Bin Packing Problem (BPP) The Bin Packing 
Problem (BPP) is one of most familiar combinatorial prob-
lems that is considered as strongly NP-hard problem [218]. 
In BPP we need to pack a set of items m into n bins with 
the aim of minimizing the number of bins required to hold 
all items. The BPP can be mathematically formulated as 
in Eq. 4 [219].

where capacity of the bin yj is symbolized by Cyj.
The BPP benchmark data sets consist of three different 

types that are commonly classified as Easy, Medium, and 
Hard class as mentioned in [220]. Also, the BPP appears 
in one, two, three, and multi-dimensional form (Table 17).

Travelling Salesman Problem (TSP) One of the most 
familiar combinatorial optimization NP-Hard is the TSP in 
which we need to minimize the route as possible consumed 
to visit all cites precisely once and return to the initial city 
given a list of cities and distances among them. For exam-
ple, in the TSP of 20 city, we have a huge number of feasi-
ble solutions (approx.1.22 × 1017). Guess how much time 
is required to perform this task using exhaustive search? 
the answer is very long. Therefore, exhaustive searches 
have disabilities in tackling such problems. The use of 
MAs destroys this disability, as it was used to find near 
optimal solutions in a reasonable amount of time [233]. 
Vehicle routing problems (VRPs) is the general form of 
TSP and is a multi-objective real-world problem tackled 
by many MAs such as genetic algorithm (GA), particle 

(4)

Min ∶ z(n) =

n
∑

j=1

yj

Subject to ∶

n
∑

j=1

WiXij ≤ Cyj ∀j ∈ {1 up to n }

n
∑

j=1

Xij = 1 ∀i ∈ {1 up to n }

Yj,Xij =

{

1, if item i is located in bin j

0, otherwise

Table 8  Metaheuristics optimization algorithms for solving CEC 2018 test functions

Basic information Number of problems 30
Dimensions 10, 30, 50, and 100

Problem types Uni-modal Functions TF1, TF2, and TF3
Basic multimodal functions TF4, TF5, TF6, TF7, TF8, TF9, TF10
Hybrid functions TF11, TF12, TF13, TF14, TF15, 

TF16, TF17, TF18, TF19, F20
Composition functions TF21, TF22, TF23, TF24, TF25,

TF26, TF27, TF28, TF29, TF30
Meta-heuristics algorithms 1) Cooperative based hyper-heuristic algorithm [145]

2) An improved moth-flame optimization [146]
3) multi-trial vector-based differential evolution (MTDE) [147]
4) The Quantum-based Avian Navigation Optimizer Algorithm (QANA) [148]
5) Enhanced moth-flame optimization algorithm (MFO-SFR) [149]
6) Multi-trial vector-based monkey king evolution algorithm (MMKE) [150]
7) Modified LSHADE algorithm with a rank-based selective pressure strategy [151]
8) Hybrid Mean–Variance Mapping Optimization (MVMO-PH) [152]
9) multi-objective evolutionary algorithm based on
10) decomposition based on information feedback model (MOEA/D-IFM) [153]
10) Adaptive Fox Optimization (AFOX) Algorithm [154]

Table 9  Metaheuristics optimization algorithms for solving CEC2019 
test functions

Basic information Number of problems 10
Dimensions 9, 10, 16, 18

Problem types Multi model functions
Meta-heuristics algorithms 1) Electrical search algorithm [155]

2) Green Anaconda Optimization
3) Enhanced Lévy Arithmetic Algo-

rithm [156]
4) Election-Based Optimization Algo-

rithm (EBOA) [157]
5) An improved binary grey wolf 

optimizer [158]
6) Electrical search algorithm [155]
7) Water and Salt Transport Optimiza-

tion [159]
8) Serval optimization algorithm [160]
9) Dynamic Cat Swarm Optimization 

algorithm [161]
10) The Bedbug Meta-heuristic Algo-

rithm [162]
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Table 10  Metaheuristics 
optimization algorithms for 
solving CEC 2020 test functions

Basic information Number of problems 10
Dimensions 5, 10, 15, and 20

Problem types Uni-modal functions CEC01
Basic multimodal functions CEC02, CEC03, CEC04
Hybrid functions CEC05, CEC06, CEC07
Composition functions CEC08, CEC09, CEC10

