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A B S T R A C T   

This paper proposes a nature-inspired swarm-based metaheuristic for solving global optimization problems 
called Golden Eagle Optimizer (GEO). The core inspiration of GEO is the intelligence of golden eagles in tuning 
speed at different stages of their spiral trajectory for hunting. They show more propensity to cruise around and 
search for prey in the initial stages of hunting and more propensity to attack in the final stages. A golden eagle 
adjusts these two components to catch the best possible prey in feasible region the shortest possible time. This 
behavior is mathematically modeled to highlight exploration and exploitation for a global optimization method. 
The performance of the proposed algorithm is tested and confirmed using 33 benchmark test functions and a 
scalability test. Results were compared to that of six other well-known algorithms, which revealed GEO’s su
periority, which indicates that it can find the global optimum and avoid local optima effectively. The Multi- 
Objective Golden Eagle Optimizer (MOGEO) is also proposed to solve multi-objective problems. The perfor
mance of MOGEO is also tested and verified on ten multi-objective benchmark functions. Results were compared 
to that of two other multi-objective algorithms, which showed that it can approximate true Pareto optimal so
lutions better than the other two algorithms. The software (toolbox) and source code for GEO and MOGEO are 
also provided, which are publicly available.   

1. Introduction 

Optimization is the process of finding the state of decision/design 
variables that yields the best value for single or multiple objective 
functions. Analytical methods were the dominant approach to solve 
mathematical problems before the heuristic optimization era. In addi
tion to the primary information on the objective function value and 
constraint violation, analytical methods rely on the information about 
the derivatives of the sole or constraint-penalized objective functions in 
the form of first- and second-order derivatives. This extra information 
enables them to find the exact optimum for linear or convex non-linear 
problems efficiently. However, this comes at the cost of vulnerability to 
local optima entrapment in more complex problems–that has many local 
optima–and unavailability for problems with stochastic or unknown 
search space (Mirjalili, 2015). The stochastic behavior and unknown 
search space are the prominent features of real-world problems. This led 
to the advent of metaheuristic algorithms. The notable characteristics of 

metaheuristic algorithms are that they are derivative-free and do not 
require limiting assumptions. Therefore, they can be readily utilized for 
solving different classes of problems (Rakotonirainy & van Vuuren, 
2020). 

Such flexibility, however, is not costless. It has been observed, and 
later addressed as the No Free Lunch (NFL) theorem (Wolpert & Mac
ready, 1997), that the excellent performance of an optimization algo
rithm on a specific set of problems does not guarantee the same 
performance on other problems. NFL provides an avenue for researchers 
to develop novel metaheuristic algorithms. Relative simplicity in un
derstanding and application, as well as good performance, have resulted 
in the popularity of metaheuristic algorithms (Massan, Wagan, & 
Shaikh, 2020). Numerous algorithms have been introduced recently to 
solve business and engineering problems effectively. 

Metaheuristic methods can be classified through various approaches. 
One common approach suggests classifying these methods based on the 
source inspiration: (a) evolutionary, (b) human-based, (c) physics- 
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based, and (d), synthetic, and (e) swarm intelligence. Evolutionary al
gorithms are normally based on the natural selection law of biology. 
These methods evolve the initial population using evolutionary opera
tors to improve the population’s fitness and find the global optimum 
(Bozorg-Haddad, Solgi, & Loaiciga, 2017; Husseinzadeh Kashan, 
Tavakkoli-Moghaddam, & Gen, 2019). Selection, crossover, and muta
tion are the most common of such operators. Genetic Algorithm (Gold
berg & Holland, 1988) and Differential Evolution (Das & Suganthan, 
2011) are two popular evolutionary algorithms. The human-based 
approach encompasses any algorithm that is inspired specifically by 
humans’ social behavior or concepts that have been developed by 
humans. Queuing Search Algorithm (QSA) (Zhang, Xiao, Gao, & Pan, 
2018), Group Teaching Optimization Algorithm (GTOA) (Zhang & Jin, 
2020), and Teaching-Learning-Based Optimization (TLBO) (Rao, Sav
sani, & Vakharia, 2011) are the examples of algorithms proposed in this 
area. Physics-based methods tend to perceive the landscape as a physical 
phenomenon and move the search agents using formulae borrowed from 
physical rules or theories. Some of the recent algorithms proposed under 
this approach are Atom Search Optimization (ASO) (Zhao, Wang, & 
Zhang, 2019), Henry Gas Solubility Optimization (HGSO) (Hashim, 
Houssein, Mabrouk, Al-Atabany, & Mirjalili, 2019), Water Cycle Algo
rithm (WCA) (Eskandar, Sadollah, Bahreininejad, & Hamdi, 2012), 
Electron Radar Search Algorithm (ERSA) (Rahmanzadeh & Pishvaee, 
2019), Lightning Attachment Procedure Optimization (LAPO) (Nem
atollahi, Rahiminejad, & Vahidi, 2017), Optics Inspired Optimization 
(OIO) (Husseinzadeh Kashan, 2015), Gravitational Search Algorithm 
(GSA) (Rashedi, Nezamabadi-pour, & Saryazdi, 2009), Equilibrium 
Optimizer (EO) (Faramarzi, Heidarinejad, Stephens, & Mirjalili, 2020), 
Thermal Exchange Optimization (TEO) (Kaveh & Dadras, 2017), Multi- 
Verse Optimizer (MVO) (Mirjalili, Mirjalili, & Hatamlou, 2016), Electro- 
Search algorithm (ES) (Tabari & Ahmad, 2017), and Colliding Bodies 
Optimization (CBO) (Kaveh & Mahdavi, 2014). Synthetic methods are 
solely based on mathematical equations like trigonometry functions or 
well-known constants. These algorithms are not inspired by a specific 
natural phenomenon. Sine Cosine Algorithm (SCA) (Mirjalili, 2016), 
Golden Ratio Optimization Method (GROM) (Nematollahi, Rahimine
jad, & Vahidi, 2020), and Stochastic Fractal Search (SFS) (Salimi, 2015) 
are among the algorithms proposed within this approach. Algorithms 
belonging to the swarm intelligence approach imitate the social 
behavior and communications within a group of species of animals, 
plants, or other living things (Mavrovouniotis, Li, & Yang, 2017; Pio
trowski, Napiorkowski, Napiorkowski, & Rowinski, 2017). Searching for 
food, hunting, mating, and memorizing are the common social behav
iors considered in this class. Because communication is an indispensable 
element of social behavior, swarm intelligence algorithms allow the 
search agents to enjoy the information produced by other search agents 
in the current previous iteration (Zahedi, Akbari, Shokouhifar, Safaei, & 
Jalali, 2016). This approach has gained increasing popularity in terms of 
both application and new algorithm development. Some of the recently 
proposed algorithms that can be categorized under this approach are 
Pathfinder algorithm (PFA) (Yapici & Cetinkaya, 2019), Harris Hawks 
Optimization (HHO) (Heidari et al., 2019), Squirrel Search Algorithm 
(SSA) (Jain, Singh, & Rani, 2019), Seagull Optimization Algorithm 
(SOA) (Dhiman & Kumar, 2019), Sailfish Optimizer (SFO) (Shadravan, 
Naji, & Bardsiri, 2019), Black Widow Optimization (BWO) (Hayyolalam 
& Pourhaji Kazem, 2020), Emperor Penguin Optimizer (EPO) (Dhiman 
& Kumar, 2018), Mouth Brooding Fish algorithm (MBF) (Jahani & 
Chizari, 2018), Grasshopper Optimization Algorithm (GOA) (Saremi, 
Mirjalili, & Lewis, 2017), Spotted Hyena Optimizer (SHO) (Dhiman & 
Kumar, 2017), and Selfish Herd Optimizer (SHO) (Fausto, Cuevas, 
Valdivia, & González, 2017). 

Metaheuristic methods can also be classified according to the num
ber of search agents they use (Mirjalili et al., 2017). Individualist 
methods use only one search agent in each iteration, while population- 
based methods use multiple search agents in each iteration. A popula
tion of search agents produces more information in each iteration and 

can better explore the problem’s feasible region. However, this 
massively increases the number of objective function evaluations, which 
can be problematic for computationally intensive objective functions. 
Simulated annealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983), Tabu 
Search (TS) (Glover, 1989), and hill-climbing (Davis, 1991) are among 
the well-known individualist metaheuristics. 

This paper proposes a novel swarm-intelligence metaheuristic algo
rithm and its multi-objective version based on the golden eagles’ hunt
ing process. They are called Golden Eagle Optimizer (GEO) and Multi- 
Objective Golden Eagle Optimizer (MOGEO). GEO is founded on the 
intelligent adjustments on attack propensity and cruise propensity that 
golden eagles perform while searching for prey and hunting. MOGEO 
uses the same principles and is equipped with special tools to handle 
multi-objective problems. The remaining parts of this paper are orga
nized as follows. Section 2 provides the fundamental inspiration and 
mathematical formulation of the GEO for single- and multi-objective 
problems. Section 3 presents the experimental results of applying the 
proposed algorithm on different classes of single-objective benchmark 
functions in addition to a convergence and scalability analysis. Section 4 
presents the results of applying MOGEO on the benchmark functions for 
multi-objective optimization. Section 5 explores the application for real- 
world engineering optimization problems. The paper concludes in Sec
tion 6 by presenting final remarks and suggestions for future studies. 

2. Golden Eagle Optimizer (GEO) 

This section is dedicated to introducing in detail the proposed Golden 
Eagle Optimizer algorithm. First, the inspiration for the algorithm is 
presented, then the mathematical model is discussed. 

2.1. Inspiration 

The golden eagle (Fig. 1), scientifically known as Aquila chrysaetos, 
belongs to the Accipitridae family, which covers different species of birds 
of prey like eagles and hawks (Golden eagle, Wikipedia., 2020). With 
exceptional vision, high speed, and powerful talons, golden eagles are 
professional hunters that can catch preys of a broad range of sizes from 
insects to mid-sized mammals (Tack, Noon, Bowen, & Fedy, 2020). This 
bird can fly as fast as 190 km/h (Golden eagle, Wikipedia., 2020). The 
golden eagle is the most widely distributed member of the Accipitridae 
family. Despite many other types of eagles, it can be found all over the 
Earth’s northern hemisphere (Tikkanen et al., 2018). 

Golden eagles have always had a close relationship with humans. 
They held lofty and sacred positions in the beliefs since ancient and 
tribal humans and were considered a sign of positive events (Golden 
eagles in human culture, Wikipedia., 2020). Even today, more than ten 
countries have an eagle as the national emblem or on the national flag 
(Eagle, 2020). The tradition of hunting with eagles is also practiced 

Fig. 1. Golden eagle (Veldman, 2018).  
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throughout Kyrgyzstan and Kazakhstan. The golden eagle is the main 
bird of prey to be used there (Hunting with eagles, Wikipedia., 2020). 

The unique feature of the golden eagle’s cruising and hunting is that 
it takes place in a spiral trajectory, meaning that the prey is most of the 
time on one side of the eagle. This enables them to monitor the targeted 
prey and the nearby boulders and bushes for finding a proper angle of 
attack. In the meantime, they also survey other regions if they can find 
better food. 

At each instance of the flight, the golden eagle’s behavior is driven by 
two forces: the propensity to attack, and the propensity to cruise. Golden 
eagles know that if they attack hastily, they may catch small prey that 
does not even compensate for the energy consumed for hunting. On the 
other hand, if they engage in an endless search for bigger prey, they may 
run out of energy and catch nothing. Golden eagles intelligently create a 
balance between these two desires to snatch the best prey they can in a 
reasonable time and with a reasonable amount of energy. They switch 
from a low-attack-high-cruise profile to a high-attack-low-cruise profile 
smoothly. Each golden eagle starts the hunt by flying at high altitudes 
within its realm in large circles and searches for prey. Once prey is 
spotted, it starts moving on the perimeter of a hypothetical circle 
centered at the prey. The golden eagle memorizes the location of the 
prey but continues to circle it. The eagle gradually lowers its altitude and 
simultaneously gets closer to the prey, making the radius of the hypo
thetical circle around the prey smaller and smaller. At the same time, it 
also surveys the nearby regions for better alternatives. Sometimes 
golden eagles share the location of the best prey they found so far with 
other eagles. If the eagle does not spot better location/prey, it continues 
to circle around the current one in smaller circles and finally attacks the 
prey. Otherwise, if the eagle finds a better alternative, it flies on a new 
circle around the new prey and forgets the previous one. It is noteworthy 
that the final attacks are performed in a straight line. 

With that said, the main characteristics of the hunting process of 

golden eagles can be summarized as follows.  

• They follow a spiral trajectory for search and a straight path for the 
attack,  

• They show more propensity to cruise in initial stages of hunting and 
smoothly transition to more propensity to attack in the final stages,  

• They retain tendency for both cruise and attack in every moment of 
the flight,  

• They look for other eagles’ information on prey. 

Cruise, attack, and the intelligent balance that the golden eagle 
creates between these two are the natural manifestation of exploration, 
exploitation, and the transition from the former to the latter. This paves 
the way for devising a metaheuristic algorithm. The next subsection 
mathematically models this behavior. 

