
Computers & Industrial Engineering 152 (2021) 107050

Available online 17 December 2020
0360-8352/© 2020 Elsevier Ltd. All rights reserved.

Golden eagle optimizer: A nature-inspired metaheuristic algorithm

Abdolkarim Mohammadi-Balani a, Mahmoud Dehghan Nayeri a,*, Adel Azar a,
Mohammadreza Taghizadeh-Yazdi b

a Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran
b Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran

A R T I C L E I N F O

Keywords:
Golden eagle optimizer
Multi-objective golden eagle optimizer
Nature-inspired computing
Swarm intelligence
Metaheuristic algorithm

A B S T R A C T

This paper proposes a nature-inspired swarm-based metaheuristic for solving global optimization problems
called Golden Eagle Optimizer (GEO). The core inspiration of GEO is the intelligence of golden eagles in tuning
speed at different stages of their spiral trajectory for hunting. They show more propensity to cruise around and
search for prey in the initial stages of hunting and more propensity to attack in the final stages. A golden eagle
adjusts these two components to catch the best possible prey in feasible region the shortest possible time. This
behavior is mathematically modeled to highlight exploration and exploitation for a global optimization method.
The performance of the proposed algorithm is tested and confirmed using 33 benchmark test functions and a
scalability test. Results were compared to that of six other well-known algorithms, which revealed GEO’s su
periority, which indicates that it can find the global optimum and avoid local optima effectively. The Multi-
Objective Golden Eagle Optimizer (MOGEO) is also proposed to solve multi-objective problems. The perfor
mance of MOGEO is also tested and verified on ten multi-objective benchmark functions. Results were compared
to that of two other multi-objective algorithms, which showed that it can approximate true Pareto optimal so
lutions better than the other two algorithms. The software (toolbox) and source code for GEO and MOGEO are
also provided, which are publicly available.

1. Introduction

Optimization is the process of finding the state of decision/design
variables that yields the best value for single or multiple objective
functions. Analytical methods were the dominant approach to solve
mathematical problems before the heuristic optimization era. In addi
tion to the primary information on the objective function value and
constraint violation, analytical methods rely on the information about
the derivatives of the sole or constraint-penalized objective functions in
the form of first- and second-order derivatives. This extra information
enables them to find the exact optimum for linear or convex non-linear
problems efficiently. However, this comes at the cost of vulnerability to
local optima entrapment in more complex problems–that has many local
optima–and unavailability for problems with stochastic or unknown
search space (Mirjalili, 2015). The stochastic behavior and unknown
search space are the prominent features of real-world problems. This led
to the advent of metaheuristic algorithms. The notable characteristics of

metaheuristic algorithms are that they are derivative-free and do not
require limiting assumptions. Therefore, they can be readily utilized for
solving different classes of problems (Rakotonirainy & van Vuuren,
2020).

Such flexibility, however, is not costless. It has been observed, and
later addressed as the No Free Lunch (NFL) theorem (Wolpert & Mac
ready, 1997), that the excellent performance of an optimization algo
rithm on a specific set of problems does not guarantee the same
performance on other problems. NFL provides an avenue for researchers
to develop novel metaheuristic algorithms. Relative simplicity in un
derstanding and application, as well as good performance, have resulted
in the popularity of metaheuristic algorithms (Massan, Wagan, &
Shaikh, 2020). Numerous algorithms have been introduced recently to
solve business and engineering problems effectively.

Metaheuristic methods can be classified through various approaches.
One common approach suggests classifying these methods based on the
source inspiration: (a) evolutionary, (b) human-based, (c) physics-

* Corresponding author at: Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Adjacent Gisha Bridge,
Jalal Al-Ahmad Highway, P.O. Box: 14115-111, Postal Code: 1411713116, Tehran, Iran.

E-mail addresses: a_mohammadi@modares.ac.ir (A. Mohammadi-Balani), mdnayeri@modares.ac.ir (M. Dehghan Nayeri), azara@modares.ac.ir (A. Azar),
mrtaghizadeh@ut.ac.ir (M. Taghizadeh-Yazdi).

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2020.107050
Received 10 August 2020; Received in revised form 1 December 2020; Accepted 12 December 2020

mailto:a_mohammadi@modares.ac.ir
mailto:mdnayeri@modares.ac.ir
mailto:azara@modares.ac.ir
mailto:mrtaghizadeh@ut.ac.ir
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2020.107050
https://doi.org/10.1016/j.cie.2020.107050
https://doi.org/10.1016/j.cie.2020.107050
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2020.107050&domain=pdf

Computers & Industrial Engineering 152 (2021) 107050

2

based, and (d), synthetic, and (e) swarm intelligence. Evolutionary al
gorithms are normally based on the natural selection law of biology.
These methods evolve the initial population using evolutionary opera
tors to improve the population’s fitness and find the global optimum
(Bozorg-Haddad, Solgi, & Loaiciga, 2017; Husseinzadeh Kashan,
Tavakkoli-Moghaddam, & Gen, 2019). Selection, crossover, and muta
tion are the most common of such operators. Genetic Algorithm (Gold
berg & Holland, 1988) and Differential Evolution (Das & Suganthan,
2011) are two popular evolutionary algorithms. The human-based
approach encompasses any algorithm that is inspired specifically by
humans’ social behavior or concepts that have been developed by
humans. Queuing Search Algorithm (QSA) (Zhang, Xiao, Gao, & Pan,
2018), Group Teaching Optimization Algorithm (GTOA) (Zhang & Jin,
2020), and Teaching-Learning-Based Optimization (TLBO) (Rao, Sav
sani, & Vakharia, 2011) are the examples of algorithms proposed in this
area. Physics-based methods tend to perceive the landscape as a physical
phenomenon and move the search agents using formulae borrowed from
physical rules or theories. Some of the recent algorithms proposed under
this approach are Atom Search Optimization (ASO) (Zhao, Wang, &
Zhang, 2019), Henry Gas Solubility Optimization (HGSO) (Hashim,
Houssein, Mabrouk, Al-Atabany, & Mirjalili, 2019), Water Cycle Algo
rithm (WCA) (Eskandar, Sadollah, Bahreininejad, & Hamdi, 2012),
Electron Radar Search Algorithm (ERSA) (Rahmanzadeh & Pishvaee,
2019), Lightning Attachment Procedure Optimization (LAPO) (Nem
atollahi, Rahiminejad, & Vahidi, 2017), Optics Inspired Optimization
(OIO) (Husseinzadeh Kashan, 2015), Gravitational Search Algorithm
(GSA) (Rashedi, Nezamabadi-pour, & Saryazdi, 2009), Equilibrium
Optimizer (EO) (Faramarzi, Heidarinejad, Stephens, & Mirjalili, 2020),
Thermal Exchange Optimization (TEO) (Kaveh & Dadras, 2017), Multi-
Verse Optimizer (MVO) (Mirjalili, Mirjalili, & Hatamlou, 2016), Electro-
Search algorithm (ES) (Tabari & Ahmad, 2017), and Colliding Bodies
Optimization (CBO) (Kaveh & Mahdavi, 2014). Synthetic methods are
solely based on mathematical equations like trigonometry functions or
well-known constants. These algorithms are not inspired by a specific
natural phenomenon. Sine Cosine Algorithm (SCA) (Mirjalili, 2016),
Golden Ratio Optimization Method (GROM) (Nematollahi, Rahimine
jad, & Vahidi, 2020), and Stochastic Fractal Search (SFS) (Salimi, 2015)
are among the algorithms proposed within this approach. Algorithms
belonging to the swarm intelligence approach imitate the social
behavior and communications within a group of species of animals,
plants, or other living things (Mavrovouniotis, Li, & Yang, 2017; Pio
trowski, Napiorkowski, Napiorkowski, & Rowinski, 2017). Searching for
food, hunting, mating, and memorizing are the common social behav
iors considered in this class. Because communication is an indispensable
element of social behavior, swarm intelligence algorithms allow the
search agents to enjoy the information produced by other search agents
in the current previous iteration (Zahedi, Akbari, Shokouhifar, Safaei, &
Jalali, 2016). This approach has gained increasing popularity in terms of
both application and new algorithm development. Some of the recently
proposed algorithms that can be categorized under this approach are
Pathfinder algorithm (PFA) (Yapici & Cetinkaya, 2019), Harris Hawks
Optimization (HHO) (Heidari et al., 2019), Squirrel Search Algorithm
(SSA) (Jain, Singh, & Rani, 2019), Seagull Optimization Algorithm
(SOA) (Dhiman & Kumar, 2019), Sailfish Optimizer (SFO) (Shadravan,
Naji, & Bardsiri, 2019), Black Widow Optimization (BWO) (Hayyolalam
& Pourhaji Kazem, 2020), Emperor Penguin Optimizer (EPO) (Dhiman
& Kumar, 2018), Mouth Brooding Fish algorithm (MBF) (Jahani &
Chizari, 2018), Grasshopper Optimization Algorithm (GOA) (Saremi,
Mirjalili, & Lewis, 2017), Spotted Hyena Optimizer (SHO) (Dhiman &
Kumar, 2017), and Selfish Herd Optimizer (SHO) (Fausto, Cuevas,
Valdivia, & González, 2017).

Metaheuristic methods can also be classified according to the num
ber of search agents they use (Mirjalili et al., 2017). Individualist
methods use only one search agent in each iteration, while population-
based methods use multiple search agents in each iteration. A popula
tion of search agents produces more information in each iteration and

can better explore the problem’s feasible region. However, this
massively increases the number of objective function evaluations, which
can be problematic for computationally intensive objective functions.
Simulated annealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983), Tabu
Search (TS) (Glover, 1989), and hill-climbing (Davis, 1991) are among
the well-known individualist metaheuristics.

This paper proposes a novel swarm-intelligence metaheuristic algo
rithm and its multi-objective version based on the golden eagles’ hunt
ing process. They are called Golden Eagle Optimizer (GEO) and Multi-
Objective Golden Eagle Optimizer (MOGEO). GEO is founded on the
intelligent adjustments on attack propensity and cruise propensity that
golden eagles perform while searching for prey and hunting. MOGEO
uses the same principles and is equipped with special tools to handle
multi-objective problems. The remaining parts of this paper are orga
nized as follows. Section 2 provides the fundamental inspiration and
mathematical formulation of the GEO for single- and multi-objective
problems. Section 3 presents the experimental results of applying the
proposed algorithm on different classes of single-objective benchmark
functions in addition to a convergence and scalability analysis. Section 4
presents the results of applying MOGEO on the benchmark functions for
multi-objective optimization. Section 5 explores the application for real-
world engineering optimization problems. The paper concludes in Sec
tion 6 by presenting final remarks and suggestions for future studies.

2. Golden Eagle Optimizer (GEO)

This section is dedicated to introducing in detail the proposed Golden
Eagle Optimizer algorithm. First, the inspiration for the algorithm is
presented, then the mathematical model is discussed.

2.1. Inspiration

The golden eagle (Fig. 1), scientifically known as Aquila chrysaetos,
belongs to the Accipitridae family, which covers different species of birds
of prey like eagles and hawks (Golden eagle, Wikipedia., 2020). With
exceptional vision, high speed, and powerful talons, golden eagles are
professional hunters that can catch preys of a broad range of sizes from
insects to mid-sized mammals (Tack, Noon, Bowen, & Fedy, 2020). This
bird can fly as fast as 190 km/h (Golden eagle, Wikipedia., 2020). The
golden eagle is the most widely distributed member of the Accipitridae
family. Despite many other types of eagles, it can be found all over the
Earth’s northern hemisphere (Tikkanen et al., 2018).

Golden eagles have always had a close relationship with humans.
They held lofty and sacred positions in the beliefs since ancient and
tribal humans and were considered a sign of positive events (Golden
eagles in human culture, Wikipedia., 2020). Even today, more than ten
countries have an eagle as the national emblem or on the national flag
(Eagle, 2020). The tradition of hunting with eagles is also practiced

Fig. 1. Golden eagle (Veldman, 2018).

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

3

throughout Kyrgyzstan and Kazakhstan. The golden eagle is the main
bird of prey to be used there (Hunting with eagles, Wikipedia., 2020).

The unique feature of the golden eagle’s cruising and hunting is that
it takes place in a spiral trajectory, meaning that the prey is most of the
time on one side of the eagle. This enables them to monitor the targeted
prey and the nearby boulders and bushes for finding a proper angle of
attack. In the meantime, they also survey other regions if they can find
better food.

At each instance of the flight, the golden eagle’s behavior is driven by
two forces: the propensity to attack, and the propensity to cruise. Golden
eagles know that if they attack hastily, they may catch small prey that
does not even compensate for the energy consumed for hunting. On the
other hand, if they engage in an endless search for bigger prey, they may
run out of energy and catch nothing. Golden eagles intelligently create a
balance between these two desires to snatch the best prey they can in a
reasonable time and with a reasonable amount of energy. They switch
from a low-attack-high-cruise profile to a high-attack-low-cruise profile
smoothly. Each golden eagle starts the hunt by flying at high altitudes
within its realm in large circles and searches for prey. Once prey is
spotted, it starts moving on the perimeter of a hypothetical circle
centered at the prey. The golden eagle memorizes the location of the
prey but continues to circle it. The eagle gradually lowers its altitude and
simultaneously gets closer to the prey, making the radius of the hypo
thetical circle around the prey smaller and smaller. At the same time, it
also surveys the nearby regions for better alternatives. Sometimes
golden eagles share the location of the best prey they found so far with
other eagles. If the eagle does not spot better location/prey, it continues
to circle around the current one in smaller circles and finally attacks the
prey. Otherwise, if the eagle finds a better alternative, it flies on a new
circle around the new prey and forgets the previous one. It is noteworthy
that the final attacks are performed in a straight line.

With that said, the main characteristics of the hunting process of

golden eagles can be summarized as follows.