Meta-heuristics algorithms 1) Fire Hawk Optimizer [163]
2) Teaching learning based artificial bee colony (TLABC) [164]
3) The solar system algorithm [120]
4) Numeric Crunch Algorithm [131]
5) Atomic orbital search [139]
6) Light spectrum optimizer [32]
7) The archerfish hunting optimizer [165]
8) Hybrid Salp swarm-Harris hawks optimization algorithm [166]
9) Energy valley optimizer [167]
10) Squid Game Optimizer (SGO) [168]

Table 11  Metaheuristics 
optimization algorithms for 
solving CEC 2021 test functions

Basic information Number of problems 10
Dimensions 10 and 20

Problem types Uni-modal functions TF01
Basic multimodal functions TF02, TF03, TF04
Hybrid functions TF05, TF06, TF07
Composition functions TF08, TF09, TF10

Meta-heuristics algorithms 1) Hierarchical learning particle swarm optimization [169]
2) Walrus optimizer [170]
3) An improved remora optimization algorithm [171]
4) An improved wild horse optimizer [171]
5) Multi-strategy enhanced dung beetle optimizer [172]
6) Self-organizing migrating algorithm [173]
7) Self-adaptive differential evolution algorithm [174]
8) Battlefield optimization algorithm [175]
9) Multi-objective sunflower optimization [102]
10) Multi-objective arithmetic optimization algorithm [102]

Table 12  Metaheuristics 
optimization algorithms for 
solving CEC 2022 test functions

Basic information Number of problems 12
Dimensions 2, 5, 10 and 20

Problem types Uni-modal functions TF01
Basic multimodal functions TF02, TF03, TF04, TF05
Hybrid functions TF06, TF07, TF08
Composition functions TF09, TF10, TF11, TF12

Meta-heuristics Algorithms 1) Young’s double-slit experiment optimizer [121]
2) Light spectrum optimizer [32]
3) T cell immune algorithm [176]
4) Kepler optimization algorithm [125]
5) An adaptive differential evolution [177]
6) Hierarchical learning particle swarm optimization [169]
7) EWSO: boosting white shark optimizer [178]
8) Sand cat arithmetic optimization algorithm [179]
9) Modified bald eagle search algorithm [180]
10) Red-tailed hawk algorithm [181]
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swarm optimization (PSO) and colony optimization (ACO) 
as in [234].

Job Shop Scheduling (JSS) JSS is a NP-Hard problem in 
which the algorithm seeks to consume a polynomial time to 
solve it. In JSS we need to process a finite set of jobs using 
a limited set of machines. JSS is a general type of schedul-
ing problem. JSS is addressed by many MAs in [235–237], 
and [238].

6.4  Medical Science

Most of medical activities (i.e., Diagnosing, imaging, treat-
ment, and monitoring) depends in its work on the computer 
or electronic device that is operate using an algorithm-
based software [68]. Several researchers have used GAs for 
edge detection of images acquired using different imaging 
modalities, including magnetic resonance imaging, CT, 

Table 13  Single objective 
algorithms for solving 
engineering design problems

Single objective optimization algorithm and reference Engineering design problems

Gradient-Based Optimizer (GBO) [72] Three-bar truss design
Cantilever beam design
Rolling element bearing
Speed reducer
I-beam vertical deflection
Tension–compression spring design

Marine Predators Algorithm (MPA) [137] Welded beam design
Pressure vessel design
Tension–compression spring design

Sine cosine-grey wolf optimizer (SC-GWO) [182] Three-bar truss design
Pressure vessel
Gear train design
Speed reducer
Tension–compression spring design

Barnacles Mating Optimizer (BMO) [183] Optimal reactive power dispatch 
(ORPD) problem

Tunicate Swarm Algorithm (TSA) [184] 25-bar truss design
Displacement of loaded structure
Rolling element bearing
Speed reducer
Pressure Vessel
Welded beam design
Tension–compression spring design

Enhanced flower pollination algorithm [185] Welded beam design
Tension–compression spring design

Slime mould algorithm (SMA) [186] cantilever beam design
I-beam vertical deflection design
Pressure Vessel
Welded beam design

Chaotic gravitational search algorithm (CGSA) [187] Tension–compression Spring design
Pressure Vessel
Welded beam design
Rolling element bearing
Speed reducer
Multiple disc clutch brake
Hydro-static thrust bearing design