2.2. Mathematical model and optimization algorithm 

This subsection describes the proposed mathematical formulation to 
mimic the movements of golden eagles that search for prey. The 
formulation for the spiral motion is presented, followed by its decom
position into attack and cruise vectors to emphasize exploitation and 
exploration, respectively. 

2.2.1. The spiral motion of golden eagles 
GEO is based on the spiral motion of golden eagles. As mentioned 

earlier, each golden eagle memorizes the best location it has visited so 
far. The eagle simultaneously has attraction toward attacking the prey 
and toward cruise to search for better food. Attack and cruise vectors in 
2D space can be visualized as in Fig. 2. 

In each iteration, each golden eagle i randomly selects the prey of 
another golden eagle f and circles around the best location visited so far 
by golden eagle f . The golden eagle i can also choose to circle its own 
memory; therefore, we have f ∈ {1,2,⋯,PopSize}. 

2.2.2. Prey selection 
In each iteration, each golden eagle must choose a prey to perform 

the cruise and attack operations. In GEO, the prey is modeled as the best 
solution found so far by the flock of golden eagles. Each golden eagle is 
capable of memorizing the best solution it has found so far. In each 
iteration, each search agent selects a target prey from the memory of the 
whole flock. Attack and cruise vectors for each golden eagle are then 
calculated relative to the selected prey. If the new position (calculated 
via attack and cruise vectors) is better than the previous position in the 
memory, then the memory is updated. The prey selection strategy plays 
an important role in GEO. Selection can take place in a basic way, where 
each golden eagle only selects the prey in its own memory. To make 
golden eagles better explore the landscape, we propose a random one-to- 
one mapping scheme, where each golden eagle randomly selects its prey 
in the current iteration from the memory of any other flock member. It is 
noteworthy that the selected prey is not necessarily the nearest or 
farthest prey. In this scheme, each prey in the memory is assigned or 
mapped to one and only one golden eagle. Then each golden eagle 
performs the attack and cruise operations on the selected prey. Fig. 3 

Memory of search agent 

Memory of search agent 

Memory of search agent 

Search agent 

Search agent 

Search agent 

Fig. 3. One-to-one mapping in GEO prey selection.  

Attack

Cruise

Fig. 2. Spiral motion of golden eagles.  
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shows that each search agent can only attack one of the positions in the 
memory that belong to another search agent. 

2.2.3. Attack (exploitation) 
The attack can be modeled via a vector starting from the current 

position of the golden eagle and ending in the location of the prey in the 
eagle’s memory. The attack vector for golden eagle i can be calculated 
via Eq. (1). 

A→i = X→
*
f − X

→
i (1)  

where A→i is the attack vector of eagle i, X→
*
f is the best location (prey) 

visited so far by eagle f , and X→i is the current position of eagle i. Since 
the attack vector guides the population of golden eagles toward the best- 
visited locations, it highlights the exploitation phase in GEO. 

2.2.4. Cruise (exploration) 
The cruise vector is calculated based on the attack vector. The cruise 

vector is a tangent vector to the circle and perpendicular to the attack 
vector. The cruise can also be thought of as the linear speed of the golden 
eagle relative to the prey. The cruise vector in n-dimensions is located 
inside the tangent hyperplane to the circle; thus, to calculate the cruise 
vector, we have to first calculate the equation of the tangent hyperplane. 
The equation of a hyperplane in n-dimensions can be determined by an 
arbitrary point from that hyperplane and a perpendicular vector to that 
hyperplane, which is called the normal vector of the hyperplane. Eq. (2) 
displays the scalar form of the hyperplane equation in n-dimensional 
space. 

h1x1 + h2x2 + ⋯ + hnxn = d⇒
∑n

j=1
hjxj = d (2)  

where H→= [h1, h2,⋯, hn] is the normal vector, X = [x1, x2,⋯, xn] is the 
variables vector, P→= [p1, p2,⋯, pn] is the arbitrary point on the hyper
plane, and d = H→⋅ P→ =

∑n
i=1hjpj. If we consider X→i (the location of the 

eagle i) as the arbitrary point in the hyperplane and consider A→i (the 
attack vector) as the normal of the hyperplane, one can show the hy

perplane to which C→
t
i (the cruise vector for the golden eagle i in iteration 

t) belongs according to Eq. (3). 
∑n

j=1
ajxj =

∑n

j=1
atjx

*
j (3)  

where A→i = [a1, a2,⋯, an] is the attack vector, X = [x1, x2,⋯, xn] is the 
decision/design variables vector, and X* =

[
x*

1, x*
2,⋯x*

n
]

is the location 
of the selected prey. 

Now that the cruise hyperplane for eagle i in iteration t is calculated, 
it is time to find a cruise vector for this golden eagle within this hy
perplane. A golden eagle can choose any destination point on the cruise 
hyperplane. To find a random vector on the cruise hyperplane, we have 
to first find a random destination point C on this hyperplane other than 
the one we already have (the current location of the golden eagle i). Note 
that the starting point of the cruise vector is the current location of the 
golden eagle i. Since hyperplanes are one dimension smaller than their 
ambient space, we cannot simply generate a random 1 × n point. A 
simple random point in n-dimensional space is not guaranteed to be 
located on the cruise hyperplane. A new point located on the n-dimen
sional cruise hyperplane has n − 1 degrees of freedom, meaning that n −

1 dimensions can be chosen freely, but the hyperplane equation dictates 
the last dimension, as shown in Eq. (2). The last dimension must be 
chosen so as it satisfies the hyperplane equation; therefore, we have n −

1 free variables and one fixed variable. We use the following procedure 
to find a random n-dimensional destination point C located on the cruise 
hyperplane for golden eagle i. 

Step 1. Randomly choose one variable out of n variables as the fixed 
variable. We denote the index of the selected variable with k. Note that 
the fixed variable cannot be chosen from the variables whose corre
sponding element in the attack vector A→i is zero. The reason is that when 
the coefficient of a variable in Eq. (2) is equal to zero, the hyperplane is 
parallel to the axis of that variable, and that variable can take any value 
for a random combination of the other n − 1 variables. For example, in 
the 3D plane 3x1 + 2x2 = 10, if we choose k = 3 and choose random 
numbers for x1 and x2, say {x1 = 2, x2 = 5}, we cannot find a unique 
point. Instead, an infinite number of point on this plane is obtained, and 
all of them satisfy the plane equation {[2,5, 1], [2, 5, 2], [2, 5,3],⋯ }. 

Step 2. Assign random values to all the variables except the k-th 
variable because the k-th variable is fixed. 

Step 3. Find the value of the fixed variable using Eq. (4). 

ck =
d −

∑
j,j∕=kaj
ak

(4)  

where ck is the k-th element of the destination point C, aj is the j-th 

element of the attack vector A→i, d is the right-hand side of the Eq. (2), at
k 

is the k-th element of the attack vector A→i, and k is the index of the fixed 
variable. The random destination point on the cruise hyperplane is 
found. Eq. (5) displays the general representation of the destination 
point on the cruise hyperplane. 

C→i =

(

c1 = random, c2 = random,⋯, ck =
d −

∑
j;j∕=kaj
ak

,⋯, cn = random
)

(5) 

Now that the destination point is determined, the cruise vector can 
now be calculated for the golden eagle i in iteration t. The elements of 
the obtained destination point are random numbers between zero and 
one. It is noteworthy that the cruise vector attracts the population of 
golden eagles toward the areas other than the ones in the memory; 
therefore, it emphasizes the exploration phase of GEO. 

2.2.5. Moving to new positions 
The displacement of the golden eagles comprises of attack and vec

tor. We define the step vector for golden eagle i in iteration t as Eq. (6). 

Δxi = r→1pa
A→i

‖A→i‖
+ r→2pc

C→i

‖C→i‖
(6)  

where pt
a is the attack coefficient in iteration t and pt

c is the cruise co
efficient in iteration t and adjust how golden eagles are affected by 
attack and cruise. r→1 and r→2 are random vectors whose elements lie in 
the interval [0, 1]. pa and pc will be discussed later. ‖A→i‖ and ‖C→i‖ are the 
Euclidean norm of the attack and cruise vectors and are calculated using 
Eq. (7). 

‖A→i‖ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

j=1
a2
j

√

, ‖C→i‖ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

j=1
c2
j

√

(7) 

The position of the golden eagles in iteration t + 1 is calculated 
simply by adding the step vector in iteration t to the positions in iteration 
t. 

xt+1 = xt + Δxti (8) 

If the fitness of the new position of the golden eagle i is better than 
the position in its memory, the memory of this eagle is updated with the 
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new position. Otherwise, the memory remains intact, but the eagle will 
reside in the new position. In the new iteration, each golden eagle 
randomly chooses a golden eagle from the population to circle around its 
best-visited location, calculates attack vector, calculates cruise vector, 
and finally, the step vector and the new position for the next iteration. 
This loop is executed until any of the termination criteria are satisfied. 

We mentioned that there are two coefficients in Eq. (6), namely 
attack coefficient pt

a and cruise coefficient pt
c, that control how the step 

vector is affected by attack and cruise vectors. The next subsection 
discusses how the values of these two coefficients are adjusted over the 
course of iterations. 

2.2.6. Transition from exploration to exploitation 
As mentioned earlier, golden eagles show a higher propensity to 

cruise in the initial stages of the hunting flight and show a higher pro
pensity to attack in the final stages, which correspond to more explo
ration in initial iterations and more exploitation in the final iterations in 
the proposed optimizer. Fig. 4 shows how the attack and cruise change. 

GEO uses pa and pc to shift from exploration to exploitation. The 
algorithm starts with low pa and high pc. As the iterations proceed, pa is 
gradually increased while pc is gradually decreased. The initial and final 
values of both parameters are defined by the user. Intermediate values 
can be calculated using the linear transition displayed in Eq. (9). 
⎧
⎪⎪⎨

⎪⎪⎩

pa = p0
a +

t
T
⃒
⃒pTa − p

0
a

⃒
⃒

pc = p0
c −

t
T
⃒
⃒pTc − p

0
c

⃒
⃒

(9)  

where t indicates current iteration, T indicates maximum iterations, p0
a 

and pT
a are the initial and final values for propensity to attack (pa), 

respectively, and p0
c and pT

c are the initial and final values for propensity 
to cruise (pc), respectively. Our experiments, which will be discussed 

Fig. 6. Movement of search agents in 2D space.  

Fig. 4. Golden eagle’s transition from exploratory behavior (intense cruise) to exploitative behavior (intense attack).  

Fig. 5. pa and pc over the course of iterations.  
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later, show that 
[
p0

a , pT
a
]
= [0.5,2] and 

[
p0

c , pT
c
]
= [1, 0.5] seem to be 

suitable parameters. This means that pa is set to 0.5 in the first iteration 
and linearly drops to reach 2 in the last iteration. The same goes for pC 
where it starts with 1 in the first iteration and is linearly lowered to 
reach 0.5 in the last iteration. It worths noting here that Eq. (9) linearly 
changes the parameters. However, they can be changed logarithmically 

or by means of any other function. Fig. 5 shows how pa, r1 × pa, pc, and 
r2 × pc change over the course of iterations. Note that r1 and r2 are 
random numbers in the interval [0,1] in Eq. (6). 

The movement of search agents in 2D and 3D spaces is displayed in 
Fig. 6 and Fig. 7, respectively. These figures show the position and step 
vector in different iterations, where t is one of the initial iterations, t +

Fig. 8. Main steps of GEO: (a) the search agent selects a prey from the flock’s memory, (b) attack vector is calculated, (c) cruise hyperplane is constructed, (d) a 
random cruise vector is constructed inside the cruise hyperplane, and (e) step vector is constructed from attack and cruise vectors. 

Fig. 7. Movement of search agents in 3D space.  
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Δt1 belongs to midway, and t + Δt2 is one of the final iterations. In other 
words, t < t+ Δt1 < t+ Δt2. 

To sum up this subsection, a visual summary of the main steps of GEO 
is illustrated in Fig. 8. In each iteration, each search agent first selects 
prey from the flock’s memory and constructs a hypothetical hypersphere 
(Fig. 8a). Next, the search agents construct the attack vector, which is a 
vector from the search agents to their selected prey (Fig. 8b). Then, each 
search agent constructs its cruise hyperplane, which is basically the 
tangent hyperplane to the hypothetical sphere at the search agent’s 
position (Fig. 8c). Next, the cruise vector, which is a random vector 
inside the cruise hyperplane (Fig. 8d), is constructed. Finally, attack and 
cruise vectors are combined to form the step vector (Fig. 8e). 

2.2.7. Single-objective golden eagle Optimizer (GEO) 
According to the basic concepts and their corresponding mathe

matical modeling presented in Section 2.2, the pseudo-code of the 
single-objective implementation of GEO is presented in Algorithm 1.  