• They follow a spiral trajectory for search and a straight path for the
attack,

• They show more propensity to cruise in initial stages of hunting and
smoothly transition to more propensity to attack in the final stages,

• They retain tendency for both cruise and attack in every moment of
the flight,

• They look for other eagles’ information on prey.

Cruise, attack, and the intelligent balance that the golden eagle
creates between these two are the natural manifestation of exploration,
exploitation, and the transition from the former to the latter. This paves
the way for devising a metaheuristic algorithm. The next subsection
mathematically models this behavior.

2.2. Mathematical model and optimization algorithm

This subsection describes the proposed mathematical formulation to
mimic the movements of golden eagles that search for prey. The
formulation for the spiral motion is presented, followed by its decom
position into attack and cruise vectors to emphasize exploitation and
exploration, respectively.

2.2.1. The spiral motion of golden eagles
GEO is based on the spiral motion of golden eagles. As mentioned

earlier, each golden eagle memorizes the best location it has visited so
far. The eagle simultaneously has attraction toward attacking the prey
and toward cruise to search for better food. Attack and cruise vectors in
2D space can be visualized as in Fig. 2.

In each iteration, each golden eagle i randomly selects the prey of
another golden eagle f and circles around the best location visited so far
by golden eagle f . The golden eagle i can also choose to circle its own
memory; therefore, we have f ∈ {1,2,⋯,PopSize}.

2.2.2. Prey selection
In each iteration, each golden eagle must choose a prey to perform

the cruise and attack operations. In GEO, the prey is modeled as the best
solution found so far by the flock of golden eagles. Each golden eagle is
capable of memorizing the best solution it has found so far. In each
iteration, each search agent selects a target prey from the memory of the
whole flock. Attack and cruise vectors for each golden eagle are then
calculated relative to the selected prey. If the new position (calculated
via attack and cruise vectors) is better than the previous position in the
memory, then the memory is updated. The prey selection strategy plays
an important role in GEO. Selection can take place in a basic way, where
each golden eagle only selects the prey in its own memory. To make
golden eagles better explore the landscape, we propose a random one-to-
one mapping scheme, where each golden eagle randomly selects its prey
in the current iteration from the memory of any other flock member. It is
noteworthy that the selected prey is not necessarily the nearest or
farthest prey. In this scheme, each prey in the memory is assigned or
mapped to one and only one golden eagle. Then each golden eagle
performs the attack and cruise operations on the selected prey. Fig. 3

Memory of search agent

Memory of search agent

Memory of search agent

Search agent

Search agent

Search agent

Fig. 3. One-to-one mapping in GEO prey selection.

Attack

Cruise

Fig. 2. Spiral motion of golden eagles.

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

4

shows that each search agent can only attack one of the positions in the
memory that belong to another search agent.

2.2.3. Attack (exploitation)
The attack can be modeled via a vector starting from the current

position of the golden eagle and ending in the location of the prey in the
eagle’s memory. The attack vector for golden eagle i can be calculated
via Eq. (1).

A→i = X→
*
f − X

→
i (1)

where A→i is the attack vector of eagle i, X→
*
f is the best location (prey)

visited so far by eagle f , and X→i is the current position of eagle i. Since
the attack vector guides the population of golden eagles toward the best-
visited locations, it highlights the exploitation phase in GEO.

2.2.4. Cruise (exploration)
The cruise vector is calculated based on the attack vector. The cruise

vector is a tangent vector to the circle and perpendicular to the attack
vector. The cruise can also be thought of as the linear speed of the golden
eagle relative to the prey. The cruise vector in n-dimensions is located
inside the tangent hyperplane to the circle; thus, to calculate the cruise
vector, we have to first calculate the equation of the tangent hyperplane.
The equation of a hyperplane in n-dimensions can be determined by an
arbitrary point from that hyperplane and a perpendicular vector to that
hyperplane, which is called the normal vector of the hyperplane. Eq. (2)
displays the scalar form of the hyperplane equation in n-dimensional
space.

h1x1 + h2x2 + ⋯ + hnxn = d⇒
∑n

j=1
hjxj = d (2)

where H→= [h1, h2,⋯, hn] is the normal vector, X = [x1, x2,⋯, xn] is the
variables vector, P→= [p1, p2,⋯, pn] is the arbitrary point on the hyper
plane, and d = H→⋅ P→ =

∑n
i=1hjpj. If we consider X→i (the location of the

eagle i) as the arbitrary point in the hyperplane and consider A→i (the
attack vector) as the normal of the hyperplane, one can show the hy

perplane to which C→
t
i (the cruise vector for the golden eagle i in iteration

t) belongs according to Eq. (3).
∑n

j=1
ajxj =

∑n

j=1
atjx

*
j (3)

where A→i = [a1, a2,⋯, an] is the attack vector, X = [x1, x2,⋯, xn] is the
decision/design variables vector, and X* =

[
x*

1, x*
2,⋯x*

n
]

is the location
of the selected prey.

Now that the cruise hyperplane for eagle i in iteration t is calculated,
it is time to find a cruise vector for this golden eagle within this hy
perplane. A golden eagle can choose any destination point on the cruise
hyperplane. To find a random vector on the cruise hyperplane, we have
to first find a random destination point C on this hyperplane other than
the one we already have (the current location of the golden eagle i). Note
that the starting point of the cruise vector is the current location of the
golden eagle i. Since hyperplanes are one dimension smaller than their
ambient space, we cannot simply generate a random 1 × n point. A
simple random point in n-dimensional space is not guaranteed to be
located on the cruise hyperplane. A new point located on the n-dimen
sional cruise hyperplane has n − 1 degrees of freedom, meaning that n −

1 dimensions can be chosen freely, but the hyperplane equation dictates
the last dimension, as shown in Eq. (2). The last dimension must be
chosen so as it satisfies the hyperplane equation; therefore, we have n −

1 free variables and one fixed variable. We use the following procedure
to find a random n-dimensional destination point C located on the cruise
hyperplane for golden eagle i.

Step 1. Randomly choose one variable out of n variables as the fixed
variable. We denote the index of the selected variable with k. Note that
the fixed variable cannot be chosen from the variables whose corre
sponding element in the attack vector A→i is zero. The reason is that when
the coefficient of a variable in Eq. (2) is equal to zero, the hyperplane is
parallel to the axis of that variable, and that variable can take any value
for a random combination of the other n − 1 variables. For example, in
the 3D plane 3x1 + 2x2 = 10, if we choose k = 3 and choose random
numbers for x1 and x2, say {x1 = 2, x2 = 5}, we cannot find a unique
point. Instead, an infinite number of point on this plane is obtained, and
all of them satisfy the plane equation {[2,5, 1], [2, 5, 2], [2, 5,3],⋯ }.

Step 2. Assign random values to all the variables except the k-th
variable because the k-th variable is fixed.

Step 3. Find the value of the fixed variable using Eq. (4).

ck =
d −

∑
j,j∕=kaj
ak

(4)

where ck is the k-th element of the destination point C, aj is the j-th

element of the attack vector A→i, d is the right-hand side of the Eq. (2), at
k

is the k-th element of the attack vector A→i, and k is the index of the fixed
variable. The random destination point on the cruise hyperplane is
found. Eq. (5) displays the general representation of the destination
point on the cruise hyperplane.

C→i =

(

c1 = random, c2 = random,⋯, ck =
d −

∑
j;j∕=kaj
ak

,⋯, cn = random
)

(5)

Now that the destination point is determined, the cruise vector can
now be calculated for the golden eagle i in iteration t. The elements of
the obtained destination point are random numbers between zero and
one. It is noteworthy that the cruise vector attracts the population of
golden eagles toward the areas other than the ones in the memory;
therefore, it emphasizes the exploration phase of GEO.

2.2.5. Moving to new positions
The displacement of the golden eagles comprises of attack and vec

tor. We define the step vector for golden eagle i in iteration t as Eq. (6).

Δxi = r→1pa
A→i

‖A→i‖
+ r→2pc

C→i

‖C→i‖
(6)

where pt
a is the attack coefficient in iteration t and pt

c is the cruise co
efficient in iteration t and adjust how golden eagles are affected by
attack and cruise. r→1 and r→2 are random vectors whose elements lie in
the interval [0, 1]. pa and pc will be discussed later. ‖A→i‖ and ‖C→i‖ are the
Euclidean norm of the attack and cruise vectors and are calculated using
Eq. (7).

‖A→i‖ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

j=1
a2
j

√

, ‖C→i‖ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

j=1
c2
j

√

(7)

The position of the golden eagles in iteration t + 1 is calculated
simply by adding the step vector in iteration t to the positions in iteration
t.

xt+1 = xt + Δxti (8)

If the fitness of the new position of the golden eagle i is better than
the position in its memory, the memory of this eagle is updated with the

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

5

new position. Otherwise, the memory remains intact, but the eagle will
reside in the new position. In the new iteration, each golden eagle
randomly chooses a golden eagle from the population to circle around its
best-visited location, calculates attack vector, calculates cruise vector,
and finally, the step vector and the new position for the next iteration.
This loop is executed until any of the termination criteria are satisfied.

We mentioned that there are two coefficients in Eq. (6), namely
attack coefficient pt

a and cruise coefficient pt
c, that control how the step

vector is affected by attack and cruise vectors. The next subsection
discusses how the values of these two coefficients are adjusted over the
course of iterations.

2.2.6. Transition from exploration to exploitation
As mentioned earlier, golden eagles show a higher propensity to

cruise in the initial stages of the hunting flight and show a higher pro
pensity to attack in the final stages, which correspond to more explo
ration in initial iterations and more exploitation in the final iterations in
the proposed optimizer. Fig. 4 shows how the attack and cruise change.

GEO uses pa and pc to shift from exploration to exploitation. The
algorithm starts with low pa and high pc. As the iterations proceed, pa is
gradually increased while pc is gradually decreased. The initial and final
values of both parameters are defined by the user. Intermediate values
can be calculated using the linear transition displayed in Eq. (9).
⎧
⎪⎪⎨

⎪⎪⎩

pa = p0
a +

t
T
⃒
⃒pTa − p

0
a

⃒
⃒

pc = p0
c −

t
T
⃒
⃒pTc − p

0
c

⃒
⃒

(9)

where t indicates current iteration, T indicates maximum iterations, p0
a

and pT
a are the initial and final values for propensity to attack (pa),

respectively, and p0
c and pT

c are the initial and final values for propensity
to cruise (pc), respectively. Our experiments, which will be discussed

Fig. 6. Movement of search agents in 2D space.

Fig. 4. Golden eagle’s transition from exploratory behavior (intense cruise) to exploitative behavior (intense attack).

Fig. 5. pa and pc over the course of iterations.

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

6

later, show that
[
p0

a , pT
a
]
= [0.5,2] and

[
p0

c , pT
c
]
= [1, 0.5] seem to be

suitable parameters. This means that pa is set to 0.5 in the first iteration
and linearly drops to reach 2 in the last iteration. The same goes for pC
where it starts with 1 in the first iteration and is linearly lowered to
reach 0.5 in the last iteration. It worths noting here that Eq. (9) linearly
changes the parameters. However, they can be changed logarithmically

or by means of any other function. Fig. 5 shows how pa, r1 × pa, pc, and
r2 × pc change over the course of iterations. Note that r1 and r2 are
random numbers in the interval [0,1] in Eq. (6).

The movement of search agents in 2D and 3D spaces is displayed in
Fig. 6 and Fig. 7, respectively. These figures show the position and step
vector in different iterations, where t is one of the initial iterations, t +

Fig. 8. Main steps of GEO: (a) the search agent selects a prey from the flock’s memory, (b) attack vector is calculated, (c) cruise hyperplane is constructed, (d) a
random cruise vector is constructed inside the cruise hyperplane, and (e) step vector is constructed from attack and cruise vectors.

Fig. 7. Movement of search agents in 3D space.

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

7

Δt1 belongs to midway, and t + Δt2 is one of the final iterations. In other
words, t < t+ Δt1 < t+ Δt2.

To sum up this subsection, a visual summary of the main steps of GEO
is illustrated in Fig. 8. In each iteration, each search agent first selects
prey from the flock’s memory and constructs a hypothetical hypersphere
(Fig. 8a). Next, the search agents construct the attack vector, which is a
vector from the search agents to their selected prey (Fig. 8b). Then, each
search agent constructs its cruise hyperplane, which is basically the
tangent hyperplane to the hypothetical sphere at the search agent’s
position (Fig. 8c). Next, the cruise vector, which is a random vector
inside the cruise hyperplane (Fig. 8d), is constructed. Finally, attack and
cruise vectors are combined to form the step vector (Fig. 8e).

2.2.7. Single-objective golden eagle Optimizer (GEO)
According to the basic concepts and their corresponding mathe

matical modeling presented in Section 2.2, the pseudo-code of the
single-objective implementation of GEO is presented in Algorithm 1.

Algorithm 1. Pseudo-code of GEO

Initialize the population of golden eagles
Evaluate fitness function
Initialize population memory
Initialize pa and pc

for each iterationt
Update pa and pc (Eq. (9))
for each golden eagle i

Randomly select a prey from the population’s memory

Calculate attack vector A→ (Eq. (1))
if attack vector’s length is not equal to zero

Calculate cruise vector C→ (Eqs. (2)–(5))
Calculate step vector Δx (Eqs. (6)–(8))
Update position (Eq. (8))
Evaluate fitness function for the new position
if fitness is better than the fitness of the position in eagle i’s memory

Replace the new position with the position in eagle i’s memory
end

end
end

end

2.2.8. Computational complexity of GEO
The computational complexity of the proposed GEO algorithm can

be discussed for the two major parts of the algorithm:

(a) Initialization. The algorithm requires O
(
npopulation × ndimensions

)

time to initialize the position vector, the step vector, and memory
for the search agents.

(b) Main loop. The main loop requires O
(
npopulation × ndimensions ×

niteration
)

time to select prey, calculate attack and cruise vectors,
and update the position of the search agents.