Artificial rabbits’ optimization (ARO) [188] Tension–compression spring design
Pressure Vessel
Rolling element bearing
Gear train design
Cantilever beam design
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and ultrasound [239]. In [240], Pereira et al., applied a set 
of computational tools for mammogram segmentation to 
improve the detection of breast cancer using GA combined 
with wavelet analysis to allow the detection and segmenta-
tion of suspicious areas with 95% sensitivity. GA has been 
applied for feature selection to identify a region of inter-
est in mammograms as normal or containing a mass [241]. 
Also GA is combined with a support vector machine to 
differentiate benign and malignant breast tumours in ultra-
sound images [242], GA is combined with diversity index 

to discover lung nodules by developing an automatic thresh-
old clustering method [80]. In [243] electroencephalogra-
phy signals were used to detect hypoglycemia in patients 
with type 1 diabetes. Depending on neural networks in con-
junction with ant colony optimization (ACO) and particle 
swarm optimization (PSO) Suganthi and Madheswaran use 
a more advanced computer-aided decision support system 
and mammogram to group tumours and detect breast cancer 
stages as described in [244]. Based on artificial bee colony 
(ABC) algorithm Kockanat and et al., Develop a technique 

Table 14  Multi objective 
algorithms for solving 
engineering design problems

Single objective optimization algorithm and reference Engineering design problems

Multi-Objective
Ant Lion Optimizer (MOALO) [189]

Disk brake design
Cantilever beam design
Brush-less dc wheel motor
Speed reducer
Safety isolating transformer design
Welded beam design
4-bar truss design

Multi-Objective Stochastic
Fractal Search (MOSFS) [106]

Welded beam engineering
design problem

Novel variable-fidelity (VF)
optimization integrated with multi-
objective genetic algorithms (MOGAs). [190]

Torque arm optimization design
Micro-aerial vehicle fuselage
engineering design problem

Multi-objective Spotted
Hyena Optimizer (MOSHO) [191]

Multiple-disk clutch brake
Pressure vessel design
Gear train design
Welded beam design
25-bar truss design

Multi-objective modified adaptive
symbiotic organisms search (MOMASOS) [192]

Multiple-disk clutch brake
Speed reducer design
cantilever beam design
Welded beam design

Multi-objective sine–cosine
algorithm (MO-SCA) [193]

Multiple-disk clutch brake
Spring design problem
Gear train design
Welded beam design
Speed reducer problem
Four-bar truss design

Multi-objective marine
predator algorithm (MOMPA) [194]

Multiple-disk clutch brake
I-beam design problem
Gear train design
Welded beam design
Speed reducer problem
Pressure vessel problem
Tool spindle problem
Car crash problem
Brush-less dc wheel motor
Safety txmer
Four-bar truss design
10-bar truss design
25-bar truss design
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for demonising images using 2D impulse response digital 
filter as illustrated in [245].

6.5  Robotics

Robotics is a vital active research field that owns some chal-
lenges that needs to be optimized such as task performance, 
Decrease the robotics cost, achieve a better reliability, in 
addition to minimize the unit complexity over other tra-
ditional robot systems. In this context, metaheuristics can 
be used to tune machine learning methods to enhance the 
collaborative behavior of robotics. One of the most active 
problems in robotics is the redundant humanoid manipulator 

issue. The complexity of this problem comes from the 
existence of multiple number of degrees of freedom and 
complex joint structure. This problem causes difficulty in 
achieving an inverse kinematics solution. Scientists make 
an effort to formulate this problem as a minimization prob-
lem, hence the MAs can perform better in solving this prob-
lem. In [246], the multilayer perceptron neural network 
is trained by the exploitative and explorative capabilities 
of the bee’s algorithm to learn the inverse kinematics of a 
robot manipulator arm. To conquer the problem of multi-
solution, the GA is used to achieve a global optimal solu-
tion for inverse kinematics of 7-DOF (seven degree of free-
dom) manipulator [247]. Also, the inverse kinematics of the 