Algorithm 1. Pseudo-code of GEO 

Initialize the population of golden eagles 
Evaluate fitness function 
Initialize population memory 
Initialize pa and pc  

for each iterationt  
Update pa and pc (Eq. (9))  
for each golden eagle i  

Randomly select a prey from the population’s memory 

Calculate attack vector A→ (Eq. (1))  
if attack vector’s length is not equal to zero 

Calculate cruise vector C→ (Eqs. (2)–(5))  
Calculate step vector Δx (Eqs. (6)–(8))  
Update position (Eq. (8)) 
Evaluate fitness function for the new position 
if fitness is better than the fitness of the position in eagle i’s memory  

Replace the new position with the position in eagle i’s memory  
end 

end 
end 

end  

2.2.8. Computational complexity of GEO 
The computational complexity of the proposed GEO algorithm can 

be discussed for the two major parts of the algorithm:  

(a) Initialization. The algorithm requires O
(
npopulation × ndimensions

)

time to initialize the position vector, the step vector, and memory 
for the search agents.  

(b) Main loop. The main loop requires O
(
npopulation × ndimensions ×

niteration
)

time to select prey, calculate attack and cruise vectors, 
and update the position of the search agents. 

It can be concluded that the total time complexity of GEO is 
O
(
npopulation × ndimensions × niteration

)
. It is noteworthy that the space 

complexity of GEO is equal to O
(
npopulation × ndimensions

)
since it is the 

space that is occupied in the initialization and does not grow or shrink 
during iterations of the main loop. 

2.3. Golden Eagle Optimizer for multi-objective problems 

2.3.1. Multi-objective optimization 
Multi-objective problems are relatively similar to single-objective 

problems in terms of problem definition. The only difference is that, 
as their name suggests, they contain multiple objective functions instead 
of a single objective function. This apparently negligible difference, 
however, creates challenges in terms of optimization procedure that 
cannot be addressed by algorithms that are designed to deal with single- 
objective optimization. That is where the need for optimization algo
rithms that can handle and solve multi-objective problems emerges. A 

general multi-objective problem can be defined as Eq. (10) (Cui, Geng, 
Zhu, & Han, 2017). 

Minimize F( x→) = {f1(x), f2(x),⋯, fk(x) }
Subjectto :

gi( x→) ≤ 0, i = 1, 2,⋯, r
hi( x→) = 0, i = r + 1, r + 2,⋯, s

(10)  

where F is the set of objectives to be optimized, x→ is the vector of de
cision/design variables, gi is the i-th inequality constraint, hi is the i-th 
equality constraint, r is the number of inequality constraints, and s is the 
total number of constraints. 

In the single-objective optimization, the solution x→1 is better than 

x→2 if f
(

x→1

)

< f
(

x→2

)

. However, in multi-objective optimization, such 

a definition cannot be used. Instead, the Pareto dominance concept is 
introduced to deal with multi-objective problems. It suggests that solu
tion x→1 dominates (is better than) x→2 if for all of the objective functions 

we have f
(

x→1

)

< f
(

x→2

)

. The two solutions are called non-dominated 

if for at least one objective, but not all of them we have f
(

x→1

)

≮f
(

x→2

)

. 

If such a relation holds for a solution compared to other solutions in the 
feasible region, that solution is called Pareto optimal. The ultimate goal 
in multi-objective optimization is to find the Pareto optimal solutions 
(Khoroshiltseva, Slanzi, & Poli, 2016). In contrast to single-objective 
problems, multi-objective problems do not have a single Pareto 
optimal solution. Instead, they have a set of non-dominated solutions as 
the Pareto optimal solutions. So the ultimate goal in these problems is 
shifted toward finding the Pareto optimal set of solutions, which is also 
called the Pareto front (Martín & Schütze, 2018). 

2.3.2. Multi-objective golden eagle Optimizer (MOGEO) 
The proposed algorithm is able to find the best location of food using 

different operators. However, it is not capable of finding the Pareto 
optimal solution to problems with multiple objectives. In particular, the 
drawbacks of GEO for handling multi-objective problems are as follows:  

• In GEO, each golden eagle has its own separate memory of the best 
prey visited by itself so far. This means that GEO saves multiple in
dividual best prey in each iteration. Saving multiple solutions are 
useful for multi-objective problems, but the saved solutions must be 
non-dominated, which is not guaranteed in GEO. Therefore, a 
mechanism should be introduced to only save the non-dominated 
solutions so far.  

• In the prey selection stage of GEO, each golden eagle chooses another 
golden eagle arbitrarily to perform attack and cruise operators on its 
best prey stored in its memory. However, quality optimal Pareto 
fronts contain members that are uniformly distributed along the 
front. This implies that a criterion is needed so that golden eagles can 
prioritize some of the preys in the memory to the others with that 
criterion.  

• In the prey selection stage of GEO, a one-to-one mapping occurs 
between golden eagles and preys in the memory. In other words, 
each prey in the memory is assigned to one and only one golden 
eagle. However, the Pareto front in a given iteration might have 
more or fewer members than the population size. Therefore, the one- 
to-one mapping between search agents and prey cannot be imple
mented in multi-objective problems. 

With that said, Multi-objective Golden Eagle Optimizer (MOGEO) is 
built upon the concepts of single-objective optimization mentioned 
above plus three additional concepts: (a) external archive, (b) prey 
prioritization criterion, and (c) multi-objective prey selection. 

External-archive-based algorithms are popular yet robust ap
proaches in multi-objective optimization. Some well-known multi- 
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objective algorithms like Multi-Objective Particle Swarm Optimization 
(MOPSO) (Coello Coello & Lechuga, 2002) or recent ones like Multi- 
Objective Grasshopper Optimization Algorithm (MOGOA) (Mirjalili, 
Mirjalili, Saremi, Faris, & Aljarah, 2018) or Multi-Objective Ant Lion 
Optimizer (MOALO) (Mirjalili, Jangir, & Saremi, 2017) utilize an 
archive-based approach. 

The basic idea is to keep promising non-dominated solutions in an 
external archive and update it as the optimization algorithm proceeds. 
Search agents are steered toward the archive members and ultimately to 
the region where the optimal Pareto front exists (Cai, Qu, & Cheng, 
2018; Mirjalili, Saremi, Mirjalili, & Coelho, 2016; Zhang, Gong, Sun, & 
Qu, 2018). Since GEO uses a dedicated memory to keep promising preys, 
the external archive approach can be easily implemented in GEO. The 
archive’s capacity is limited. Therefore, a mechanism should be intro
duced for updating the external archive to keep the Pareto optimal so
lutions visited so far and avoid violating the maximum capacity limit of 
the archive. 

When each of the search agents moves to a new position, it may face 
one of the three following conditions. If the new solution (position) is 
dominated by one or more of the current archive members, the new 
solution is discarded. If the new solution is non-dominated to the current 
members of the archive and the archive is not full, simply add the new 
position to the archive. If the new position is non-dominated compared 
to the current members of the archive, randomly select one of the 

archive members and substitute it with the new solution. One of the 
desirable characteristics of an ideal optimal Pareto front is the uniform 
dispersion of archive members along the front in the objective space. 
Therefore, the outgoing member should be selected from the dense re
gions of the archive in order to decrease the density in those regions 
(Ahmadi, Tiruta-Barna, Capitanescu, Benetto, & Marvuglia, 2016; Chen 
et al., 2019). Fig. 9 shows an example of archive members located in the 
dense and sparse regions of the archive. 

A measure is needed to determine the density of the nearby area for 
each member of the archive. We propose the crowding score to be used 
as the density index in MOGEO. The crowding score is grounded on the 
idea of crowding distance (Deb, Agrawal, Pratap, Meyarivan, & Fast, 
2000). The crowding distance of a solution in the Pareto front is defined 
as the distance between the two nearest solutions in its vicinity and can 
be calculated through Eq. (11). 

Ci =
1
n

∑

j∈J

(
fi+1,j − fi,j

)
−
(
fi,j − fi− 1,j

)

fmax
j − fmin

j
(11)  

where fi− 1,j, fi,j, fi+1,j are three consecutive members when the archive is 
sorted according to the objective values of the j-th objective function. 
Fig. 10 shows the crowding hypercube for solutions located in the sparse 
regions of the archive are assigned larger crowding scores, while solu
tions in the dense regions have smaller crowding scores. It can be seen 
that the crowding distance is equal to half of the crowding hypercube’s 
perimeter (see Fig. 11). 

The only exceptional cases are limiting members, i.e., the members 
with the largest or smallest value in any of the objective functions. 
Regular members have two adjacent members, but limiting members 
have only one. The crowding score for limiting members is calculated 
similarly to Eq. (11) except that one of the terms in the numerator is 
discarded. 

The crowding distance is calculated for all of the archive members. 
The outgoing member is selected using a roulette wheel where the 
probabilities are proportional to crowding distances. We want to select 
the outgoing member from the denser parts of the archive, so we should 
assign larger weights to the solutions in denser regions. This can be 
easily achieved by subtracting the crowding scores from 1 since the 
crowding distances calculated by Eq. (11) fall in the interval [0,1]. The 
new scores that are used for the roulette wheel procedure are called 
sparsity scores (Si), which can be calculated using Eq. (12). 

Si = 1 − Ci (12) 

Fig. 11. Crowding score for limiting members of the archive.  

Fig. 9. Solutions located in the dense and sparse regions of the 
external archive. 

Fig. 10. Crowding distance for members in dense and sparse regions of the 
external archive. 
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The last important topic in MOGEO is the prey selection procedure. It 
is similar to the prey selection in GEO but with some modifications. In 
GEO, every search agent has its own memory to keep the best location 
visited so far. However, the memory in this sense cannot be used as the 
external archive in MOGEO because the archive keeps only non- 
dominated locations visited so far. This point leads to conditions 
where the number of archive members is less than, or in general, 
different from the population size. We propose the MOGEO prey selec
tion procedure to be based on the roulette wheel, where the weights are 
the sparsity scores of the current archive members. This results in a 
higher probability of selection for members in the sparse regions of the 
front and less probability for archive members in the dense regions. The 
crowding scores are calculated according to Eq. (11). The pseudocode of 
MOGEO is presented in Algorithm 2.  

Algorithm 2. Pseudo-code of MOGEO 

Initialize the population of golden eagles 
Evaluate the fitness function 
Initialize population memory 
Initialize pa and pc  

for each iterationt  
Update pa and pc (Eq. (9))  
Calculate crowding distance for existing archive members 
for each golden eagle i  

Randomly select prey from the archive using the roulette wheel 
weighted by crowding distances 

Calculate attack vector A→ (Eq. (1))  
if the attack vector’s length is not equal to zero 

Calculate cruise vector C→ (Eqs. (2)–(5))  
Calculate step vector Δx (Eqs. (6)–(8))  
Update position (Eq. (8)) 
Evaluate fitness functions for the new position 
if the new position is non-dominated to the current archive 

members 
if the external archive is not full 

Add the new solution to the archive 
else 

Calculate the sparsity distances (Eqs. (11)–(12)) 
Select the outgoing archive member using 

roulette wheel weighted by sparsity distances 
Replace the outgoing solution with the new one 

end 
end 

end 
end  

2.3.3. Computational complexity of MOGEO 
The computational complexity of the proposed MOGEO algorithm 

can be discussed for the two major parts of the algorithm:  

(a) Initialization. The algorithm requires O
(
npopulation × ndimensions

)

time to initialize the position vector, the step vector, and memory 
for the search agents.  

(b) Main loop. The main loop requires 
O
(
npopulation × ndimensions × niteration × nobjective × narchive

)
. 

It can be concluded that the total time complexity of MOGEO is 
O
(
npopulation × ndimensions × niteration × nobjective × narchive

)
. 

2.4. Software (toolbox) and source code for GEO and MOGEO 

To facilitate the implementation of GEO and MOGEO algorithms, 
separate open-source MATLAB toolboxes are developed for GEO and 
MOGEO. The user interfaces are shown in Fig. 12. Each toolbox is 
divided into two columns. Problem definition and solver parameters are 
defined in the left column and the algorithm’s progress, and the final 
results are shown in the right column. By pressing the “Solve” button, 
the solver starts to optimize the problem. Both solvers show graphical 
and textual feedback about the solver’s status in each iteration. GEO 
toolbox plots the mean fitness for each iteration as well as the best so
lution found so far. MOGEO toolbox plots the archive members’ fitness 
values in each iteration. The toolboxes are able to evaluate the fitness 
function in a vectorized fashion, which is suitable for speeding up the 
optimization process. Both toolboxes allow the user to halt the solver 
anywhere in the middle of optimization. The results, whether the al
gorithm obtained or the user decided to halt, can be easily exported to 
the base workspace for post-optimization analysis. The plot can also be 
exported to many types of lossy and vector graphic formats. In addition, 
the source code for both GEO and MOGEO is also publicly available. 
Toolboxes and the source codes can be downloaded from https://www. 
mathworks.com/matlabcentral/profile/authors/14675656. 

3. Single-objective optimization results for GEO 

To verify the performance of the proposed algorithm, GEO is tested 
on 33 well-known benchmark problems. This section presents the results 
of these tests. The challenging benchmark problems in each class 
analyze different aspects of the proposed algorithm. First, an overview 

Fig. 12. The user interface of GEO (a) and MOGEO (b) toolboxes (can be downloaded from https://www.mathworks.com/matlabcentral/profile/auth 
ors/14675656). 
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of the experimental setup and compared algorithms are presented. Then, 
the details of the utilized benchmark functions of unimodal, multimodal, 
composite classes are presented. Next, the scalability analysis will be 
conducted to examine the performance of GEO in large problems. 