It can be concluded that the total time complexity of GEO is
O
(
npopulation × ndimensions × niteration

)
. It is noteworthy that the space

complexity of GEO is equal to O
(
npopulation × ndimensions

)
since it is the

space that is occupied in the initialization and does not grow or shrink
during iterations of the main loop.

2.3. Golden Eagle Optimizer for multi-objective problems

2.3.1. Multi-objective optimization
Multi-objective problems are relatively similar to single-objective

problems in terms of problem definition. The only difference is that,
as their name suggests, they contain multiple objective functions instead
of a single objective function. This apparently negligible difference,
however, creates challenges in terms of optimization procedure that
cannot be addressed by algorithms that are designed to deal with single-
objective optimization. That is where the need for optimization algo
rithms that can handle and solve multi-objective problems emerges. A

general multi-objective problem can be defined as Eq. (10) (Cui, Geng,
Zhu, & Han, 2017).

Minimize F(x→) = {f1(x), f2(x),⋯, fk(x) }
Subjectto :

gi(x→) ≤ 0, i = 1, 2,⋯, r
hi(x→) = 0, i = r + 1, r + 2,⋯, s

(10)

where F is the set of objectives to be optimized, x→ is the vector of de
cision/design variables, gi is the i-th inequality constraint, hi is the i-th
equality constraint, r is the number of inequality constraints, and s is the
total number of constraints.

In the single-objective optimization, the solution x→1 is better than

x→2 if f
(

x→1

)

< f
(

x→2

)

. However, in multi-objective optimization, such

a definition cannot be used. Instead, the Pareto dominance concept is
introduced to deal with multi-objective problems. It suggests that solu
tion x→1 dominates (is better than) x→2 if for all of the objective functions

we have f
(

x→1

)

< f
(

x→2

)

. The two solutions are called non-dominated

if for at least one objective, but not all of them we have f
(

x→1

)

≮f
(

x→2

)

.

If such a relation holds for a solution compared to other solutions in the
feasible region, that solution is called Pareto optimal. The ultimate goal
in multi-objective optimization is to find the Pareto optimal solutions
(Khoroshiltseva, Slanzi, & Poli, 2016). In contrast to single-objective
problems, multi-objective problems do not have a single Pareto
optimal solution. Instead, they have a set of non-dominated solutions as
the Pareto optimal solutions. So the ultimate goal in these problems is
shifted toward finding the Pareto optimal set of solutions, which is also
called the Pareto front (Martín & Schütze, 2018).

2.3.2. Multi-objective golden eagle Optimizer (MOGEO)
The proposed algorithm is able to find the best location of food using

different operators. However, it is not capable of finding the Pareto
optimal solution to problems with multiple objectives. In particular, the
drawbacks of GEO for handling multi-objective problems are as follows:

• In GEO, each golden eagle has its own separate memory of the best
prey visited by itself so far. This means that GEO saves multiple in
dividual best prey in each iteration. Saving multiple solutions are
useful for multi-objective problems, but the saved solutions must be
non-dominated, which is not guaranteed in GEO. Therefore, a
mechanism should be introduced to only save the non-dominated
solutions so far.

• In the prey selection stage of GEO, each golden eagle chooses another
golden eagle arbitrarily to perform attack and cruise operators on its
best prey stored in its memory. However, quality optimal Pareto
fronts contain members that are uniformly distributed along the
front. This implies that a criterion is needed so that golden eagles can
prioritize some of the preys in the memory to the others with that
criterion.

• In the prey selection stage of GEO, a one-to-one mapping occurs
between golden eagles and preys in the memory. In other words,
each prey in the memory is assigned to one and only one golden
eagle. However, the Pareto front in a given iteration might have
more or fewer members than the population size. Therefore, the one-
to-one mapping between search agents and prey cannot be imple
mented in multi-objective problems.

With that said, Multi-objective Golden Eagle Optimizer (MOGEO) is
built upon the concepts of single-objective optimization mentioned
above plus three additional concepts: (a) external archive, (b) prey
prioritization criterion, and (c) multi-objective prey selection.

External-archive-based algorithms are popular yet robust ap
proaches in multi-objective optimization. Some well-known multi-

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

8

objective algorithms like Multi-Objective Particle Swarm Optimization
(MOPSO) (Coello Coello & Lechuga, 2002) or recent ones like Multi-
Objective Grasshopper Optimization Algorithm (MOGOA) (Mirjalili,
Mirjalili, Saremi, Faris, & Aljarah, 2018) or Multi-Objective Ant Lion
Optimizer (MOALO) (Mirjalili, Jangir, & Saremi, 2017) utilize an
archive-based approach.

The basic idea is to keep promising non-dominated solutions in an
external archive and update it as the optimization algorithm proceeds.
Search agents are steered toward the archive members and ultimately to
the region where the optimal Pareto front exists (Cai, Qu, & Cheng,
2018; Mirjalili, Saremi, Mirjalili, & Coelho, 2016; Zhang, Gong, Sun, &
Qu, 2018). Since GEO uses a dedicated memory to keep promising preys,
the external archive approach can be easily implemented in GEO. The
archive’s capacity is limited. Therefore, a mechanism should be intro
duced for updating the external archive to keep the Pareto optimal so
lutions visited so far and avoid violating the maximum capacity limit of
the archive.

When each of the search agents moves to a new position, it may face
one of the three following conditions. If the new solution (position) is
dominated by one or more of the current archive members, the new
solution is discarded. If the new solution is non-dominated to the current
members of the archive and the archive is not full, simply add the new
position to the archive. If the new position is non-dominated compared
to the current members of the archive, randomly select one of the

archive members and substitute it with the new solution. One of the
desirable characteristics of an ideal optimal Pareto front is the uniform
dispersion of archive members along the front in the objective space.
Therefore, the outgoing member should be selected from the dense re
gions of the archive in order to decrease the density in those regions
(Ahmadi, Tiruta-Barna, Capitanescu, Benetto, & Marvuglia, 2016; Chen
et al., 2019). Fig. 9 shows an example of archive members located in the
dense and sparse regions of the archive.

A measure is needed to determine the density of the nearby area for
each member of the archive. We propose the crowding score to be used
as the density index in MOGEO. The crowding score is grounded on the
idea of crowding distance (Deb, Agrawal, Pratap, Meyarivan, & Fast,
2000). The crowding distance of a solution in the Pareto front is defined
as the distance between the two nearest solutions in its vicinity and can
be calculated through Eq. (11).

Ci =
1
n

∑

j∈J

(
fi+1,j − fi,j

)
−
(
fi,j − fi− 1,j

)

fmax
j − fmin

j
(11)

where fi− 1,j, fi,j, fi+1,j are three consecutive members when the archive is
sorted according to the objective values of the j-th objective function.
Fig. 10 shows the crowding hypercube for solutions located in the sparse
regions of the archive are assigned larger crowding scores, while solu
tions in the dense regions have smaller crowding scores. It can be seen
that the crowding distance is equal to half of the crowding hypercube’s
perimeter (see Fig. 11).

The only exceptional cases are limiting members, i.e., the members
with the largest or smallest value in any of the objective functions.
Regular members have two adjacent members, but limiting members
have only one. The crowding score for limiting members is calculated
similarly to Eq. (11) except that one of the terms in the numerator is
discarded.

The crowding distance is calculated for all of the archive members.
The outgoing member is selected using a roulette wheel where the
probabilities are proportional to crowding distances. We want to select
the outgoing member from the denser parts of the archive, so we should
assign larger weights to the solutions in denser regions. This can be
easily achieved by subtracting the crowding scores from 1 since the
crowding distances calculated by Eq. (11) fall in the interval [0,1]. The
new scores that are used for the roulette wheel procedure are called
sparsity scores (Si), which can be calculated using Eq. (12).

Si = 1 − Ci (12)

Fig. 11. Crowding score for limiting members of the archive.

Fig. 9. Solutions located in the dense and sparse regions of the
external archive.

Fig. 10. Crowding distance for members in dense and sparse regions of the
external archive.

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

9

The last important topic in MOGEO is the prey selection procedure. It
is similar to the prey selection in GEO but with some modifications. In
GEO, every search agent has its own memory to keep the best location
visited so far. However, the memory in this sense cannot be used as the
external archive in MOGEO because the archive keeps only non-
dominated locations visited so far. This point leads to conditions
where the number of archive members is less than, or in general,
different from the population size. We propose the MOGEO prey selec
tion procedure to be based on the roulette wheel, where the weights are
the sparsity scores of the current archive members. This results in a
higher probability of selection for members in the sparse regions of the
front and less probability for archive members in the dense regions. The
crowding scores are calculated according to Eq. (11). The pseudocode of
MOGEO is presented in Algorithm 2.

Algorithm 2. Pseudo-code of MOGEO

Initialize the population of golden eagles
Evaluate the fitness function
Initialize population memory
Initialize pa and pc

for each iterationt
Update pa and pc (Eq. (9))
Calculate crowding distance for existing archive members
for each golden eagle i

Randomly select prey from the archive using the roulette wheel
weighted by crowding distances

Calculate attack vector A→ (Eq. (1))
if the attack vector’s length is not equal to zero

Calculate cruise vector C→ (Eqs. (2)–(5))
Calculate step vector Δx (Eqs. (6)–(8))
Update position (Eq. (8))
Evaluate fitness functions for the new position
if the new position is non-dominated to the current archive

members
if the external archive is not full

Add the new solution to the archive
else

Calculate the sparsity distances (Eqs. (11)–(12))
Select the outgoing archive member using

roulette wheel weighted by sparsity distances
Replace the outgoing solution with the new one

end
end

end
end

2.3.3. Computational complexity of MOGEO
The computational complexity of the proposed MOGEO algorithm

can be discussed for the two major parts of the algorithm:

(a) Initialization. The algorithm requires O
(
npopulation × ndimensions

)

time to initialize the position vector, the step vector, and memory
for the search agents.

(b) Main loop. The main loop requires
O
(
npopulation × ndimensions × niteration × nobjective × narchive

)
.

It can be concluded that the total time complexity of MOGEO is
O
(
npopulation × ndimensions × niteration × nobjective × narchive

)
.

2.4. Software (toolbox) and source code for GEO and MOGEO

To facilitate the implementation of GEO and MOGEO algorithms,
separate open-source MATLAB toolboxes are developed for GEO and
MOGEO. The user interfaces are shown in Fig. 12. Each toolbox is
divided into two columns. Problem definition and solver parameters are
defined in the left column and the algorithm’s progress, and the final
results are shown in the right column. By pressing the “Solve” button,
the solver starts to optimize the problem. Both solvers show graphical
and textual feedback about the solver’s status in each iteration. GEO
toolbox plots the mean fitness for each iteration as well as the best so
lution found so far. MOGEO toolbox plots the archive members’ fitness
values in each iteration. The toolboxes are able to evaluate the fitness
function in a vectorized fashion, which is suitable for speeding up the
optimization process. Both toolboxes allow the user to halt the solver
anywhere in the middle of optimization. The results, whether the al
gorithm obtained or the user decided to halt, can be easily exported to
the base workspace for post-optimization analysis. The plot can also be
exported to many types of lossy and vector graphic formats. In addition,
the source code for both GEO and MOGEO is also publicly available.
Toolboxes and the source codes can be downloaded from https://www.
mathworks.com/matlabcentral/profile/authors/14675656.

3. Single-objective optimization results for GEO

To verify the performance of the proposed algorithm, GEO is tested
on 33 well-known benchmark problems. This section presents the results
of these tests. The challenging benchmark problems in each class
analyze different aspects of the proposed algorithm. First, an overview

Fig. 12. The user interface of GEO (a) and MOGEO (b) toolboxes (can be downloaded from https://www.mathworks.com/matlabcentral/profile/auth
ors/14675656).

A. Mohammadi-Balani et al.

https://www.mathworks.com/matlabcentral/profile/authors/14675656
https://www.mathworks.com/matlabcentral/profile/authors/14675656
https://www.mathworks.com/matlabcentral/profile/authors/14675656
https://www.mathworks.com/matlabcentral/profile/authors/14675656

Computers & Industrial Engineering 152 (2021) 107050

10

of the experimental setup and compared algorithms are presented. Then,
the details of the utilized benchmark functions of unimodal, multimodal,
composite classes are presented. Next, the scalability analysis will be
conducted to examine the performance of GEO in large problems.

3.1. Parameter setting

Before applying the proposed algorithm to the test functions, the
parameters of GEO must be fine-tuned. The four parameters are initial
attack propensity (p0

a), final attack propensity (pT
a), initial cruise pro

pensity (p0
c), and the final cruise propensity (pT

c). GEO is applied to 15 of
the test functions mentioned above, and the results are normalized and
aggregated to construct a total measure to determine the best set of
parameters. The values for the attack propensity are chosen from the set
{0,0.5, 1,1.5, 2}, and the values for the cruise propensity are chosen
from the set {0,0.25,0.5, 0.75,1}. Every possible pair of attack pro

pensity values that are non-decreasing are chosen. A similar approach
was used to choose the values for the cruise propensity, except that the
values must be non-increasing. A total of 225 parameter sets are ob
tained for the analysis. Each parameter set was used to run GEO 30 times
on each problem. Fig. 13 displays the aggregate objective function
values for the top 40 parameters set. It can be concluded that the best
values for initial and final attack propensity are

[
p0

a − pT
a
]
= [0.5 − 2],

and the best values for the initial and final cruise propensity are
[
p0

c −

pT
c
]
= [1 − 0.5]. Therefor, all of the experiments in this paper are per

formed using this set of parameters.

