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ARTICLE INFO ABSTRACT

Keywords: Metaheuristics are an impressive area of research with extremely important improvements in the solution of
Survey intractable optimization problems. Major advances have been made since the first metaheuristic was proposed
Metaheuristic and numerous new algorithms are still being proposed every day. There is no doubt that the studies in this field
Algorithm

will continue to develop in the near future. However, there is an obvious demand to pick out the best performing
metaheuristics that are expected to be permanent. In this survey, we distinguish fourteen new and outstanding
metaheuristics that have been introduced for the last twenty years (between 2000 and 2020) other than the
classical ones such as genetic, particle swarm, and tabu search. The metaheuristics are selected due to their
efficient performance, high number of citations, specific evolutionary operators, interesting interaction me-
chanisms between individuals, parameter tuning/handling concepts, and stagnation prevention methods. After
giving absolute foundations of the new generation metaheuristics, recent research trends, hybrid metaheuristics,
the lack of theoretical foundations, open problems, advances in parallel metaheuristics and new research op-
portunities are investigated.

Optimization

1. Introduction

The term metaheuristic describes higher level heuristics that are
proposed for the solution a wide range of optimization problems.
Recently, many metaheuristics algorithms are successfully being ap-
plied for solving intractable problems. The appeal of using these algo-
rithms for solving complex problems is that they obtain the best/op-
timal solutions even for very large problem sizes in small amounts of
time.

The optimization problems that attracted the attention of meta-
heuristic approaches have a large variance, ranging from single to
multiobjective, continuous to discrete, constrained to unconstrained.
Solving these problems is not a straightforward task due to their com-
plex behavior. Exact algorithms are mostly non-polynomial and, al-
though providing best solutions usually have impractical execution
times and/or computational requirements for large data sizes.
Metaheuristic algorithms provide a practical and elegant solution to
many such problems and are designed to achieve approximate/optimal
solutions in practical execution times for NP-Hard optimization pro-
blems (Neumann & Witt, 2010).

The majority of the state-of-the-art metaheuristics have been de-
veloped before the year 2000. We name these algorithms as “classical”
metaheuristic algorithms in this survey. The aforementioned classical
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algorithms are: Genetic Algorithms (GA) (Goldberg, 1989), Particle
Swarm Optimization (PSO) (Wei & Qigiang, 2004), Ant Colony Opti-
mization (ACO) (Dorigo & Birattari, 2010), Genetic Programming (GP)
(Banzhaf, Nordin, Keller, & Francone, 1998), Differential Evolution
(DE) (Storn & Price, 1997), Simulated Annealing (SA) (Van Laarhoven
& Aarts, 1987), Tabu search (TS) (Glover & Laguna, 1998), Greedy
Randomized Adaptive Search Procedure (GRASP) (Marques-Silva &
Sakallah, 1999), Artificial Immune Algorithm (AIA) (Dasgupta, 2012),
Iterated Local Search (ILS) (Lourenco, Martin, & Stiitzle, 2003), Chaos
Optimization Method (COM) (Li & Jiang, 1997), Scatter Search (SS)
(Marti, Laguna, & Glover, 2006), Shuffled Frog-Leaping Algorithm
(SFLA) (Eusuff & Lansey, 2003), and Variable Neighborhood Search
(VNS) (Mladenovi¢ & Hansen, 1997).

Despite the achievements of the classical metaheuristic algorithms,
new and novel evolutionary approaches also emerged successfully in
the last two decades. Research on metaheuristic algorithms during this
era introduces a great number of new metaheuristics inspired by evo-
lutionary or behavioral processes. In many instances, this new wave of
metaheuristic approaches yield the best solutions for some of the un-
solved benchmark problem sets.

In this survey, we review the last twenty years of metaheuristic
algorithms. Due to the worldwide popularity and success of the studies
on metaheuristics and the increasing publication counts of these
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studies, we consider that there is a need for a new survey to review and
summarize the most appealing current studies on this subject for the
last 20 years. We have concentrated our efforts on studying fourteen
distinguished metaheuristic algorithms that we term as the “new gen-
eration” metaheuristic algorithms. While selecting/deciding the new
generation metaheuristics, we focus on the number of citations that
have been received with respect to the introduction year of the meta-
heuristic. Therefore, the metaheuristic becomes verified to be efficient
by the experimental studies of a large number of scientists. The selected
metaheuristic should also introduce a novelty in one of the issues, op-
erators for exploration and exploitation techniques, parameter tuning/
reduction concepts, adaptability to the solution of a wide range of
problems, and stagnation prevention techniques. The metaheuristic
must have been also reported to outperform some of the classical me-
taheuristics.

The new generation metaheuristic algorithms that we examine in
this review are: Artificial Bee Colony (ABC) (Karaboga, 2005), Bacterial
Foraging (BFO) (Das, Biswas, Dasgupta, & Abraham, 2009), Bat Algo-
rithm (BA) (Yang, 2010c), Biogeography-based optimization (BFO)
(Simon, 2008), Cuckoo Search (CS) (Yang & Deb, 2009), Firefly Algo-
rithm (FA) (Yang, 2010a), Gravitational Search Algorithm (GSA)
(Rashedi, Nezamabadi-Pour, & Saryazdi, 2009), Grey Wolf Algorithm
(GWA) (Mirjalili, Mirjalili, & Lewis, 2014), Harmony Search (HS)
(Geem, Kim, & Loganathan, 2001), Krill Herd (KH) (Gandomi & Alavi,
2012), Social Spider Optimization (SSO) (Cuevas, Cienfuegos, ZaldiVar,
& Pérez-Cisneros, 2013), Symbiotic Organisms Search (SOS) (Cheng &
Prayogo, 2014), Teaching Learning Based Optimization (TLBO) (Rao,
Savsani, & Vakharia, 2011), and Whale Optimization Algorithm (WOA)
(Mirjalili & Lewis, 2016).

Figs. 1 and 2 give the search result of the number of related studies
for the classical and new generation metaheuristics on google scholar
website (in May 2019). GA and ABC have the largest numbers
1,270,000 and 37,400 related papers respectively.

The rest of this survey is organized as follows: previous surveys on
classical metaheuristics are presented in Section 2. Section 3 gives the
details and pseudocode of new generation metaheuristics. Section 4
gives information about other recent metaheuristic algorithms that are
not known as much as the presented metaheuristics in the previous
section. Section 5 provides information about other new generation
hybrid metaheuristics. In Section 6, a comprehensive discussion and
concluding remarks are provided.

2. Previous surveys on classical metaheuristics
This section aims to provide concise information about the previous
surveys on classical metaheuristic algorithms. Here, we have selected
1400 1270

1200

1000

153 149

number of related studies (x1000)

25 18 14 7 7 6 P

GA PSO Ts GP DE ACO SA  GRASP VNS Ss
metaheuristic

SFLA COM AIA s

Fig. 1. The number of related papers on google scholar for the classical meta-
heuristics.
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Fig. 2. The number of related papers on google scholar for new generation
metaheuristics summarized in this survey.

reviews that have a remarkable impact on recent studies reflected via
citation counts. While acting as an introduction to the metaheuristic
approaches concentrated in this study, this section also provides a
comprehensive reference for readers that are interested in classical
metaheuristic algorithms.

The book by Goldberg (1989), GA in Search Optimization & Ma-
chine Learning, is one of the first publications in the field of meta-
heuristics designed by natural inspirations. Goldberg and Holland
(1988) provide a book dedicated to the papers related to GA and ge-
netics-based learning systems with a focus on machine learning.
Holland (1992) presents brief information on the fundamental proper-
ties of GA in his study. Srinivas and Patnaik (1994) provide a survey on
the basic operators (crossover and mutation) of GA and introduce re-
search opportunities for complex problem landscapes. Schaffer,
Whitley, and Eshelman (1992) provide a survey on GA and the neural
networks. The book, “Nature-inspired metaheuristic algorithms” by
(Yang, 2010b), is a comprehensive reference for the state-of-the-art
metaheuristic algorithms. The book offers a review of state-of-the-art
metaheuristics introduced before 2010. BoussaiD, Lepagnot, and Siarry
(2013) present a survey on some main metaheuristics and examine their
similarities and differences. The authors classify the methods as a single
solution and population-based metaheuristics and present an overall
evaluation of the main metaheuristics and their principles. Sorensen,
Sevaux, and Glover (2018) describe his comments on the new proposed
metaheuristics and the similarities that occur in many.

Wei and Qiqiang (2004) summarize the basic principles of PSO al-
gorithm that is introduced as a new optimization algorithm originated
from artificial life. The PSO finds the best/optimal solutions through
improving the global and the local best solutions of particles in the
population. The parameters of the PSO are examined in this study and
the areas that the PSO has been applied are reviewed. Taillard,
Gambardella, Gendreau, and Potvin (2001) examine memory-based
metaheuristics TS, SS, GA and ACO in their survey. They propose that
their implementations are similar and should be unified with the name
of Adaptive Memory Programming. Bianchi, Dorigo, Gambardella, and
Gutjahr (2009) give a survey of metaheuristic algorithms such as ACO,
TS, SA, and evolutionary computation. The success of these applications
for the class of Stochastic Combinatorial Optimization Problems is
analyzed and recent issues are discussed. Parejo, Ruiz-Cortés, Lozano,
and Fernandez (2012) present a comparative study on metaheuristic
optimization frameworks. Diverse metaheuristic techniques, for solu-
tion encoding, constraints, neighborhood, hybrid solutions, parallel/
distributed computation, best practices of software engineering, and
documentation are covered. A significant lack of implementation is
reported for the parallel computation of metaheuristics and hy-
perheuristics. Mladenovi¢, Brimberg, Hansen, and Moreno-Pérez
(2007) provide a survey of metaheuristics for the solution of the p-
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median problem. The authors give an overview of metaheuristic algo-
rithms for this problem. Puchinger and Raidl (2005) discuss different
state-of-the-art techniques to combine metaheuristics with brute-force
algorithms to optimize combinatorial problems. They report two cate-
gories as collaborative versus integrative combinations. de Castro and
Timmis (2003) propose a framework for AIS and review literature that
integrates AIS with other algorithms, neural networks, evolutionary
computation, and fuzzy systems.

Li and Jiang (1997) introduce a chaos optimization algorithm that
uses the properties of stochastic property, the regularity of chaos, and
ergodicity. The performance of the chaos optimization algorithm is
reported to be very high. Espejo, Ventura, and Herrera (2010) provide a
survey of GP for the classification problems. GP is reported to be a
powerful evolutionary technique that is suitable for the evolution of
classifiers. The study surveys the literature to give information about
the techniques of constructing well-performing classifiers. Lewis (2008)
carries out an overview of metaheuristic algorithms belonging to the
university timetabling problems. The author classifies the algorithms
into three general classes, and comment on them. Nanda and Panda
(2014) provide a review of nature-inspired algorithms for the problem
of partitional clustering. Key issues and major practice areas are in-
vestigated. Zavala, Nebro, Luna, and Coello (2014) examine recent
developments in multiobjective metaheuristics for solving design pro-
blems of civil engineering structures. The authors examine the design
problems and the features of the problem-solving methods. Baghel,
Agrawal, and Silakari (2012) give a review of combinatorial optimi-
zation problems that are solved by metaheuristics. The paper examines
the evolution of metaheuristic and their process of converging. The
authors divide the metaheuristic algorithms categories and make some
suggestions to develop well-performed metaheuristic algorithms.

Bianchi, Dorigo, Gambardella, and Gutjahr (2006) introduce ACO,
Evolutionary Computation, SA, TS and Stochastic Partitioning methods
and their recent applications in their survey. The authors mention the
flexibility of metaheuristics in adapting to different modeling ap-
proaches. A description and classification of the modeling approaches
of optimization under uncertainty are provided. Blum, Puchinger,
Raidl, and Roli (2010) give a survey on the approaches of hybrid me-
taheuristics. They mention that combining different metaheuristic al-
gorithms is one of the most successful techniques in optimization.
Dorigo and Blum (2005) provide a survey on theoretical notations of
ACO. The authors examine the convergence outcomes and discuss the
relations of ACO and other optimization methods. They focus on re-
search efforts of understanding the behavior of ACO. Feature aspects of
ACO are given in this study. Mohan and Baskaran (2012) review recent
research ACO algorithms and propose a new ACO algorithm that is
applied for network routing. Hao and Solnon (2019) describe the
common features of metaheuristics by grouping them in two main ap-
proaches, perturbative and constructive metaheuristics. The authors
also introduce the diversification and intensification notions, which are
used by metaheuristics.

Pedemonte, Nesmachnow, and Cancela (2011) present a compre-
hensive survey on parallel ACO implementations and give a new tax-
onomy to classify parallel ACO algorithms. Cantti-Paz (1998) provides
detailed information about parallel GA. The author collects and pre-
sents the most representative publications on parallel GA. Blum,
Puchinger, Raidl, and Roli (2011) provide a survey on hybrid meta-
heuristic algorithms with other optimization techniques. They define
the research area with different hybridization methods. They propose
some methods to develop efficient hybrid metaheuristic algorithms.
Alba (2005) gives a comprehensive survey on parallel GA (Alba &
Troya, 1999). The author defines parallel GAs as a new kind of meta-
heuristics. In addition to parallel GA, the parallel versions of GP, SS,
ACO, SA, VNS, TS, hybrid, heterogeneous, and multiobjective are
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evaluated. The theoretical foundations are analyzed. The parallel al-
gorithms are reported to be highly efficient and robust. Miihlenbein
(1992) shows the power of a Parallel GA with the m graph partitioning
and the traveling salesman problems. The parallel GA are reported to be
capable of finding the best and the optimal solutions for the problem
instances. Alba, Luque, and Nesmachnow (2013) provide a solution to
deal with classic parallel models in contemporary platforms. They re-
view modern research areas with respect to parallel metaheuristics and
identify possible open research areas and future trends. Binitha et al.
(2012) present an overview of biologically inspired metaheuristic al-
gorithms. Del Ser et al. (2019) survey the state-of-the-art metaheuristics
and report open research areas. A discussion is carried out on recent
studies and identifies the necessity to reach a common understanding of
optimization techniques. Camacho-Villalon, Dorigo, and Stiitzle (2019)
analyze the Intelligent Water Drops (IWD) metaheuristic and verify that
the IWD is inspired by ACO metaheuristic.

In the fields of supply chain and inventory management optimiza-
tion, metaheuristic algorithms are used intensively. For detailed in-
formation, the reader can refer to the studies (Awasthi & Omrani, 2019;
Duan, Deng, Gharaei, Wu, & Wang, 2018; Dubey, Gunasekaran, &
Sushil Singh, 2015; Gharaei, Hoseini Shekarabi, & Karimi, 2019;
Gharaei, Karimi, & Hoseini Shekarabi, 2019; Gharaei, Karimi, &
Shekarabi, 2019; Giri & Bardhan, 2014; Giri & Masanta, 2018; Hao,
Helo, & Shamsuzzoha, 2018; Hoseini Shekarabi, Gharaei, & Karimi,
2019; Kazemi, Abdul-Rashid, Ghazilla, Shekarian, & Zanoni, 2018;
Rabbani, Foroozesh, Mousavi, & Farrokhi-Asl, 2019; Rabbani, Hosseini-
Mokhallesun, Ordibazar, & Farrokhi-Asl, 2018; Sarkar & Giri, 2018;
Sayyadi & Awasthi, 2018a, 2018b; Shah, Chaudhari, & Cardenas-
Barrén, 2018; Tsao, 2015; Yin, Nishi, & Zhang, 2016).