3.1. Parameter setting 

Before applying the proposed algorithm to the test functions, the 
parameters of GEO must be fine-tuned. The four parameters are initial 
attack propensity (p0

a), final attack propensity (pT
a ), initial cruise pro

pensity (p0
c ), and the final cruise propensity (pT

c ). GEO is applied to 15 of 
the test functions mentioned above, and the results are normalized and 
aggregated to construct a total measure to determine the best set of 
parameters. The values for the attack propensity are chosen from the set 
{0,0.5, 1,1.5, 2}, and the values for the cruise propensity are chosen 
from the set {0,0.25,0.5, 0.75,1}. Every possible pair of attack pro

pensity values that are non-decreasing are chosen. A similar approach 
was used to choose the values for the cruise propensity, except that the 
values must be non-increasing. A total of 225 parameter sets are ob
tained for the analysis. Each parameter set was used to run GEO 30 times 
on each problem. Fig. 13 displays the aggregate objective function 
values for the top 40 parameters set. It can be concluded that the best 
values for initial and final attack propensity are 

[
p0

a − pT
a
]
= [0.5 − 2], 

and the best values for the initial and final cruise propensity are 
[
p0

c −

pT
c
]
= [1 − 0.5]. Therefor, all of the experiments in this paper are per

formed using this set of parameters. 

3.2. Experimental setup and compared algorithms 

In order to verify the capabilities of GEO, its performance is 
compared to those of other well-known algorithms in the literature, 
namely, Grey Wolf Optimizer (GWO) (Mirjalili, Mirjalili, & Lewis, 
2014), Genetic Algorithm (GA) (Goldberg & Holland, 1988), Crow 
Search Algorithm (CSA) (Askarzadeh, 2016), Particle Swarm Optimi
zation (PSO) (Kennedy & Eberhart, 1995), Harmony Search (HS) (Geem, 
Kim, & Loganathan, 2001), and Dragonfly Algorithm (DA) (Mirjalili, 
2016). All of the algorithms were coded in MATLAB 9.6 (R2019a). To 
keep the comparisons fair and consistent, we used general and solver- 
specific parameters as reported in Table 1. Metaheuristic algorithms 
use random initial generation and random numbers in the intermediate 
calculations, which may affect the quality of the solutions. Each algo
rithm is implemented multiple times on each benchmark problem, so as 
to avoid these effects. As depicted in Table 1, we used 30 independent 
replications for all of the problems and solvers. 

Fig. 13. Aggregate results for 20 of the best parameter sets for the GEO algorithm.  

Table 1 
Parameter settings for compared algorithms.  

Algorithm Parameter Value 

All algorithms Population size 50  
Maximum iterations 1000  
Number of replications 30 

GEO pa: Propensity to attack  [0.5 − 2]
pc: Propensity to cruise  [1 − 0.5]

GWO C: Control parameter  [2 − 0]
Number of leaders 3 

GA Elite fraction 0.05  
Selection method Binary tournament  
Crossover method Linear  
Crossover fraction 0.8  
Mutation method Gaussian 

CSA fl: Flight length  2  
AP: Awareness probability  0.1 

PSO Neighboring ratio 0.25  
w: Inertia weight  0.8  
c1, c2: Acceleration weights  1.5 

HS Memory considering rate 0.95  
Pitch adjustment ratio 0.1 

DA b: Base coefficient  [0.1 − 0]
r: Neighborhood radius  [0.25 − 2.25] × [ub − lb]
s: Separation coefficient  2b   
a: Alignment coefficient  2b   
c: Cohesion coefficient  2b   
f: Food attraction coefficient  2  
e: Enemy distraction coefficient  b   

Table 2 
Unimodal benchmark functions.  

Name Equation D  Bounds f*  

Beale f1(x) = (1.5 − x1 − x1x2)
2
+

(
2.25 − x1 + x1x2

2
)2

+
(
2.625 − x1 + x1x3

2
)2  

2 [ − 4.5,4.5]D  0 

Matyas F2(x) = 0.26
(
x2

1 + x2
2
)
− 0.48x1x2  2 [ − 10, 10]D  0 

Three-hump 
camel 

F3(x) = 2x2
1 − 1.05x4

1 +
x1

6
+

x1x2 + x2
2  

2 [ − 5,5]D  0 

Exponential F4(x) = − e(− 0.5
∑n

i=1
x2

i ) 30 [ − 1,1]D  0 

Ridge F5(x) = x1 + 2
( ∑n

i=2x2
i
)0.1  30 [ − 5,5]D  − 5 

Sphere F6(x) =
∑n

i=1x2
i  30 [ − 100,100]D  0 

Step F7(x) =
∑n

i=1(xi + 0.5)2  30 [ − 5.12, 5.12]D  0  
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3.3. Benchmark functions 

In order to numerically prove the theoretical claims mentioned in the 
previous sections and to test the performance of the proposed algorithm, 
a wide range of experiments are conducted. The benchmark functions 
can be grouped into three classes. Unimodal benchmark functions have 
only one optimum and are suitable for testing the exploitation ability of 
optimization algorithms. Table 2 shows the seven fixed-dimension and 
scalable unimodal benchmark functions used in this study (F1 to F7). 
Multimodal benchmark functions have many local optima that can trap 
the algorithms; therefore, they can test the exploration ability of algo
rithms. Table 3 displays the 16 fixed-dimension and scalable multimodal 
benchmark functions on which GEO is tested (F8 to F23). The last class is 
the composite functions that are more challenging than the previous two 
classes. Composite functions can aptly represent the landscapes that 
metaheuristic algorithms may face in real-world mathematical prob
lems. Composite functions are basically the shifted, rotated, biased, and 
hybridized version of the well-known unimodal and multimodal func
tions. The ten composite benchmark functions introduced in the 
CEC2017 competition are utilized in this study, the details of which are 
reported in Table 4 (F24 to F33). Further details of CEC2017 composition 
functions can be found at (Awad, Ali, Suganthan, Liang, & Qu, 2017). 

3.4. Qualitative results 

This section explores a set of qualitative measures for the perfor
mance of GEO. Qualitative measures are commonly reported for new 
algorithms. The most important qualitative measures of single-objective 
optimization for GEO are presented in Fig. 14. It is noteworthy that this 
figure contains the qualitative measures for two unimodal functions, two 
multimodal functions, and three composite functions. The first column 
shows the landscape of the benchmark function. The second column 
displays the search history, which is basically the points that have been 

visited by all of GEO search agents to find the optimum. It is evident that 
GEO can search the entire landscape, but it puts more emphasis on 
exploring promising areas. The third column shows the trajectory of the 
first search agent along the x1 axis (first decision variable). Plots in this 
column show that the search agents undergo drastic changes in their 
position in initial iterations of the optimization process while reducing 
the changes in later iterations to slow down and converge to the opti
mum. This behavior can guarantee the convergence of GEO (Qi, Zhu, & 
Zhang, 2017). The fourth column displays the mean fitness of the pop
ulation over the course of iterations. It can be seen that the large values 
of the mean fitness and its rapid changes in initial iterations, followed by 
a reduction in value and diminishing changes implies the transition from 
high exploration in initial iterations toward high exploitation during the 
final iterations. This corresponds to the transition of golden eagles from 
intense cruise to intense attack. The last column depicts the convergence 
curve for the selected benchmark functions, which is the best position 
visited by GEO over the course of iterations. It shows how well GEO 
improves the fitness to finally converge toward the optimum. It is seen 
that in unimodal functions, the convergence curve is continuously 
improving. However, this might not be the case for multimodal and 
composite functions, where GEO is exposed to many local minima and 
may not visit better positions for some iterations. 

3.5. Quantitative results 

Although the qualitative measures proved the exploration and 
exploitation capability of GEO, they cannot fully reflect how well it can 
solve optimization problems. This section uses statistical measures to 
quantify the performance of GEO in different classes of benchmark 
functions. The arithmetic mean and the standard deviation obtained 
from 30 independent runs are used as statistical measures for revealing 
GEO’s performance. The arithmetic mean shows how GEO performs on 
average, while the standard deviation shows how stable this algorithm 

Table 3 
Multimodal benchmark functions.  

Name Equation D  Bounds f*  

Drop wave 
F8(x) = −

1 + cos
(

12
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
1 + x2

2

√ )

0.5
(
x2

1 + x2
2
)
+ 2  

2 [ − 5.2,5.2]D  − 1 

Egg holder 
F9(x) = − (x2 + 47)sin

( ⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒x2 +

x1

2
+ 47

⃒
⃒
⃒

√ )

− x1sin
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|x1 − x2 − 47|
√ ) 2 [ − 512,512]D  − 959.6407 

Himmelblau F10(x) =
(
x2

1 + x2 − 11
)2

+
(
x1 + x2

2 − 7
)2  2 [ − 5,5]D  0 

Levi 13 F11(x) = sin2(3πx1)+ (x − 1)2 ( 1 + sin2(3πx2)
)
+ (x2 − 1)2 ( 1 + sin2(2πx2)

) 2 [ − 10,10]D  0 

Ackley 1 

F12(x) = − 20e

(

− 0.2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
x2

i

√ )

− e

(
1
n
∑n

i=1
cos(2πxi)

)

+ 20+ e  

30 [ − 32, 32]D  0 

Griewank 
F13(x) = 1+

∑n
i=1

x2
i

4000
−
∏n

i=1
cos
(

xi
̅̅
i

√

) 30 [ − 600,600]D  0 

Happy cat 
F14(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(‖x‖2
− n)28

√

+
1
n

(
1
2
‖x‖2

+
∑n

i=1
xi

)

+
1
2  

30 [ − 2,2]D  0 

Michalewicz 
F15(x) = −

∑n
i=1sin(xi)

(

sin
(

ix2
i
π

))20  10 [0, π]D  − 9.6602 

Penalized 1 
F16(x) =

π
n

[

10sin2(πy1) +
∑n− 1

i=1

((
yi − 1

)2 ( 1 + 10sin2 ( πyi+1
) ) )

+
(
yn − 1

)2
]

+
∑n

i=1u(xi,10, 100,4)
30 [ − 50, 50]D  0 

yi = 1+
1
4
(xi + 1)

u(xi, a, k,m) =

⎧
⎨

⎩

k(xi − a)m xi > a
0 − a ≤ xi ≤ a

k( − xi − a)m xi < a  
Penalized 2 F17(x) = 0.1

[
sin2(3πx1) +

∑n− 1
i=1

(
(xi − 1)2

(
1 + sin2(3πxi+1)

) )
+ (xn − 1)2 ( 1 + sin2(2πxn)

) ]
+
∑n

i=1u(xi,5,100, 4) 30 [ − 50,50]D  0 

Periodic F18(x) = 1+
∑n

i=1sin2(xi) − 0.1e(
∑n

i=1
x2

i ) 30 [ − 50, 50]D  0.9 

Qing F19(x) =
∑n

i=1
(
x2

i − i
)2  30 [ − 500,500]D  0 

Rastrigin F20(x) = 10n+
∑n

i=1
(
x2

i − 10cos(2πxi)
)

30 [ − 5.12,5.12]D  0 

Rosenbrock F21(x) =
∑n

i=1

(
100

(
xi+1 − x2

i
)2

+ (1 − xi)
2
)

30 [ − 5,10]D  0 

Salomon F22(x) = 1 − cos
(

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1x2
i

√ )
+ 0.1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1x2

i

√ 30 [ − 100,100]D  0 

Yang 4 F23(x) =
( ∑n

i=1sin2(xi)
)
e
(
−
∑n

i=1
sin2

̅̅̅̅̅
|xi |

√ )
30 [ − 10, 10]D  − 1  
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Table 4 
Composite benchmark functions of CEC2017 competition.   