3.2. Experimental setup and compared algorithms

In order to verify the capabilities of GEO, its performance is
compared to those of other well-known algorithms in the literature,
namely, Grey Wolf Optimizer (GWO) (Mirjalili, Mirjalili, & Lewis,
2014), Genetic Algorithm (GA) (Goldberg & Holland, 1988), Crow
Search Algorithm (CSA) (Askarzadeh, 2016), Particle Swarm Optimi
zation (PSO) (Kennedy & Eberhart, 1995), Harmony Search (HS) (Geem,
Kim, & Loganathan, 2001), and Dragonfly Algorithm (DA) (Mirjalili,
2016). All of the algorithms were coded in MATLAB 9.6 (R2019a). To
keep the comparisons fair and consistent, we used general and solver-
specific parameters as reported in Table 1. Metaheuristic algorithms
use random initial generation and random numbers in the intermediate
calculations, which may affect the quality of the solutions. Each algo
rithm is implemented multiple times on each benchmark problem, so as
to avoid these effects. As depicted in Table 1, we used 30 independent
replications for all of the problems and solvers.

Fig. 13. Aggregate results for 20 of the best parameter sets for the GEO algorithm.

Table 1
Parameter settings for compared algorithms.

Algorithm Parameter Value

All algorithms Population size 50
Maximum iterations 1000
Number of replications 30

GEO pa: Propensity to attack [0.5 − 2]
pc: Propensity to cruise [1 − 0.5]

GWO C: Control parameter [2 − 0]
Number of leaders 3

GA Elite fraction 0.05
Selection method Binary tournament
Crossover method Linear
Crossover fraction 0.8
Mutation method Gaussian

CSA fl: Flight length 2
AP: Awareness probability 0.1

PSO Neighboring ratio 0.25
w: Inertia weight 0.8
c1, c2: Acceleration weights 1.5

HS Memory considering rate 0.95
Pitch adjustment ratio 0.1

DA b: Base coefficient [0.1 − 0]
r: Neighborhood radius [0.25 − 2.25] × [ub − lb]
s: Separation coefficient 2b
a: Alignment coefficient 2b
c: Cohesion coefficient 2b
f: Food attraction coefficient 2
e: Enemy distraction coefficient b

Table 2
Unimodal benchmark functions.

Name Equation D Bounds f*

Beale f1(x) = (1.5 − x1 − x1x2)
2
+

(
2.25 − x1 + x1x2

2
)2

+
(
2.625 − x1 + x1x3

2
)2

2 [− 4.5,4.5]D 0

Matyas F2(x) = 0.26
(
x2

1 + x2
2
)
− 0.48x1x2 2 [− 10, 10]D 0

Three-hump
camel

F3(x) = 2x2
1 − 1.05x4

1 +
x1

6
+

x1x2 + x2
2

2 [− 5,5]D 0

Exponential F4(x) = − e(− 0.5
∑n

i=1
x2

i) 30 [− 1,1]D 0

Ridge F5(x) = x1 + 2
(∑n

i=2x2
i
)0.1 30 [− 5,5]D − 5

Sphere F6(x) =
∑n

i=1x2
i 30 [− 100,100]D 0

Step F7(x) =
∑n

i=1(xi + 0.5)2 30 [− 5.12, 5.12]D 0

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

11

3.3. Benchmark functions

In order to numerically prove the theoretical claims mentioned in the
previous sections and to test the performance of the proposed algorithm,
a wide range of experiments are conducted. The benchmark functions
can be grouped into three classes. Unimodal benchmark functions have
only one optimum and are suitable for testing the exploitation ability of
optimization algorithms. Table 2 shows the seven fixed-dimension and
scalable unimodal benchmark functions used in this study (F1 to F7).
Multimodal benchmark functions have many local optima that can trap
the algorithms; therefore, they can test the exploration ability of algo
rithms. Table 3 displays the 16 fixed-dimension and scalable multimodal
benchmark functions on which GEO is tested (F8 to F23). The last class is
the composite functions that are more challenging than the previous two
classes. Composite functions can aptly represent the landscapes that
metaheuristic algorithms may face in real-world mathematical prob
lems. Composite functions are basically the shifted, rotated, biased, and
hybridized version of the well-known unimodal and multimodal func
tions. The ten composite benchmark functions introduced in the
CEC2017 competition are utilized in this study, the details of which are
reported in Table 4 (F24 to F33). Further details of CEC2017 composition
functions can be found at (Awad, Ali, Suganthan, Liang, & Qu, 2017).

3.4. Qualitative results

This section explores a set of qualitative measures for the perfor
mance of GEO. Qualitative measures are commonly reported for new
algorithms. The most important qualitative measures of single-objective
optimization for GEO are presented in Fig. 14. It is noteworthy that this
figure contains the qualitative measures for two unimodal functions, two
multimodal functions, and three composite functions. The first column
shows the landscape of the benchmark function. The second column
displays the search history, which is basically the points that have been

visited by all of GEO search agents to find the optimum. It is evident that
GEO can search the entire landscape, but it puts more emphasis on
exploring promising areas. The third column shows the trajectory of the
first search agent along the x1 axis (first decision variable). Plots in this
column show that the search agents undergo drastic changes in their
position in initial iterations of the optimization process while reducing
the changes in later iterations to slow down and converge to the opti
mum. This behavior can guarantee the convergence of GEO (Qi, Zhu, &
Zhang, 2017). The fourth column displays the mean fitness of the pop
ulation over the course of iterations. It can be seen that the large values
of the mean fitness and its rapid changes in initial iterations, followed by
a reduction in value and diminishing changes implies the transition from
high exploration in initial iterations toward high exploitation during the
final iterations. This corresponds to the transition of golden eagles from
intense cruise to intense attack. The last column depicts the convergence
curve for the selected benchmark functions, which is the best position
visited by GEO over the course of iterations. It shows how well GEO
improves the fitness to finally converge toward the optimum. It is seen
that in unimodal functions, the convergence curve is continuously
improving. However, this might not be the case for multimodal and
composite functions, where GEO is exposed to many local minima and
may not visit better positions for some iterations.

3.5. Quantitative results

Although the qualitative measures proved the exploration and
exploitation capability of GEO, they cannot fully reflect how well it can
solve optimization problems. This section uses statistical measures to
quantify the performance of GEO in different classes of benchmark
functions. The arithmetic mean and the standard deviation obtained
from 30 independent runs are used as statistical measures for revealing
GEO’s performance. The arithmetic mean shows how GEO performs on
average, while the standard deviation shows how stable this algorithm

Table 3
Multimodal benchmark functions.

Name Equation D Bounds f*

Drop wave
F8(x) = −

1 + cos
(

12
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
1 + x2

2

√)

0.5
(
x2

1 + x2
2
)
+ 2

2 [− 5.2,5.2]D − 1

Egg holder
F9(x) = − (x2 + 47)sin

(⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒x2 +

x1

2
+ 47

⃒
⃒
⃒

√)

− x1sin
(̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|x1 − x2 − 47|
√) 2 [− 512,512]D − 959.6407

Himmelblau F10(x) =
(
x2

1 + x2 − 11
)2

+
(
x1 + x2

2 − 7
)2 2 [− 5,5]D 0

Levi 13 F11(x) = sin2(3πx1)+ (x − 1)2 (1 + sin2(3πx2)
)
+ (x2 − 1)2 (1 + sin2(2πx2)

) 2 [− 10,10]D 0

Ackley 1

F12(x) = − 20e

(

− 0.2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
x2

i

√)

− e

(
1
n
∑n

i=1
cos(2πxi)

)

+ 20+ e

30 [− 32, 32]D 0

Griewank
F13(x) = 1+

∑n
i=1

x2
i

4000
−
∏n

i=1
cos
(

xi
̅̅
i

√

) 30 [− 600,600]D 0

Happy cat
F14(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(‖x‖2
− n)28

√

+
1
n

(
1
2
‖x‖2

+
∑n

i=1
xi

)

+
1
2

30 [− 2,2]D 0

Michalewicz
F15(x) = −

∑n
i=1sin(xi)

(

sin
(

ix2
i
π

))20 10 [0, π]D − 9.6602

Penalized 1
F16(x) =

π
n

[

10sin2(πy1) +
∑n− 1

i=1

((
yi − 1

)2 (1 + 10sin2 (πyi+1
)))

+
(
yn − 1

)2
]

+
∑n

i=1u(xi,10, 100,4)
30 [− 50, 50]D 0

yi = 1+
1
4
(xi + 1)

u(xi, a, k,m) =

⎧
⎨

⎩

k(xi − a)m xi > a
0 − a ≤ xi ≤ a

k(− xi − a)m xi < a
Penalized 2 F17(x) = 0.1

[
sin2(3πx1) +

∑n− 1
i=1

(
(xi − 1)2

(
1 + sin2(3πxi+1)

))
+ (xn − 1)2 (1 + sin2(2πxn)

)]
+
∑n

i=1u(xi,5,100, 4) 30 [− 50,50]D 0

Periodic F18(x) = 1+
∑n

i=1sin2(xi) − 0.1e(
∑n

i=1
x2

i) 30 [− 50, 50]D 0.9

Qing F19(x) =
∑n

i=1
(
x2

i − i
)2 30 [− 500,500]D 0

Rastrigin F20(x) = 10n+
∑n

i=1
(
x2

i − 10cos(2πxi)
)

30 [− 5.12,5.12]D 0

Rosenbrock F21(x) =
∑n

i=1

(
100

(
xi+1 − x2

i
)2

+ (1 − xi)
2
)

30 [− 5,10]D 0

Salomon F22(x) = 1 − cos
(

2π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1x2
i

√)
+ 0.1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1x2

i

√ 30 [− 100,100]D 0

Yang 4 F23(x) =
(∑n

i=1sin2(xi)
)
e
(
−
∑n

i=1
sin2

̅̅̅̅̅
|xi |

√)
30 [− 10, 10]D − 1

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

12

Table 4
Composite benchmark functions of CEC2017 competition.

Equation D Bounds f*

CF1
F24(x) =

⎧
⎨

⎩

f1 : Shifted and rotated Rosenbrock’s function
f2 : Shifted and rotated High Conditioned Elliptic function
f3 : Shifted and rotated Rastrigin’s function

σ = [10,20, 30]
λ =

[
1,10− 6,1

]

bias = [0,100,200]

30 [− 100, 100]D 2100

CF2
F25(x) =

⎧
⎨

⎩

f1 : Shifted and rotated Rastrigin’s function
f2 : Shifted and rotated Griewank’s function
f3 : Shifted and rotated Modified Schwefel’s function

σ = [10,20, 30]
λ = [1,10,1]
bias = [0,100,200]

30 [− 100, 100]D 2200

CF3

F26(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f1 : Shifted and rotated Rosenbrock’s function
f2 : Shifted and rotated Ackley’s function
f3 : Shifted and rotated Modified Schwefel’s function
f4 : Shifted and rotated Rastrigin’s function

σ = [10,20, 30,40]
λ = [1,10,1,1]
bias = [0,100,200,300]

30 [− 100, 100]D 2300

CF4

F27(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f1 : Shifted and rotated Ackley’sfunction
f2 : Shifted and rotated High Conditioned Elliptic function
f3 : Shifted and rotated Girewank’s function
f4 : Shifted and rotated Rastrigin’s function

σ = [10,20, 30,40]
λ =

[
1,10− 6,10, 1

]

bias = [0,100,200,300]

30 [− 100, 100]D 2400

CF5

F28(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1 : Shifted and rotated Rastrigin’s function
f2 : Shifted and rotated Happy Cat function
f3 : Shifted and rotated Ackley’s function
f4 : Shifted and rotated Discus function
f5 : Shifted and rotated Rosenbrock’s function

σ = [10,20, 30,40, 50]
λ =

[
10,1,10,10− 6 ,1

]

bias = [0,100,200,300,400]

30 [− 100, 100]D 2500

CF6

F29(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1 : Shifted and rotated Expanded Schaffer’s function
f2 : Shifted and rotated Modified Schwefel’s function
f3 : Shifted and rotated Griewank’s function
f4 : Shifted and rotated Rosenbrock’s function
f5 : Shifted and rotated Rastrigin’s function

σ = [10,20, 20,30, 40]
λ =

[
10− 26 ,10, 10− 6,10, 5 × 10− 4]

bias = [0,100,200,300,400]

30 [− 100, 100]D 2600

CF7

F30(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1 : Shifted and rotated HGBat function
f2 : Shifted and rotated Rastrigin’s function
f3 : Shifted and rotated Modified Schwefel’s function
f4 : Shifted and rotated Bent-Cigar function
f5 : Shifted and rotated High Conditioned Elliptic function
f6 : Shifted and rotated Expanded Schaffer’s function

σ = [10,20, 30,40, 50, 60]
λ =

[
10,10, 2.5,10− 26 ,10− 6, 5 × 10− 4]

bias = [0,100,200,300,400, 500]

30 [− 100, 100]D 2700

CF8

F31(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1 : Shifted and rotated Ackley’s function
f2 : Shifted and rotated Griewank’s function
f3 : Shifted and rotated Discus function
f4 : Shifted and rotated Rosenbrock’s function
f5 : Shifted and rotated Happy Cat function
f6 : Shifted and rotated Expanded Schaffer’s function

σ = [10,20, 30,40, 50, 60]
λ =

[
10,10, 10− 6,1, 1,5 × 10− 4]

bias = [0,100,200,300,400, 500]

30 [− 100, 100]D 2800

CF9
F32(x) =

⎧
⎨

⎩

f1 : Hybrid function 5 in CEC2017 competition
f2 : Hybrid function 8 in CEC2017 competition
f3 : Hybrid function 9 in CEC2017 competition

σ = [10,30, 50]
λ = [1,1, 1]
bias = [0,100,200]

30 [− 100, 100]D 2900

CF10
F33(x) =

⎧
⎨

⎩

f1 : Hybrid function 5 in CEC2017 competition
f2 : Hybrid function 6 in CEC2017 competition
f3 : Hybrid function 7 in CEC2017 competition

σ = [10,30, 50]
λ = [1,1, 1]
bias = [0,100,200]

30 [− 100, 100]D 3000

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

13

is. Fixed-dimension unimodal and multimodal functions must be run
with a fixed amount of decision variables. However, scalable unimodal
and multimodal functions can be run with an arbitrary number of de
cision variables. All of the scalable functions were utilized with 30
dimensions.