Table 15  Meta-heuristics 
optimization algorithms for 
solving the QAP

Meta-heuristic optimization algorithms for solving the QAP References Year

adaptive large neighborhood search algorithm (ALNS) [198] 2023
Improved hunting search algorithm (I-HSA) [199] 2019
Iterative local search (ILS) algorithm [200] 2020
Hybrid teaching–learning-based optimization algorithms [201] 2015
Hybrid simulated annealing (SA) and tabu search (TS) [201] 2015
Particle Swarm Optimization (PSO) [202] 2011
Greedy Genetic Algorithm (GGA) [203] 2000
Artificial Bee Colony (ABC) [204] 2019
Improved Ant Colony Optimization Algorithm (I-ACO) [205] 2008
Genetic Approach Optimization (GAO) [206] 1995
Tournament selection-based antlion optimization algorithm (ALO) [207] 2019
A biogeography-based hybrid with tabu search optimization algorithm [208] 2016
Migrating birds optimization (MBO [209] 2012

Table 16  Special types of quadratic assignment problem

Quadratic assignment problem instance Brief note References Year

The Quadratic Bottleneck Assignment Problem (QBAP) Instead of minimizing the overall cost of facilities network we 
seek to minimize the distance between two facilities

[210] 2012

Generalized QAP (GQAP) The main idea of this type is to allow multiple facilities to be 
located in the site in case of resource availability

[211] 2004

Bi-quadratic Assignment Problem (BiQAP) This essential type of QAP that is defined by allowing quadru-
ple of facilities to be interacted simultaneously instead of pairs

[212] 2004

The Quadratic Semi-
Assignment Problem (QSAP)

The main idea of this instance is to provide the flexibility in the 
number of facilities and sites where

different number of facilities and sites may be exist

[213] 1969

The Multi-Story Space Assignment Problem (MSAP) MSAP is an innovative type of the multi-story facility assign-
ment problem in which department locations are unequal in 
size

[214] 2010

The quadratic three-dimensional assignment problem The Q3AP is mainly used to optimize the process of data bits 
mapping to modulation symbols by hybridizing the automatic 
repeat request scheme

[215] 2008

Multi-objective quadratic assignment problem (MOQAP) In this study the authors generate a two instance of MOQAP to 
allow sitting number of instance parameters

[216] 2003

The bipartite quadratic assignment problem and extensions In this study, authors introduce a three different neighborhood 
structures. the best among them can be identified in poly-
nomial time even though two of these neighborhoods are of 
exponential size

[217] 2016
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seven-degree-of-freedom (7-DOF) manipulator is perfectly 
tackled by the particle swarm optimization algorithm (PSO) 
by exploiting the strong intelligent scene and collaborative 
behavior among particles [248]. Biogeography-based opti-
mization (BBO) is hybrid with differential evolution (DE) 
and uses the merits of the hybrid migration operator and 
the adapted Gaussian mutation operator to solve the inverse 
kinematics problem of the 8-DOF redundant humanoid 
manipulator [249].

6.6  Finance

Metaheuristics algorithms can be one of the most promis-
ing techniques used to solve different types of problem that 
occur in the finance and banking activities. In the following 
points, we will introduce a list of the most familiar problems 
and how the metaheuristics used to solve these problems.

Portfolio optimization and selection problem (POSP) 
in this problem, investors seek to assign optimal weights to 
the assets of the portfolio to achieve a minimal risk of invest-
ment. In [250], the authors provide a survey to solve POSP 
using metaheuristics and examples. Furthermore, the three 
GA, TS, and SA metaheuristic algorithms are used to solve 
POSP. The authors of [251] use the PSO algorithm to solve 
the POSP version with a cardinality constraint.

Index tracking problem (ITP) The ITP is a trading strat-
egy that can depend mainly on two processes (hold and buy). 
In ITP we want to simulate the behavior of the index of the 
stock market using a minimum number of stocks. In other 
words, the ITP is developed to passively simulate the per-
formance of the stock market index. For the specific German 
index, the authors of [252] use the SA to minimize tracking 
errors. The combinatorial search is hybrid with the DE for 
solving the ITP. The authors of [253] compare the perfor-
mance of GA with quadratic programming and propose a 
solution approach to minimize the returns on the index using 

data from the FTSE100 index. Finally, in [254] the authors 
conducted a set of experiments to solve a special type of 
ITP and noticed that there was an improvement in an index.