Equation D  Bounds f*  

CF1 
F24(x) =

⎧
⎨

⎩

f1 : Shifted and rotated Rosenbrock’s function
f2 : Shifted and rotated High Conditioned Elliptic function
f3 : Shifted and rotated Rastrigin’s function 

σ = [10,20, 30]
λ =

[
1,10− 6,1

]

bias = [0,100,200]

30 [ − 100, 100]D  2100 

CF2 
F25(x) =

⎧
⎨

⎩

f1 : Shifted and rotated Rastrigin’s function
f2 : Shifted and rotated Griewank’s function
f3 : Shifted and rotated Modified Schwefel’s function 

σ = [10,20, 30]
λ = [1,10,1]
bias = [0,100,200]

30 [ − 100, 100]D  2200 

CF3 

F26(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f1 : Shifted and rotated Rosenbrock’s function
f2 : Shifted and rotated Ackley’s function
f3 : Shifted and rotated Modified Schwefel’s function
f4 : Shifted and rotated Rastrigin’s function 

σ = [10,20, 30,40]
λ = [1,10,1,1]
bias = [0,100,200,300]

30 [ − 100, 100]D  2300 

CF4 

F27(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f1 : Shifted and rotated Ackley’sfunction
f2 : Shifted and rotated High Conditioned Elliptic function
f3 : Shifted and rotated Girewank’s function
f4 : Shifted and rotated Rastrigin’s function 

σ = [10,20, 30,40]
λ =

[
1,10− 6,10, 1

]

bias = [0,100,200,300]

30 [ − 100, 100]D  2400 

CF5 

F28(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1 : Shifted and rotated Rastrigin’s function
f2 : Shifted and rotated Happy Cat function
f3 : Shifted and rotated Ackley’s function
f4 : Shifted and rotated Discus function
f5 : Shifted and rotated Rosenbrock’s function 

σ = [10,20, 30,40, 50]
λ =

[
10,1,10,10− 6 ,1

]

bias = [0,100,200,300,400]

30 [ − 100, 100]D  2500 

CF6 

F29(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1 : Shifted and rotated Expanded Schaffer’s function
f2 : Shifted and rotated Modified Schwefel’s function
f3 : Shifted and rotated Griewank’s function
f4 : Shifted and rotated Rosenbrock’s function
f5 : Shifted and rotated Rastrigin’s function 

σ = [10,20, 20,30, 40]
λ =

[
10− 26 ,10, 10− 6,10, 5 × 10− 4]

bias = [0,100,200,300,400]

30 [ − 100, 100]D  2600 

CF7 

F30(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1 : Shifted and rotated HGBat function
f2 : Shifted and rotated Rastrigin’s function
f3 : Shifted and rotated Modified Schwefel’s function
f4 : Shifted and rotated Bent-Cigar function
f5 : Shifted and rotated High Conditioned Elliptic function
f6 : Shifted and rotated Expanded Schaffer’s function 

σ = [10,20, 30,40, 50, 60]
λ =

[
10,10, 2.5,10− 26 ,10− 6, 5 × 10− 4]

bias = [0,100,200,300,400, 500]

30 [ − 100, 100]D  2700 

CF8 

F31(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1 : Shifted and rotated Ackley’s function
f2 : Shifted and rotated Griewank’s function
f3 : Shifted and rotated Discus function
f4 : Shifted and rotated Rosenbrock’s function
f5 : Shifted and rotated Happy Cat function
f6 : Shifted and rotated Expanded Schaffer’s function 

σ = [10,20, 30,40, 50, 60]
λ =

[
10,10, 10− 6,1, 1,5 × 10− 4]

bias = [0,100,200,300,400, 500]

30 [ − 100, 100]D  2800 

CF9 
F32(x) =

⎧
⎨

⎩

f1 : Hybrid function 5 in CEC2017 competition
f2 : Hybrid function 8 in CEC2017 competition
f3 : Hybrid function 9 in CEC2017 competition 

σ = [10,30, 50]
λ = [1,1, 1]
bias = [0,100,200]

30 [ − 100, 100]D  2900 

CF10 
F33(x) =

⎧
⎨

⎩

f1 : Hybrid function 5 in CEC2017 competition
f2 : Hybrid function 6 in CEC2017 competition
f3 : Hybrid function 7 in CEC2017 competition 

σ = [10,30, 50]
λ = [1,1, 1]
bias = [0,100,200]

30 [ − 100, 100]D  3000  
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is. Fixed-dimension unimodal and multimodal functions must be run 
with a fixed amount of decision variables. However, scalable unimodal 
and multimodal functions can be run with an arbitrary number of de
cision variables. All of the scalable functions were utilized with 30 
dimensions. 

The results of unimodal, multimodal, and composite benchmark 
functions are tabulated in Table 5, Table 6, and Table 7, respectively. In 
all of these tables, the best average performances are highlighted with 

the bold font for each benchmark function. Table 5 shows that GEO 
outperforms other algorithms in half of the unimodal functions and 
competitive results in other unimodal functions. This depicts the good 
ability of GEO to use the best solutions to guide the search toward 
promising areas of the search region. The results of the standard devi
ation prove GEO’s stability. Table 6 reveals that GEO outperforms other 
algorithms in 13 out of 16 multimodal functions. This certifies the ability 
of GEO to explore different regions within the search region to find 

Fig. 14. Qualitative results including landscape, search history, the trajectory of the first agent in the first variable, mean fitness, and convergence curve.  
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better solutions. The standard deviations reported in this table reveal 
that GEO yields highly stable results in the majority of the multimodal 
benchmark functions, compared to other algorithms. Table 7 provides 
the results for composite functions from the CEC2017 competition test 
suite. The contents of this table demonstrate that according to the 
average fitnesses obtained, GEO is able to outperform the other algo
rithms in eight of the ten composite functions available in the test suite. 
In addition, the standard deviations confirm the stability of the obtained 
solutions by GEO since it has the lowest standard deviation for most of 
the composite test functions. Fig. 15 provides the comparative box plots 
for the results of composite functions. 

3.6. Convergence analysis 

The effectiveness of GEO was verified in the previous subsection. 
However, the convergence analysis can better reveal the explorative and 
exploitative behavior of GEO. Fig. 16 shows the convergence curve for 
GEO and other algorithms for six functions (F1 and F7 from unimodal 
functions, F10 and F19 from multimodal functions, and F27 and F32 from 
composite functions). It can be concluded that GEO converges a little 
later than other algorithms in initial iterations, but can often compen
sate with better final values for the objective function. 

Table 6 
Results of multimodal benchmark functions.    

GEO GWO GA CSA PSO HS DA 

F8  Mean ¡1.00E+00 − 9.98E− 01 − 1.00E+00 − 1.00E+00 − 1.00E+00 − 9.50E− 01 − 9.83E− 01  
Std 0.00E+00 1.14E− 02 4.22E− 12 0.00E+00 1.26E− 04 4.20E− 02 2.82E− 02 

F9  Mean ¡9.60E+02 − 8.92E+02 − 9.60E+02 ¡9.60E+02 − 9.56E+02 − 9.42E+02 − 9.28E+02  
Std 5.68E− 13 8.22E+01 2.25E− 04 5.68E− 13 1.18E+01 3.01E+01 4.52E+01 

F10  Mean 0.00E+00 4.77E− 05 8.88E− 13 9.27E− 24 5.26E− 32 4.88E− 02 5.53E− 04  
Std 0.00E+00 2.54E− 04 1.39E− 12 9.04E− 24 1.97E− 31 6.19E− 02 1.12E− 03 

F11  Mean 1.35E− 31 3.06E− 08 2.73E− 12 2.74E− 23 1.35E− 31 1.24E− 02 9.99E− 04  
Std 6.57E− 47 2.78E− 08 1.10E− 11 5.07E− 23 6.57E− 47 2.94E− 02 2.70E− 03 

F12  Mean 1.98E− 01 1.01E− 15 2.48E+00 3.31E+00 1.59E+01 4.69E+00 7.03E+00  
Std 5.24E− 01 6.38E− 16 7.38E− 01 5.94E− 01 2.06E+00 3.39E+00 2.62E+00 

F13  Mean 5.01E− 03 3.88E+00 2.42E− 01 1.83E− 01 1.04E+02 3.34E+00 1.87E+01  
Std 5.53E− 03 2.94E+00 9.10E− 02 5.18E− 02 4.24E+01 4.10E+00 1.07E+01 

F14  Mean 2.29E− 01 5.28E− 01 4.65E− 01 5.53E− 01 5.39E− 01 4.38E− 01 7.13E− 01  
Std 5.13E− 02 1.09E− 01 1.17E− 01 1.19E− 01 6.39E− 02 1.64E− 01 1.05E− 01 

F15  Mean ¡9.50E+00 − 7.70E+00 − 9.19E+00 − 8.58E+00 − 6.04E+00 − 5.04E+00 − 6.03E+00  
Std 1.94E− 01 1.11E+00 3.19E− 01 7.66E− 01 3.85E− 01 6.90E− 01 7.38E− 01 

F16  Mean 2.08E− 02 2.58E− 02 2.17E+00 3.21E+00 1.41E+07 3.06E+04 2.62E+01  
Std 4.15E− 02 1.21E− 02 1.10E+00 1.25E+00 7.86E+06 1.19E+05 5.82E+01 

F17  Mean 7.93E− 03 3.30E− 01 3.88E− 02 1.11E− 01 4.88E+07 1.12E+02 8.40E+04  
Std 7.24E− 03 1.68E− 01 3.59E− 02 1.14E− 01 1.91E+07 2.76E+02 2.71E+05 

F18  Mean 1.00E+00 2.23E+00 1.07E+00 1.01E+00 6.67E+00 1.04E+00 4.35E+00  
Std 1.01E− 04 1.84E+00 2.20E− 02 3.01E− 03 6.04E− 01 8.78E− 02 8.68E− 01 

F19  Mean 2.54E− 01 8.72E+02 1.25E+02 6.80E+01 1.30E+10 1.30E+07 9.93E+07  
Std 3.79E− 01 4.86E+02 7.14E+01 2.98E+01 5.41E+09 3.96E+07 2.82E+08 

F20  Mean 1.09E+01 2.03E+00 2.41E+01 2.39E+01 2.74E+02 2.10E+01 1.52E+02  
Std 3.82E+00 4.64E+00 5.05E+00 6.97E+00 1.50E+01 3.63E+01 4.47E+01 

F21  Mean 4.17E+00 2.63E+01 4.52E+01 1.02E+02 3.05E+04 2.18E+03 5.49E+03  
Std 1.28E+01 6.35E− 01 6.08E+01 7.13E+01 1.11E+04 4.05E+03 5.39E+03 

F22  Mean 4.03E− 01 1.73E− 01 6.68E− 01 8.36E− 01 1.25E+01 2.87E+00 4.06E+00  
Std 6.57E− 02 4.42E− 02 9.39E− 02 1.34E− 01 1.36E+00 2.17E+00 1.72E+00 

F23  Mean 2.22E− 20 9.39E− 17 2.96E− 15 3.88E− 16 1.83E− 10 2.41E− 13 2.81E− 12  
Std 7.01E− 20 2.90E− 17 1.42E− 15 2.15E− 16 9.82E− 11 3.91E− 13 3.91E− 12  

Table 5 
Results of unimodal benchmark functions.    

GEO GWO GA CSA PSO HS DA 

F1  Mean 0.00Eþ00 1.02E− 08 6.64E− 12 2.49E− 24 2.39E− 29 2.03E− 02 3.55E− 03  
Std 0.00E+00 8.77E− 09 1.69E− 11 4.24E− 24 7.54E− 29 2.38E− 02 1.83E− 02 

F2  Mean 1.99E− 94 3.67E¡320 9.64E− 14 1.40E− 25 5.85E− 33 4.27E− 03 4.21E− 06  
Std 5.15E− 94 0.00E+00 2.71E− 13 1.91E− 25 2.44E− 32 4.13E− 03 1.12E− 05 

F3  Mean 6.28E− 126 0.00Eþ00 7.28E− 14 3.81E− 25 7.63E− 45 2.33E− 05 4.72E− 07  
Std 1.73E− 125 0.00E+00 1.66E− 13 5.92E− 25 3.94E− 44 4.91E− 05 1.48E− 06 

F4  Mean ¡1.00Eþ00 ¡1.00Eþ00 − 1.00E+00 − 1.00E+00 − 5.92E− 01 − 9.93E− 01 − 9.56E− 01  
Std 3.24E− 16 0.00E+00 2.14E− 06 4.95E− 07 1.72E− 01 9.17E− 03 4.57E− 02 

F5  Mean − 4.91E+00 ¡5.00Eþ00 − 4.02E+00 − 4.21E+00 − 2.30E+00 − 1.59E+00 − 3.10E+00  
Std 7.41E− 03 1.21E− 07 4.41E− 02 4.04E− 02 2.10E− 01 7.41E− 02 4.32E− 01 

F6  Mean 4.56E− 12 8.01E¡77 1.15E− 01 1.75E− 02 9.68E+03 2.71E+02 8.99E+02  
Std 3.02E− 12 2.11E− 76 6.64E− 02 8.24E− 03 5.85E+03 3.40E+02 6.98E+02 

F7  Mean 3.22E¡14 3.07E− 01 3.79E− 04 7.83E− 05 2.68E+01 1.05E+00 3.30E+00  
Std 4.17E− 14 2.47E− 01 2.60E− 04 3.70E− 05 1.33E+01 3.08E+00 1.94E+00  
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Fig. 15. Boxplots of the results of CEC2017 composite functions.  

Table 7 
Results of composite benchmark functions.    