3. New generation metaheuristics

In this section, we provide comprehensive information for fourteen
recent metaheuristics that have attracted the attention of many re-
searchers and have been cited numerous times for the last twenty years.
All of these algorithms are nature or human inspired, and population-
based. The algorithms are presented in alphabetical order. For each of
the algorithms, we reserve a specific section, providing details about
their origins, inspirations, pseudocode-level details, and standing re-
search on them.

3.1. Artificial bee colony optimization (ABC)

ABC is a metaheuristic algorithm proposed by Karaboga in 2005. It
is one of the most cited new generation metaheuristics in literature
(Basturk, 2006; Karaboga, 2005; Karaboga, Gorkemli, Ozturk, &
Karaboga, 2014). ABC, being a population-based algorithm, has been
applied to various optimization problems. The natural aspiration of
ABC comes from the fact that candidate solutions are represented as
bees exploring/exploiting food resources, and solutions are represented
as the food resources themselves (Dokeroglu, Sevinc, & Cosar, 2019). A
solution indicates a food resource and the nectar amount of each re-
source represents the quality/fitness of each solution. There are three
types of bees in the hive: “employed”, “onlooker”, and “scout” bees. In
nature, employed bees look for a food source, come back to hive and
share their information by dancing. When an employed bee finishes the
collection of the nectar, it turns into a scout and looks for new food
resources. Onlooker bees watch how the employed bees dance and
choose food sources, while scout bees explore for food sources. Com-
putationally, the bee colony and its behavior are represented as follows
(see Table 1).

First, a random initial population is generated. The fitness of a state
of a bee colony is indicated by the acquired resources. Fig. 3 presents
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Table 1

Summary information about the new generation metaheuristics, their inventors

and the year they are introduced.

#  Acronym  Metaheuristic Inventors, Year

1 HS Harmony Search Geem et al. (2001)

2 BFO Bacterial Foraging Opt. Passino (2002)

3 ABC Artificial Bee Colony Karaboga (2005)

4 BBO Biogeography-based Opt. Simon (2008)

5 CS Cuckoo Search Yang and Deb (2009)

6 GSA Gravitational Search Rashedi et al. (2009)

Algorithm

7 FA Firefly Algorithm Yang (2010a)

8 BA Bat Algorithm Yang (2010c)

9 TLBO Teaching-learning-Based Opt. ~ Rao et al. (2011)
10 KH Krill Herd Gandomi and Alavi (2012)
11  SSO Social spider optimization Cuevas et al. (2013)
12 GWA Grey Wolf Algorithm Mirjalili, Mirjalili, and Lewis

(2014)

13 SOS Symbiotic Organisms Search Cheng and Prayogo (2014)
14 WOA Whale Optimization Mirjalili and Lewis (2016)

unloading
nectar from B

Fig. 3. The classical behavior of honeybees looking for nectar.

the basic behavior of artificial bees. A forager bee starts as an un-
employed bee having no information about the food sources around the
hive. An ordinary bee can be a scout bee and explore the solution space
(see S in Fig. 3) or it can watch the dance of other bees and search for
new food sources, R. The bee gathers the food, comes back to the hive,
drops off the nectar. The bee can become a recruit nestmates (EF1), an
uncommitted follower (UF), or go searching the food without recruiting
after bees (EF2). The pseudocode of an ABC algorithm is given in
Algorithm 1.

In order to generate an initial set of food sources, the algorithm
starts randomly generating solutions in the search space. The Equation
given below defines the randomized rule to produce a new solution
within the range of the boundaries of the parameters. i =
1...SN, j = 1..D. SN is the size of the food sources and D is the number
of dimensions in the problem space. X is the j-th dimension of food
source i.

X = X}""‘ + rand (0, (X" — X}’-’“i") 6

Each employed bee produces a new food source (solution)
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depending on its local information and finds a neighboring food source.
Finding a neighboring food source is defined in the Equation given
below.

Vi =Xy + (X — Xiy) )

A new food source V; is produced by changing one parameter of x;. In
the Equation above, j is a random integer between [1, D] where k is a
random index different from i and ¢ij is a real number between [—1, 1].
As the difference between X;; and Xj; diminishes, the perturbation on
solution X;; becomes smaller. If a new generated parameter exceeds its
boundaries, the parameter is set to acceptable values. Fitness value of
the new generated solution is calculated as (1/(1 + f;)) when f is po-
sitive. The fitness value is (1/(1 + abs(f))) if f; is positive negative.

The composition of the bee colony impacts the balance between the
exploration/exploitation of a run of ABC. Karaboga et al. compare the
performance of ABC against GA, and PSO (Karaboga & Basturk, 2007).
ABC algorithm is observed to outperform the algorithms on the opti-
mization of multi-variable functions. Gao and Liu (2012) state that
there is an insufficiency of ABC in its solution search equation at the
exploitation phase and propose an improved fitness equation (inspired
by DE) based on the bee search behavior around the best nectar in the
previous iterations. The experimental results indicate that the modified
ABC algorithm performs well, solving complex numerical problems
compared to classical ABC algorithms.

Algorithm 1. Artificial Bee Colony Optimization (Karaboga, 2005)

-

int i=0;
while (i++ < #iterations) do

M)

Scout bees search for food();

Scout bees return to the hive and dance()
Onlooker bees evaluate the food sources()
Check previously visited food resources();
Decide the best food resources();
Employed bees travel to the food sources();
Return to hive();

10 Collect the solution in the hive();

k)

© 00 N O oA W

Karaboga and Ozturk (2011) propose an ABC algorithm for data
clustering problem. The ABC algorithm is compared with other meta-
heuristic algorithms in the literature. The UCI Machine Learning Re-
pository is examined during the experiments. The results verify that the
ABC can be used for multivariate data clustering problems efficiently.
Zhu and Kwong (2010) propose an ABC algorithm by using the
knowledge of global best solution during the exploitation. The experi-
mental results show that proposed GABC algorithm outperforms the
classical ABC algorithm. The authors aim to solve the insufficiency of
ABC regarding its solution search equation.

Karaboga and Basturk (2008) compare the performance of ABC al-
gorithm with DE, PSO and GA for multi-dimensional numeric problems.
The results obtained from their experiments verify that the ABC algo-
rithm is competitive with other algorithms in the literature. The ABC
can be efficiently used to solve high dimensional engineering problems
(Karaboga & Basturk, 2008). Hancer, Xue, Zhang, Karaboga, and Akay
(2018) propose a multiobjective ABC algorithm combined with non-
dominated sorting and genetic operators for feature subset selection
problem. Two different ABC versions are developed (with binary and
continuous representation). Omkar, Senthilnath, Khandelwal, Naik, and
Gopalakrishnan (2011) propose a modified ABC algorithm for discrete
variables of the multiobjective design optimization of composite
structures.
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G

Fig. 4. Swimming, tumbling, and chemotactic behavior of E. coli.

Karaboga (2009) proposes a new ABC algorithm for designing di-
gital Infinite Impulse Response filters. The algorithm is compared with
a conventional optimization algorithm PSO. Singh (2009) proposes an
ABC method for the solution of minimum spanning tree problem with
leaf-constrains. The experimental results verify the superiority of the
proposed ABC algorithm. TSai, Pan, Liao, and Chu (2009) propose a
new ABC optimization algorithm for numerical optimization. The al-
gorithm introduces the universal gravitation concept into the affection
consideration between the onlooker and employed bees in order to
improve the quality of the solutions via selecting a more suitable ex-
ploration/exploitation ratio.

3.2. Bacterial foraging optimization (BFO)

Passino (2002) proposes BFO metahuristic. The BFO algorithm
imitates the foraging behavior of bacteria over a landscape to process
parallel non-gradient optimization. The movement (locomotion) is
provided by a set of tensile flagella that helps an E. coli bacterium to
swim or tumble during the foraging process. Each flagellum tightens the
cell while they are turning around the flagella in a clockwise direction.
This causes flagella to behave independently and the bacterium tumbles
with lesser number of tumbling. In a detrimental location, it tumbles
drastically to obtain a nutrient gradient. Turning the flagella counter
clockwise helps the bacterium to swim quickly. The bacteria may face
with chemotaxis, where they intend to move to a nutrient gradient and
avoid a poisonous environment. The bacteria can move longer distances
in a friendly environment. Fig. 4 presents the movement of a bacterium
in a nutrient solution.

When the bacteria get enough food, they can generate a replica of
itself. Passino is inspired by this event while developing the BFO al-
gorithm. The chemotactic progress may not occur due to sudden
changes in the environment. A group of bacteria may migrate to some
other places or other groups of bacteria may come to the current lo-
cation of the bacteria. This process is denoted as elimination-dispersal
in which the bacteria in a region are terminated or a group of bacteria is
dispersed into a new location in the environment.

If we assume that © is a vector of multidimensional real values
where J (@) is the optimization problem, the BFOA uses chemotaxis,
swarming, reproduction, and elimination-dispersal to optimize a given
combinatorial problem. Virtual bacteria are implemented to locate the
global optimum solution while dealing with the problem. Here, che-
motoxis, reproduction, and elimination-dispersal steps facilitate the
exploration process of BFO while, swarming behavior and reproduction
facilitate the exploration process of the algorithm.

The structures used to define chemotactic steps are: S is #bacteria in
population, k is the index for the reproduction step, j is the index for

chemotactic step, p is the dimension of problem, [ is the index of the
elimination-dispersal event, N, is #chemotactic steps, N; is the length of
swimming, N, is #reproduction steps, N4 is #elimination-dispersal
events, B, is the probability of elimination-dispersal, and C (i) is the
size of the step taken in the random direction specified by the tumble.

Let P(j, k, ) = {6 (j,k,D | 1,2, ...,S} denote the position of each
individual S bacteria at the j-th chemotactic step, k-th reproduction
step, and I-th elimination-dispersal event. Here, J (i, j, k, [) denotes the
cost at the location of the i-th bacterium at location @' (j, k, I). The four
main components of BFOA are;

Chemotaxis: simulates the movement of an E. coli by swimming and
tumbling using flagella. The movement of the bacterium can be re-
presented as below:

@f(f +1,k, z] - gi[j’ i l] i Cm% ©

where A is a vector in a random direction with elements between
[-1,1].

Swarming: A swarm behavior is observed for motile species where
they form intricate and stable spatio-temporal patterns in semisolid
nutrient medium. A swarm of E. coli cells shows themselves in a ring by
moving up the nutrient gradient when located among a semisolid ma-
trix with a single nutrient chemo-effecter. The cell-to-cell communica-
tion formulation in E. coli group is represented by the function below:

S
e z)) _ fm[@, @i[,-, . l))
[o-rfre)) -3

where J..(0, P(j, k, 1) is the value to be added to the objective function.

Reproduction: The unhealthy bacteria terminate while each of the
healthy bacteria is being split into two bacteria. This process maintains
the size of the swarm constant. The selection criteria for unhealthy
bacteria is important for both exploration and exploitation utility of
BFO.

Elimination and dispersal: Changes in the environment where bac-
teria lives may happen due to many reasons. A local temperature rise
may terminate a group of bacteria in a region. Events can happen in this
way and all the bacteria in a region may be killed or a group may
migrate into a new location. In BFOA, some bacteria are liquefied to
simulate this phenomenon randomly, while new substitutions are in-
itiated in the search field. The pseudocode of the BFOA is presented in
Algorithm 2.

Algorithm 2. Bacterial Foraging Optimization Algorithm (Das et al.,
2009)
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1 Initialize parameters p, S, No,Ng, Nye, Neq, Peq, C(i)(i=1,2,...,S), ©%

2 //Elimination-dispersal loop
3 for (I=1 to N.q) do

4 //Reproduction loop
5 for (k=1 to N,.) do
6 //Chemotaxis loop
7 for (j=1 to N.) do
8 //bacterium i € Population
9 for (i=1,2,...5) do
10 Compute fitness function, J(i, j, k, 1);
11 Jiast=J (i, J, k, 1) ;
12 //hold the value since a better cost can be found
13 Tumble: generate a random A(:) € RP with each element
A (i), m=1,2,...,p on [-1,1];
14 Move: O (j+ 1,k 1);
15 //C (%) in the direction of the tumble for bacterium
16 Compute J(i, j+1, k, 1);
17 while (m < N;) do
18 //Swim
19 if (J(i,j+1,k1) < Jigst) then
20 Jiast = J(4j+1,k1) ;
Qs — Qi ; AYQ) .
21 @(]—Fl,k,l)—@(],k,l)+C(z)m,
22 else
23 L m=DNg;
24 m=m-1;

Passino (2010) provides a tutorial about BFO, which summarizes
the biology of bacterial foraging. Das et al. (2009) discuss the hybrid
BFO algorithms with other optimization techniques and give informa-
tion about the most significant applications of BFO. Dasgupta, Das,
Abraham, and Biswas (2009) introduce new methods modifying how an
individual and groups of bacteria forage for nutrients. The introduced
model is designed for distributed optimization processes. Agrawal,
Sharma, and Bansal (2012) present a survey on BFO. Chen et al. (2017)
propose two BFO algorithms for feature subset selection. The algo-
rithms are adaptive chemotaxis BFO and improved swarming elimina-
tion-dispersal BFO algorithm. The algorithms are experimented on UCI
datasets. The experimental results demonstrate that BFO algorithms are
competitive with state-of-the-art algorithms in the literature. Kim,
Abraham, and Cho (2007) propose a hybrid BFO algorithm integrated
with GA for function optimization problems. The performance of the
algorithm is analyzed on mutation, crossover, the lifetime of the bac-
teria, a variation of step sizes, and chemotactic steps. Hota, Barisal, and
Chakrabarti (2010) present a BFO algorithm applied for the solution of
the economic and emission load dispatch problem. The BFA is observed
to perform in a robust manner in this study. Tang, Wu, and Saunders
(2006) develop a BFO algorithm for the optimization of dynamic en-
vironments. The results verify that the proposed algorithm gives accu-
rate results in reasonable times.

3.3. Bat algorithm (BA)

BA metaheuristic is first proposed by Yang (2010c). Bats use echo-
location (i.e., a type of sonar) to avoid obstacles, detect prey, and locate

their nests in the dark. A bat emits a sound and follows the echo that
reflects from the objects in the environment. Bats can also detect the
difference between food/prey and barriers by using echolocation. The
motivation of BA is that this echolocation talent of bats can be for-
malized as a means to find an optimal solution in an objective function.

BA runs in an iterative fashion. Bats fly with velocity v; with position
x; having a frequency f,,,, varying wavelength 1 and loudness A, while
searching for their prey randomly. They can set the frequency of the
pulse and adjust its rate r € [0, 1] (with respect to the proximity of the
prey). The loudness is changed from a maximum A, value to a
minimum value A,;,. The frequency f in the range of [f,,, f,,s] cor-
relates with a range of wavelengths [A,in, Amax]-

While any wavelength can be used for a run of BA, selection of a
suitable wavelength has significant impact on the convergence of the
algorithm. In most cases, wavelength is variable during a run, and a
range of wavelengths are set up and adjusted accordingly during a run.

The detectable range should be decided that it is comparable to the
size of the domain of interest. The frequency can be changed while
fixing the wavelength and is related to 1. Parameter f is assumed to be
between [0, f,,.]. Higher frequencies have short wavelengths and can
travel a shorter distance while lower frequencies have large wave-
lengths and can travel further. That is, wavelength and frequency re-
lates to both computational cost and exploration capacity of the setting.
The rate of pulse is in the range of [0, 1] where 0 means no pulse and 1
means the maximum rate of pulse emission. Algorithm 3 summarizes
the execution of a sample BA run.