Options pricing problem (OPP) Speculative activities 
are one of the most familiar tasks in financial markets, and 
the option can be one of the tools for speculative activities. 
Due to the fast dynamic motion of the financial market, it 
is difficult to guess the price of the option using traditional 
methods, so metaheuristic algorithms can be a promising 
choice in that case. In order to find parameters that achieve 
consistency between the model and market prices, Gilli and 
Schumann [255] use the PSO and DE to study the pricing 
of the calibration option. Finally, the authors of [256] have 
shown that the pricing of option operations can be enhanced 
compared to the traditional binomial lattice method when we 
use the ACO algorithm.

6.7  Telecommunications Networks

The recently needs for developing complex and large com-
puter systems lead to an urgent demand for designing and 
developing high quality and more extensive network design 
and routing techniques and optimally solving problems in 
such an area. Also, we can notice that most problems in 
telecommunications are complex and hard to solve using 
traditional techniques and approximate algorithms, so there 
is urgent need to employ metaheuristic algorithms to solve 
network design and routing problems. A set of nodes (i.e., 
computers, databases, equipment, or radio transmitters) can 
be connected together using a transmission link (i.e., opti-
cal fiber, copper cable, radio, or satellite links) to construct 
communication networks. Under a set of constraints such 
as reliability, throughput, delay and link capacity, we seek 
to achieve a minimum cost of configurations as an objec-
tive function for these networks, and many problems can be 
appeared such as number of nodes, number of routing paths, 

Table 17  Applying the meta-
heuristics optimization for the 
bin packing problem

Optimization algorithms BPP type References Year

A modified squirrel search algorithm 1-Dim BPP [221] 2019
Scheduling optimization method 1-Dim BPP [222] 2021
Deterministic greedy algorithm rectangular BPP [223] 2019
A genetic algorithm 3-Dim BPP [224] 2014
Hybrid harmony search algorithm large scale BPP [225] 2021
Hybrid evolutionary algorithm large scale BPP [226] 2013
An enhanced grasshopper optimization algorithm 1-Dim BPP [227] 2020
Branch-and-price algorithm ordered

open-end BPP
[228] 2008

Algorithm of Changes (AOC) binpack 1, 4 and 8 [229] 2010
First-Fit and Best-Fit Decreasing algorithm variable sized BPP [230] 2003
Improved Lévy-based whale optimization algorithm 1-Dim BPP [231] 2018
Evolutionary particle swarm optimization Multi-objective BPP [232] 2008
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the frequency assignment, and the capacity installation. A 
large number of studies using metaheuristics in solving tel-
ecommunications problems such as Kim et al. [257] employ 
a SA algorithm in the mobile radio system to allocate the 
nominal cells of channels. To minimize the installation cost 
and maximize traffic, the authors in [258] use the tabu search 
algorithm with randomized greedy procedures to find the 
location of the base stations of the universal mobile-based 
communication system. Specifically, good approximate solu-
tions for large and medium-sized instances are obtained by 
the randomized greedy procedures, and these solutions were 
improved by using the tabu search algorithm. Finally, a new 
metaheuristic algorithm developed based on the Genetic 
Algorithm and Ant System was proposed to achieve better 
and efficient solutions for real-life transportation network 
design problems in large real networks located in two dif-
ferent places (Canada, city of Winnipeg) [259].

6.8  Food Manufacturing Industry

Recently, the metaheuristics can be considered as one of the 
most widely used efficient decision-making techniques that 
can be used to solve problems in different disciplines. In 
this section, we will present brief information about using 
metaheuristics in one of these disciplines, which is the food 
manufacturing industry. Specifically, metaheuristics can be 
applied in many food processes such as thermal drying, fer-
mentation, and distillation. In [260], the authors develop a 
new hybrid method based on artificial bee colony (ABC) and 
the record-to-record travel algorithm (RRT) for Optimizing 
the Traceability in the Food Industry. The proposed method 
is employed to solve and provide the optimal minimal solu-
tion for the batch dispersion manufacturing problem. The 
hybrid RRT-ABC is used in the French food industry to 
carry out real-world experiments (that is, sausage manu-
facturing) to obtain high-performance results compared to 
traditional methods. The Artificial Bee Colony Algorithm 
(ABCA) used in the development of a delivery route opti-
mization method to achieve a fresh food distribution without 
decreasing the quality of the food [261]. Finally, in [262], 
the Simulated Annealing (SA) is hybrid with the Virus Col-
ony Search Algorithm (VCS) to improve the quality of the 
result of a sustainable Closed-Loop Supply Chain Network 
(CLSCN) design in the olive industry.