GEO GWO GA CSA PSO HS DA 

F24  Mean 2.34E+03 2.40E+03 2.44E+03 2.43E+03 2.55E+03 2.71E+03 2.59E+03  
Std 7.67E+00 4.95E+01 2.68E+01 2.92E+01 1.02E+01 2.68E+01 6.06E+01 

F25  Mean 2.30E+03 5.27E+03 2.31E+03 2.49E+03 3.05E+03 9.91E+03 8.19E+03  
Std 1.55E+00 2.23E+03 2.38E+00 8.56E+02 2.51E+02 5.42E+02 1.88E+03 

F26  Mean 2.69E+03 2.77E+03 2.87E+03 2.93E+03 2.89E+03 3.43E+03 3.07E+03  
Std 1.59E+01 5.40E+01 6.56E+01 9.81E+01 1.64E+01 5.66E+01 1.15E+02 

F27  Mean 2.85E+03 2.98E+03 3.02E+03 3.12E+03 3.05E+03 3.90E+03 3.22E+03  
Std 7.19E+00 7.30E+01 4.35E+01 1.27E+02 1.32E+01 1.25E+02 8.50E+01 

F28  Mean 2.93E+03 3.00E+03 2.95E+03 2.94E+03 3.38E+03 6.26E+03 3.27E+03  
Std 1.34E+01 5.77E+01 1.66E+01 2.19E+01 2.22E+02 1.05E+03 2.41E+02 

F29  Mean 4.00E+03 4.85E+03 6.09E+03 5.34E+03 6.42E+03 1.09E+04 7.30E+03  
Std 1.10E+03 4.68E+02 1.54E+03 1.47E+03 1.68E+02 1.15E+03 1.13E+03 

F30  Mean 3.26E+03 3.25E+03 3.38E+03 3.33E+03 3.26E+03 4.03E+03 3.40E+03  
Std 1.50E+01 1.59E+01 5.48E+01 6.93E+01 2.15E+01 2.14E+02 8.64E+01 

F31  Mean 3.27E+03 3.42E+03 3.29E+03 3.30E+03 3.59E+03 1.01E+04 3.90E+03  
Std 1.44E+01 9.23E+01 1.92E+01 2.32E+01 1.22E+02 1.72E+03 3.46E+02 

F32  Mean 3.70E+03 3.83E+03 4.25E+03 4.29E+03 4.60E+03 6.25E+03 4.92E+03  
Std 9.48E+01 1.97E+02 2.36E+02 2.13E+02 1.74E+02 4.03E+02 4.81E+02 

F33  Mean 1.47E+06 7.25E+06 8.56E+05 1.42E+06 4.97E+06 7.33E+08 3.16E+07  
Std 5.59E+05 5.10E+06 2.95E+05 1.38E+06 8.81E+06 3.44E+08 3.27E+07  
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3.7. Scalability analysis 

This subsection presents the results of the scalability analysis con
ducted to see how GEO is scalable for problems with a large number of 
decision variables. Six benchmark functions from different classes were 
considered for scalability analysis (F1 and F6 from unimodal functions, 
F16 and F20 form multimodal functions, and F25 and F29 from composite 
functions). In addition to GEO, all the other algorithms previously 
compared in this study also participate in this analysis for comparison. 
The experiment is carried out for 10D, 30D, 50D, and 100D since the 
CEC2017 test suite only supports these numbers of dimensions. The best 
objective value obtained and the computation time of each algorithm 
was recorded for 30 independent runs on each benchmark function. 
Fig. 17 displays the results for the best objective value obtained in the 
form of error bars. The center points show the arithmetic mean of the 30 
independent runs, while the upper and lower bars show the minimum 

and maximum objective values obtained. Results confirm GEO’s almost 
consistent performance as the dimensions rise. Fig. 18 shows the same 
statistics for computation times. It is observed that in terms of compu
tation time, GEO belongs to the midpack and can retain its relative 
computation time compared to other algorithms. This implies that the 
temporal performance of GEO is consistent relative to that of other al
gorithms when we transit from small to large problems. It worths noting 
that the plots in Figs. 17 and 18 have a logarithmic scale along the y-axis 
to better demonstrate the differences in small values. However, since 
logarithmically scaled plots cannot show the values exactly equal to 
zero. In this experiment, the maximum number of function evaluations 
of 106 was used, similar to the CEC2017 competition (Awad et al., 
2017), and a population size of 2 × D was used for all of the algorithms 
and all of the benchmark functions for the scalability analysis. 

Fig. 16. Convergence curve of GEO and compared algorithms.  

Fig. 17. Results of scalability analysis for objective value.  
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4. Multi-objective optimization results for MOGEO 

This section provides the results of applying MOGEO to multi- 
objective benchmark functions. The parameters specific to multi- 
objective optimization are set according to Table 8. For parameters 
that the algorithms share with their single-objective version, the pa
rameters introduced in Table 1 are used. Since both MOGEO, MOGWO, 
MOPSO, and MOSSA are archive-based solvers, a similar archive size is 
used for both of them. However, MOGEO does not use the grid mecha
nism and does not need parameters like the number of grids and grid 
multiplier. CEC2009 (Zhang, Zhou, Zhao, Suganthan, Liu, & Tiwari, 
2009) and DTLZ (Deb, Thiele, Laumanns, & Zitzler, 2005) test suites, 
which are among the most challenging test suites for multi-objective 
problems, are utilized to test the performance of MOGEO. Details of 
the mathematical formulation of CEC2009 and DTLZ benchmark func
tions are presented in Table 9 and Table 10, respectively. In consistence 
with previous experiments, the results of MOGEO are compared to that 
of four well-known multi-objective algorithms, namely Multi-Objective 
Grey Wolf Optimizer (MOGWO) (Mirjalili et al., 2016), Non-dominated 
Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2000), Multi- 
Objective Particle Swarm Optimization (MOPSO) (Coello Coello & 
Lechuga, 2002), and Multi-Objective Salp Swarm Algorithm (MOSSA) 
(Mirjalili et al., 2017). 

Since the solution to the multi-objective problems are a set of solu
tions rather than a single solution, the comparison of the Pareto fronts 
becomes an issue. Inverse Generational Distance (IGD) (Sierra & Coello 

Coello, 2005; Van Veldhuizen & Lamont, 1998) provides a way to 
quantify the obtained Pareto front by mapping the whole Pareto front to 
a single value that can be used for comparing the quality of the obtained 
Pareto fronts. It measures the average distance between each member of 
the true Pareto front to the nearest member of the obtained Pareto front. 

IGD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1d

2
i

√

n
(13)  

where di is the Euclidean distance between the i-th member of the true 
Pareto front and the nearest member of the obtained Pareto front and n 
is the total number of members of the true Pareto front. 

Table 11 presents the arithmetic mean, and the standard deviation of 
the IGD score calculated for each of the 30 independent runs of each 
algorithm on each of the multi-objective benchmark functions. It reveals 
that MOGEO outperformed the other algorithms in eight of the multi- 
objective benchmark functions. MOGEO was also able to provide more 
stable results in three of the problems in the test suite. This confirms that 
MOGEO can successfully handle multi-objective optimization problems. 
MOGEO’s higher rate of converging to the optimal Pareto front can be 
attributed to the fact the search agents always choose prey from the 
external archive that stores the Pareto front obtained so far. The archive 
update mechanism, when triggered, usually drop a member from the 
most densely populated areas of the archive, which helps MOGEO 
converge to more uniformly distributed fronts. The good exploration 
mechanism of GEO, which also benefits MOGEO and was numerically 
proved in the previous section, helps MOGEO avoid local fronts to 
converge to the true Pareto front. Fig. 19 displays the best Pareto front 
(out of the 30 independent runs) by the tested algorithms in terms of 
IGD. 

MOGEO is also tested on the DTLZ test suite, which is another 
challenging multi-objective test suite. A notable feature of this test suite 
is its scalability in the number of objectives. In other words, this test 
suite can be used with any number of objective functions. In this study, 
we focus on problems with two and three objectives. Table 12 displays 
the arithmetic mean and the standard deviation of IGD scores for 30 
independent runs of MOGEO on the problems of the DTLZ test suite with 
two and three objective functions. It is revealed that MOGEO is able to 
outperform the other algorithms in one problem out of seven bi- 
objective problems, and two out of seven tri-objective problems. 
MOGEO has provided competitive results in other problems. Figs. 20 
and 21 display the best optimal Pareto front achieved by the algorithms, 
according to IGD scores. 

Fig. 18. Results of scalability analysis for computation time.  

Table 8 
Parameter setting for multi-objective benchmark functions.  

Algorithm Parameter Value 

All algorithms Population size 200 
MOGEO Archive size 100 
MOGWO Archive size 100  

Number of grids 20  
Grid multiplier 10 

NSGA-II – – 
MOPSO Archive size 100  

Number of grids 20  
Grid multiplier 10 

MOSSA Archive size 100  
Number of grids 20  
Grid multiplier 10  
Number of leader salps Population size / 2  
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Table 9 
Multi-objective benchmark functions from the CEC2009 test suite.  

Name Equation D  

UF1 ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = x1 +
2
|J1|

∑

j∈J1

[

xj − sin
(

6πx1 +
jπ
n

)]2

f2(x) = 1 −
̅̅̅̅̅
x1

√
+

2
|J2|

∑

j∈J2

[

xj − sin
(

6πx1 +
jπ
n

)]2 

J1 = {j|jis odd and2 ≤ j ≤ n},J2 = {j|jis even and2 ≤ j ≤ n}

30 

UF2 ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x) = x1 +
2
|J1|

∑

j∈J1

y2
j

f2(x) = 1 −
̅̅̅̅̅
x1

√
+

2
|J2|

∑

j∈J2

y2
j 

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xj −

[

0.3x2
1cos

(

24πx1 +
4jπ
n

)

+ 0.6x1

]

cos
(

6πx1 +
jπ
n

)

j ∈ J1

xj −

[

0.3x2
1cos

(

24πx1 +
4jπ
n

)

+ 0.6x1

]

cos
(

6πx1 +
jπ
n

)

j ∈ J2  

30 

UF3 ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = x1 +
2
|J1|

(

4
∑

j∈J1

y2
j − 2

∏

j∈J1
cos

(
20yjπ
̅̅
j

√

)

+ 2

)

f2(x) = 1 −
̅̅̅̅̅
x1

√
+

2
|J2|

(

4
∑

j∈J2

y2
j − 2

∏

j∈J2
cos

(
20yjπ
̅̅
j

√

)

+ 2

)

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj = xj − x
0.5

(

1+
3(j − 2)
n − 2

)

1 , j = 2,⋯,n  

30 

UF4 ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x) = x1 +
2
|J1|

∑

j∈J1

h
(

yj

)

f2(x) = 1 − x2
1 +

2
|J2|

∑

j∈J2

h
(

yj

)

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj = xj − sin
(

6πx1 +
jπ
n

)

, j = 2,⋯,n,h(t) =
|t|

1 + e2|t|

30 

UF5 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = x1 +

(
1

2N
+ ε
)

|sin(2Nπx1) | +
2
|J1|

∑

j∈J1

h
(

yj

)

f2(x) = 1 − x1 +

(
1

2N
+ ε
)

|sin(2Nπx1) | +
2
|J2 |

∑

j∈J2

h
(

yj

)

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj = xj − sin
(

6πx1 +
jπ
n

)

, j = 2,⋯,n, h(t) = 2t2 − cos(4πt) + 1, N is an integer,ε > 0  

30 

UF6 ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = x1 + max
{

0,2
(

1
2N

)

sin(2Nπx1)

}

+
2
|J1|

(

4
∑

j∈J1

y2
j − 2

∏

j∈J1
cos

(
20yjπ
̅̅
j

√

)

+ 2

)

f2(x) = 1 − x1 + max
{

0,2
(

1
2N

)

sin(2Nπx1)

}

+
2
|J2|

(

4
∑

j∈J2

y2
j − 2

∏

j∈J2
cos

(
20yjπ
̅̅
j

√

)

+ 2

)

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj = xj − sin
(

6πx1 +
jπ
n

)

, j = 2,⋯,n  

30 

UF7 ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x) =
̅̅̅̅̅
x1

5
√

+
2
|J1|

∑

j∈J1

y2
j

f2(x) = 1 −
̅̅̅̅̅
x1

5
√

+
2
|J2|

∑

j∈J2

y2
j 

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj = xj − sin
(

6πx1 +
jπ
n

)

, j = 2,⋯,n  

30 

UF8 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = cos(0.5x1π)cos(0.5x2π) +
2
|J1|

∑

j∈J1

(

xj − 2x2sin
(

2πx1 +
jπ
n

))2

f2(x) = cos(0.5x1π)cos(0.5x2π) +
2
|J2|

∑

j∈J2

(

xj − 2x2sin
(

2πx2 +
jπ
n

))2

f3(x) = sin(0.5x1π) +
2
|J3|

∑

j∈J3

(

xj − 2x2sin
(

2πx1 +
jπ
n

))2 

J1 = {j|3 ≤ j ≤ n, andj − 1is a mulitplication of3}, 
J2 = {j|3 ≤ j ≤ n, andj − 2is a mulitplication of3}, 
J3 = {j|3 ≤ j ≤ n, andjis a mulitplication of3}

30 

UF9 30 

(continued on next page) 
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5. Engineering benchmark tests 

In order to test how the proposed GEO can solve real-world engi
neering problems, the proposed GEO is applied to five well-known en
gineering benchmark problems in this section. The nonlinear nature of 
many engineering optimization problems makes metaheuristic algo
rithms a compelling candidate for solving these problems. In this study, 
we solve the following engineering benchmark problems: three-bar truss 
design, cantilever beam design, tension/compression spring design, and 
welded beam design. In all of the tests, the results of GEO is compared to 
that of other metaheuristic methods that are already used in previous 
sections. 

5.1. Constraint handling method 

The distinguishing feature of the benchmark problems of this section 
is that they contain constraints. Therefore, the constraints should be 
handled properly so that the obtained results do not significantly violate 
the constraints. Constraint handling is one of the challenges in optimi
zation problems, and various methods have been proposed to overcome 
this challenge. We use the penalty function approach in this study. The 
penalty function can be defined as (14) (Yang & Karamanoglu, 2013). 