Algorithm 3. Bat Algorithm (Yang, 2010c)
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1 Objective function f(x), = = (z1,...,z4)";

2 Initialize the population of bats x; (1 = 1, 2,..., n) and v;;
3 Define pulse frequency f; at z;;

4 Initialize pulse rates r; and the loudness A;;

5 while (¢t < #iterations) do

6 Generate new solutions by setting frequency

7 and updating velocities and locations/solutions [Equations 5-7]
8 if (rand > r;) then

9 Select a solution;

10 Generate a local solution;
11 Generate a new solution by flying randomly;
12 if (rand < A;) & (f(x;) < f(x.)) then

13 Accept the solution;

14 Increase r; and reduce A;;
15 Find the best x,;

16 Report the global best result;

The positions of virtual bats x; (i = 1, 2,..., n) and velocities v; in a
d-dimensional space are updated in iterations. New solutions x; and
velocities v/ at time t are generated with the equations given below.

f; =fmin + (fmax _fmin)ﬁ 5)
vl =v 4+ (= x). f, (6)
xf=x{""+vf @

where S€ [0, 1] is a uniform distribution random vector. x, is the
global best location among n bats.

If A;f; is the velocity increment, we can use either f; (or 4;) to set the
new velocity while fixing the factor 4; (or f). f,,, =0 and f, . = 100
can be used with respect to the domain of the problem. Each bat is
assigned a random frequency initially. It is drawn uniformly from
[fnin> finin]- In the local search, after selecting a solution among the best
solutions, a random solution for each bat is generated locally using a
random walk process using the formula:

Xnew = Xold + eA (8)

where € [—1, 1] is a random value, A’ = < A/> is the average loudness
of all the bats at this period of time.

The update of positions and velocities of bats are performed in a
similar fashion after each iteration as in a PSO algorithm. Parameter f;
controls the pace and the range of the movement. At each iteration, the
loudness A; and the rate 1, of pulse emission need to be updated. The
loudness decreases as bat finds its prey. The rate of pulse emission in-
creases, the loudness can be of any value. The values for Ay and A,
can be assigned as 100 and 1 respectively. For simplicity, A, = 1 and
Amin = 0 can be applied. A,,;, = 0 means that a bat has found the prey
and finished emitting a sound.

Al =adAf, =11 - exp(y)], 9

where o and yare constants.
« is similar to the cooling factor used in the SA (Van Laarhoven &
Aarts, 1987). For any 0 <a< 1 and y> 0, we have

Al =50, -1 at - o (10)

Past research suggest that selection « = y = 0.9 as parametrization
is a suitable assumption during the optimization process (Yang, 2010c).
The tuning of the parameters is often done via experimentation, where
each bat has different values of loudness and pulse emission rate in-
itially. The first value of loudness A can be in the range of [1, 2]. The
initial emission rate 1’ can be around zero or any value r, € [0, 1]. Their

loudness and emission rates will be changed only if a new solution is
produced.

With many parameters, it is possible to change and control the
nature of exploration and exploitation even through a single run, many
variations of BA has been proposed in the literature. Gandomi and Yang
(2014) propose a chaotic BA to increase the global search capacity of
BA for robust optimization. The authors examine different chaotic maps
on benchmark problems. The results verify that chaotic BA can out-
perform the classical versions of BA. Yang and Hossein Gandomi (2012)
propose a BA for solving engineering optimization tasks. Eight well-
known optimization tasks are carried out and a fair comparison is
performed with existing algorithms. Yang (2012a) proposes multi-
objective BA for solving design problems. Experimental results verify
that the proposed algorithm works efficiently. Yang (2013a) reviews
the literature of BA in his survey. The paper gives a review of the BA
and its variants. Gandomi, Yang, Alavi, and Talatahari (2013) propose a
BA to solve constraint optimization problems. The BA is verified using
many benchmark constraint problems. Mirjalili, Mirjalili, and Yang
(2014) develop a binary version of BA. A comparative study is carried
out with over twenty-two benchmark functions with GA. Khan and
Sahai (2012) verify the performance of a BA over other algorithms in
neural network training. Fister Jr, Fister, and Yang (2013) present a
new algorithm based on BA. The BA is combined with DE strategies.
The new algorithm is observed to improve the original BA significantly.
Yilmaz and Kiiciiksille (2015) enhance the search methods of BA
through three different means. The results of test sets prove that BA is
superior to its standard version. Nakamura et al. (2012) propose a new
BA to solve constraint optimization tasks. The performance of BA is
verified using several classical benchmark constraint problems.

3.4. Biogeography-based optimization (BBO)

BBO is a population-based metaheuristic proposed by (Simon,
2008). BBO assumes that each individual lives in a habitat with a Ha-
bitat Suitability Index (HSI) parameter that measures the fitness of a
solution. Two main operators of BBO algorithm are migration and
mutation. The migration is a stochastic operator that updates each in-
dividual (H;) by sharing the features of individuals in the population.

The probability of selecting a solution (H;) as an immigrating ha-
bitat is related to its immigration rate ;. The probability of selecting
the solution H; as an emigrating habitat is related to the emigration
rate, u;. Suitability Index Variable (SIV) is a parameter that char-
acterizes the habitat. An SIV is a search parameter and the set of all
possible SIVs is the search space. The HSI is decided by the use of SIVs.
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Solutions with high fitness values are habitats with a high HSIL
Habitats with high HSI have many species, whereas low HSI habitats
have fewer species. Each habitat (solution) is governed by an identical
species curve and is characterized with an S value which depends on the
HSI value of a solution. For example, if there are two habitats char-
acterized by S; and S,, the immigration rate, 4; of S; will be higher than
the immigration rate 4, of S,. The emigration rate, u, of S; for will be
lower than the emigration rate u, of S,.

The emigration and immigration rates are used to share information
between solutions. Each solution that is based on other solutions is
modified with a global probability B,,q. If a given solution is selected to
be modified, its immigration rate (1) is used to decide to modify each
SIV in that solution. If an SIV is to be modified, the emigration rate of
the other solutions is used to select solutions to migrate a random SIV to
solution S;. With an elitist selection, the best solutions are kept from
being corrupted by immigration.

Mutation is also used as an exploratory concept in BBO. A habitat’s
HSI can change due to random events. This is modeled as an SIV mu-
tation whose rates are decided by the species count probabilities that
are governed by a differential equation in Eq. (12).

Low and high species counts have low probabilities by Theorem
”Medium species counts have higher probabilities since they are close
to the equilibrium point”. The steady-state value for the probability of
the number of each species is;

Ploo) = — 2
T an

where v and v; are observation eigenvector.

-+ /"S)PS + /"s+1Rv+1’ ifS=0
P=4— A+ u)P + APy + g By, if1SS<Spe—1

- (s + ,us)Px + As-1Boas if S = Spax 12)

Very high and low HSI solutions are equally impossible, whereas
solutions with medium HSI are more probable. A mutation rate m that is
inversely proportional to the solution probability can be formulated as

1 Create a population, Hq, Hs,..., Hy;
2 Compute HSI values;
3 while (the halting criterion is not satisfied) do
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below:

1-F
- e 2)

max

a3

where m,,,, is a user-defined value. This mutation operator aims to
increase diversity. This prevents the local stagnation of the algorithm.

The parameters of a typical BBO are set as follows: H € SIV™ is a
vector of m integers for the solution to an optimization problem. An
SIV € C is a value allowed in a habitat. C C Z1 is the set of all integers.
SIV € C and H € SIV™ are constraints. A habitat suitability index HSI
(H — R) is the fitness value of a solution. H" is a set of habitats and the
size of an ecosystem is fixed. The immigration rate A(HSI): R — R is a
monotonically non-increasing function of HSIL 4; is the rate that SIVs
from other habitats migrate into habitat H;. Emigration rate
W(HSI): R — R is a monotonically non-decreasing function of HSIL. y; is
the likelihood of the migration of SIVs from habitat. Habitat mod-
ification Q(4, u): H" — H is an operator that tunes habitat based on the
ecosystem H". The probability of modifying the H is proportional to the
immigration rate 1. The source of the modification comes from H; is
proportional to the emigration rate u;.

Mutation M (4, u): H — H is a stochastic operator changing habitat
SIVs based on the habitat’s a priori existence probability. An ecosystem
transition function ¥ = (m, n, 4, u, Q, M) = H" - H" is a 6-tuple
function that changes the ecosystem in iterations. The function can be
written as shown in Eq. (14):

W = Aopo)"oHSI"oM"oHSI" 14

A BBO algorithm is a 3-tuple (BBO = I, ¥, T) solution to an opti-
mization problem. I: o — H", HSI" is a function that generates an in-
itial ecosystem of habitats and computes values of each HSIL. Q is the
ecosystem transition function and T: H" — {true, false} is a termination
criterion. The pseudocode of the BBO algorithm is presented in
Algorithm 4. If « = 0 then it is the “standard BBO algorithm” (Simon,
2008). If a is random, then it becomes the “blended BBO” Algorithm.

Algorithm 4. BBO algorithm (Simon, 2008)

4 Compute the immigration rate \;;

5 for (each habitat (solution)) do

6 for (each SIV (solution feature)) do

7 Select habitat H; with probability oc A;;

8 if (H; is selected) then

9 Select H; with probability oc u;;

10 if (H; is selected) then

11 L H; (SIV) < aH; (SIV) + (1- a)H; (SIV);
12 Select H; (SIV) based on mutation probability m;;
13 if (H; is selected) then

14 L Replace H; (SIV) with a randomly generated SIV;
15 Recompute HSI values;
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A wide range of BBO variations has been proposed in the literature.
Bhattacharya and Chattopadhyay (2010) present a hybrid technique
combining DE and BBO to solve convex and nonconvex economic load
dispatch problems (Gong, Cai, Ling, & Li, 2010). The algorithm aims to
improve the quality of the solution and the convergence speed. Ergezer,
Simon, and Du (2009) propose a variation to BBO integrated with op-
position-based learning. The proposed algorithm outperforms BBO in
terms of success rate and the number of fitness evaluation. Ma (2010)
studies the generalization of equilibrium species count in biogeography
theory. Simon, Ergezer, Du, and Rarick (2011) propose Markov models
for BBO with selection, migration, and mutation operators. The models
provide theoretically exact limiting probabilities for each possible po-
pulation distribution. e Silva, Coelho, and Lebensztajn (2012) propose a
multiobjective BBO for the constrained design of a wheel motor. The
proposed algorithm converges to promising solutions in terms of quality
and dominance. A blended migration is proposed for BBO by Ma and
Simon (2011). The method is a generalized migration operator for BBO
that consists of features from itself and another solution. The blended
migration can be observed as an efficient modification when the ex-
perimental results are analyzed.

3.5. Cuckoo search algorithm (CSA)

Yang and Deb (2009) propose CSA. The CSA simulates the brood
parasitic behavior of cuckoo species with the Lévy flight action of birds
and fruit flies. Cuckoo birds have an aggressive breeding attitude. They
lay eggs in the nest of other birds and remove the other eggs to increase
the hatching chance of their own eggs. In CSA metaheuristic, three
simple rules are used. (1) One egg can be laid at a time, and cuckoo
leaves its egg in a random nest; (2) Nests having high-quality eggs can
survive; (3) The number of host nests is constant, and the egg can be
detected by the host bird with a probability p, € [0, 1]. The egg can be
thrown away from nests or the bird can leave the nest, and construct a
new nest. The pseudocode of the CSA is presented in Algorithm 5.

Algorithm 5. Cuckoo Search Algorithm (Yang & Deb, 2009)

1 Optimization function f(z), z = (21, ...,x4)"

2 Construct an initial population with n nests z; (1 = 1, 2, ...

3 while (t++ < stopping criterion) do
4 Get a random cuckoo by Lévy flights;

5 Calculate its fitness value Fj;

6 Select a nest among n (say, j) randomly;
7 if (F; > F;) then

8 L replace j by the new solution;

9 A fraction (p,) of worse nests are left;
10 New nests are built;
11 Keep the best solutions/nests;
12 Find the current best;

13 Process results;

When producing new solutions x+V (i = 1, 2, ..., n) for cuckoo bird
i, a Lévy flight is realized as in Eq. (15)

xM =x! + a® Lévy (1) (15)

where o < 0 is the size of a step related to the problem. In most cases, «
is selected as 1. The equation above is stochastic to provide a random
walk that is a process of Markov Chain with a next location that relies
on the current location and the transition probability. The product &
means entrywise multiplications. This entrywise product via Lévy flight
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is more efficient while exploring the problem search space because its
length is longer.

The Lévy flight ensures a random walk while the length of the
random step is derived from a Lévy distribution with infinite variance
and an infinite mean as given in Eq. (16).

Lovy~u=t*1<A<3) (16)

A benefit of CSA is that since the number of parameters to be tuned
is less than most of the metaheuristic algorithms, it is easily applicable
to a wider set of optimization problems. However, in order to ensure
that the optimization process does not stick in a local optima, a sub-
stantial fraction of the new solutions should be produced by randomi-
zation during a run. It is shown in the literature that the randomization
of CSA is more efficient as the step length is selected via using a heavy
tailed distribution.

Yang (2013b) provides detailed theory and application information
in his book about CSA and FA. Shehab, Khader, and Al-Betar (2017)
present a comprehensive review of CSA. Its advantages and dis-
advantages, main architecture, and extended versions are discussed.
Gandomi, Yang, and Alavi (2013) propose CSA for solving structural
optimization tasks. The algorithm combined with Lévy flights is verified
with nonlinear constrained optimization problems.

Yang and Deb (2010) propose a new CSA for some standard test
functions and newly designed stochastic test functions. The algorithm is
applied to engineering design optimization problems, the design of
springs and welded beam structures. Yildiz (2013) proposes CSA for
solving manufacturing optimization problems. A milling optimization
problem is solved and the results are compared with ACO, AIA, hybrid
PSO, and GA.

Ouaarab, Ahiod, and Yang (2014) present an improved discrete CSA
for the well-known traveling salesman problem (TSP). The algorithm is
tested against a set of benchmarks of symmetric TSP from the well-
known TSPLIB library. The results of the tests verify that the algorithm
outperforms the other well-known metaheuristics. Walton, Hassan,
Morgan, and Brown (2011) propose a modified robust CSA optimiza-
tion algorithm. Durgun and Yildiz (2012) propose a new CSA for sol-

, M);

ving structural design optimization problems. This is one of the first
applications of the CSA for the shape design optimization problems.
Valian, Mohanna, and Tavakoli (2011) propose a strategy for tuning the
parameters of CSA. Numerical studies verify that the proposed algo-
rithm can obtain efficient solutions. Basu and Chowdhury (2013) pre-
sent CSA to optimize convex and nonconvex economic dispatch pro-
blems of fossil fuel generators. Tuba, Subotic, and Stanarevic (2011)
present a modified CSA for unconstrained optimization problems. The
authors develop a modification in which the step size is decided from
the sorted, rather than only permuted fitness matrix. Wang, Gandomi,
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Zhao, and Chu (2016) purpose an enhancement for the search ability of
the CSA. The pitch adjustment operation in harmony search is added to
the process of the cuckoo updating to speed up convergence. Yang and
Deb (2014) review the fundamental ideas of cuckoo search and the
latest developments as well as its applications. Bhandari, Singh, Kumar,
and Singh (2014) propose CSA for multilevel thresholding using Ka-
pur’s entropy. Chandrasekaran and Simon (2012) propose a hybrid CSA
with fuzzy system for solving multiobjective unit commitment problem.
Three conflicting functions fuel cost, emission and reliability level of
the system are considered in the study. The effectiveness of the algo-
rithm is verified with unit test systems. Rajabioun (2011) proposes a
CSA for continuous nonlinear optimization problems. The proposed
algorithm is applied to benchmark functions and a real problem and it
has been proven to be a robust method. Majumder, Laha, and
Suganthan (2018) propose a hybrid CSA for the solution of the sche-
duling identical parallel batch processing machines. The authors claim
that the makespan for the scheduling problem is minimized.