The results of unimodal, multimodal, and composite benchmark
functions are tabulated in Table 5, Table 6, and Table 7, respectively. In
all of these tables, the best average performances are highlighted with

the bold font for each benchmark function. Table 5 shows that GEO
outperforms other algorithms in half of the unimodal functions and
competitive results in other unimodal functions. This depicts the good
ability of GEO to use the best solutions to guide the search toward
promising areas of the search region. The results of the standard devi
ation prove GEO’s stability. Table 6 reveals that GEO outperforms other
algorithms in 13 out of 16 multimodal functions. This certifies the ability
of GEO to explore different regions within the search region to find

Fig. 14. Qualitative results including landscape, search history, the trajectory of the first agent in the first variable, mean fitness, and convergence curve.

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

14

better solutions. The standard deviations reported in this table reveal
that GEO yields highly stable results in the majority of the multimodal
benchmark functions, compared to other algorithms. Table 7 provides
the results for composite functions from the CEC2017 competition test
suite. The contents of this table demonstrate that according to the
average fitnesses obtained, GEO is able to outperform the other algo
rithms in eight of the ten composite functions available in the test suite.
In addition, the standard deviations confirm the stability of the obtained
solutions by GEO since it has the lowest standard deviation for most of
the composite test functions. Fig. 15 provides the comparative box plots
for the results of composite functions.

3.6. Convergence analysis

The effectiveness of GEO was verified in the previous subsection.
However, the convergence analysis can better reveal the explorative and
exploitative behavior of GEO. Fig. 16 shows the convergence curve for
GEO and other algorithms for six functions (F1 and F7 from unimodal
functions, F10 and F19 from multimodal functions, and F27 and F32 from
composite functions). It can be concluded that GEO converges a little
later than other algorithms in initial iterations, but can often compen
sate with better final values for the objective function.

Table 6
Results of multimodal benchmark functions.

GEO GWO GA CSA PSO HS DA

F8 Mean ¡1.00E+00 − 9.98E− 01 − 1.00E+00 − 1.00E+00 − 1.00E+00 − 9.50E− 01 − 9.83E− 01
Std 0.00E+00 1.14E− 02 4.22E− 12 0.00E+00 1.26E− 04 4.20E− 02 2.82E− 02

F9 Mean ¡9.60E+02 − 8.92E+02 − 9.60E+02 ¡9.60E+02 − 9.56E+02 − 9.42E+02 − 9.28E+02
Std 5.68E− 13 8.22E+01 2.25E− 04 5.68E− 13 1.18E+01 3.01E+01 4.52E+01

F10 Mean 0.00E+00 4.77E− 05 8.88E− 13 9.27E− 24 5.26E− 32 4.88E− 02 5.53E− 04
Std 0.00E+00 2.54E− 04 1.39E− 12 9.04E− 24 1.97E− 31 6.19E− 02 1.12E− 03

F11 Mean 1.35E− 31 3.06E− 08 2.73E− 12 2.74E− 23 1.35E− 31 1.24E− 02 9.99E− 04
Std 6.57E− 47 2.78E− 08 1.10E− 11 5.07E− 23 6.57E− 47 2.94E− 02 2.70E− 03

F12 Mean 1.98E− 01 1.01E− 15 2.48E+00 3.31E+00 1.59E+01 4.69E+00 7.03E+00
Std 5.24E− 01 6.38E− 16 7.38E− 01 5.94E− 01 2.06E+00 3.39E+00 2.62E+00

F13 Mean 5.01E− 03 3.88E+00 2.42E− 01 1.83E− 01 1.04E+02 3.34E+00 1.87E+01
Std 5.53E− 03 2.94E+00 9.10E− 02 5.18E− 02 4.24E+01 4.10E+00 1.07E+01

F14 Mean 2.29E− 01 5.28E− 01 4.65E− 01 5.53E− 01 5.39E− 01 4.38E− 01 7.13E− 01
Std 5.13E− 02 1.09E− 01 1.17E− 01 1.19E− 01 6.39E− 02 1.64E− 01 1.05E− 01

F15 Mean ¡9.50E+00 − 7.70E+00 − 9.19E+00 − 8.58E+00 − 6.04E+00 − 5.04E+00 − 6.03E+00
Std 1.94E− 01 1.11E+00 3.19E− 01 7.66E− 01 3.85E− 01 6.90E− 01 7.38E− 01

F16 Mean 2.08E− 02 2.58E− 02 2.17E+00 3.21E+00 1.41E+07 3.06E+04 2.62E+01
Std 4.15E− 02 1.21E− 02 1.10E+00 1.25E+00 7.86E+06 1.19E+05 5.82E+01

F17 Mean 7.93E− 03 3.30E− 01 3.88E− 02 1.11E− 01 4.88E+07 1.12E+02 8.40E+04
Std 7.24E− 03 1.68E− 01 3.59E− 02 1.14E− 01 1.91E+07 2.76E+02 2.71E+05

F18 Mean 1.00E+00 2.23E+00 1.07E+00 1.01E+00 6.67E+00 1.04E+00 4.35E+00
Std 1.01E− 04 1.84E+00 2.20E− 02 3.01E− 03 6.04E− 01 8.78E− 02 8.68E− 01

F19 Mean 2.54E− 01 8.72E+02 1.25E+02 6.80E+01 1.30E+10 1.30E+07 9.93E+07
Std 3.79E− 01 4.86E+02 7.14E+01 2.98E+01 5.41E+09 3.96E+07 2.82E+08

F20 Mean 1.09E+01 2.03E+00 2.41E+01 2.39E+01 2.74E+02 2.10E+01 1.52E+02
Std 3.82E+00 4.64E+00 5.05E+00 6.97E+00 1.50E+01 3.63E+01 4.47E+01

F21 Mean 4.17E+00 2.63E+01 4.52E+01 1.02E+02 3.05E+04 2.18E+03 5.49E+03
Std 1.28E+01 6.35E− 01 6.08E+01 7.13E+01 1.11E+04 4.05E+03 5.39E+03

F22 Mean 4.03E− 01 1.73E− 01 6.68E− 01 8.36E− 01 1.25E+01 2.87E+00 4.06E+00
Std 6.57E− 02 4.42E− 02 9.39E− 02 1.34E− 01 1.36E+00 2.17E+00 1.72E+00

F23 Mean 2.22E− 20 9.39E− 17 2.96E− 15 3.88E− 16 1.83E− 10 2.41E− 13 2.81E− 12
Std 7.01E− 20 2.90E− 17 1.42E− 15 2.15E− 16 9.82E− 11 3.91E− 13 3.91E− 12

Table 5
Results of unimodal benchmark functions.

GEO GWO GA CSA PSO HS DA

F1 Mean 0.00Eþ00 1.02E− 08 6.64E− 12 2.49E− 24 2.39E− 29 2.03E− 02 3.55E− 03
Std 0.00E+00 8.77E− 09 1.69E− 11 4.24E− 24 7.54E− 29 2.38E− 02 1.83E− 02

F2 Mean 1.99E− 94 3.67E¡320 9.64E− 14 1.40E− 25 5.85E− 33 4.27E− 03 4.21E− 06
Std 5.15E− 94 0.00E+00 2.71E− 13 1.91E− 25 2.44E− 32 4.13E− 03 1.12E− 05

F3 Mean 6.28E− 126 0.00Eþ00 7.28E− 14 3.81E− 25 7.63E− 45 2.33E− 05 4.72E− 07
Std 1.73E− 125 0.00E+00 1.66E− 13 5.92E− 25 3.94E− 44 4.91E− 05 1.48E− 06

F4 Mean ¡1.00Eþ00 ¡1.00Eþ00 − 1.00E+00 − 1.00E+00 − 5.92E− 01 − 9.93E− 01 − 9.56E− 01
Std 3.24E− 16 0.00E+00 2.14E− 06 4.95E− 07 1.72E− 01 9.17E− 03 4.57E− 02

F5 Mean − 4.91E+00 ¡5.00Eþ00 − 4.02E+00 − 4.21E+00 − 2.30E+00 − 1.59E+00 − 3.10E+00
Std 7.41E− 03 1.21E− 07 4.41E− 02 4.04E− 02 2.10E− 01 7.41E− 02 4.32E− 01

F6 Mean 4.56E− 12 8.01E¡77 1.15E− 01 1.75E− 02 9.68E+03 2.71E+02 8.99E+02
Std 3.02E− 12 2.11E− 76 6.64E− 02 8.24E− 03 5.85E+03 3.40E+02 6.98E+02

F7 Mean 3.22E¡14 3.07E− 01 3.79E− 04 7.83E− 05 2.68E+01 1.05E+00 3.30E+00
Std 4.17E− 14 2.47E− 01 2.60E− 04 3.70E− 05 1.33E+01 3.08E+00 1.94E+00

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

15

Fig. 15. Boxplots of the results of CEC2017 composite functions.

Table 7
Results of composite benchmark functions.

GEO GWO GA CSA PSO HS DA

F24 Mean 2.34E+03 2.40E+03 2.44E+03 2.43E+03 2.55E+03 2.71E+03 2.59E+03
Std 7.67E+00 4.95E+01 2.68E+01 2.92E+01 1.02E+01 2.68E+01 6.06E+01

F25 Mean 2.30E+03 5.27E+03 2.31E+03 2.49E+03 3.05E+03 9.91E+03 8.19E+03
Std 1.55E+00 2.23E+03 2.38E+00 8.56E+02 2.51E+02 5.42E+02 1.88E+03

F26 Mean 2.69E+03 2.77E+03 2.87E+03 2.93E+03 2.89E+03 3.43E+03 3.07E+03
Std 1.59E+01 5.40E+01 6.56E+01 9.81E+01 1.64E+01 5.66E+01 1.15E+02

F27 Mean 2.85E+03 2.98E+03 3.02E+03 3.12E+03 3.05E+03 3.90E+03 3.22E+03
Std 7.19E+00 7.30E+01 4.35E+01 1.27E+02 1.32E+01 1.25E+02 8.50E+01

F28 Mean 2.93E+03 3.00E+03 2.95E+03 2.94E+03 3.38E+03 6.26E+03 3.27E+03
Std 1.34E+01 5.77E+01 1.66E+01 2.19E+01 2.22E+02 1.05E+03 2.41E+02

F29 Mean 4.00E+03 4.85E+03 6.09E+03 5.34E+03 6.42E+03 1.09E+04 7.30E+03
Std 1.10E+03 4.68E+02 1.54E+03 1.47E+03 1.68E+02 1.15E+03 1.13E+03

F30 Mean 3.26E+03 3.25E+03 3.38E+03 3.33E+03 3.26E+03 4.03E+03 3.40E+03
Std 1.50E+01 1.59E+01 5.48E+01 6.93E+01 2.15E+01 2.14E+02 8.64E+01

F31 Mean 3.27E+03 3.42E+03 3.29E+03 3.30E+03 3.59E+03 1.01E+04 3.90E+03
Std 1.44E+01 9.23E+01 1.92E+01 2.32E+01 1.22E+02 1.72E+03 3.46E+02

F32 Mean 3.70E+03 3.83E+03 4.25E+03 4.29E+03 4.60E+03 6.25E+03 4.92E+03
Std 9.48E+01 1.97E+02 2.36E+02 2.13E+02 1.74E+02 4.03E+02 4.81E+02

F33 Mean 1.47E+06 7.25E+06 8.56E+05 1.42E+06 4.97E+06 7.33E+08 3.16E+07
Std 5.59E+05 5.10E+06 2.95E+05 1.38E+06 8.81E+06 3.44E+08 3.27E+07

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

16

3.7. Scalability analysis

This subsection presents the results of the scalability analysis con
ducted to see how GEO is scalable for problems with a large number of
decision variables. Six benchmark functions from different classes were
considered for scalability analysis (F1 and F6 from unimodal functions,
F16 and F20 form multimodal functions, and F25 and F29 from composite
functions). In addition to GEO, all the other algorithms previously
compared in this study also participate in this analysis for comparison.
The experiment is carried out for 10D, 30D, 50D, and 100D since the
CEC2017 test suite only supports these numbers of dimensions. The best
objective value obtained and the computation time of each algorithm
was recorded for 30 independent runs on each benchmark function.
Fig. 17 displays the results for the best objective value obtained in the
form of error bars. The center points show the arithmetic mean of the 30
independent runs, while the upper and lower bars show the minimum

and maximum objective values obtained. Results confirm GEO’s almost
consistent performance as the dimensions rise. Fig. 18 shows the same
statistics for computation times. It is observed that in terms of compu
tation time, GEO belongs to the midpack and can retain its relative
computation time compared to other algorithms. This implies that the
temporal performance of GEO is consistent relative to that of other al
gorithms when we transit from small to large problems. It worths noting
that the plots in Figs. 17 and 18 have a logarithmic scale along the y-axis
to better demonstrate the differences in small values. However, since
logarithmically scaled plots cannot show the values exactly equal to
zero. In this experiment, the maximum number of function evaluations
of 106 was used, similar to the CEC2017 competition (Awad et al.,
2017), and a population size of 2 × D was used for all of the algorithms
and all of the benchmark functions for the scalability analysis.

Fig. 16. Convergence curve of GEO and compared algorithms.

Fig. 17. Results of scalability analysis for objective value.

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

17

4. Multi-objective optimization results for MOGEO

This section provides the results of applying MOGEO to multi-
objective benchmark functions. The parameters specific to multi-
objective optimization are set according to Table 8. For parameters
that the algorithms share with their single-objective version, the pa
rameters introduced in Table 1 are used. Since both MOGEO, MOGWO,
MOPSO, and MOSSA are archive-based solvers, a similar archive size is
used for both of them. However, MOGEO does not use the grid mecha
nism and does not need parameters like the number of grids and grid
multiplier. CEC2009 (Zhang, Zhou, Zhao, Suganthan, Liu, & Tiwari,
2009) and DTLZ (Deb, Thiele, Laumanns, & Zitzler, 2005) test suites,
which are among the most challenging test suites for multi-objective
problems, are utilized to test the performance of MOGEO. Details of
the mathematical formulation of CEC2009 and DTLZ benchmark func
tions are presented in Table 9 and Table 10, respectively. In consistence
with previous experiments, the results of MOGEO are compared to that
of four well-known multi-objective algorithms, namely Multi-Objective
Grey Wolf Optimizer (MOGWO) (Mirjalili et al., 2016), Non-dominated
Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2000), Multi-
Objective Particle Swarm Optimization (MOPSO) (Coello Coello &
Lechuga, 2002), and Multi-Objective Salp Swarm Algorithm (MOSSA)
(Mirjalili et al., 2017).