7  Open Issues and Challenges

However, the good features and abilities of the MAs in solv-
ing a wide range of problems, like other techniques, suffers 
from a set of problems in the following points, we will refer 
to these problems.

The stochastic nature and near optimal solution As 
we know, generating an optimal solution is one of the main 
features of deterministic algorithms such as simplex method. 
On the contrary to that, the metaheuristics algorithms (as 
it is a stochastic algorithm in nature) does not guarantee 
optimality of the obtained solution, but it provides an accept-
able solution. This is one of the significant disadvantages of 
MAs. It is worth mentioning that the deterministic methods 
(unlike the stochastic methods) face difficulty when dealing 
with high-complex problems (that is, high-dimensionality 
and non-differentiable problems). Practically, when we 
decide to use one of the previous two methods, we choose 
to gain something and give the other.

The scale-ability and expensive computational cost 
Practically, the MAs score great promising results in solv-
ing problems in different natures such as discrete, continu-
ous and combinatorial problems that contain a large number 
of decision variables. However, when solving large-scale 
global optimization problems (LSGOP) the MAs consume 
an expensive amount of computational cost. This scalabil-
ity, challenge is one of the most important challenges that 
researchers must consider in the future due to the great 
growth in the size of the optimization problems when deal-
ing with high-dimensional machine learning and large-scale 
engineering problems. In this context, many strategies are 
developed by the researchers to cover this problem such as 
the parallelization, approximation and surrogate model-
ling, hybridization of local search and memetic algorithms, 
decomposing the big problems into sub-problems, and befit 
from the sampling techniques.

The weakness of theoretical and mathematical anal-
ysis In most sciences such as chemistry, Biology, physics 
and others, the mathematical analysis of a method can be 
computed accurately to specify how much the method costs 
in terms of computational cost. Unlike those sciences, in 
metaheuristics we encounter a challenge in computing the 
exact computational cost of the algorithm, the reason behind 
this difficulty is from mathematical perspective it is difficult 
to analyze why the metaheuristics algorithms are so suc-
cessful. Also, researchers need to pay attention to solving 
problems in determining the convergence analysis of many 
metaheuristics’ optimization algorithms. Finally, researchers 
also need to develop innovative methods that allow research-
ers to easily analyze and compute the algorithm's cost in the 
case of modification and scaling up the algorithm.

Intensification and diversification trade-off The algo-
rithm's degree of effectiveness is measured by the ability 
of the algorithm to transit smoothly between the explora-
tion (that is, explore as much as possible the feasible area) 
and the exploitation (that is, achieving good steps towards 
the optimal solution's area) stages. Achieving a high degree 
of intensification and diversification balance is one of the 
most important challenges or issues in most MAs. However, 
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some algorithms achieve an acceptable degree of trade-off 
between exploration and exploitation; the vast majority of 
MAs need to address this challenge by scoring a high level 
of global diversification and local intensification [263].

Large-scale real-world problem formulation Nowadays 
the vast majority of problems in recent fields such as data 
science and big data analysis tasks are considered as large-
scale real-world problem (LSRP) that is due to the large 
number of problem components and problem dimensions. 
Formulating a large-scale real-world problem (LSRP) is 
one of the crucial issues in metaheuristic algorithms. The 
issue comes from the large number of optimization variables 
(decision variables) included in the problem, how these vari-
ables interact with each other, how much the variables or 
components are related to each other, and what is the effect 
of one variable on the other variables. Also, it is worth men-
tioning that the large number of variables is translated as the 
problem size, which affects the computational cost of the 
algorithm that deals with this problem.

The limitations of the No-Free-Lunch theorem One of 
the most fundamental theories in the field of optimization 
is the No-Free-Lunch theorem [264] which states that there 
is no universal optimizer for all kinds of problems that is 
the algorithm may do better in some kinds of problems and 
do no better for the other kinds. We cannot generalize this 
theory, as it has been proved for the type of single-objective 
optimization, but it does not hold yet for problems with con-
tinuous and infinite domains in addition to multi-objective 
optimization [265, 266]. In this context, the researchers in 
the field of metaheuristics must answer how to apply the 
NFL in terms of several dimensions?

Comparing different algorithms Comparing similar 
algorithms through the absolute value of the objective func-
tion or number of function evaluations is a possible task. On 
the other hand, we encounter a problem in comparing dif-
ferent algorithms with different objectives through a formal 
theoretical analysis. Practically no fair/honest or rigorous 
comparisons exist in this field [267].