3.6. Firefly algorithm (FA)

The FA is proposed by Yang (2010a). FA is inspired by the behavior
of the short and rhythmic flashing characteristics of fireflies. Two main
functions of such flashes attract mating partners or warning against
predators. The rhythmic flash, the rate of flashing brings sexes together.
The flashing can be formulated as a function to be optimized for
combinatorial algorithms. These flashing characteristics are idealized
by the following rules. (1) All fireflies can attract other fireflies without
any concern about their gender. (2) Attractiveness is the brightness of
the firefly. Therefore, the less brighter firefly moves towards brighter
ones. They decrease the attractiveness as the distance between fireflies
increases. It moves randomly when there is no brighter one. (3) The
search space of the objective function affects the brightness of a firefly.
Algorithm 6 depicts a typical run of FA.

Two crucial issues of FA are the light intensity and formulation of
the attractiveness. The brightness of the firefly decides its attractiveness
where it is the encoded objective function. The brightness of a firefly (I)
at a location x can be chosen as I (x) « f(x) and the attractiveness f3 is
relative, it will be decided by other fireflies in the population. The
brightness varies with respect to the distance r; between two fireflies.
The density of the light intensity I(r) changes according to the inverse
square law given below:

I
2

I(r) =

p an

where I is the intensity at the source, y, is a coefficient of fixed light
absorption. The light intensity I changes with the distance r. I; is the

original light intensity.
I=ILe (18)

The effect of absorption and the inverse square law is approximated
as a Gaussian form:

1(r) = Le " 19)

10
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The attractiveness () of a firefly is defined by:
B=Poe

where (§,) is the attractiveness at r = 0. The above function can be
approximated as:

B
B=—2
1+ yr

(20)

2D

Egs. (20) and (21) have a characteristic distance I' = 1/./y where the
attractiveness changes from f, to §,e~! for Eq. (20) or 8,/2 for Eq. (21)
significantly.

The attractiveness §(r) is a function that monotonically decreases:

B(r) = Byer™, (m > 1. (22)
For a constant y, the characteristic length is:
T = y—l/m -1, m—- (23)

For a given length scale I', the parameter y can be used as an initial
value:

1

}’:1,7

@0

The distance between the locations of firefliesiandj(i = 1,2, ...,n)
is the Cartesian distance (x; and x; are the locations of the fireflies):

[xd 5
rp= X% — X = \/zk=1 (i = X)

(25)
where x;; is the k" element of the coordinate x; of firefly i.
nj= \/(xi -2+ (- yj)z (26)
The movement of firefly i is attracted to a brighter firefly j is:
Xi =X+ Boe 7 (g — X)) + e 27)

The third term is a random o parameter, and ¢; is a random vector of
values derived from a Gaussian or uniform distribution. The simplest
form, €, can be swapped with rand — 1/2 where rand is a number
generator distributed in [0, 1] uniformly. 8, = 1 and a € [0, 1] are as-
sumed during the optimization process. Eq. (27) is a random walk to-
wards brighter fireflies. When ;) is selected as 0, it becomes a random
search. The randomization term can be implemented with other dis-
tribution methods such as Lévy flights. The distributional properties of
randomization is an important facility for controlling the balance be-
tween exploration and exploitation, and attracted a lot of attention in
the literature (Fister, Fister, Yang, & Brest, 2013; Gandomi, Yang,
Talatahari, & Alavi, 2013).

The parameter y decides the diversity of the attractiveness. Its value
affects the convergence of the FA. In theory, the value of y € [0, ), but
in an application, y = O(1) is used by the characteristic length I' of the
function to be optimized. The value changes from 0.1 to 10.

Algorithm 6. Firefly Algorithm (Yang, 2010a)
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1 f(z) is an objective function where, = (x1,...,z4)"
// m is the number of fireflies

Generate a population of fireflies z; (i = 1, 2, ..., n);
Define coefficient v of light absorption;

while (t < Max Generation) do

for (i < all n fireflies) do

for (j < n fireflies) do

© o N O A W N

if (I] > Iz) then

fu
o

=
N =

| Report the current best solution;

-
w

There exist numerous scientific FA studies and adaptations in the
literature. Yang et al. (2013) review the basics of FA in their study
comprehensively. The authors discuss the importance of balancing ex-
ploration and exploitation. Gandomi, Yang, Talatahari, et al. (2013)
introduce chaos into FA to improve its global search for robust opti-
mization. Chaotic maps are implemented to set the attractive motion of
fireflies. Wang, Wang, et al. (2017) present a new FA for the well-
known benchmark functions. The results verify that the proposed al-
gorithm improves the accuracy of solutions and reduce the execution
time. Gandomi, Yang, and Alavi (2011) developed a novel FA for sol-
ving continuous/discrete structural optimization problems. The results
confirm the validity of the algorithm. Senthilnath, Omkar, and Mani
(2011) develop a new FA for clustering problems. The performance of
the FA is compared with ABC, PSO, and other important methods in
literature. Yang, Hosseini, and Gandomi (2012) propose a new FA for
economic dispatch problems. Yang (2013) enhances the FA to solve
multiobjective optimization problems. The author validates the new
algorithm using a selected subset of test functions. Farahani, Abshouri,
Nasiri, and Meybodi (2011) propose FA to stabilize the movement of a
firefly. A new behavior to direct fireflies to global best is recommended
if there is no any better solution in the environment. Jati et al. (2011)
introduce a new FA for the solution of traveling salesman problem
(TSP). Fister Jr, Yang, Fister, and Brest (2012) propose a hybrid FA with
a local search technique for the well-known combinatorial optimization
problems. The results of the proposed algorithm are very promising and
have great potential to be applied to other combinatorial optimization
problems successfully. Zubair and Mansor (2019) propose a FA for the
optimization of computer-aided process planning turning machining
parameters for cutting tool selection.

3.7. Gravitational search algorithm (GSA)

Rashedi et al. (2009) propose GSA. In this metaheuristic, search
agents are objects and their success is proportional to their masses. The
objects pull one another by the force of gravity. This force causes the
movement of light agents toward heavier mass agents. The commu-
nication of agents is provided through gravitational force. The ex-
ploitation for the GSA is guaranteed by heavy masses that move slowly.
Each object has a position, an inertial mass, a passive and an active
gravitational mass. Each object represents a solution that is directed by
setting the gravitational and inertia masses. The heaviest agent is the
current best solution and other agents are attracted by this agent. GSA
applies the Newtonian laws of gravitation and motion. Each object at-
tracts every other one and the gravitational force between two objects is
proportional to the product of their masses and inversely proportional
to the distance between them, R. In order to be computationally ef-
fective, GSA uses the value R instead of R?. The law of motion is that the
current velocity is equal to the total sum of the fraction of its previous
velocity and the change in the velocity. L.e., in an environment with N

Light intensity I; at x; is determined by f(x;);

L Move firefly 7 towards j in all d dimensions;

11
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Attractiveness varies with distance v via exp[-yr];
Calculate new solutions and update intensity of light;

objects, the position of object i is:

for

where x! is the position of object i in the d” dimension. The force
applied to object ‘i’ from agent ¢’ at time ¢ is:

(Xf(t) - Xid(t)]

X =X}, X8, XD i=1,2, ..N, (28)

Mpi (t) * Maj ([)

d —
Fi®)=G®) RO + ¢

(29)
where M, is the gravitational mass applied to agent j, M,; is the passive
gravitational mass applied to agent i, G(t) is gravitational at time ¢, € is a
small constant, and R;(t) is the Euclidian distance between objects i (i
=12 .,Nandj(=1,2, .. N):

Ry (1) = IXi(0), X;(D)ll2

The total force that is applied to object i in d is a random sum of d
components of the forces from other objects:

(30)

N
Fl(@)= 3, rand;F{ (1)

=1 (€X9)]

where rand; is a number in [0, 1]. The acceleration of the object i at
time t, and in direction d*, a,«d (t) is given as:
Fi (1)
M (0)

d
al(t) =

’ 32)
where M; is the inertial mass of object i. The new velocity of an object is
a fraction of its current velocity and its acceleration. Its position and
velocity are calculated as follows:

vt + 1) = rand; = va(t) + af(t) (33)

xA(t+ 1) =x2) +viE+ 1) (34)

where rand; is a uniform variable in [0, 1]. The constant, G, is initialized
and reduced with time to control the accuracy of the search.

G(t) = G(Gy, t) (35)

A heavier mass indicates an efficient object (agent). Better solutions
are represented as heavier objects that have higher attractions and
move more slowly. The gravitational and inertial masses are updated by
the equations given below:

My = My = My = Mi = 1, 2, ..,N; (36)
Sit, (t) — worst (t)
m(t) = ———————
best (t) — worst (t) 37)
m;(t)
M) =—x——
T m (38)

where fit,(t) represent the fitness value of the agent i at time t, and,
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worst(t) and best(t) are defined as follows (for a minimization problem):

best (t) = jerlr'li'r}Nﬁtj (t) 39)

t(t) = t. (¢t
worst(t) = mmax, fit; (1) 40)

It is to be noted that for a maximization problem, Egs. (39) and (40)
are changed to Egs. (41) and (42) respectively:

best(t) = jg}%{(Nﬁtj (t) 41

worst (t) = jerlr}}_r}Nﬁtj ®) 42)

In order to provide a balance between exploration and exploitation,
the number of agents with a lapse of time in Eq. (31) should be reduced.
To avoid getting into local optima the GAS uses the exploration at in-
itial phases. The level of exploration should be decreased and ex-
ploitation should be increased throughout the iterations. In order to
improve the efficiency of GSA, the K, agents should attract the others
and thus, Kp is a function that changes with time. It is initially set to
K, at the beginning and modified in a monotonically decreasing
fashion. The Eq. (31) is formalized as:

N

2

JeKpest,j#i

Fi@) = rand;F{l (1)

(43)

where Kp, is the set of heaviest K objects with the best fitness value and
the largest mass. The pseudocode of GSA is given in the Algorithm 7.

Algorithm 7. Gravitational Search Algorithm (Rashedi et al., 2009)

1 Generate initial population

2 while (¢ < stopping criterion) do

Calculate the fitness of all search agents

Update G(i), best(i), worst(i) for i = 1,2,. . ., N.
Calculation of acceleration and M;(t) or each agent
Update velocity and position

t=t+1

8 Return the best solution

N 0 A W

Some of the recent studies related to GSA are listed as follows:
Rashedi, Nezamabadi-Pour, and Saryazdi (2010) present a binary GSA.
Rashedi, Nezamabadi-Pour, and Saryazdi (2011) examine the pre-
sentation of a new linear and nonlinear filter modeling based on a GSA.
Duman, Giiveng, Sonmez, and Yoriikeren (2012) propose a GSA to find
the optimal solution for optimal power flow of a power system.
Mirjalili, Hashim, and Sardroudi (2012) propose a hybrid GSA as a new
training method for Feedforward Neural Networks to search the per-
formance of algorithms to prevent sticking in local optima and the slow
convergence of evolutionary learning algorithms. Li and Zhou (2011)
propose a new GSA optimization algorithm for the parameters identi-
fication of hydraulic turbine governing system. Hatamlou, Abdullah,
and Nezamabadi-Pour (2012) present a hybrid GSA for data clustering
problems. Hassanzadeh and Rouhani (2010) propose a new multi-
objective GSA for different test benches. The results prove the super-
iority of the algorithm. Sabri, Puteh, and Mahmood (2013) give a re-
view to provide an outlook on GSA. Rashedi, Rashedi, and Nezamabadi-
pour (2018) give a recent comprehensive survey on GSA.

3.8. Grey wolf algorithm (GWO)

Mirjalili, Mirjalili, and Lewis (2014) propose GWO metaheuristic in
2014. The Grey Wolf is a member of predator animals family and lives
with a pack. Each wolf pack has a social hierarchy. A typical wolf
hierarchy contains several types of wolves such as the “alpha dog”, “beta

dog”, “omega dog”, and “subordinates”. The alpha dog in the pack has the

.

12
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one with the most responsibilities. It is dominant and leads the pack.
Beta is the second level dog in the hierarchy. He/she is the most likely
one to be the alpha dog in case alpha dog becomes dysfunctional.
Omega dogs are the lowest ranking ones. A dog is called subordinate (or
delta) if it is not one of the dogs mentioned above. Group hunting is the
most interesting swarm behavior of these wolves.

In the mathematical modeling of the GWO, the social hierarchy,
tracking, encircling, and attacking prey are the key points of the GWO
algorithm. In this model, the best solution is considered to be alpha dog.
The second and the third best solutions are beta and delta dogs re-
spectively. The rest of the swarm is called omega dogs. For the phase of
encircling the prey, grey wolves encircle the prey. To model the en-
circling the prey, the Egs. (44) and (45) are used.

D =[CX@0-X 0 (44)

—

X+D)=X0-4-D) 45)

. . . . g = . . =4 .
tis the iteration index, A and C are coefficient vectors, X, is the prey

o, g . . e ed = .
position, and X is the grey wolf position. A and C are given as below:

A =2adn-1d (46)

-
C = 2'}’2 (47)

n and r, are vectors in the range of [0,1]. During the iterations, com-
ponents of @ are decreased from 2 to 0. In this concept, grey wolves
move around the best solution in hyper-cubes (i.e., candidate solutions
each varying only in few dimensions from the best solution) within an n
dimensional space. Grey wolves can detect the location of prey and

encircle it. The alpha dog leads the hunt. Other dogs also take part in
hunting. In the mathematical simulation of hunting, the best three so-
lutions update the position of other search agents. The equations below
are given for the process.

— ->_ = = - - = = - = @ —
Dy =[G Xy = X |, Dg=|CyXg— X |, Ds = |G- Xs — X |

(48)
_ s o S > =S = = — —>
X =Xo— A (D), X = Xg— Ay (Dg), X3 = X5 — As+(Ds) (49)
X +X%+%
-
X (, n 1] At XH+ X
3 (50)

For the attacking phase (exploitation) of the algorithm, the value of
a is decreased gradually. So the fluctuation rate of A decreases by @,
since every local search algorithm is prone to local stagnation.
Therefore, GWO uses an efficient exploration method: Alpha, beta, and
delta dogs always try to stay far away from each other. This provides a
good diversity in the problem search space.

For 74_), values between 1 and —1 are used. This provides a global
exploration capability for the GWO algorithm. For 5), random values
between [0, 2] are used. Local optima avoidance and efficient ex-
ploration are provided in this way. After generating a random popu-
lation, alpha, beta, and delta dogs calculate the position of the best
prey. In order to choose exploration and exploitation, parameter a is
decreased from 2 to O respectively. The GWO algorithm terminates
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when the criterion is satisfied. The pseudocode of the GWO algorithm is
presented in Algorithm 8.