Since the solution to the multi-objective problems are a set of solu
tions rather than a single solution, the comparison of the Pareto fronts
becomes an issue. Inverse Generational Distance (IGD) (Sierra & Coello

Coello, 2005; Van Veldhuizen & Lamont, 1998) provides a way to
quantify the obtained Pareto front by mapping the whole Pareto front to
a single value that can be used for comparing the quality of the obtained
Pareto fronts. It measures the average distance between each member of
the true Pareto front to the nearest member of the obtained Pareto front.

IGD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1d

2
i

√

n
(13)

where di is the Euclidean distance between the i-th member of the true
Pareto front and the nearest member of the obtained Pareto front and n
is the total number of members of the true Pareto front.

Table 11 presents the arithmetic mean, and the standard deviation of
the IGD score calculated for each of the 30 independent runs of each
algorithm on each of the multi-objective benchmark functions. It reveals
that MOGEO outperformed the other algorithms in eight of the multi-
objective benchmark functions. MOGEO was also able to provide more
stable results in three of the problems in the test suite. This confirms that
MOGEO can successfully handle multi-objective optimization problems.
MOGEO’s higher rate of converging to the optimal Pareto front can be
attributed to the fact the search agents always choose prey from the
external archive that stores the Pareto front obtained so far. The archive
update mechanism, when triggered, usually drop a member from the
most densely populated areas of the archive, which helps MOGEO
converge to more uniformly distributed fronts. The good exploration
mechanism of GEO, which also benefits MOGEO and was numerically
proved in the previous section, helps MOGEO avoid local fronts to
converge to the true Pareto front. Fig. 19 displays the best Pareto front
(out of the 30 independent runs) by the tested algorithms in terms of
IGD.

MOGEO is also tested on the DTLZ test suite, which is another
challenging multi-objective test suite. A notable feature of this test suite
is its scalability in the number of objectives. In other words, this test
suite can be used with any number of objective functions. In this study,
we focus on problems with two and three objectives. Table 12 displays
the arithmetic mean and the standard deviation of IGD scores for 30
independent runs of MOGEO on the problems of the DTLZ test suite with
two and three objective functions. It is revealed that MOGEO is able to
outperform the other algorithms in one problem out of seven bi-
objective problems, and two out of seven tri-objective problems.
MOGEO has provided competitive results in other problems. Figs. 20
and 21 display the best optimal Pareto front achieved by the algorithms,
according to IGD scores.

Fig. 18. Results of scalability analysis for computation time.

Table 8
Parameter setting for multi-objective benchmark functions.

Algorithm Parameter Value

All algorithms Population size 200
MOGEO Archive size 100
MOGWO Archive size 100

Number of grids 20
Grid multiplier 10

NSGA-II – –
MOPSO Archive size 100

Number of grids 20
Grid multiplier 10

MOSSA Archive size 100
Number of grids 20
Grid multiplier 10
Number of leader salps Population size / 2

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

18

Table 9
Multi-objective benchmark functions from the CEC2009 test suite.

Name Equation D

UF1 ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = x1 +
2
|J1|

∑

j∈J1

[

xj − sin
(

6πx1 +
jπ
n

)]2

f2(x) = 1 −
̅̅̅̅̅
x1

√
+

2
|J2|

∑

j∈J2

[

xj − sin
(

6πx1 +
jπ
n

)]2

J1 = {j|jis odd and2 ≤ j ≤ n},J2 = {j|jis even and2 ≤ j ≤ n}

30

UF2 ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x) = x1 +
2
|J1|

∑

j∈J1

y2
j

f2(x) = 1 −
̅̅̅̅̅
x1

√
+

2
|J2|

∑

j∈J2

y2
j

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xj −

[

0.3x2
1cos

(

24πx1 +
4jπ
n

)

+ 0.6x1

]

cos
(

6πx1 +
jπ
n

)

j ∈ J1

xj −

[

0.3x2
1cos

(

24πx1 +
4jπ
n

)

+ 0.6x1

]

cos
(

6πx1 +
jπ
n

)

j ∈ J2

30

UF3 ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = x1 +
2
|J1|

(

4
∑

j∈J1

y2
j − 2

∏

j∈J1
cos

(
20yjπ
̅̅
j

√

)

+ 2

)

f2(x) = 1 −
̅̅̅̅̅
x1

√
+

2
|J2|

(

4
∑

j∈J2

y2
j − 2

∏

j∈J2
cos

(
20yjπ
̅̅
j

√

)

+ 2

)

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj = xj − x
0.5

(

1+
3(j − 2)
n − 2

)

1 , j = 2,⋯,n

30

UF4 ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x) = x1 +
2
|J1|

∑

j∈J1

h
(

yj

)

f2(x) = 1 − x2
1 +

2
|J2|

∑

j∈J2

h
(

yj

)

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj = xj − sin
(

6πx1 +
jπ
n

)

, j = 2,⋯,n,h(t) =
|t|

1 + e2|t|

30

UF5
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) = x1 +

(
1

2N
+ ε
)

|sin(2Nπx1) | +
2
|J1|

∑

j∈J1

h
(

yj

)

f2(x) = 1 − x1 +

(
1

2N
+ ε
)

|sin(2Nπx1) | +
2
|J2 |

∑

j∈J2

h
(

yj

)

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj = xj − sin
(

6πx1 +
jπ
n

)

, j = 2,⋯,n, h(t) = 2t2 − cos(4πt) + 1, N is an integer,ε > 0

30

UF6 ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = x1 + max
{

0,2
(

1
2N

)

sin(2Nπx1)

}

+
2
|J1|

(

4
∑

j∈J1

y2
j − 2

∏

j∈J1
cos

(
20yjπ
̅̅
j

√

)

+ 2

)

f2(x) = 1 − x1 + max
{

0,2
(

1
2N

)

sin(2Nπx1)

}

+
2
|J2|

(

4
∑

j∈J2

y2
j − 2

∏

j∈J2
cos

(
20yjπ
̅̅
j

√

)

+ 2

)

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj = xj − sin
(

6πx1 +
jπ
n

)

, j = 2,⋯,n

30

UF7 ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x) =
̅̅̅̅̅
x1

5
√

+
2
|J1|

∑

j∈J1

y2
j

f2(x) = 1 −
̅̅̅̅̅
x1

5
√

+
2
|J2|

∑

j∈J2

y2
j

J1 = {j|jis odd and2 ≤ j ≤ n}, J2 = {j|jis even and2 ≤ j ≤ n}

yj = xj − sin
(

6πx1 +
jπ
n

)

, j = 2,⋯,n

30

UF8 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = cos(0.5x1π)cos(0.5x2π) +
2
|J1|

∑

j∈J1

(

xj − 2x2sin
(

2πx1 +
jπ
n

))2

f2(x) = cos(0.5x1π)cos(0.5x2π) +
2
|J2|

∑

j∈J2

(

xj − 2x2sin
(

2πx2 +
jπ
n

))2

f3(x) = sin(0.5x1π) +
2
|J3|

∑

j∈J3

(

xj − 2x2sin
(

2πx1 +
jπ
n

))2

J1 = {j|3 ≤ j ≤ n, andj − 1is a mulitplication of3},
J2 = {j|3 ≤ j ≤ n, andj − 2is a mulitplication of3},
J3 = {j|3 ≤ j ≤ n, andjis a mulitplication of3}

30

UF9 30

(continued on next page)

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

19

5. Engineering benchmark tests

In order to test how the proposed GEO can solve real-world engi
neering problems, the proposed GEO is applied to five well-known en
gineering benchmark problems in this section. The nonlinear nature of
many engineering optimization problems makes metaheuristic algo
rithms a compelling candidate for solving these problems. In this study,
we solve the following engineering benchmark problems: three-bar truss
design, cantilever beam design, tension/compression spring design, and
welded beam design. In all of the tests, the results of GEO is compared to
that of other metaheuristic methods that are already used in previous
sections.

5.1. Constraint handling method

The distinguishing feature of the benchmark problems of this section
is that they contain constraints. Therefore, the constraints should be
handled properly so that the obtained results do not significantly violate
the constraints. Constraint handling is one of the challenges in optimi
zation problems, and various methods have been proposed to overcome
this challenge. We use the penalty function approach in this study. The
penalty function can be defined as (14) (Yang & Karamanoglu, 2013).

F
(
x,mi, vj

)
= f (x) +

∑M

i=1
miφ2

i +
∑N

j=1
vjω2

j (14)

where f(x) is the original objective function, M is the number of
inequality constraints, mi is the penalty factor for inequality constraints,
and φi is the amount of constraint violation for the i-th inequality
constraint, N is the number of equality constraints, vj is the penalty
factor for equality constraints, and ωj is the amount of constraint
violation for the j-th equality constraint. The advantage of using the
penalty function is that it transforms the constrained problem into an
unconstrained problem. Important notice for implementing penalty
function is to assign suitable values for penalty factors (mi and vj). We
use 1015 for both of the penalty factors, which is suitable in this regard
(Yang, 2014).

5.2. Three-bar truss design

This engineering problem seeks to find the area of bars 1 (x1) and 3
(x2) that minimizes the total weight of the truss. The structure of the
three-bar design problem is presented in Fig. 22, and the mathematical

formulation is shown in Eq. (15).

Minimize f (x→) =
(

2
̅̅̅
2

√
x1 + x2

)
× l

Subjectto :

g1(x→) =

̅̅̅
2

√
x1 + x2

̅̅̅
2

√
x2

1 + 2x1x2
P − σ ≤ 0

g2(x→) =
x2

̅̅̅
2

√
x2

1 + 2x1x2
P − σ ≤ 0

g3(x→) =
1

̅̅̅
2

√
x2 + x1

P − σ ≤ 0

Where

l = 100 cm, P = 2 KN/cm2, σ = 2 KN/cm2, 0 ≤ x1, x2 ≤ 1

(15)

Optimal values of decision variables (xj), constraint violation (gi),
and the optimal objective function values (f) obtained by applying GEO
and other algorithms on the three-bar truss design problem are tabulated
in Table 13. It reveals that the proposed GEO can outperform GWO, GA,
PSO, HS, and DA while showing competitive results compared to CSA. It
can also be witnessed that the first constraint (g1) is active in the optimal
solution, and GEO is among the algorithms that have the smallest
constraint violation. This confirms that the proposed algorithm can
perform quite well in constrained problems.

Table 13 only showed the best obtained results. To see which algo
rithms have similar performance, we need to take into account the re
sults of all of the 30 runs of the algorithms on the problem. A Kruskal-
Wallis test is performed here to see whether the mean objective func
tion obtained by algorithms are significantly different. Table 14 shows
that the null hypothesis is rejected. In other words, one or more of the
algorithms has significantly different performance compared to the
others. To find out which algorithms perform statistically similar, a
multiple comparisons (post hoc) test is performed. Fig. 23 shows the
confidence intervals of the Tukey-Kramer test, which reveals that GEO
has statistically similar performance compared to GWO.

5.3. Cantilever beam design

This problem considers finding the height of five attached hollow
blocks (h1 to h5) in the form of a cantilever beam so that the total weight
of the structure is minimized. The structure of the cantilever beam is

Table 9 (continued)

Name Equation D

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = 0.5
[
max

{
0, (1 + ε)

(
1 − 4(2x1 − 1)2

)}
+ 2x1

]
x2 +

2
|J1|

∑

j∈J1

(

xj − 2x2sin
(

2πx1 +
jπ
n

))2

f2(x) = 0.5
[
max

{
0, (1 + ε)

(
1 − 4(2x1 − 1)2

)}
− 2x1 + 2

]
x2 +

2
|J2|

∑

j∈J2

(

xj − 2x2sin
(

2πx2 +
jπ
n

))2

f3(x) = 1 − x2 +
2
|J3|

∑

j∈J3

(

xj − 2x2sin
(

2πx1 +
jπ
n

))2

J1 = {j|3 ≤ j ≤ n, andj − 1is a mulitplication of3},
J2 = {j|3 ≤ j ≤ n, andj − 2is a mulitplication of3},J3 = {j|3 ≤ j ≤ n, andjis a mulitplication of3}

UF10 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = cos(0.5x1π)cos(0.5x2π) +
2
|J1|

∑

j∈J1

[
4y2

j − cos
(

8πyj

)
+ 1

]

f2(x) = cos(0.5x1π)cos(0.5x2π) +
2
|J2|

∑

j∈J2

[
4y2

j − cos
(

8πyj

)
+ 1

]

f3(x) = sin(0.5x1π) +
2
|J3 |

∑

j∈J3

[
4y2

j − cos
(

8πyj

)
+ 1

]

J1 = {j|3 ≤ j ≤ n, andj − 1is a mulitplication of3},
J2 = {j|3 ≤ j ≤ n, andj − 2is a mulitplication of3},
J3 = {j|3 ≤ j ≤ n, andjis a multiplication of3},

yj = xj − 2x2sin
(

2πx1 +
jπ
n

)

, j = 3,⋯,n

10

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

20

Table 10
Multi-objective benchmark functions from the DTLZ test suite.