Parameter tuning and control The algorithm's param-
eter plays the most vital role in determining the performance 
of any optimization algorithms. The algorithm's designer 
can change the performance of the algorithms by applying 
the parameter tuning process of the algorithm. Specifically, 
we can say that poor tuning leads to poor performance, and 
the opposite is true. As mentioned in [268], it is practically 
not an easy task to tune the algorithm parameter and control 
it by changing its values. Another point we must refer to is 
that, for well-tuned parameters, there are no clear reasons 
for unchanging the values of these parameters during the 
optimization process. Until now, the process of parameter 
tuning has been implemented by applying parametric tests, 
while parameter control can be implemented stochastically 
in which the values of the parameters are picked randomly 

within a prespecified range. Therefore, there is an urgent 
need to develop automatic systematic methods to control 
and tune the parameters. The authors in [269] and [270] 
proposed a self-tuning method as a trial to encounter prob-
lems of parameter tuning and control, but with this trial, the 
computational cost is still expensive. Based on the previ-
ous notes, there is an urgent need to develop an automatic 
method that applies an adaptive change of the parameters 
in addition to less effect on the computational cost of the 
algorithm.

The lack of big data applicability Dealing with big 
data and developing a big data algorithm has turned into 
an urgent demand today as the data volume has increased 
dramatically with the help of automatic data collection 
methods. In this context, we noticed that there is no more 
concentration on the application of metaheuristics on big 
data in the current literature. There are no more studies on 
how to benefit from applying metaheuristics along with big 
data algorithms. Consequently, in this review, we inform 
the researchers to spend more effort and trials in developing 
new reliable methodologies and algorithms to solve big data 
problems with the help of metaheuristics.

The lack of machine learning and metaheuristics com-
bination One of the most powerful and influential methods 
for making a decision and performing a predictions task is 
the machine learning (ML). Recently, very helpful results 
have been achieved by the ML techniques. So, researchers 
in the metaheuristics field must pay an attention to methods 
that benefit from the ML techniques in optimizing the work 
of current MAs algorithms or developing a new ML-based 
metaheuristics algorithms. The following points may be 
helpful and promising with regard to this point.

– Using the new advances in reinforcement, ensemble, and 
deep learning in applying an automatic choice of specific 
problems to be handled by existing and new optimization 
algorithms [271].

– Benefit from the capabilities of machine learning tech-
niques in optimizing the work of the optimization field 
by generating an automatic model for representing the 
optimization problems, adjusting the analysis techniques 
for analyzing the search space, in addition to beating 
large and complex problems by decomposing them into 
smaller size problems [272]. In another prospective, 
we can use the ML capabilities in applying automatic 
configurations of the algorithms by allowing the ML 
algorithms to choose the appropriate values for the algo-
rithm's operators, especially for metaheuristic algorithms 
due to a large number of parameters [273].

Shortened the gap between the metaheuristic’s algo-
rithms and the problem domain knowledge Treating the 
problem as a black box is a double-edged weapon. However, 
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this can be considered as a strength of the metaheuristic’s 
algorithms over other algorithms, but it also a challenge. 
Considering and integrating the domain knowledge of the 
problem with the designed algorithm will dramatically 
increase its performance. For example, a problem-orien-
tated research direction can be obtained by designing the 
algorithm's operator and search mechanisms based on the 
characteristics of the problem which also can be benefit in 
reducing the complexity of the algorithm by considering the 
optimality conditions of the problem being considered [273].

In summary, the following observations from the experi-
ment are:

– Apply the MAs on parallel computing and combine 
the metaheuristic techniques with the modern parallel 
computing technologies to generate a powerful method 
matched with the future generation of computing.

– Exploit the benefits of artificial intelligence and machine 
learning techniques to provide new algorithms that have 
the ability to automatically adjust the parameters and 
automatically analyze the algorithms.

– Developing new methods directed towards strengthens 
the ability of MAs in addressing the large-scale global 
optimization (LSGO) problems.

– A great effort must be paid for the hybridization process 
to allow the algorithms to use the Powers of many algo-
rithms, also generating intelligent techniques that can 
provide the researcher with insights about what algo-
rithms best suited to be hybridize together?