Algorithm 8. Grey Wolf Algorithm (Mirjalili, Mirjalili, & Lewis, 2014)

Produce initial Grey Wolf population X; (i=1,2,...,n);
Give initial values to a, 4, and C randomly;

X, = the best agent;

X3 = the second best agent;
Xs= the third best agent;
while (t < #iterations) do
for (each agent) do

© 00 N O A W N -

Update a, A, and C;

Update the fitness value of agents;
Update X, , X3 , and Xs;

t++;

Return X,;

10
11
12
13

14

Some of the recent studies related to GWO are as follows: Mirjalili,
Saremi, Mirjalili, and Coelho (2016) propose a Multiobjective GWO to
optimize problems with multiple objectives. An external archive is
combined with GWO to save and retrieve Pareto optimal results.
Komaki and Kayvanfar (2015) propose a GWO algorithm for the as-
sembly flow shop scheduling problem with a release time of jobs that
can be applied to industrial engineering problems easily. Emary,
Zawbaa, and Hassanien (2016) propose a novel binary version of GWO
for feature subset selection of data classification problems. Mittal,
Singh, and Sohi (2016) propose a modified GWO to balance the ex-
ploration and exploitation efforts of GWO that improves the perfor-
mance of the algorithm. Kohli and Arora (2018) introduce the chaotic
GWO algorithm to accelerate its global convergence speed. Experiments
are studied to carry out to solve standard constrained benchmark pro-
blems. Song et al. (2015) propose a novel GWO for surface wave dis-
persion curve inversion scheme. The proposed algorithm is tested on
noise-free, noisy, and field data. For verification, the results are com-
pared to GA, PSO, and GSA. The algorithm is reported to be efficient.
Qin et al. (2019) propose a hybrid discrete GWO for the casting pro-
duction scheduling problem with multiobjective and multi-constraint.

3.9. Harmony search (HS)

HS is a metaheuristic algorithm based on musical compositions and
the process of writing a composition (Geem et al., 2001). HS is proposed
by Yang (2009) in 2001 and has been applied to numerous optimization
problems since then (Manjarres et al., 2013). HS makes use of methods
applied by musicians to create harmonic musical compositions in order
to model optimization problems (Wang, Gao, & Zenger, 2015). In HS, a
musician has three possible choices when improvising a song: (1)
playing any well-known piece of music (pitches in harmony) naturally
from his or her memory; (2) playing music similar to an existing piece
(by adjusting the pitch); or (3) composing random harmonic notes.
Geem et al. (2001) use these possible choices during the optimization

Computer the fitness values of agents in the population;
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process of a problem, applying, pitch adjusting, and randomization.
The usage of harmony memory is similar to the selection of best

chromosomes in GA. The harmony memory ensures to keep the best

harmonies to new harmony memory. It is assigned as a parameter,

L Update the position of the current search agent (Equation 50);

Taccepe € [0, 1] that is called harmony memory accepting rate. When the
rate is too small, a few best harmonies are selected and this causes
slower convergence of the HS algorithm. When the rate is too high (a
value close to 1), it may not be possible to explore all the harmonies
well. This can lead to wrong solutions. The parameter 7.y is selected
between [0.7, 0.95] to prevent his problem.

The pitch adjustment is the second parameter determined by the
bandwidth (b4, ) and the adjusting rate of a pitch r,,. Pitch adjustment
changes the frequencies and generates diversity in the HS. Linear or
nonlinear adjustment is used to set the pitch value.

Xnew = Xold + brange * € (1)

Xoiq is the current pitch, and x,,, is the new solution after the adjust-
ment of pitch. This process generates a neighboring solution to the
existing solution by changing the pitch slightly. Pitch adjustment mi-
mics like the mutation operator in evolutionary algorithms. A para-
meter (pitch-adjusting rate r,,) can be used to control the adjustment
level. A small adjustment rate can slow the convergence time of HS,
whereas a high adjustment rate can act as a random search process. A
value between [0.1, 0.5] is observed to be a good balance for ry,.

The third parameter (randomization) is used to provide diversified
solutions. The randomization enables the system to explore different
solutions. The randomization can direct the search to explore various
different solutions to obtain the global optimal solutions. the prob-
ability of randomization is given below:

Prandom = 1- Taccept (52)
where the probability of adjusting pitches are:
ppitch = Taccept * Tpa (53)

Algorithm 9 summarizes a typical HS.

Algorithm 9. Harmony Search Optimization Algorithm (Geem et al.,
2001).
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1 Generate initial harmonics;
2 Introduce pitch adjusting rate (r,,), pitch limits and bandwidth;
3 Introduce harmony memory accepting rate (raccept);
4 while (¢t < #iterations) do
5 Generate harmonics by accepting the best harmonics;
6 Tune pitch to get new harmonics/solutions;
7 if (rand> raccept) then
8 ‘ choose a random harmonic from population;
9 else if (rand> r,,) then
10 ‘ tune the pitch within limits randomly;
11 else
12 L generate new harmonics randomly;
13 Find the current best harmonics;

Some of the well-known studies of HS are as follows: Lee and Geem
(2005) describe an HS algorithm for engineering optimization problems
having real-number design variables. The proposed algorithm searches
the space with a perfect state of harmony. It uses a random search in-
stead of a gradient process so that derivative information becomes
useless. Wang and Huang (2010) examine the main difficulties of HS
while selecting suitable parameters. They use consciousness to tune the
parameters. The classical number generator is updated with the low-
discrepancy sequences for initial harmony memory. Omran and
Mahdavi (2008) propose a global-best HS (GHS) to improve the per-
formance. GHS algorithm outperforms other algorithms when applied
to benchmark problems. Al-Betar, Doush, Khader, and Awadallah
(2012) propose novel selection schemes. Zou, Gao, Wu, and Li (2010)
use a novel global HS (NGHS) algorithm to optimize unconstrained
problems. The NGHS algorithm includes position updating and genetic
mutation. Shabani, Mirroshandel, and Asheri (2017) propose an algo-
rithm that makes use of experienced musicians. When making harmony,
the musicians modify the undesired notes of the current harmony in-
stead of throwing them away. This method is used to allow the HS to
exploit the information obtained in the harmony memory to improve
current harmonies. The algorithm is Selective Refining HS in which a
new harmony memory is utilized. Kumar, Chhabra, and Kumar (2014)
present a parameter adaptive HS for solving optimization problems.
The two important parameters of HS are changed dynamically in the
proposed algorithm. Lee and Geem (2004) describe a new HS that does
not need any initial values and applied a random search instead of a
gradient process. Geem (2006) presents a cost minimization algorithm
for the water distribution networks. The model uses an HS algorithm to
satisfy the constraints. Lee, Geem, Lee, and Bae (2005) propose an ef-
ficient optimization algorithm for structures with discrete variables HS.
Alatas (2010) proposes HS algorithms with chaotic maps to tune
parameters and improve the convergence properties to prevent the HS
to get stuck into local optima. The studies above verify that HS and its
variant algorithms are global search algorithms that can be applied to
engineering optimization problems. Exploration and exploitation stra-
tegies of HS are different from classical metaheuristic algorithms. Al-
though HS is not a parametrically sensitive algorithm, studies reveal
that tuning the parameters of HS improves its performance. HS is re-
ported to be a robust optimization algorithm for solving NP-Hard en-
gineering optimization problems.

3.10. Krill herd (KH)

Gandomi and Alavi (2012) propose KH metaheuristic. One of the
most important features of KH is that they can construct large groups
(Hardy, 1935). When other sea animals attack a herd, they can eat
individual krills but this only reduces the density of the herd. The
purpose of a KH is multiobjective that it tries to increase the density of
the herd while reaching the food. Each krill moves toward the best
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global solution while searching for the highest density and the food.
During the attacks to the KH, individuals are removed from the swarm.
This process decreases the average density of the KH and the distance of
the krill swarm from the location of the food.

The fitness of an individual is evaluated with the distance of the KH

from the food and the density of the group. The location of an in-
dividual krill in 2D is decided by the movements of other krill in-
dividuals’ foraging for food, and random diffusion. A Lagrangian model
is used to be able to search the whole space with n dimensions (Eq.
(54)):
% =N, + F + Di (54)
where N; is the action started by the other individuals; F is the act of
foraging, and D; is the physical diffusion of the krill i (i = 1,2, ..., n).
Individuals in the herd try to keep a high density and act with the ef-
fects of other members of the herd. The parameter, direction of motion,
a;, is effected by the density of local swarm, a target swarm, and a
repulsive swarm. Individual movement of each krill can be defined:

Nvinew = Nmaxg; 4 wnz\]iold (55)
where
a; = ailocal + aitarget (56)

Nm™Maxjg the maximum speed, «,, is the inertia weight of the motion in the
range [0, 1], @, N is the last motion induced, o/** is the local effect of

neighbors and «/**" is the target direction effect by the best krill in-

dividual. The effect of the neighbors can be an attractive/repulsive

Fig. 5. The bubble-net feeding behavior of a humpback whale.
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likelihood between the individuals during a local search. Such behavior
utilizes for controlling the balance between exploration and exploita-
tion in KH: allowing more attraction between individuals improves
exploitation while allowing repulsive behavior within the herd allows a
more diverse search space, thus exploration.

The foraging activity of the algorithm is formulated with two
parameters, the food location, and the past information about the food
location. This motion of krill i can be given as in Eq. (57).

F = Vi + o F{" (57)
where
ﬁi — ﬁifood + ﬁibes[ (58)

V; is the velocity of foraging, wy is the inertia weight of the foraging
movement in the range [0, 1], BifOOd is the food attractive and ,8[.”“‘ is the
impact of the best fitness of krill i. The physical diffusion is a random
procedure. This can be explained in terms of a maximum diffusion
speed and a random directional vector. The formulation can be given as
below:

D; = Dmax§ (59)

where D% is the maximum diffusion speed, and ¢ is the random vector
and the random values are in the [—1,1].

The motions direct the location of a krill toward the krill with the
best fitness value. According to the formulations for krill i, if the fitness
value of each effective factors (Kj, K, K¢ or K*") is better than the
fitness of krill i, it has an attractive effect. It is obvious from the for-
mulations that a better fitness is more effective on the movement of krill
i individual. The physical diffusion carries out a random walk in the
method. Using different parameters of the motion, the position vector of
a krill during the interval t to t + Atis:

Xi(t + At) =X;i(t) + Ath"
dt (60)

KH algorithm also uses operators of crossover and mutation. An adap-
tive crossover operator is employed in the KH algorithm. The mutation
is controlled by a probability. The pseudocode of the KH algorithm is
presented in Algorithm 10.

Algorithm 10. Krill Herd Algorithm (Gandomi & Alavi, 2012)

1 Describe the simple bounds, determine the parameters;
2 Create the initial population randomly

3 Evaluate the fitness value of each krill;

4 while (Stopping criterion is not satisfied) do

Motion effected by the krill;

Foraging motion;

Physical diffusion;

Use crossover and mutation operators;

Update the krill individual position;

© w0 N O w»

Some of the recent studies on KH algorithm are presented as follows:
Wang, Guo, Gandomi, Hao, and Wang (2014) introduce the chaos
theory for KH optimization process to accelerate its convergence speed.
Different chaotic maps are used in the proposed chaotic method to set
the movements of the krill. Wang, Gandomi, and Alavi (2014) present
Stud KH (SKH) optimization method to global optimization. An updated
genetic reproduction operator is introduced into the KH during the krill
updating process. Wang, Guo, et al. (2014) propose a novel hybrid KH
algorithm to solve global numerical optimization problem. The algo-
rithm integrates the exploration of harmony search (HS) with the ex-
ploitation of KH. Wang, Gandomi, Alavi, and Hao (2014) deal with the
poor exploitation characteristic of the KH algorithm. They propose a
hybrid DE algorithm. Wang et al. (2013) develop a Lévy-flight KH
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algorithm for solving optimization problems within reasonable execu-
tion times. The combination of a new local Lévy-flight operator for the
process improves the efficiency with global numerical optimization
problems. Wang, Hossein Gandomi, and Hossein Alavi (2013) improve
the performance of KH algorithm. A series of chaotic PSO-KH algo-
rithms are proposed for solving optimization problems. Guo, Wang,
Gandomi, Alavi, and Duan (2014) present an improved KH algorithm to
solve global optimization problems. The method exchanges information
between the best performing krill during the motion calculation pro-
cess. Detailed information about KH can be found in a recent survey by
Bolaji, Al-Betar, Awadallah, Khader, and Abualigah (2016).

3.11. Social spider optimization (SSO)

SSO is a metaheuristic algorithm proposed by Cuevas et al. (2013).
Even though most of the spiders are solitary, the members of social-
spider species demonstrate and may show cooperative behavior. The
social-spiders have a tendency to live in groups and each member in a
group has a variety of tasks such as mating, hunting, web design, and
social interaction. The web is a crucial part of the colony and it is used
as a communication means. A web is employed by each spider to
manage its own cooperative behavior. The SSO algorithm is inspired by
the cooperative characteristics of social-spiders. The interaction of in-
dividual spiders (solutions) are simulated depending on the biological
laws of a cooperative spider colony. Agents are considered as male and
female by the SSO algorithm. Such an approach allows not only to si-
mulate the cooperative behavior of the colony in a better way but also
to prevent critical problems faced in the classical metaheuristics. These
are the incorrect exploration-exploitation balance and premature con-
vergence. The search space is assumed to be a communal web by the
SSO algorithm. In this communal web, all the social-spiders interact
with each other. A spider’s position is considered to be a solution and
every spider has a fitness value (weight) of the solution.

The colony of the social-spiders is a highly female-biased popula-
tion. The number of females N; is randomly selected within the range of
65-90% of the entire population N. Therefore, N; is evaluated as:

N; = floor [(0.9 — rand-0.25)-N| 61)

where rand is a random number between [0,1] and the number of
males N, is considered as N, = N — Nj.

Each individual (spider) receives a weight w; that represents the
solution quality of the spider i in population S. The weight of every
spider is calculated as follows:

_J (s;)) — worstg
" bests — worsts (62)

where J (s;) is the fitness value of the spider position s; with regard to
the objective function J().

Information exchange is managed by a communal web mechanism.
This is important for collective coordination of the population and
encoded as vibrations that depend on the weight and distance of the
spider which generates them. Vibrations perceived by the individual i
(i=1,2,...,n) as a result of the information transmitted by the
member j has been modeled according to the following equation;

VibiJ = wj-e’di?i (63)

where the d;; is the Euclidean distance between the spiders i and j, such
that diJ = HS,‘ - S]H
Three special relationships are considered within the SSO approach;

e Vibrations Vibc; are perceived by the individual i (s;) as a result of
the information transmitted by the member c(s.) (the nearest
member to i and possesses a higher weight in comparison to i).

e Vibrations Vibb; are perceived by the individual i (s;) as a result of
the information transmitted by the member b(sp) (the individual
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with the best weight (best fitness value) of the entire population S).

e Vibrations Vibf, are perceived by the individual i (s;) as a result of
the information transmitted by the member f(s;) (being the nearest
female individual to 7).

The SSO initializes the entire population including random female
and male members. Each spider position, f, or m;, is a n-dimensional
vector containing the parameter values to be optimized.

Female cooperative operator: Social-spiders perform cooperative in-
teraction with other members. Female spiders present an attraction or
dislike. Emulation of the cooperative behavior of the female spider is
performed by an operator which considers the position change of the
female spider i at each iteration. Any position change can be of at-
traction or repulsion. These can be a combination of three different
elements. The first one involves the change regarding the nearest
member to i that holds a higher weight and produces the vibration Vibc;.
The second one considers the change regarding the best individual of
the entire population S who produces the vibration Vibb;. Finally, the
third one includes a random movement.

For random movement, either attraction or repulsion, a uniform
random number r, is generated within the range [0, 1]. If 1, is smaller
than a threshold PF, an attraction movement is generated; otherwise, a
repulsion movement is produced. Therefore, such operator can be
modelled as follows:

1
2
3
4
5
6 NHL:NiNf;
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the number of female members N;, the median weight is indexed by
Ny,,- With respect to the computation, the male spider position can be
modelled as follows:

k . k 1
m; + a-Vibfi-(sy — my) + §-(rand — 2), Wxpsi > Wipim
Nm
3, g
| h=1
Nm
Z WNf+h
h=1

k
—my |, Wyt S Wipm

(65)

Mating operator: Mating in a social-spider colony is performed by
dominant males and the female members. When a dominant male m,
spiders (g € D) locates a set E¢ of female members within a range of r
(range of mating), it mates, generates a new spider s,., which is gen-
erated considering all the elements of the set T, that, in turn, has been
generated by the union E8 U m,. In the mating process, the weight of
each involved spider (elements of T,) defines the probability of influ-
ence for each individual into the new brood. The spiders holding a
heavier weight are more likely to influence the new product, while
elements with lighter weight have a lower probability. Details of the
operators and equations of SSO can be found in a study by Cuevas et al.
(2013). The pseudocode of SSO algorithm is presented in Algorithm 11.