Name Equation D Number of objectives

DTLZ 1
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) =
1
2
x1x2⋯xM− 1(1 + g(xM))

f2(x) =
1
2
x1x2⋯(1 − xM− 1)(1 + g(xM))

⋮

fM− 1(x) =
1
2
x1(1 − x2)(1 + g(xM))

fM(x) =
1
2
(1 − x1)(1 + g(xM))

g(xM) = 100
[
|xM| +

∑
xi∈xM

(xi − 0.5)2
− cos(20π(xi − 0.5))

]

0 ≤ x ≤ 1, for i = 1,2,⋯,n

3 2, 3

DTLZ 2 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = (1 + g(xM))cos
(

x1
π
2

)
⋯cos

(
xM− 2

π
2

)
cos
(

xM− 1
π
2

)

f2(x) = (1 + g(xM))cos
(

x1
π
2

)
⋯cos

(
xM− 2

π
2

)
sin
(

xM− 1
π
2

)

f3(x) = (1 + g(xM))cos
(

x1
π
2

)
⋯sin

(
xM− 2

π
2

)

⋮

fM(x) = (1 + g(xM))sin
(

x1
π
2

)

g(xM) =
∑

xi∈xM
(xi − 0.5)2

0 ≤ x ≤ 1, fori = 1,2,⋯,n

10 2, 3

DTLZ 3 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = (1 + g(xM))cos
(

x1
π
2

)
⋯cos

(
xM− 2

π
2

)
cos
(

xM− 1
π
2

)

f2(x) = (1 + g(xM))cos
(

x1
π
2

)
⋯cos

(
xM− 2

π
2

)
sin
(

xM− 1
π
2

)

f3(x) = (1 + g(xM))cos
(

x1
π
2

)
⋯sin

(
xM− 2

π
2

)

⋮

fM(x) = (1 + g(xM))sin
(

x1
π
2

)

g(xM) = 100
[
|xM| +

∑
xi∈xM

(xi − 0.5)2
− cos(20π(xi − 0.5))

]

0 ≤ x ≤ 1, fori = 1,2,⋯,n

3 2, 3

DTLZ 4 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = (1 + g(xM))cos
(

xα1
π
2

)
⋯cos

(
xαM− 2

π
2

)
cos
(

xαM− 1
π
2

)

f2(x) = (1 + g(xM))cos
(

xα1
π
2

)
⋯cos

(
xαM− 2

π
2

)
sin
(

xαM− 1
π
2

)

f3(x) = (1 + g(xM))cos
(

xα1
π
2

)
⋯sin

(
xαM− 2

π
2

)

⋮

fM(x) = (1 + g(xM))sin
(

xα1
π
2

)

g(xM) =
∑

xi∈xM
(xi − 0.5)2

α = 100
0 ≤ x ≤ 1, fori = 1,2,⋯,n

30 2, 3

DTLZ 5 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = (1 + g(xM))cos
(
θ1
π
2

)
⋯cos

(
θM− 2

π
2

)
cos
(
θM− 1

π
2

)

f2(x) = (1 + g(xM))cos
(
θ1
π
2

)
⋯cos

(
θM− 2

π
2

)
sin
(
θM− 1

π
2

)

f3(x) = (1 + g(xM))cos
(
θ1
π
2

)
⋯sin

(
θM− 2

π
2

)

⋮

fM(x) = (1 + g(xM))sin
(
θ1
π
2

)

g(xM) =
∑

xi∈xM
(xi − 0.5)2

θi =
π

4(1 + g(xM))
(1 + 2g(xM)xi), fori = 2,3,⋯, (M − 1)

0 ≤ x ≤ 1, fori = 1,2,⋯,n

30 2, 3

DTLZ 6 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = (1 + g(xM))cos
(
θ1
π
2

)
⋯cos

(
θM− 2

π
2

)
cos
(
θM− 1

π
2

)

f2(x) = (1 + g(xM))cos
(
θ1
π
2

)
⋯cos

(
θM− 2

π
2

)
sin
(
θM− 1

π
2

)

f3(x) = (1 + g(xM))cos
(
θ1
π
2

)
⋯sin

(
θM− 2

π
2

)

⋮

fM(x) = (1 + g(xM))sin
(
θ1
π
2

)

g(xM) =
∑

xi∈xM
x0.1

i

θi =
π

4(1 + g(xM))
(1 + 2g(xM)xi), fori = 2,3,⋯, (M − 1)

0 ≤ x ≤ 1, fori = 1,2,⋯,n

10 2, 3

DTLZ 7 30 2, 3

(continued on next page)

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

21

presented in Fig. 24, and the mathematical programming formulation is
shown in Eq. (16).

Consider x→= [x1, x2, x3, x4, x5] = [h1, h2, h3, h4, h5]

Minimize f (x→) = 0.0624(x1 + x2 + x3 + x4 + x5)

Subject to :

g1(x→) =
61
x3

1
+

37
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≤ 0

Where

0 ≤ xi ≤ 100

(16)

Table 15 displays the best results obtained from GEO and other
competing algorithms. This table shows that GEO outperforms GWO,
GA, PSO, and HS while providing competitive results compared to CSA
and DA in terms of optimal objective value and constraint violation.

Table 16 shows that the null hypothesis of the Kruskal-Wallis test is
rejected for the cantilever beam design problem. Fig. 25 displays the
results of the multiple comparisons test and reveals that GEO has sta
tistically similar performance to GA in this problem.

5.4. Tension/compression spring design

This problem considers minimizing the total weight of a tension/
compression spring, considering diameter (d), mean coil diameter (D),
and the number of active coils (P) as the three design variables. The
structure of the tension/compression spring is shown in Fig. 26, and the
mathematical formulation of this problem is presented in Eq. (17).

Consider x→= [x1x2, x3] = [d,D,P]

Minimize f (x→) = (x3 + 2)x2x2
1

Subject to :

g1(x→) = 1 −
x3

2x3

71785x4
1
≤ 0

g2(x→) =
4x2

2 − x1x2

12566(x3
1 − x

4
1

) −
1

5108x2
1
≤ 0

g3(x→) = 1 −
140.45x1

x2
2x3

≤ 0

g4(x→) =
x1 + x2

1.5
≤ 0

Where

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

(17)

Table 17 tabulates the obtained values for design variables (xj),
constraint violations (gi), and the objective function for GEO and other
algorithms. It is evident in this table that the proposed GEO outperforms
GWO, PSO, HS, and DA while providing competitive results in com
parison to GA, and CSA.

Table 18 shows that the null hypothesis of the Kruskal-Wallis test is
rejected for the tension/compression spring design problem. Fig. 27
displays the results of the multiple comparisons test and shows that no
other algorithm perform statistically similar to GEO.

5.5. Welded beam design

The objective of this problem is to find optimal values for the
thickness of weld (h), length (l), height (t), and thickness of the bar (b)
that minimizes the total cost of manufacturing a welded beam. The
structure of the considered design is presented in Fig. 28, and the cor
responding mathematical formulation is shown in Eq. (18).

Table 10 (continued)

Name Equation D Number of objectives
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x1) = x1
f2(x2) = x2
⋮
fM− 1(xM− 1) = xM− 1
fM(x) = (1 + g(xM))h(f1, f2,⋯, fM− 1, g)

g(xM) = 1+
9

|xm|

∑

xi∈xM

xi

h(f1, f2,⋯, fM− 1, g) = M −
∑M− 1

i=1

[
fi

1 + g
(
1 + sin

(
3πfi

))
]

0 ≤ x ≤ 1, fori = 1,2,⋯,n

Table 11
Results of IGD scores for CEC 2009 multi-objective benchmark functions.

MOGEO MOGWO NSGA-II MOPSO MOSSA

UF1 Mean 0.004 0.0057 0.0066 0.0052 0.0058
Std 0.0004 0.0005 0.0018 0.0007 0.0003

UF2 Mean 0.0024 0.0036 0.0039 0.0032 0.0036
Std 0.0004 0.0005 0.0007 0.0002 0.0005

UF3 Mean 0.009 0.0171 0.0148 0.0204 0.0134
Std 0.0013 0.003 0.0016 0.0003 0.0045

UF4 Mean 0.0024 0.0049 0.0063 0.006 0.0047
Std 0.0001 0.0004 0.0004 0.0002 0.0005

UF5 Mean 0.1915 0.1994 0.1462 0.1944 0.1558
Std 0.061 0.0868 0.0628 0.1051 0.0284

UF6 Mean 0.0173 0.021 0.0219 0.0248 0.0104
Std 0.0056 0.0074 0.006 0.007 0.0028

UF7 Mean 0.0021 0.0064 0.0169 0.0112 0.0042
Std 0.0001 0.0065 0.0079 0.0072 0.0003

UF8 Mean 0.0121 0.052 0.0169 0.0142 0.0207
Std 0.0027 0.0188 0.0012 0.0005 0.0032

UF9 Mean 0.0137 0.0176 0.0221 0.0176 0.0291
Std 0.0035 0.0019 0.005 0.0016 0.0087

UF10 Mean 0.0219 0.0918 0.0828 0.0486 0.0585
Std 0.0067 0.1208 0.0365 0.0166 0.0304

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

22

Table 19 tabulates the results obtained by solving this problem using
GEO and other competing algorithms. This table shows that GEO out
performs GWO, GA, PSO, HS, and DA, and provides competitive results
compared to CSA. This confirms the ability of the proposed GEO to solve
problems with multiple nonlinear constraints efficiently.

Table 20 shows that the null hypothesis of the Kruskal-Wallis test is
rejected for the welded beam design problem. Fig. 29 displays the results
of the multiple comparisons test and shows that GEO performs statisti
cally similar to GA and CSA.

6. Conclusion

This work proposed a new swarm-intelligence metaheuristic algo
rithm for solving optimization problems, called Golden Eagle Optimizer
(GEO). The algorithm starts off with an initial population and mimics
the hunting procedure of golden eagles to improve the fitness of the
population and find the optimum. Particularly, GEO is based on the fact
that golden eagles’ behavior in any instance during the hunting flight is
influenced by the propensity to attack and propensity to cruise. Golden
eagles memorize the best preys they have visited and sometimes
communicate prey’s location with other eagles. The mathematical
equations proposed for GEO simulate attack and cruise vectors to
address exploitation and exploitation for solving optimization problems.
Besides, the multi-objective version of the algorithm, called Multi-
Objective Golden Eagle Optimizer (MOGEO), was proposed based on
the main concepts of GEO with some modifications. The modification
was implemented on prey selection, best solution preservation mecha
nism (external archive), and archive handling. MATLAB toolboxes and

the source code are developed for GEO and MOGEO and publicly
available.

To certify the performance and efficiency of the proposed algo
rithms, GEO was tested on 33 benchmark problems from different
classes, including unimodal, multimodal, and composite benchmark
functions. The CEC2017 test suite was utilized for composite benchmark
functions. Results were compared to that of six other well-known met
aheuristic algorithms via different statistical measures. It was revealed
that GEO is capable of exploring the landscape through intense and
abrupt movements in the initial stages of the search and converge to
ward the promising areas by exploiting the best solutions found over the
course of iterations. GEO outperformed other algorithms in the majority
of the benchmark problems while providing competitive results in the
others. GEO was also used to solve real-world engineering problems,
where it showed promising performance. The results indicate that GEO
is able to find the global optimum of optimization problems with chal
lenging and unknown search spaces.

MOGEO’s performance was tested using the CEC2009 and DTLZ test
suite, which are specially designed for testing multi-objective algo
rithms. The results of MOGEO was compared to that of four other well-
known multi-objective algorithms. MOGEO was able to provide
competitive results, and in many cases, outperform the other algorithms
in approximating the true Pareto front in challenging multi-objective
problems.

It worths noting that the proposed GEO and MOGEO algorithms treat
single- and multi-objective problems as a black box; therefore, they can
be applied to any type of optimization problems, including NP-hard
ones, as long as the problem is properly formulated. In addition, since

Consider x→= [x1, x2, x3x4] = [h, l, t, b]

Minimize f (x→) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2)

Subject to :

g1(x→) = τ(x→) − τmax ≤ 0

g2(x→) = σ(x→) − σmax ≤ 0

g3(x→) = δ(x→) − δmax ≤ 0

g4(x→) = x1 − x4 ≤ 0

g5(x→) = P − P(x→) ≤ 0

g6(x→) = 0.125 − x1 ≤ 0

g7(x→) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2) − 5 ≤ 0

Where

τ(x→) =

̅̅̅

(τ’)
2
+ (τ’’)

2
+

lτ’τ’’
̅̅

0.25
(
l2 + (h+ t)2

)√

√
√
√
√
√

, τ’ =
6000
̅̅̅
2

√
hl
, τ’’ =

6000(14 + 0.5l)
̅̅

0.25
(
l2 + (h+ t)2

)√

2
[

0.707hl
(
l2

12
+ 0.25(h+ t)2

)]

σ(x→) =
504000
t2b

, δ(x→) =
65856000

(
30 × 106)bt3

0.1 ≤ x1, x4 ≤ 2, 0.1 ≤ x2, x3 ≤ 10

(18)

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

23

UF1

UF2

UF3

UF4

UF5

Fig. 19. Best Pareto fronts achieved by multi-objective solvers for the CEC 2009 test suite.

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

24

Table 12
Results of IGD scores for DTLZ multi-objective benchmark functions.