F
(
x,mi, vj

)
= f (x) +

∑M

i=1
miφ2

i +
∑N

j=1
vjω2

j (14)  

where f(x) is the original objective function, M is the number of 
inequality constraints, mi is the penalty factor for inequality constraints, 
and φi is the amount of constraint violation for the i-th inequality 
constraint, N is the number of equality constraints, vj is the penalty 
factor for equality constraints, and ωj is the amount of constraint 
violation for the j-th equality constraint. The advantage of using the 
penalty function is that it transforms the constrained problem into an 
unconstrained problem. Important notice for implementing penalty 
function is to assign suitable values for penalty factors (mi and vj). We 
use 1015 for both of the penalty factors, which is suitable in this regard 
(Yang, 2014). 

5.2. Three-bar truss design 

This engineering problem seeks to find the area of bars 1 (x1) and 3 
(x2) that minimizes the total weight of the truss. The structure of the 
three-bar design problem is presented in Fig. 22, and the mathematical 

formulation is shown in Eq. (15). 

Minimize f ( x→) =
(

2
̅̅̅
2

√
x1 + x2

)
× l

Subjectto :

g1( x→) =

̅̅̅
2

√
x1 + x2

̅̅̅
2

√
x2

1 + 2x1x2
P − σ ≤ 0

g2( x→) =
x2

̅̅̅
2

√
x2

1 + 2x1x2
P − σ ≤ 0

g3( x→) =
1

̅̅̅
2

√
x2 + x1

P − σ ≤ 0

Where

l = 100 cm, P = 2 KN/cm2, σ = 2 KN/cm2, 0 ≤ x1, x2 ≤ 1

(15) 

Optimal values of decision variables (xj), constraint violation (gi), 
and the optimal objective function values (f) obtained by applying GEO 
and other algorithms on the three-bar truss design problem are tabulated 
in Table 13. It reveals that the proposed GEO can outperform GWO, GA, 
PSO, HS, and DA while showing competitive results compared to CSA. It 
can also be witnessed that the first constraint (g1) is active in the optimal 
solution, and GEO is among the algorithms that have the smallest 
constraint violation. This confirms that the proposed algorithm can 
perform quite well in constrained problems. 

Table 13 only showed the best obtained results. To see which algo
rithms have similar performance, we need to take into account the re
sults of all of the 30 runs of the algorithms on the problem. A Kruskal- 
Wallis test is performed here to see whether the mean objective func
tion obtained by algorithms are significantly different. Table 14 shows 
that the null hypothesis is rejected. In other words, one or more of the 
algorithms has significantly different performance compared to the 
others. To find out which algorithms perform statistically similar, a 
multiple comparisons (post hoc) test is performed. Fig. 23 shows the 
confidence intervals of the Tukey-Kramer test, which reveals that GEO 
has statistically similar performance compared to GWO. 

5.3. Cantilever beam design 

This problem considers finding the height of five attached hollow 
blocks (h1 to h5) in the form of a cantilever beam so that the total weight 
of the structure is minimized. The structure of the cantilever beam is 

Table 9 (continued ) 

Name Equation D  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = 0.5
[
max

{
0, (1 + ε)

(
1 − 4(2x1 − 1)2

)}
+ 2x1

]
x2 +

2
|J1|

∑

j∈J1

(

xj − 2x2sin
(

2πx1 +
jπ
n

))2

f2(x) = 0.5
[
max

{
0, (1 + ε)

(
1 − 4(2x1 − 1)2

)}
− 2x1 + 2

]
x2 +

2
|J2|

∑

j∈J2

(

xj − 2x2sin
(

2πx2 +
jπ
n

))2

f3(x) = 1 − x2 +
2
|J3|

∑

j∈J3

(

xj − 2x2sin
(

2πx1 +
jπ
n

))2 

J1 = {j|3 ≤ j ≤ n, andj − 1is a mulitplication of3}, 
J2 = {j|3 ≤ j ≤ n, andj − 2is a mulitplication of3},J3 = {j|3 ≤ j ≤ n, andjis a mulitplication of3}

UF10 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = cos(0.5x1π)cos(0.5x2π) +
2
|J1|

∑

j∈J1

[
4y2

j − cos
(

8πyj

)
+ 1

]

f2(x) = cos(0.5x1π)cos(0.5x2π) +
2
|J2|

∑

j∈J2

[
4y2

j − cos
(

8πyj

)
+ 1

]

f3(x) = sin(0.5x1π) +
2
|J3 |

∑

j∈J3

[
4y2

j − cos
(

8πyj

)
+ 1

]

J1 = {j|3 ≤ j ≤ n, andj − 1is a mulitplication of3}, 
J2 = {j|3 ≤ j ≤ n, andj − 2is a mulitplication of3}, 
J3 = {j|3 ≤ j ≤ n, andjis a multiplication of3}, 

yj = xj − 2x2sin
(

2πx1 +
jπ
n

)

, j = 3,⋯,n  

10  
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Table 10 
Multi-objective benchmark functions from the DTLZ test suite.  

Name Equation D  Number of objectives 

DTLZ 1 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) =
1
2
x1x2⋯xM− 1(1 + g(xM) )

f2(x) =
1
2
x1x2⋯(1 − xM− 1)(1 + g(xM) )

⋮

fM− 1(x) =
1
2
x1(1 − x2)(1 + g(xM) )

fM(x) =
1
2
(1 − x1)(1 + g(xM) )

g(xM) = 100
[
|xM| +

∑
xi∈xM

(xi − 0.5)2
− cos(20π(xi − 0.5) )

]

0 ≤ x ≤ 1, for i = 1,2,⋯,n  

3 2, 3 

DTLZ 2 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = (1 + g(xM) )cos
(

x1
π
2

)
⋯cos

(
xM− 2

π
2

)
cos
(

xM− 1
π
2

)

f2(x) = (1 + g(xM) )cos
(

x1
π
2

)
⋯cos

(
xM− 2

π
2

)
sin
(

xM− 1
π
2

)

f3(x) = (1 + g(xM) )cos
(

x1
π
2

)
⋯sin

(
xM− 2

π
2

)

⋮

fM(x) = (1 + g(xM) )sin
(

x1
π
2

)

g(xM) =
∑

xi∈xM
(xi − 0.5)2 

0 ≤ x ≤ 1, fori = 1,2,⋯,n  

10 2, 3 

DTLZ 3 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = (1 + g(xM) )cos
(

x1
π
2

)
⋯cos

(
xM− 2

π
2

)
cos
(

xM− 1
π
2

)

f2(x) = (1 + g(xM) )cos
(

x1
π
2

)
⋯cos

(
xM− 2

π
2

)
sin
(

xM− 1
π
2

)

f3(x) = (1 + g(xM) )cos
(

x1
π
2

)
⋯sin

(
xM− 2

π
2

)

⋮

fM(x) = (1 + g(xM) )sin
(

x1
π
2

)

g(xM) = 100
[
|xM| +

∑
xi∈xM

(xi − 0.5)2
− cos(20π(xi − 0.5) )

]

0 ≤ x ≤ 1, fori = 1,2,⋯,n  

3 2, 3 

DTLZ 4 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = (1 + g(xM) )cos
(

xα1
π
2

)
⋯cos

(
xαM− 2

π
2

)
cos
(

xαM− 1
π
2

)

f2(x) = (1 + g(xM) )cos
(

xα1
π
2

)
⋯cos

(
xαM− 2

π
2

)
sin
(

xαM− 1
π
2

)

f3(x) = (1 + g(xM) )cos
(

xα1
π
2

)
⋯sin

(
xαM− 2

π
2

)

⋮

fM(x) = (1 + g(xM) )sin
(

xα1
π
2

)

g(xM) =
∑

xi∈xM
(xi − 0.5)2 

α = 100 
0 ≤ x ≤ 1, fori = 1,2,⋯,n  

30 2, 3 

DTLZ 5 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = (1 + g(xM) )cos
(
θ1
π
2

)
⋯cos

(
θM− 2

π
2

)
cos
(
θM− 1

π
2

)

f2(x) = (1 + g(xM) )cos
(
θ1
π
2

)
⋯cos

(
θM− 2

π
2

)
sin
(
θM− 1

π
2

)

f3(x) = (1 + g(xM) )cos
(
θ1
π
2

)
⋯sin

(
θM− 2

π
2

)

⋮

fM(x) = (1 + g(xM) )sin
(
θ1
π
2

)

g(xM) =
∑

xi∈xM
(xi − 0.5)2 

θi =
π

4(1 + g(xM) )
(1 + 2g(xM)xi ), fori = 2,3,⋯, (M − 1)

0 ≤ x ≤ 1, fori = 1,2,⋯,n  

30 2, 3 

DTLZ 6 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = (1 + g(xM) )cos
(
θ1
π
2

)
⋯cos

(
θM− 2

π
2

)
cos
(
θM− 1

π
2

)

f2(x) = (1 + g(xM) )cos
(
θ1
π
2

)
⋯cos

(
θM− 2

π
2

)
sin
(
θM− 1

π
2

)

f3(x) = (1 + g(xM) )cos
(
θ1
π
2

)
⋯sin

(
θM− 2

π
2

)

⋮

fM(x) = (1 + g(xM) )sin
(
θ1
π
2

)

g(xM) =
∑

xi∈xM
x0.1

i 

θi =
π

4(1 + g(xM) )
(1 + 2g(xM)xi ), fori = 2,3,⋯, (M − 1)

0 ≤ x ≤ 1, fori = 1,2,⋯,n  

10 2, 3 

DTLZ 7 30 2, 3 

(continued on next page) 
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presented in Fig. 24, and the mathematical programming formulation is 
shown in Eq. (16). 

Consider x→= [x1, x2, x3, x4, x5] = [h1, h2, h3, h4, h5]

Minimize f ( x→) = 0.0624(x1 + x2 + x3 + x4 + x5)

Subject to :

g1( x→) =
61
x3

1
+

37
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≤ 0

Where

0 ≤ xi ≤ 100

(16) 

Table 15 displays the best results obtained from GEO and other 
competing algorithms. This table shows that GEO outperforms GWO, 
GA, PSO, and HS while providing competitive results compared to CSA 
and DA in terms of optimal objective value and constraint violation. 

Table 16 shows that the null hypothesis of the Kruskal-Wallis test is 
rejected for the cantilever beam design problem. Fig. 25 displays the 
results of the multiple comparisons test and reveals that GEO has sta
tistically similar performance to GA in this problem. 

5.4. Tension/compression spring design 

This problem considers minimizing the total weight of a tension/ 
compression spring, considering diameter (d), mean coil diameter (D), 
and the number of active coils (P) as the three design variables. The 
structure of the tension/compression spring is shown in Fig. 26, and the 
mathematical formulation of this problem is presented in Eq. (17). 

Consider x→= [x1x2, x3] = [d,D,P]

Minimize f ( x→) = (x3 + 2)x2x2
1

Subject to :

g1( x→) = 1 −
x3

2x3

71785x4
1
≤ 0

g2( x→) =
4x2

2 − x1x2

12566(x3
1 − x

4
1

) −
1

5108x2
1
≤ 0

g3( x→) = 1 −
140.45x1

x2
2x3

≤ 0

g4( x→) =
x1 + x2

1.5
≤ 0

Where

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

(17) 

Table 17 tabulates the obtained values for design variables (xj), 
constraint violations (gi), and the objective function for GEO and other 
algorithms. It is evident in this table that the proposed GEO outperforms 
GWO, PSO, HS, and DA while providing competitive results in com
parison to GA, and CSA. 

Table 18 shows that the null hypothesis of the Kruskal-Wallis test is 
rejected for the tension/compression spring design problem. Fig. 27 
displays the results of the multiple comparisons test and shows that no 
other algorithm perform statistically similar to GEO. 

5.5. Welded beam design 

The objective of this problem is to find optimal values for the 
thickness of weld (h), length (l), height (t), and thickness of the bar (b) 
that minimizes the total cost of manufacturing a welded beam. The 
structure of the considered design is presented in Fig. 28, and the cor
responding mathematical formulation is shown in Eq. (18).   

Table 10 (continued ) 

Name Equation D  Number of objectives 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x1) = x1
f2(x2) = x2
⋮
fM− 1(xM− 1) = xM− 1
fM(x) = (1 + g(xM) )h(f1, f2,⋯, fM− 1, g)

g(xM) = 1+
9

|xm|

∑

xi∈xM

xi 

h(f1, f2,⋯, fM− 1, g) = M −
∑M− 1

i=1

[
fi

1 + g
(
1 + sin

(
3πfi

) )
]

0 ≤ x ≤ 1, fori = 1,2,⋯,n   

Table 11 
Results of IGD scores for CEC 2009 multi-objective benchmark functions.    