Algorithm 11. Social spider optimization (Cuevas et al., 2013)

S is the total population of spiders:

N is the total number of n-dimensional colony members;
Ny is the number of females;

N, is the number of males;

Ny = floor[(0.9 — rand - 0.25) - N]

7 Initialize the female Ny and male V,,, members randomly;
8 Calculate the radius of mating (S):

9 while (the stopping criteria is not met) do

10
11
12
13

¥ + a-Vibe;-(s, — £5) + B-Vibb;-(s, — £F)
+ d-(rand — %), with probability PF
¥ + a-Vibe;-(s, — £5) + B-Vibb;-(s, — £F)
+ 6-(rand — g), with probability (1 — PF)

k+1 _
£l =

(64)

where «, § and § and rand are random numbers in the range of [0, 1]
and k represents the iteration number. The individual s. and s, re-
present the nearest member to i that holds a higher weight and the best
individual of the entire population S, respectively.

Male cooperative operator: Male members in SSO are divided into two
different groups which are dominant members D and non-dominant
members ND according to their position with regard to the median
member. Male members, with a weight value above the median value
within the male population, are considered the dominant individuals D.
Those under the median value are depicted as non-dominant ND males.

In order to implement such computation, the male population M
(M = my, m,, ..,my,,) is arranged according to their weight values in
decreasing order. Thus, the individual whose weight wy, is located in
the middle is considered the median male member. Since indexes of the
male population M in regard to the entire population S are increased by
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Calculate the weight of every spider(S);

Move females according to the female cooperative operator (S);
Move males according to the male cooperative operator (S);
Perform the mating operation (S);

Pereira et al. (2016) address the tuning of parameters for Support
Vector Machines (SVM) due to the computational burden for SVM
training step. The authors propose an SSO for feature selection and
parameter tuning. SSO is decided to be a suitable approach for the
model selection of SVM. Cuevas and Cienfuegos (2014) propose SSO for
solving constrained optimization tasks. Simulation and comparisons
based on several well studied benchmarks functions and real-world
engineering problems demonstrate the effectiveness, efficiency and
stability of the proposed method. El-Bages and Elsayed (2017) propose
SSO for the solution of the static transmission expansion planning. A DC
power flow sub-problem is solved for each network resulting from
adding a potential solution developed by the SSO algorithm to the base
network. James and Li (2016) propose a new SSO algorithm to solve the
Economic Load Dispatch (ELD) problem that is an important part of
power system control and operation. Zhou, Zhou, Luo, and Abdel-Basset
(2017) propose a simplex method-based SSO algorithm to overcome the
converge to local minima problem. James and Li (2015) propose SSO
for solving the global optimization problem. The authors carry out
parameter sensitivity analysis and develop guidelines for selecting the
parameter values. Elsayed, Hegazy, Bendary, and El-Bages (2016)
propose a modified SSO algorithm for the solution of the non-convex
economic dispatch problem. Kurdi (2018) develops a SSO for hybrid
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flow shop scheduling with multiprocessor task. The proposed algorithm
is verified on benchmark problems that it is competitive with state-of-
the-art algorithms. Kavitha, Venkumar, Rajini, and Pitchipoo (2018)
propose a SSO method for the solution of flexible job shop scheduling
problem. The proposed algorithm achieved 92.33% exactness in SSO
strategy contrasted with other optimization process. The algorithm is
also observed to reduce the execution time.

3.12. Symbiotic organisms search (SOS)

SOS metaheuristic is proposed by Cheng and Prayogo (2014). SOS
mimics the interactive behavior among different species of organisms.
Organisms mostly live mutually in a swarm for sustenance and survival.
This relationship is defined as symbiosis and it describes relationships
between distinct species. In symbiosis, two organisms can be linked
together to live and they prefer existing in a beneficial relationship
together. The well-known relationships in nature are commensalism,
mutualism, and parasitism. Commensalism is a symbiotic relationship
between two species in which one can get an advantage and the other
one is neutral. In mutualism, both benefit from each other. In para-
sitism, there is a symbiotic relationship between two species in which
one benefits and the other is harmed. Symbiotic connections may im-
prove the odds of survival of a species.

The SOS algorithm improves this behavior and has a population to
examine the search space while finding the optimal solution. The initial
population of a SOS instance is the ecosystem. Each organism re-
presents a solution for the problem to be optimized. Each organism is
related to a fitness value that is a kind of adaptation to the solution of
the problem. In SOS, new generation is controlled by imitating the
biological interaction of two organisms in the ecosystem. The phases of
the algorithm are commensalism, mutualism, and parasitism.

In the mutualism phase, let X; be an organism paired with the ith
solution (i = 1, 2, ..., n) where n is the number of organisms. X; is
another randomly selected organism from the ecosystem to pair with
X;. Solutions (fitness values) for X; and X; are computed based on for-
mulae (66) and (67).

Kinew = Xi + rand (0, 1) * (Xpesy + Mutual_Vector * BF,) (66)
Xinew = Xj + rand (0, 1) * (Xpesr + Mutual_Vector * BF,) 67)
Xi + X;
Mutual_Vector = | ——
2 (68)

Parameters BF, and BF; are selected as either 1 or 2. These coeffi-
cients are the levels of the benefit of each organism. Eq. (68) is the
“Mutual_Vector” that defines the characteristics between organism X;
and X;. The Xy is assumed to be the highest adaptation degree of the
ecosystem. Therefore, it is the target value for the fitness evaluations of
organisms. Commensalism mimics a relationship of a remora fish and
sharks. The remora eats food leftovers of a shark.

A randomly selected X; interacts with X; that attempts to benefit
from this relationship. X; does not benefit or suffer from this process. A
new solution X; is evaluated with respect to the commensal symbiosis
between X; and X (Eq. (69)).

Xinew = Xi + rand (-1, 1) * (Xpesr — )(j) (69)

Xpest — X; is the advantage parameter produced by X; for X; to the
highest degree in the current organism in the ecosystem.

In parasitism, X; is used for the generation of the “Parasite_Vector”.
For each selected X;, randomly selected dimensions are modified.
Randomly selected organism, Xj, is a host to the parasite vector.
Parasite_Vector tries to swap X;. The fitness values of both organisms
are examined. In case Parasite_Vector has a better fitness value, it will
swap organism X; in the population. Otherwise, X; will resist to the
parasite and the Parasite_ Vector will not exist any longer. In Algorithm
12, the pseudocode of the SOS is presented.
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Algorithm 12. Symbiotic Organisms Search Algorithm (Cheng &
Prayogo, 2014)

1 Initialize the population;
2 while termination criterion is not met do

3 Mutualism;
4 Commensalism;
5 Parasitism;

Cheng, Prayogo, and Tran (2015) introduce novel discrete symbiotic
organisms search for the solution of multiple resources leveling in
project scheduling. Tejani, Savsani, and Patel (2016) propose a mod-
ified SOS algorithm by introducing adaptive benefit factors in the basic
SOS algorithm. The proposed SOS algorithms consider effective com-
binations of adaptive benefit factors to lay down a good balance be-
tween exploration and exploitation of the search space. The results
verify that the SOS algorithm is reliable and efficient than the classical
SOS and other examined algorithms. Tran, Cheng, and Prayogo (2016)
introduce a Multiple Objective SOS (MOSOS) algorithm to solve mul-
tiple work shifts problems. The experimental results verify that MOSOS
is a powerful search and optimization technique in finding the opti-
mization of work shift schedules. Panda and Pani (2016) propose SOS
algorithm to formulate multiobjective problems. The proposed algo-
rithm is integrated with adaptive error function to track equality and
inequality constraints. Prasad and Mukherjee (2016) propose an SOS
algorithm for the solution of the optimal power flow problem of power
system. The results verify the potential of the SOS algorithm for solving
hard optimization problems. Tejani, Pholdee, Bureerat, and Prayogo
(2018) present a multiobjective adaptive SOS for solving truss optimi-
zation problems. The mutualism searches by jumping into unvisited
parts of the problem and performs a local search of visited sections. A
good balance is provided between an exploration and exploitation
phases of the algorithm. Adaptive control is incorporated to propose
SOS. Vincent, Redi, Yang, Ruskartina, and Santosa (2017) propose the
SOS algorithm for solving the capacitated vehicle routing problem. The
problem is a well-known discrete optimization problem for deciding the
routes for a set of vehicles serving a set of points with a minimal total
routing cost. Ezugwu, Adewumi, and Fri'ncu (2017) present develop a
SOS algorithm with SA to solve the NP-Hard traveling salesman pro-
blem.

3.13. Teaching-learning-based optimization (TLBO)

TLBO is a population-based metaheuristic algorithm proposed by
Rao et al. (2011). The population consists of a group of learners (sample
solutions) and a teacher/trainer in a TBLO classroom (population). The
first phase of TLBO is the “Teacher” Phase and the second phase is the
“Learner” Phase. TLBO algorithm is a stochastic swarm intelligence al-
gorithm. TLBO has an iterative evolution process that is similar to
classical evolutionary algorithms. The lack of algorithm-specific para-
meters, rapid convergence and easy implementation of TLBO have at-
tracted the attention of researchers. This new method has been applied
to engineering design optimization problems (Rao & Patel, 2012; Rao,
Savsani, & Vakharia, 2012). Zou, Chen, and Xu (2019) provide a
comprehensive survey of prominent TLBO variants and its recent ap-
plications and theoretical analysis and detailed information on TLBO
can be found in this survey.

Learners in the classroom can obtain knowledge through interaction
with a teacher or their classmates. TLBO is based on this simple training
model. The best learner is employed as a teacher and he is the most
knowledgeable person in the population. The teacher spreads in-
formation to learners, which is an exploitation technique commonly
used in many classical algorithms. This training process improves the
knowledge level (i.e., the overall fitness) of the class. The teacher



T. Dokeroglu, et al.

Table 2
Comparison of new generation metaheuristics.
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Acyronym #parameters Stages involving exploration and exploitation The availability of hybridization the availability of local search mechanisms
ABC high scout dance, food evaluation, travelling v v
BFO high replication, chemotaxis, dispersal, swarming X v
BA high wavelength adjustment, travelling v X
BBO high immigration, mutation, suitability index check X v
CSA high flight, nest selection, removal, and breeding v X
FA high attraction, movement v X
CSA high inertial forces, body interactions and modification X X
GWA few tracking, encircling, attacking, wolf movement v v
HA high pitch adjustment, improvisation, randomization X v
KH high herd and krill movement, attraction, repulsion 4 v
SSO few reproduction, influence, attraction/dislike, webbing X v
SOS few ecosystem, mutual vector, initial pop. creation X v
TLBO parameterless information speed, learner update, teacher change v X
WOA high encircling, prey search, maneuvering v v

improves the success of the class with respect to his/her teaching ta-
lents. Teacher improves the quality of the learners and when the im-
provement does not get better, a new and better quality teacher is as-
signed. The students may require a new higher quality trainer and a
new training process can be re-initialized.

M; is the mean, T; is the teacher at iteration i and T; moves M; to-
wards its own level (i = 1, 2, ..., n) where n is the number of individuals
in the classroom. Therefore, the new mean becomes 7; designated as
M. The new solution is modified with respect to the difference be-
tween the current and new mean given by:

Difference_Mean; = ¥,(Myey, — TrM;) 70

where T is a teaching factor that decides how the mean value will be
updated by a teacher, and # is a random number in the range of [0, 1].
The value of Tr can be either one or two, which is a heuristic step
decided randomly with equal probability as Tr = round[1 + rand(0, 1)
{2-1}1.

This difference changes the current solution according to the ex-
pression below:

Xnew,i B

= Xoia,i + Difference_Mean; 71)

Students improve their knowledge by the input from the teacher and
the interactions of classmates. A learner interacts with other learners in
the classroom randomly. A student learns new things if the other
classmate has a better knowledge level. A student is randomly selected
from the classroom and this individual trains other randomly selected
classmates. If the new individual is better than the former one, it is
replaced (see Algorithm 13 for details). The update of the learners for
selected two learners where X; # X; is given as:

lf ()(l < )(]) then Xm’w,i Xold,i + ri(Xi - )(}) (72)

lf ()(l > )(j) then Xnew,i Xold,l + rL(XJ - )(L) (73)
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Algorithm 13. Teaching-learning-Based Optimization Algorithm Rao
et al. (2011)

1 generate_population(population);

2 calculate_fitness_of_individuals (population);

3 for (k:=1 to number_of_generations) do

4 for (i:=1 to number_of_individuals) do

5 /* Learning from Teacher */

6 Tp:=round (r + 1);

7 Xmean:= calculate_mean _vector (population);
8 Xieacher:= best_individual (population);

9 Xnew = X7 + T(Xteacher - (TFXnLean));

10 if (X,ew is better than X;) then

11 | X = Xnews
12 /* Learning from Classmates */
13 j:=select_random _individual from (population);
14 if (X, is better than X;) then

15 ‘ Xi,new = Xz + T(XZ — Xj);

16 else

17 L Xi,new = Xj + T(Xj — XZ),
18 if (Xinew 18 better than X;) then

19 L Xl = Xz'mew;

Rao and Patel (2013) propose a TLBO algorithm for the multi-
objective optimization of heat exchangers. Plate-fin heat exchanger,
shell and tube heat exchanger are considered during the optimization.
Kiziloz, Deniz, Dokeroglu, and Cosar (2018) propose novel
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multiobjective TLBO algorithms with machine learning techniques for
the solution of feature subset selection problems. Selecting the
minimum number of features while not compromising the accuracy of
the results is a multiobjective optimization problem. The authors pro-
pose TLBO metaheuristic as a feature subset selection technique and
utilize its algorithm-specific parameterless concept. Sevinc and
Dokeroglu (2019) propose a novel hybrid TLBO algorithm with extreme
learning machines (ELM) for the solution of data classification pro-
blems. The proposed algorithm is tested on a set of UCI benchmark
datasets. The performance of the algorithm is observed to be competi-
tive for both binary and multiclass data classification problems when
compared with state-of-the-art algorithms. Crepinsek, Liu, and Mernik
(2012) evaluate the performance of TLBO in a recent survey. The au-
thors report results on TLBO in terms of qualitative and quantitative
values. Their results reveal important mistakes about TLBO and provide
information for researchers in order to avoid similar mistakes and en-
sure fair experimental setups of TLBO with other metaheuristics. In a
book, non-dominated sorting multiobjective versions of TLBO are ex-
plained in detail (Rao, 2016). Constrained/unconstrained, and a mul-
tiobjective constrained problem are solved by TLBO. Dokeroglu (2015)
proposes a set of new TLBO-based hybrid algorithms to solve quadratic
assignment problems. Solution instances are trained with recombina-
tion operators and TS optimization engine processes by using ex-
ploitation techniques. The algorithms are competitive with other al-
gorithms in literature. Togan (2012) presents a design procedure
employing TLBO techniques for discrete optimization of planar steel
frames. Frame examples are inspected to show the suitability of the
design procedure. Dede and Ayvaz (2015) propose a TLBO algorithm
for the optimization of the size and shape of structures.