7.1  Emerging Technologies

After discussing the open issues and challenges, we see that 
there is much future work in the field of metaheuristics, a set 
of guidelines must be declared to help the future researcher 
in the field to address these challenges. In this section, the 
guidelines used to dive deeper into potential future research 
directions are introduced. Specifically, we will concentrate 
on two emerging technologies which are machine learn-
ing and quantum computing and how these technologies 
enhance the optimization process.

7.1.1  Quantum‑Inspired Metaheuristics

Metaheuristics can be employed to obtain a global optimal 
solution for a wide range of different problems in different 
computational aspects. These methods can benefit from the 
concept of quantum computing (QC) to enhance the solu-
tions obtained. Hybridizing the quantum computing with the 
metaheuristics will produce a quantum-inspired metaheuris-
tic algorithm (QIMAs). QIMAs can be considered as an 
alternative approach to classical optimization methods for 
solving the optimization algorithm [274]. The main idea 

behind the QIMAs is to better use the quantum computing 
principles with the metaheuristics in order to boost the per-
formance of the classical optimization algorithms by scoring 
a higher-performing results than traditional metaheuristic 
algorithms. Specifically, the use of QC in metaheuristics 
will accelerate convergence, enhance exploration, enhance 
exploitation, and provide a good balance between the two 
capabilities of the algorithm. The most promising merit that 
affects the performance of the algorithm is the parallel pro-
cessing feature in QC [275]. Finally, QIMAs can be used in 
different disciplines such as engineering and science.

7.1.2  Intelligent Optimization

In this section we will introduce a new type of optimization 
that is considered as one of the most promising topics in 
the future of the metaheuristic field. Intelligent optimiza-
tion (IO) is developed as a test to intelligently adjust the set 
of inputs and their values to achieve an optimal output(s). 
In other words, IO cost minimal consumption in determin-
ing and choosing the optimal solution among all possible 
solutions of the problem. The importance of using the IO 
is dramatically increased when solving complex and NP-
hard problems in which the selection of the optimal solution 
through an exhaustive search is considered impossible or 
practically difficult. In addition, IO can be used as an impor-
tant solution for the time-consuming problem of many opti-
mization algorithms. IO can be used in all steps of the opti-
mization process, such as defining the problem, handling, 
and formulating the objective function(s) and constraints.

7.1.3  Hybrid Metaheuristics and Mathematical 
Programming

In the last years, hybrid optimization algorithms have 
achieved promising results compared to classical opti-
mization algorithms. The main aim behind the hybrid 
metaheuristics is to provide a reliable and high-performance 
solutions for the large and complex problems. One of the 
most widely used combinations is hybrid metaheuristics 
with mathematical programming approaches. This combi-
nation will increase the quality of the solution, as it benefits 
from the two methods in determining an exact solution in 
a reasonable amount of time. The following points define 
the mathematical programming approaches that can be used 
with metaheuristics to increase the quality of the solutions 
obtained [276].

– Enumerative algorithms: in this approach we can use one 
of the well-known tree search methods such as dynamic 
programming and branch and bound. These methods fol-
low the divide-and-conquer strategy where the search space 
can be divided into smaller search spaces, and then in each 
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sub area we apply the optimization separately. By applying 
this strategy, the quality of the solution will increase, and 
the time consumed will decrease.

– Decomposition and Relaxation methods: in this approach 
we can decompose the large problem using the Bender’s 
decomposition method or apply the Lagrangian relaxation 
method to convert the problem into smaller problems.

– Pricing and Cutting plane algorithms: in this approach, we 
prune using polyhedral combinatorics.

8  Conclusion

In this review, a comprehensive study of metaheuristic algo-
rithms is introduced that involves defining the concept of 
optimization. Studying the appearance of metaheuristic term. 
Introducing an explanation of the features of the MAs more 
than other techniques; Different taxonomies of the MAs 
according to different aspects such as inspiration source, 
number of search agents, population updating mechanisms, 
and number of parameters. Studying the metrics used in the 
Performance Evaluation of the algorithm. A great effort is 
paid to clarify the optimization problem in detail, concentrat-
ing on different classification techniques, and, moreover, the 
study reviews the use of metaheuristics in different application 
areas such as engineering design problems, NP hard problems, 
medical science, and robotics. Finally, we introduce some of 
the issues that exist in the MAs literature and the future direc-
tions of this important field.
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