MOGEO MOGWO NSGA-II MOPSO MOSSA 

UF1 Mean  0.004  0.0057  0.0066  0.0052  0.0058  
Std  0.0004  0.0005  0.0018  0.0007  0.0003 

UF2 Mean  0.0024  0.0036  0.0039  0.0032  0.0036  
Std  0.0004  0.0005  0.0007  0.0002  0.0005 

UF3 Mean  0.009  0.0171  0.0148  0.0204  0.0134  
Std  0.0013  0.003  0.0016  0.0003  0.0045 

UF4 Mean  0.0024  0.0049  0.0063  0.006  0.0047  
Std  0.0001  0.0004  0.0004  0.0002  0.0005 

UF5 Mean  0.1915  0.1994  0.1462  0.1944  0.1558  
Std  0.061  0.0868  0.0628  0.1051  0.0284 

UF6 Mean  0.0173  0.021  0.0219  0.0248  0.0104  
Std  0.0056  0.0074  0.006  0.007  0.0028 

UF7 Mean  0.0021  0.0064  0.0169  0.0112  0.0042  
Std  0.0001  0.0065  0.0079  0.0072  0.0003 

UF8 Mean  0.0121  0.052  0.0169  0.0142  0.0207  
Std  0.0027  0.0188  0.0012  0.0005  0.0032 

UF9 Mean  0.0137  0.0176  0.0221  0.0176  0.0291  
Std  0.0035  0.0019  0.005  0.0016  0.0087 

UF10 Mean  0.0219  0.0918  0.0828  0.0486  0.0585  
Std  0.0067  0.1208  0.0365  0.0166  0.0304  
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Table 19 tabulates the results obtained by solving this problem using 
GEO and other competing algorithms. This table shows that GEO out
performs GWO, GA, PSO, HS, and DA, and provides competitive results 
compared to CSA. This confirms the ability of the proposed GEO to solve 
problems with multiple nonlinear constraints efficiently. 

Table 20 shows that the null hypothesis of the Kruskal-Wallis test is 
rejected for the welded beam design problem. Fig. 29 displays the results 
of the multiple comparisons test and shows that GEO performs statisti
cally similar to GA and CSA. 

6. Conclusion 

This work proposed a new swarm-intelligence metaheuristic algo
rithm for solving optimization problems, called Golden Eagle Optimizer 
(GEO). The algorithm starts off with an initial population and mimics 
the hunting procedure of golden eagles to improve the fitness of the 
population and find the optimum. Particularly, GEO is based on the fact 
that golden eagles’ behavior in any instance during the hunting flight is 
influenced by the propensity to attack and propensity to cruise. Golden 
eagles memorize the best preys they have visited and sometimes 
communicate prey’s location with other eagles. The mathematical 
equations proposed for GEO simulate attack and cruise vectors to 
address exploitation and exploitation for solving optimization problems. 
Besides, the multi-objective version of the algorithm, called Multi- 
Objective Golden Eagle Optimizer (MOGEO), was proposed based on 
the main concepts of GEO with some modifications. The modification 
was implemented on prey selection, best solution preservation mecha
nism (external archive), and archive handling. MATLAB toolboxes and 

the source code are developed for GEO and MOGEO and publicly 
available. 

To certify the performance and efficiency of the proposed algo
rithms, GEO was tested on 33 benchmark problems from different 
classes, including unimodal, multimodal, and composite benchmark 
functions. The CEC2017 test suite was utilized for composite benchmark 
functions. Results were compared to that of six other well-known met
aheuristic algorithms via different statistical measures. It was revealed 
that GEO is capable of exploring the landscape through intense and 
abrupt movements in the initial stages of the search and converge to
ward the promising areas by exploiting the best solutions found over the 
course of iterations. GEO outperformed other algorithms in the majority 
of the benchmark problems while providing competitive results in the 
others. GEO was also used to solve real-world engineering problems, 
where it showed promising performance. The results indicate that GEO 
is able to find the global optimum of optimization problems with chal
lenging and unknown search spaces. 

MOGEO’s performance was tested using the CEC2009 and DTLZ test 
suite, which are specially designed for testing multi-objective algo
rithms. The results of MOGEO was compared to that of four other well- 
known multi-objective algorithms. MOGEO was able to provide 
competitive results, and in many cases, outperform the other algorithms 
in approximating the true Pareto front in challenging multi-objective 
problems. 

It worths noting that the proposed GEO and MOGEO algorithms treat 
single- and multi-objective problems as a black box; therefore, they can 
be applied to any type of optimization problems, including NP-hard 
ones, as long as the problem is properly formulated. In addition, since 

Consider x→= [x1, x2, x3x4] = [h, l, t, b]

Minimize f ( x→) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2)

Subject to :

g1( x→) = τ( x→) − τmax ≤ 0

g2( x→) = σ( x→) − σmax ≤ 0

g3( x→) = δ( x→) − δmax ≤ 0

g4( x→) = x1 − x4 ≤ 0

g5( x→) = P − P( x→) ≤ 0

g6( x→) = 0.125 − x1 ≤ 0

g7( x→) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2) − 5 ≤ 0

Where

τ( x→) =
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65856000

(
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0.1 ≤ x1, x4 ≤ 2, 0.1 ≤ x2, x3 ≤ 10

(18)   
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Fig. 19. Best Pareto fronts achieved by multi-objective solvers for the CEC 2009 test suite.  
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Table 12 
Results of IGD scores for DTLZ multi-objective benchmark functions.      

2 objectives   3 objectives     

MOGEO MOGWO NSGA-II MOPSO MOSSA MOGEO MOGWO NSGA-II MOPSO MOSSA 

DTLZ 1 Mean   21.485  20.203  5.1113  8.0282  19.033  10.32  19.551  11.144  7.8028  22.037  
Std   4.9369  4.09  1.192  3.9383  3.9375  2.9302  4.2953  5.644  3.0162  9.8469 

DTLZ 2 Mean   6.9452  6.9041  6.3703  7.0545  6.714  8.8323  8.7484  7.9095  8.0977  7.8462  
Std   0.0517  0.0877  0.3375  0.069  0.0829  0.1367  0.6491  0.5309  0.0633  0.1516 

DTLZ 3 Mean   18.697  19.729  7.7265  11.992  14.603  17.828  29.794  18.911  12.314  27.624  
Std   6.3404  5.8729  1.8664  4.5917  4.3449  3.7691  4.8473  10.023  4.7149  8.7055 

DTLZ 4 Mean   7.3187  7.4069  5.582  7.0472  7.4759  10.862  12.235  10.419  11.81  9.6378  
Std   0.1105  0.6238  2.5732  0.8244  0.639  0.2894  0.3679  2.164  0.3363  0.1586 

DTLZ 5 Mean   6.8398  7.5905  7.6684  7.0497  6.4997  6.9365  9.1043  8.1875  7.2588  6.494  
Std   0.0449  0.1959  1.9841  0.1487  0.0781  0.0877  0.436  2.2108  0.2541  0.0643 

DTLZ 6 Mean   7.238  8.9986  18.839  13.906  8.2068  7.5248  17.023  21.946  27.102  9.8256  
Std   0.1464  0.7214  2.2866  1.0908  0.3778  0.3463  1.1571  1.3502  0.0761  0.8706 

DTLZ 7 Mean   8.6588  10.611  15.664  8.6916  8.5328  10.767  14.47  24.438  12.288  12.412  
Std   0.0824  1.197  1.7947  1.1061  0.9813  0.2797  6.0019  2.4592  0.2514  0.8748  

Fig. 19. (continued). 
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Fig. 20. Best Pareto fronts achieved by multi-objective solvers for the DTLZ test suite with two objectives.  
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Fig. 21. Best Pareto fronts achieved by multi-objective solvers for the DTLZ test suite with three objectives.  
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the proposed algorithms are able to solve optimization problems with 
continuous variables, some modifications may be needed for applying 
the GEO and MOGEO on problems with non-continuous decision space. 
There are opens avenues for future researches to proposed suitable op
erators to enhance the performance of the proposed algorithms on 
different types of problems. It is also perceived from the experiments 
that the introduction of the cruise vector provides good exploration in 
comparison to Exploitation capabilities in GEO and MOGEO. This 

Table 13 
Best results obtained from algorithms for the three-bar truss design problem.   

GEO GWO GA CSA PSO HS DA 

x1   0.7886711  0.7887804  0.7886422  0.7886751  0.7882546  0.7895572  0.7883714 
x2   0.4082597  0.4079592  0.4083416  0.4082483  0.4094389  0.4060659  0.409108 
g1   − 3.46E − 10  − 6.54E − 06  − 2.18E − 08  6.75E − 14  − 1.34E − 08  − 2.33E − 04  7.33E − 14 
g2   − 1.46E + 00  − 1.46E + 00  − 1.46E + 00  − 1.46E + 00  − 1.46E + 00  − 1.47E + 00  − 1.46E + 00 
g3   − 5.36E − 01  − 5.36E − 01  − 5.36E − 01  − 5.36E − 01  − 5.37E − 01  − 5.34E − 01  − 5.37E − 01 
f(Weight)   263.89584  263.89671  263.89585  263.89584  263.89598  263.9271  263.89591  

Fig. 23. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons (Post hoc) test for the results of the three-bar truss design problem.  
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Fig. 22. The three-bar truss design problem.  Fig. 24. Cantilever beam design problem.  

Table 14 
Kruskal-Wallis table for the results of the three-bar truss design problem.  

Source SS df MS χ2  p-value  

Groups 694319.9 6 115,720  188.0368 6.65E–38 
Error 77406.13 203 381.311  – – 
Total 771,726 209 –  – –  

Table 15 
Best results obtained from algorithms for the cantilever beam design problem.   

GEO GWO GA CSA PSO HS DA 

x1(h1) 6.0156663  6.0109041  6.0439109  6.016015  5.9776207  5.4129259  6.0643788 
x2(h2) 5.30926  5.3127046  5.298085  5.3090164  5.3779792  5.4129259  5.111031 
x3(h3) 4.4944048  4.491602  4.4836003  4.4939648  4.4484496  5.4129259  4.7138404 
x4(h4) 3.5016424  3.4951881  3.4868247  3.5020552  3.5336466  3.6742979  3.4824003 
x5(h5) 2.1526862  2.1635477  2.161796  2.1526086  2.1450825  2.2792842  2.1387489 
g1   − 1.64E − 09  − 1.93E − 05  − 3.23E − 07  − 6.94E − 09  − 7.39E − 04  − 3.67E − 02  2.00E − 15 
f(Weight)   13.365206  13.365384  13.365553  13.365206  13.370881  13.812525  13.388073  
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enables these algorithms to perform better on problems with unknown 
or more complex landscapes than unimodal functions. Future studies are 
encouraged to expand the concept of exploitation of GEO in unimodal 
functions. Therefore, the area for improvement of this algorithm is to 
modify the exploitation aspects of GEO. 

Future works can also develop new mechanisms for the algorithm or 
enhance the existing ones for performance improvement. New prey se
lection mechanisms can be proposed to enhance the performance of the 
existing approach for both GEO and MOGEO based on, for example, 
statistical probability functions. For randomizing the attack, cruise, and 
the step vector, a uniform distribution is used in this work, which can be 
extended to other approaches for randomization, e.g., Lévy flights. 

Table 17 
Best results obtained from algorithms for tension/compression spring design problem.   

GEO GWO GA CSA PSO HS DA 

x1(d) 0.0518499  0.0513858  0.0516977  0.0516892  0.050814 0.05  0.0516531 
x2(D) 0.3605987  0.3493298  0.3569189  0.3567214  0.3359981 0.3106913  0.3558539 
x3(P) 11.065069  11.743531  11.277477  11.288753  12.622433 15  11.347604 
g1   − 2.99E − 06  − 2.26E − 04  − 6.76E − 07  − 4.74E − 10  − 4.29E − 04 − 2.69E − 03  − 6.89E − 04 
g2   − 1.36E − 06  − 3.14E − 04  − 1.78E − 05  − 8.42E − 11  − 7.27E − 05 − 1.67E − 02  − 8.95E − 10 
g3   − 4.06E + 00  − 4.04E + 00  − 4.05E + 00  − 4.05E + 00  − 4.01E + 00 − 3.85E + 00  − 4.05E + 00 
g4   − 7.25E − 01  − 7.33E − 01  − 7.28E − 01  − 7.28E − 01  − 7.42E − 01 − 7.60E − 01  − 7.28E − 01 
f(Weight)   0.0126658  0.0126771  0.0126657  0.0126652  0.012686 0.0132044  0.0126727  

Fig. 27. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons 
(Post hoc) test for the results of the cantilever beam design problem. 

Fig. 25. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons 
(Post hoc) test for the results of the cantilever beam design problem. 

Table 16 
Kruskal-Wallis table for the results of the cantilever beam design problem.  

Source SS df MS χ2  p-value  

Groups  713751.2 6  118958.5  193.3006 5.05E–39 
Error  57969.3 203  285.5631  – – 
Total  771720.5 209  –  – –  

Fig. 26. Tension/compression spring design problem.  
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Fig. 28. The welded beam design problem.  

Table 18 
Kruskal-Wallis table for the results of the tension/compression spring design 
problem.  

Source SS df MS χ2  p-value  

Groups  630327.2 6  105054.5  170.708 3.18E–34 
Error  141390.3 203  696.5039  – – 
Total  771717.5 209  –  – –  
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Fig. 29. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons 
(Post hoc) test for the results of the welded beam design problem. 
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