3.14. Whale optimization algorithm (WOA)

Mirjalili and Lewis (2016) propose WOA. The WOA is a new me-
taheuristic inspired by the social behavior of humpback whales.
Humpback whales are social animals and use a bubble-net strategy
while hunting for fish together. Since whale groups can protect their
young easier, humpack whales have developed this group hunting and
feeding behavior to their advantage. In this hunting method whales
dive under a large group of prey and produce bubbles forcing fish into a
bubble-net called bubble-net feeding. This foraging method of hump-
back whales is used for hunting a large group of small fish or krill since
humpback whales have no teeth and a very narrow throat so they can
only swallow small prey as a whole (see Fig. 5 for a depiction of this
behavior). WOA mathematically models the spiral bubble-net feeding
strategy of humpback whales to solve NP-Hard optimization problems.
Encircling prey, spiral bubble-net feeding maneuvers, and search for
prey are three basic functions used in WOA.

Humpback whales identify the target prey location and start en-
circling them. The WOA employs many search agents starting each with
a random solution. After deciding which search agent has the best so-
lution, the other search agents update their locations towards the global
best one as performed by humpback whales. This is given in Egs. (74)
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and (75).
D =0 X0 - X ©)] (74)
X(t+1)=Xt-A-D (75)

where t represents the iteration steps, A and C are coefficient vectors,
X* is the vector representing the global best solution, X is the position
vector and * is an element-by-element multiplication. X* is iteratively
improved as better solutions are discovered at each iteration. A andC
are calculated as in Egs. (76) and (77) respectively.

- > = -
A =2a-r —da

(76)

C=27 77

where @ is iteratively decreased from 2 down to 0 and 7 is a random
vector with size between [0, 1].

Two mechanisms are used for imitating the bubble-net produced by
humpback whales: First, a shrinking encircling mechanism is imitated
by reducing the value of @ in Eq. (76) at each iteration. Second, spiral
shaped updating of the position is achieved by calculating the distance
between the whale at (X, Y) and prey at (X*, Y*). The spiral shaped
motion is produced as follows:

X (¢ + 1) = D'-ebl-cos2nl) + X*(t) (78)

where D' = |7(Z(t) - ?(t)| is used to calculate the distance between
the prey and the i-th whale, b is a constant parameter for shaping the
logarithmic spiral, [ is a random number in [1, 1].

The humpback whales can also search for prey randomly by
choosing to move towards the position of a random whale instead of the
best search solution. Using this method when |.71_)| > 1WOA is in the
exploration phase and it can perform a global search. The exploration
phase can be mathematically modeled as follows:

— - — —

D =|C-Xugpna — X | (79)
— — — —

X (t + 1) = Xrand —-A-D (80)

where Zand is a random position vector chosen from agent whale po-
pulation.

WOA randomly generates individuals in the population. These
agents can change their locations with respect to either another random
agent or the best solution obtained by agents. The a parameter is de-
creased from two to zero for exploration (when |a| > 1) and exploitation
(when |a] < 1). A random search agent is selected when |7| > 1, while
the best agent is being selected when |7| < 1for updating the position
of the agents. Depending on the value of p, WOA is able to act like either
a spiral or circular movement. In the end, the WOA is finished by a
termination criterion. The details of the WOA is depicted in Algorithm
14.

Algorithm 14. Whale Optimization Algorithm (Mirjalili & Lewis, 2016)
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1 Generate random population X; (i = 1, 2, ..., n)
2 Find fitness value of search agents;

3 Xx = the best agent;

4 while (¢t < #iterations) do

5 for each agent do

Computers & Industrial Engineering 137 (2019) 106040

6 Update a, A, C, [, and P

7 if (p < 0.5) then

s if (|A| < 1) then

9 L Update the position of agents (Equation 74);
10 else if (|A| > 1) then

Select an agent (X, qna);

11
12

13 else if (p > 0.5) then

14 L Update the position of the agent (Equation 78);
15 Validate that search agents go beyond search space;

16 Calculate the fitness value of agents;

17 Update Xx in case a better solution is observed;

18 t++;

19 return X

Several WOA-based approaches are presented in the literature in
recent years. Kaur and Arora (2018) propose chaotic WOA. Many
chaotic maps are proposed as chaotic techniques for setting the para-
meter(s) of WOA. The proposed algorithm is tested using well-known
benchmark functions. The chaotic maps are observed to improve the
performance of WOA. Ling, Zhou, and Luo (2017) propose a WOA
working with a Lévy flight trajectory. the proposed algorithm is robust,
fast, increases the diversity of the population, and avoids search failure
caused by premature convergence. El Aziz, Ewees, and Hassanien
(2017) examine WOA and Moth-Flame Optimization algorithms to
decide the optimal multilevel thresholding for image segmentation.
Mafarja and Mirjalili (2018) propose a new WOA based wrapper feature
selection algorithm. This work describes two hybrid models to obtain
different feature selection techniques based on WOA (Mafarja &
Mirjalili, 2017). Jadhav and Gomathi (2018) propose a WOA based data
clustering algorithm that tries to determine the optimal centroid for
performing the clustering process. The proposed method is experi-
mentally shown to outperform the existing methods. Aljarah, Faris, and
Mirjalili (2018) propose a new training WOA to process of artificial
neural networks. Prakash and Lakshminarayana (2017) propose a WOA
to obtain optimal sizing and placement of capacitors for a typical radial
distribution system. Wang, Du, Niu, and Yang (2017) propose a new
proposed Multiobjective WOA for wind speed forecasting. Abdel-Basset,
Manogaran, El-Shahat, and Mirjalili (2018) propose a WOA combined
with a local search method for dealing with the permutation flow shop
scheduling problem. Oliva, El Aziz, and Hassanien (2017) introduce a
Chaotic WOA for the estimation of solar cells parameters. The approach
makes use of chaotic maps to set the parameters of the optimization
algorithm. El Aziz, Ewees, Hassanien, Mudhsh, and Xiong (2018) de-
velop a WOA for determining the multilevel thresholding values for
image segmentation. Although it is a new metaheuristic, WOA seems to
have great potential to attract many researchers due to its small number
of parameters to be tuned during optimization.

4. Other recent metaheuristic algorithms

In this section, we give brief information about other recent meta-
heuristic algorithms that attract relatively less attention in the litera-
ture. More than 70 metaheuristic studies are briefly investigated. Most
of the metaheuristics that have been proposed for the last 20 years are
population-based and nature-inspired. Since these algorithms also show
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Update the position of the agent (Equation 80);

promise, we are inclined to refer to them within this survey. The me-
taheuristic algorithms presented here are organized with respect to
their inspirations. Here, we categorize the work in six inspirational
categories: Animal herd-based, animal swarm-based, animal behavior-
based, natural process-based, astronomy-based metaheuristics, and
metaheuristics that are based on other inspirations.

In nature, animal herds can adopt very complex behaviors in order
to tackle intractable problems. Such behavior has inspired several stu-
dies. Duman, Uysal, and Alkaya (2012) propose Migrating Birds Opti-
mization metaheuristic based on the flight of birds in V formation
(Niroomand, Hadi-Vencheh, Sahin, & Vizvari, 2015). The algorithm
presents an optimization technique with the birds’ energy-saving be-
havior. Askarzadeh (2016) proposes Crow Search Algorithm (CSA)
(Sayed, Hassanien, & Azar, 2019; Wang, Zhang, Cao, & Song, 2018).
CSA is a population-based and related to the crows that hide their ex-
cess food and retrieve it when it is needed. Yazdani and Jolai (2016)
propose Lion’s algorithm. The natural inspiration is the explanation of
such social behavior of lion herds to algorithmic view helps in exploring
(near)-optimal solutions from a large search space. Wang, Deb, Gao,
and Coelho (2016) propose Elephant Herding Optimization (EHO) al-
gorithm for global optimization problems. EHO is inspired by the ele-
phants that live together. The male elephants leave the groups when
they become adults. The behavior of the elephants can be used as clan
updating and separating operators.

Swarms can adopt complex behavior even though the individuals in
a swarm are not capable of such capacity alone. Thus, swarm behavior
also attracted the attention of many studies. Mirjalili (2016a) proposes
swarm intelligence optimization technique Dragonfly Algorithm (Ks &
Murugan, 2017). Karaboga (2005) presents a report on the swarms of
Honey Bees to optimize the combinatorial problems. Later this report
forms the basics elements of his ideas on ABC optimization algorithms.
Neshat, Sepidnam, Sargolzaei, and Toosi (2014) provide a survey on
Artificial Fish Swarm Algorithm (AFSA) (Li, 2002; Shen, Guo, Wu, &
Wu, 2011). FSA simulates the social movements of fish where, the fish
live in a colony and have swarm intelligence behaviors. Searching for
food, migration, dealing with dangerous conditions and interactions
between fish are some methods used by the agents of AFSA. Mirjalili
et al. (2017) propose single and multiple objective versions of Salp
Swarm Algorithm (SSA) for optimization problems. The inspiration is
the swarm behavior of salp during their navigation and food search in
oceans (Faris et al., 2018). Mirjalili (2015a) also proposes Ant Lion
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Optimizer (ALO). The ALO simulates the hunting mechanism of ant
lions. Five main steps of hunting prey (building traps, random walk of
ants, entrapment of ants, catching prey, and re-building traps) are
employed. Saremi, Mirjalili, and Lewis (2017) propose Grasshopper
Optimization Algorithm (GOA). GOA is modeled mathematically to
mimic the behavior of grasshopper swarms for solving optimization
problems (Mafarja et al., 2018). Pinto, Runkler, and Sousa (2007)
propose a Wasp Swarm optimization algorithm to achieve the adaption
to changes of dynamic MAX-SAT instances obtained from static pro-
blems. Meng, Liu, Gao, and Zhang (2014) propose Chicken Swarm
Optimization (CSO). CSO simulates the hierarchical relations in a
chicken swarm including roosters, hens, and chicks. CSO extracts the
swarm intelligence behavior of the chickens while optimizing the pro-
blems. CSO is improved by training the part of chicks from the rooster
(Wu, Kong, Gao, Shen, & Ji, 2015). Meng, Gao, Lu, Liu, and Zhang
(2016) propose a bio-inspired Bird Swarm Algorithm (BSA) algorithm
for optimization. BSA is based on the swarm intelligence of birds and
their social behaviors and social interactions. Krishnanand and Ghose
(2009) present an exposition of a swarm intelligence algorithm for the
optimization of multi-modal functions. The main objective of this al-
gorithm is to ensure the capture of all local maxima of the function.
Animals on many occasions may break down complicated concepts
into simple procedural processes and solve them in an iterative manner
even as individuals. Such behavior inspired many variations of meta-
heuristics. Oftadeh, Mahjoob, and Shariatpanahi (2010) propose
Hunting Search (HuS) inspired by a set of hunter animals such as
wolves, dolphins, and lions. The animals search and catch prey by using
encircle, tightening the ring of siege operations. Each animal (i.e.,
agent) sets its location with respect to the location of other animals.
Mucherino and Seref (2007) propose Monkey Search Algorithm that
simulates the behavior of monkeys climbing trees for food. The bran-
ches of the tree are assumed to be the perturbations of neighboring
solutions. Jain, Singh, and Rani (2019) propose Squirrel Search Algo-
rithm. The algorithm simulates the foraging manner of flying squirrels
and their way of locomotion known as gliding. Au and Benoit-Bird
(2003) propose Dolphin Echolocation metaheuristic (Kaveh &
Farhoudi, 2013). Dolphins and some animals use the echolocation for
navigation and hunting as a biological sonar. This process is simulated
to solve combinatorial problems. Mirjalili (2015b) proposes Moth-
Flame Optimization (MFO) algorithm. The algorithm simulates the
navigation technique of moths in nature. This method is called trans-
verse orientation. Moths fly by keeping an angle with respect to the
moon at night. This is a very effective way of traveling in a straight line
for a long distance. Pan (2012) proposes Fruit Fly Optimization Algo-
rithm for the optimization of a function. While the function is being
tested repeatedly, the population size and other properties are also
examined. Abedinia, Amjady, and Ghasemi (2016) propose an algo-
rithm based on the ability of smell sense of sharks and their movement
to the odor sources. The algorithm is simulated how sharks find their
prey. Wang (2018) proposes Moth Search algorithm that depends on
the characteristics of moths that have been the propensity to follow
Lévy flights. The best moth individual becomes the light source in this
algorithm. Moths that are located next to the fittest one show an aim to
fly around in the form of Lévy flights. Tilahun and Ong (2015) propose
an algorithm based on the prey-predator interaction of animals.
Random solutions are chosen as predators and prey with the fitness
values of the objective function. A prey runs towards the flock of prey
with better values and runs away from predators. Wang, Deb, and
Coelho (2015) propose Earthworm Optimization Algorithm. The soil is
aerated by earthworms with burrowing and enrich the soil with nu-
trients. There are two reproduction processes of earthworms, one off-
spring by itself and one or more than one offspring at one time by using
nine improved crossover operators. Sharafi, Khanesar, and Teshnehlab
(2016) present an algorithm based on the competitive behavior of
various creatures to survive in nature. A competition is designed among
birds, cats, bees and ants. Shiqin, Jianjun, and Guangxing (2009)
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propose Dolphin Partner Optimization (DPO) algorithm based on the
bionic study on dolphin. Martin and Stephen (2006) propose biologi-
cally inspired algorithm Termite. Individual termites addresses the
routing problem in a dynamic network topology.

Many of the processes in nature are inherently procedural may
produce complex forms and results even without an interference of an
outside intelligence. Thus, many such processes become the inspiration
for new metaheuristics. Lam and Li (2010) propose Chemical Reaction
Optimization (CRO) that simulates the interactions of molecules to
obtain low energy stability. Salimi (2015) proposes the Stochastic
Fractal Search (SFS) algorithm inspired by the natural phenomenon of
growth. Using the diffusion property which is seen regularly in random
fractals, the particles in the new algorithm explore the search space
effectively. Zheng (2015) proposes Water Wave Optimization (WWO),
for global optimization problems. WWO makes use of phenomena of
water waves (propagation, refraction, and breaking). It can be used to
obtain effective techniques for searching in high-dimensional problem
space. Kaveh and Mahdavi (2014) propose Colliding Bodies Optimiza-
tion (CBO) algorithm (Kaveh & Ghazaan, 2014). CBO is based on one-
dimensional collisions of bodies. Each agent is an object/body with
mass. After the collision of two agents, each one moves toward different
directions with different velocities. This event causes the agents to
move toward better positions in the search space. Dogan and Olmez
(2015) propose a new trajectory metaheuristic called Vortex Search
(VS) algorithm to optimize numerical functions. The VS algorithm mi-
mics the vortex pattern that is created by the vortical flow of the stirred
fluids. The VS algorithm models its search process as a vortex pattern by
using an adaptive step size adjustment method in order to provide a
good balance between the exploration and exploitation phases. Kaveh
and Khayatazad (2012) propose Ray Optimization metaheuristic. A set
of particles constitute the variables of an optimization problem and
they are assumed to be rays of light. The set of rays refracts and changes
the direction of solutions with the law of refraction. This technique
provides an efficient way for the particles while exploring the search
space. Sadollah, Bahreininejad, Eskandar, and Hamdi (2013) propose
Mine Blast Algorithm (MBA). MBA is a population-based algorithm
based on the concept of mine bomb explosion. The algorithm is applied
to engineering design and constrained optimization problems effec-
tively. The MBA requires a fewer number of fitness evaluations than the
other algorithms. A new optimization technique, Water Cycle Algo-
rithm (WCA), is proposed by Eskandar, Sadollah, Bahreininejad, and
Hamdi (2012). The concepts of the algorithm are based on the water
cycle process and how rivers flow to the sea in real life. Kashan (2015)
proposes optics inspired optimization (OIO) algorithm. OIO assumes
the surface of the numerical function to be optimized as a reflecting
surface. In this model, each peak reflects as a convex mirror and each
valley reflects as a concave one. Kaveh and Bakhshpoori (2016) propose
Water Evaporation Optimization (WEO) algorithm. WEO is a physically
inspired population-based algorithm. WEO simulates the evaporation of
water molecules on a solid surface with different wettability. This
process can be studied by the simulations of molecular dynamics. Kaveh
and Ghazaan (2017) propose Vibrating Particles System (VPS). VPS is
inspired by free vibration of single degree of freedom systems with
viscous damping. The solutions are assumed to be particles that obtain
their equilibrium. Kaveh and Dadras (2017) introduce Thermal Ex-
change Optimization (TEO) algorithm that is based the cooling law of
Newton. The law states that the heat loss rate of a body is proportional
to the temperatures difference in its surroundings and the body. Kaveh
and Talatahari (2010) propose an algorithm based on principles from
physics and mechanics that utilize the Newtonian laws of mechanics
and the Coulomb law from electrostatics.

The astronomical behavior of objects also attracted many as an in-
spirational source in the field. Mirjalili, Mirjalili, and Hatamlou (2016)
propose Multi-verse optimizer. The algorithm is modeled depending on
concepts of cosmology (black hole, white hole, and wormhole). The
mathematical models used in these concepts are used to explore,
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exploit, and search the space locally. Hatamlou (2013) proposes Black
Hole algorithm. Black Hole is a population-based algorithm that is in-
itialized with a random population. The best solution is selected to be
the black hole at each iteration of the algorithm. Later, the black hole
starts pulling other candidates around it. Muthiah-Nakarajan and Noel
(2016) propose Galactic Swarm Optimization (GSO) algorithm that is
inspired by the motion of galaxies, stars, and superclusters of galaxies
under gravity. GSO iterates in exploration and exploitation cycles to
obtain an optimal trade-off between exploration and exploitation
phases. Erol and Eksin (2006) propose an algorithm inspired by the
theories of the evolution of the universe.

Some of the studies in the field of metaheuristics base on their in-
spirations to very creative and unanticipatable sources that they would
require their own category. Population-based Sine Cosine Optimization
Algorithm (SCA) is proposed by Mirjalili (2016b). Based on sine and
cosine functions, SCA creates multiple random initial solutions and
improves them to fluctuate outwards or towards the best solution using
a model. Moghdani and Salimifard (2018) propose Volleyball Premier
League (VPL) metaheuristic algorithm that mimics the competition and
interaction among volleyball teams in a season. The algorithm simu-
lates the coaching process of a volleyball team. Terms substitution,
coaching, and learning are used in the VPL algorithm to solve optimi-
zation problems. Cheng, Qin, Chen, and Shi (2016) propose Brain Storm
Optimization (BSO) algorithm. BSO mimics the process of human
brainstorming. Individuals are grouped and diverged in the search
space. Goncalves, Lopez, and Miguel (2015) present Search Group Al-
gorithm (SGA), to optimize truss structures. The efficiency of SGA is
compared with a set of benchmark problems from the literature.
Tamura and Yasuda (2011) propose a multi-point search method for 2D
continuous optimization problems. The method is based on spiral
phenomena called 2D spiral optimization. Yang (2012b) proposes a
flower pollination algorithm, inspired by the pollination process of
flowers.

Some of other the recent algorithms are Artificial Chemical Reaction
Optimization Algorithm (Alatas, 2011), Exchange Market Algorithm
(Ghorbani & Babaei, 2014), Group Counseling Optimization (Fita &
Fahmy, 2014), Probability-Based Incremental Learning (Dasgupta &
Michalewicz, 2013), Gravitational Local Search (Webster & Bernhard,
2003), Central Force Optimization (Formato, 2007), Curved Space
Optimization (Moghaddam, Moghaddam, & Cheriet, 2012), Group
Search Optimizer (He, Wu, & Saunders, 2006), Interior Search Algo-
rithm (Gandomi, 2014), Soccer League Competition Algorithm
(Moosavian & Roodsari, 2014), Seeker Optimization Algorithm (Dai,
Chen, Zhu, & Zhang, 2009), Random Forest Algorithm (Amini,
Homayouni, Safari, & Darvishsefat, 2018), Tree-Seed Algorithm (Cinar
& Kiran, 2018), Social-based algorithm (Ramezani & Lotfi, 2013), and
Invasive Weed Optimization (Goli, Tirkolaee, Malmir, Bian, &
Sangaiah, 2019).

5. Recent hybrid metaheuristic algorithms

Hybrid metaheuristic algorithms report significant improvements
when they are compared with classical versions of the metaheuristic
algorithms. It is perceived from recent studies that more efficient be-
havior and greater flexibility can be provided by hybrid metaheuristic
algorithms (Blum et al., 2011). The main goal of hybrid algorithms is to
couple the characteristics of different strategies of metaheuristics and
benefit from synergy. In this section, we provide information about
hybrid and hyperheuristic algorithms implemented with recent meta-
heuristics.

Blum et al. (2011) present a survey on hybrid metaheuristics.
Powerful hybrid algorithms that are developed by combining different
optimization algorithms are explained in this manuscript. Exact algo-
rithms are also reported as a part of these hybrid algorithms. Puchinger
and Raidl (2005) present another survey on recent methods of com-
bining metaheuristics and exact algorithms. Obtaining the best or near-
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optimal solutions is the main goal of these algorithms. Wang, Gandomi,
Yang, and Alavi (2016) propose a hybrid algorithm with CSA and KH.
The proposed algorithm uses update and abandon operators of KH for
CSA and provides efficiency. Wang, Cui, Sun, Rahnamayan, and Yang
(2017) deal with the premature convergence problem of FA. The au-
thors propose a new version of FA that uses a random attraction model
and new search strategies to obtain an efficient exploration and ex-
ploitation process. Mafarja and Mirjalili (2017) propose two hybrid
WOA for feature selection where they combined SA with WOA. The
results present more efficient models. Gupta and Deep (2019) hybridize
GW with DE mutation not to stick into local optima. Optimization
problems are solved and the proposed hybridized version has potential
to find optimal solution. Dokeroglu (2015) proposes a set of hybrid
TLBO to solve the quadratic assignment problem where, TLBO runs well
in coordination with Robust TS engine while solving this NP-Hard
problem.

The hyperheuristics raise the level of generality while concerning
with selecting the right (meta)-heuristic at every condition. The hy-
perheuristic algorithms operate at a higher level of abstraction and
control the use of lower level heuristics that will be applied depending
on the search space of the solution. Burke et al. (2010, 2009, 2013)
present an overview of hyperheuristic algorithms. Cowling, Kendall,
and Soubeiga (2000) analyze different hyperheuristics for a real-world
personnel scheduling problem. Burke, Kendall, and Soubeiga (2003)
examine hyperheuristics and report evaluations on the timetabling
problem. Chakhlevitch and Cowling (2008) present comprehensive
study on recent developments in hyperheuristics. Dokeroglu and Cosar
(2016) propose a parallel hyperheuristic for the quadratic assignment
problem. Beyaz, Dokeroglu, and Cosar (2015) propose a hyperheuristic
algorithm for the solution of offline 2D bin packing problems.

Elaziz and Mirjalili (2019) develop a hyperheuristic to improve the
performance of WOA by using DE algorithm. Damasevicius and
Wozniak (2017) present a hyperheuristic using a logistic probability
function. The algorithm is implemented by using ABC and KH meta-
heuristics. Wang and Guo (2013) propose a novel robust hybrid meta-
heuristic method with BA in order to solve global numerical optimi-
zation problems. The performance of the algorithm is observed to be
superior to classical population-based metaheuristics. Tawhid and Ali
(2017) propose Hybrid GWO and GA to obtain the minimal energy of a
molecule. The algorithm is used to stabilize the exploitation and ex-
ploration efforts. The genetic mutation operator refrains from the ear-
lier convergence and local optima.

Population-based algorithms that are integrated with local search
techniques are some of the well-known and best performing im-
plementations of hybrid algorithms (Talbi, 2009). ParadisEO is a soft-
ware framework for hybrid metaheuristics to optimize single and
multiobjective problems in single- and multi-computer environments
(Cahon, Melab, & Talbi, 2004; Tirkolaee, Goli, Hematian, Sangaiah, &
Han, 2019).

There are many other hybrid algorithms facilitating the new gen-
eration metaheuristics. Our aim is to draw the attention of researchers
to hybrid algorithms rather than providing a survey on all of such
metaheuristic algorithms. We believe that the studies on hybrid meta-
heuristic algorithms could provide better, faster, and more elegant so-
lutions to many complex problems by combining the strengths of dif-
ferent metaheuristics. With the advent of a new wave of metaheuristic
algorithms, we foresee that a proportional amount of effort should be
spent on hybridization in order to evaluate the true benefits of these
algorithms.

6. Conclusion and discussion

This part of our survey addresses critical issues about metaheuristics
and new suggestions for possible research opportunities and open
challenges of nature-inspired population-based optimization algo-
rithms. In order to examine these critical issues, we first attempt to
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compare our selected new generation metaheuristic algorithms briefly.
Table 2 provides a comparison of the algorithms. Four important fea-
tures of the new generation algorithms are reported in the table. These
features are: The amount of parameters that needs to be addressed to
efficiently execute the optimization process, the stages where the al-
gorithm can balance the exploration and exploitation efforts whether
the algorithms are used in hybrid metaheuristic studies and the avail-
ability of local search mechanisms.

Most of the new generation metaheuristic algorithms examined in
this study have a large number of parameters, which is a disadvantage
for metaheuristic algorithms. In order to achieve high-quality results in
acceptable amounts of time, the parameters used by metaheuristic need
to be specifically tuned for the optimization task. Research has pro-
gressed in order to overcome this disadvantage. Metaheuristic algo-
rithms such as GWA, SSO, SOS, and TLBO aim to use fewer number of
parameters. Similarly, the lack of local search mechanisms that can
achieve local optima is another critical issue for metaheuristic algo-
rithms. Having such facilities not only forms a basis for understanding
and improving the results of an algorithm but also guarantees that
every candidate solution would continue to improve during successive
iterations. However, it is important to note that although several me-
taheuristic algorithms lack such facilities, research shows that their
practical applications still achieve high-quality results. We foresee that
understanding how metaheuristic approaches achieve successful results
theoretically will continue to be an open research question in the up-
coming years.

Providing a good balance between exploration and exploitation
phases of the algorithm is another important criterion for the perfor-
mance of the metaheuristic algorithms. Table 2 identifies the stages of
new generation metaheuristics that involve different alternative tech-
niques to manipulate the balance between exploration and exploitation.
It is clear from the table that many of the evolutionary inspired pro-
cesses provide mechanisms to control this balance. Finally, although
the table shows that hybridization is applied to many of the examined
algorithms in the literature, it also identifies that a large number of
these algorithms has not been evaluated in tandem, uncovering addi-
tional potential research.

One of the widely accepted fundamental benefits of metaheuristic
algorithms is that they provide mechanisms to solve large or intractable
problems in reasonable execution times while the exact algorithms fail
to succeed due to time limitations. Moreover, they are easier to im-
plement and there is no need for ground-truth or background in-
formation for the optimization problem to be solved. The optimization
is performed on a set of randomly initialized solutions by using evo-
lutionary processes/operators.

The past research indicates that many critical issues are affecting
the performance of a metaheuristic. Providing good stability between
diversification and intensification is one of these concerns.
Diversification searches the solution space globally, whereas in-
tensification focuses on the local solution space. Tuning the iterations of
exploration and then directing the search to intensification after
spending adequate time is not a trivial setting.

Without any requirement for gradient information, metaheuristics
can be implemented easier than exact search algorithms. In many cases,
parameter tuning has a significant impact on how well metaheuristic
algorithms perform on an optimization problem. The tuning of the
parameters of metaheuristic algorithms has very similar reasons and/or
implications to the problems faced in machine learning. In addition to
the attempts that have been made to provide adaptive parameter set-
tings, another intelligent option is to develop parameterless meta-
heuristic algorithms. However, developing parameterless metaheuristic
algorithms is yet an open problem and needs to be thoroughly studied.
More information about the experimental methodologies, the statistical
evaluations, and parameter tuning of metaheuristics can be found in
(Bartz-Beielstein, Chiarandini, Paquete, & Preuss, 2010; Birattari &
Kacprzyk, 2009; McGeoch, 2001).
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One of the major shortcomings of the metaheuristic algorithms is
that they have to estimate the fitness value of each new solution they
produce. The performance declines very quickly when the dimension-
ality of the problem increases. While solving large-scale optimization
problems, calculating fitness forms a computational bottleneck and can
be a big obstacle if the complexity of the fitness evaluation is very high.
Fast evaluation techniques can be an additional alternative for better
metaheuristic algorithms and such availability of quick techniques
should be evaluated for these conditions, which would significantly
increase the performance. The intention of quick calculation here is not
only to speed up the process but also increase the probability of ob-
taining the best solutions faster. Dynamic programming or parallel
computation can be a very efficient way of computing the time-con-
suming fitness value evaluations. There can be good research oppor-
tunities for any metaheuristic since the overall performance depends on
the number of iterations.

Hybrid metaheuristics algorithms is an emerging technology in this
field. Most of the reported hybrid/hyperheuristic algorithms obtain
better solutions than classical metaheuristic algorithms. The combina-
tion of diverse metaheuristics can lead to new exciting approaches since
the hybridization can be used to get the advantage of different meta-
heuristics. It is important to note here that studies on hyperheuristics
aim to be problem independent and usable by non-specialist researchers
in this area.

Most of the time, the performance evaluation of metaheuristics is
carried out with statistical analysis due to the lack of a theoretical
foundation (Chiarandini, Paquete, Preuss, & Ridge, 2007). There is a
need to provide more fairground for statistically sound comparison
methods. In accordance with the No Free Lunch Theorem, it is not
possible to expect a metaheuristic to perform well for all the class of
optimization problems (Ho & Pepyne, 2002; Wolpert et al., 1997).
omprehensive discussion about the research directions about the sci-
entific rigor of metaheuristics can be found in a study by Sorensen
(2015). Crepinéek et al. (2012) recommend some principles for the fair
evaluation of metaheuristic algorithms. They present twelve rules for a
fair evaluation. The two of the most important rules in this study are:
"Preferring an equal number of fitness evaluations” and “Examining
those problems on which the proposed algorithm performs well”. In
addition to these, experiments should be carried out on a wide spectrum
of optimization problems. Studies on benchmark tests involving various
optimization problems should be established.

The success of proposed metaheuristic algorithms verifies that the
number of studies for developing new metaheuristics will continue to
increase in the near future. These efforts will progress until some
standards are established in this area and only then, the deficiencies can
be identified and evaluations of metaheuristics can be performed more
objectively. It is also important to note here that the chaotic versions of
the recent metaheuristics can obtain impressive results in the field.

In our opinion, sticking into local optima and efforts to get around
this problem while exploring the problem space will always be an im-
portant area of research. "Restarting” is one of the current techniques
widely used to alleviate this problem. Tracing the previous local optima
or intelligent clustering techniques can be promising novel research
directions for the solution of the stagnation problem. A more fruitful
research direction in metaheuristic algorithms is to improve the interior
structures of current metaheuristic algorithms rather than proposing
new ones that are similar to existing algorithms. The research should
more focus on adaptive operators, stagnation prevention mechanisms,
integration with data mining techniques for increasing the exploration
ability of the metaheuristics. It is also a clear requirement to have
metaheuristics optimization frameworks that enable developers to
compare various algorithms fairly.
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