2 objectives 3 objectives

MOGEO MOGWO NSGA-II MOPSO MOSSA MOGEO MOGWO NSGA-II MOPSO MOSSA

DTLZ 1 Mean 21.485 20.203 5.1113 8.0282 19.033 10.32 19.551 11.144 7.8028 22.037
Std 4.9369 4.09 1.192 3.9383 3.9375 2.9302 4.2953 5.644 3.0162 9.8469

DTLZ 2 Mean 6.9452 6.9041 6.3703 7.0545 6.714 8.8323 8.7484 7.9095 8.0977 7.8462
Std 0.0517 0.0877 0.3375 0.069 0.0829 0.1367 0.6491 0.5309 0.0633 0.1516

DTLZ 3 Mean 18.697 19.729 7.7265 11.992 14.603 17.828 29.794 18.911 12.314 27.624
Std 6.3404 5.8729 1.8664 4.5917 4.3449 3.7691 4.8473 10.023 4.7149 8.7055

DTLZ 4 Mean 7.3187 7.4069 5.582 7.0472 7.4759 10.862 12.235 10.419 11.81 9.6378
Std 0.1105 0.6238 2.5732 0.8244 0.639 0.2894 0.3679 2.164 0.3363 0.1586

DTLZ 5 Mean 6.8398 7.5905 7.6684 7.0497 6.4997 6.9365 9.1043 8.1875 7.2588 6.494
Std 0.0449 0.1959 1.9841 0.1487 0.0781 0.0877 0.436 2.2108 0.2541 0.0643

DTLZ 6 Mean 7.238 8.9986 18.839 13.906 8.2068 7.5248 17.023 21.946 27.102 9.8256
Std 0.1464 0.7214 2.2866 1.0908 0.3778 0.3463 1.1571 1.3502 0.0761 0.8706

DTLZ 7 Mean 8.6588 10.611 15.664 8.6916 8.5328 10.767 14.47 24.438 12.288 12.412
Std 0.0824 1.197 1.7947 1.1061 0.9813 0.2797 6.0019 2.4592 0.2514 0.8748

Fig. 19. (continued).

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

25

DTLZ 1

DTLZ 2

DTLZ 3

DTLZ 4

DTLZ 5

DTLZ 6

DTLZ 7

Fig. 20. Best Pareto fronts achieved by multi-objective solvers for the DTLZ test suite with two objectives.

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

26

Fig. 21. Best Pareto fronts achieved by multi-objective solvers for the DTLZ test suite with three objectives.

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

27

the proposed algorithms are able to solve optimization problems with
continuous variables, some modifications may be needed for applying
the GEO and MOGEO on problems with non-continuous decision space.
There are opens avenues for future researches to proposed suitable op
erators to enhance the performance of the proposed algorithms on
different types of problems. It is also perceived from the experiments
that the introduction of the cruise vector provides good exploration in
comparison to Exploitation capabilities in GEO and MOGEO. This

Table 13
Best results obtained from algorithms for the three-bar truss design problem.

GEO GWO GA CSA PSO HS DA

x1 0.7886711 0.7887804 0.7886422 0.7886751 0.7882546 0.7895572 0.7883714
x2 0.4082597 0.4079592 0.4083416 0.4082483 0.4094389 0.4060659 0.409108
g1 − 3.46E − 10 − 6.54E − 06 − 2.18E − 08 6.75E − 14 − 1.34E − 08 − 2.33E − 04 7.33E − 14
g2 − 1.46E + 00 − 1.46E + 00 − 1.46E + 00 − 1.46E + 00 − 1.46E + 00 − 1.47E + 00 − 1.46E + 00
g3 − 5.36E − 01 − 5.36E − 01 − 5.36E − 01 − 5.36E − 01 − 5.37E − 01 − 5.34E − 01 − 5.37E − 01
f(Weight) 263.89584 263.89671 263.89585 263.89584 263.89598 263.9271 263.89591

Fig. 23. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons (Post hoc) test for the results of the three-bar truss design problem.

D

A A

A

A A

Fig. 22. The three-bar truss design problem. Fig. 24. Cantilever beam design problem.

Table 14
Kruskal-Wallis table for the results of the three-bar truss design problem.

Source SS df MS χ2 p-value

Groups 694319.9 6 115,720 188.0368 6.65E–38
Error 77406.13 203 381.311 – –
Total 771,726 209 – – –

Table 15
Best results obtained from algorithms for the cantilever beam design problem.

GEO GWO GA CSA PSO HS DA

x1(h1) 6.0156663 6.0109041 6.0439109 6.016015 5.9776207 5.4129259 6.0643788
x2(h2) 5.30926 5.3127046 5.298085 5.3090164 5.3779792 5.4129259 5.111031
x3(h3) 4.4944048 4.491602 4.4836003 4.4939648 4.4484496 5.4129259 4.7138404
x4(h4) 3.5016424 3.4951881 3.4868247 3.5020552 3.5336466 3.6742979 3.4824003
x5(h5) 2.1526862 2.1635477 2.161796 2.1526086 2.1450825 2.2792842 2.1387489
g1 − 1.64E − 09 − 1.93E − 05 − 3.23E − 07 − 6.94E − 09 − 7.39E − 04 − 3.67E − 02 2.00E − 15
f(Weight) 13.365206 13.365384 13.365553 13.365206 13.370881 13.812525 13.388073

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

28

enables these algorithms to perform better on problems with unknown
or more complex landscapes than unimodal functions. Future studies are
encouraged to expand the concept of exploitation of GEO in unimodal
functions. Therefore, the area for improvement of this algorithm is to
modify the exploitation aspects of GEO.

Future works can also develop new mechanisms for the algorithm or
enhance the existing ones for performance improvement. New prey se
lection mechanisms can be proposed to enhance the performance of the
existing approach for both GEO and MOGEO based on, for example,
statistical probability functions. For randomizing the attack, cruise, and
the step vector, a uniform distribution is used in this work, which can be
extended to other approaches for randomization, e.g., Lévy flights.

Table 17
Best results obtained from algorithms for tension/compression spring design problem.

GEO GWO GA CSA PSO HS DA

x1(d) 0.0518499 0.0513858 0.0516977 0.0516892 0.050814 0.05 0.0516531
x2(D) 0.3605987 0.3493298 0.3569189 0.3567214 0.3359981 0.3106913 0.3558539
x3(P) 11.065069 11.743531 11.277477 11.288753 12.622433 15 11.347604
g1 − 2.99E − 06 − 2.26E − 04 − 6.76E − 07 − 4.74E − 10 − 4.29E − 04 − 2.69E − 03 − 6.89E − 04
g2 − 1.36E − 06 − 3.14E − 04 − 1.78E − 05 − 8.42E − 11 − 7.27E − 05 − 1.67E − 02 − 8.95E − 10
g3 − 4.06E + 00 − 4.04E + 00 − 4.05E + 00 − 4.05E + 00 − 4.01E + 00 − 3.85E + 00 − 4.05E + 00
g4 − 7.25E − 01 − 7.33E − 01 − 7.28E − 01 − 7.28E − 01 − 7.42E − 01 − 7.60E − 01 − 7.28E − 01
f(Weight) 0.0126658 0.0126771 0.0126657 0.0126652 0.012686 0.0132044 0.0126727

Fig. 27. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons
(Post hoc) test for the results of the cantilever beam design problem.

Fig. 25. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons
(Post hoc) test for the results of the cantilever beam design problem.

Table 16
Kruskal-Wallis table for the results of the cantilever beam design problem.

Source SS df MS χ2 p-value

Groups 713751.2 6 118958.5 193.3006 5.05E–39
Error 57969.3 203 285.5631 – –
Total 771720.5 209 – – –

Fig. 26. Tension/compression spring design problem.

h

t

P

Fig. 28. The welded beam design problem.

Table 18
Kruskal-Wallis table for the results of the tension/compression spring design
problem.

Source SS df MS χ2 p-value

Groups 630327.2 6 105054.5 170.708 3.18E–34
Error 141390.3 203 696.5039 – –
Total 771717.5 209 – – –

A. Mohammadi-Balani et al.

Computers & Industrial Engineering 152 (2021) 107050

29

CRediT authorship contribution statement

Abdolkarim Mohammadi-Balani: Software, Writing - original
draft, Visualization. Mahmoud Dehghan Nayeri: Conceptualization,
Validation, Writing - review & editing, Supervision. Adel Azar:
Conceptualization, Writing - review & editing. Mohammadreza
Taghizadeh-Yazdi: Methodology, Validation.

Acknowledgements

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

References

Ahmadi, A., Tiruta-Barna, L., Capitanescu, F., Benetto, E., & Marvuglia, A. (2016). An
archive-based multi-objective evolutionary algorithm with adaptive search space
partitioning to deal with expensive optimization problems: Application to process
eco-design. Computers & Chemical Engineering., 87, 95–110. https://doi.org/
10.1016/j.compchemeng.2015.12.008

Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained
engineering optimization problems: Crow search algorithm. Computers & Structures.,
169, 1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

Awad, N. H., Ali, M. Z., Suganthan, P. N., Liang, J. J., & Qu, B. Y. (2017) Problem
Definitions and Evaluation Criteria for the CEC 2017 Special Session and

Competition on Single Objective Real-Parameter Numerical Optimization,
https://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm
(accessed April 13, 2020).

Bozorg-Haddad, O., Solgi, M., & Loaiciga, H. A. (2017). Meta-heuristic and evolutionary
algorithms for engineering optimization. Hoboken, NJ: John Wiley & Sons.

Cai, L., Qu, S., & Cheng, G. (2018). Two-archive method for aggregation-based many-
objective optimization. Information Sciences., 422, 305–317. https://doi.org/
10.1016/j.ins.2017.08.078

Chen, L., Li, Q., Zhao, X., Fang, Z., Peng, F., & Wang, J. (2019). Multi-population
coevolutionary dynamic multi-objective particle swarm optimization algorithm for
power control based on improved crowding distance archive management in CRNs.
Computer Communications., 145, 146–160. https://doi.org/10.1016/j.
comcom.2019.06.009

Coello Coello, C. A., Lechuga, M. S. (2002) MOPSO: a proposal for multiple objective
particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02 (Cat. No.02TH8600), IEEE, Honolulu, HI, USA, 2002: pp.
1051–1056. https://doi.org/10.1109/CEC.2002.1004388.

Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Review: Multi-objective optimization
methods and application in energy saving. Energy., 125, 681–704. https://doi.org/
10.1016/j.energy.2017.02.174

Das, S., & Suganthan, P. N. (2011). Differential Evolution: A Survey of the State-of-the-
Art. IEEE Transactions on Evolutionary Computation, 15, 4–31. https://doi.org/
10.1109/TEVC.2010.2059031

Davis, L. (1991). Bit-climbing, representational bias, and test suit design, Proc. Intl. Conf.
Genetic Algorithm, 1991, 18–23.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., & Fast, A. (2000). Elitist Non-dominated
Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In
M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H.-. P. Schwefel
(Eds.), Parallel Problem Solving from Nature PPSN VI (pp. 849–858). Berlin
Heidelberg, Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-45356-3_
83.

Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2005). Scalable Test Problems for
Evolutionary Multiobjective Optimization. In A. Abraham, L. Jain, & R. Goldberg
(Eds.), Evolutionary Multiobjective Optimization (pp. 105–145). London: Springer-
Verlag. https://doi.org/10.1007/1-84628-137-7_6.

Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: A novel bio-inspired based
metaheuristic technique for engineering applications. Advances in Engineering
Software., 114, 48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014

Dhiman, G., & Kumar, V. (2018). Emperor penguin optimizer: A bio-inspired algorithm
for engineering problems. Knowledge-Based Systems., 159, 20–50. https://doi.org/
10.1016/j.knosys.2018.06.001

Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its
applications for large-scale industrial engineering problems. Knowledge-Based
Systems., 165, 169–196. https://doi.org/10.1016/j.knosys.2018.11.024

Eagle (heraldry), Wikipedia. (2020). https://en.wikipedia.org/w/index.php?title=Eagle_
(heraldry)&oldid=943863753 (accessed April 12, 2020).

Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle
algorithm – A novel metaheuristic optimization method for solving constrained
engineering optimization problems. Computers & Structures., 110–111, 151–166.
https://doi.org/10.1016/j.compstruc.2012.07.010

Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2020). Equilibrium
optimizer: A novel optimization algorithm. Knowledge-Based Systems., 191, Article
105190. https://doi.org/10.1016/j.knosys.2019.105190

Fausto, F., Cuevas, E., Valdivia, A., & González, A. (2017). A global optimization
algorithm inspired in the behavior of selfish herds. Biosystems., 160, 39–55. https://
doi.org/10.1016/j.biosystems.2017.07.010

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization
algorithm: Harmony search. Simulation, 76, 60–68. https://doi.org/10.1177/
003754970107600201

Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing., 1, 190–206. https://
doi.org/10.1287/ijoc.1.3.190

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning.
Machine Learning, 3, 95–99. https://doi.org/10.1023/A:1022602019183

Table 19
Best results obtained from algorithms for the welded beam design problem.

GEO GWO GA CSA PSO HS DA

x1(h) 0.2443688 0.2443158 0.2443271 0.2443689 0.243871 0.1585629 0.2411605
x2(l) 3.0630204 3.0652528 3.0635288 3.0630243 3.0648441 7.7555863 2.9106552
x3(t) 8.2914827 8.2924051 8.2931239 8.2914718 8.305948 8.2746943 8.6619439
x4(b) 0.2443689 0.2443838 0.2445089 0.244369 0.2447052 0.2547101 0.2419407
g1 − 6.09E− 04 − 6.08E+00 − 2.44E+00 − 4.62E− 05 − 5.19E+00 − 2.81E+03 − 2.00E− 03
g2 − 7.24E− 02 − 8.57E+00 − 2.91E+01 − 3.39E− 04 − 1.46E+02 − 1.10E+03 − 2.24E+03
g3 − 2.34E− 01 − 2.34E− 01 − 2.34E− 01 − 2.34E− 01 − 2.34E− 01 − 2.35E− 01 − 2.36E− 01
g4 − 8.66E− 08 − 6.79E− 05 − 1.82E− 04 − 1.05E− 08 − 8.34E− 04 − 9.61E− 02 − 7.80E− 04
g5 − 1.64E− 03 − 1.56E+00 − 1.11E+01 − 3.20E− 05 − 3.21E+01 − 7.85E+02 − 9.09E− 13
g6 − 1.19E− 01 − 1.19E− 01 − 1.19E− 01 − 1.19E− 01 − 1.19E− 01 − 3.36E− 02 − 1.16E− 01
g7 − 3.27E+00 − 3.27E+00 − 3.27E+00 − 3.27E+00 − 3.27E+00 − 2.77E+00 − 3.23E+00
f(Cost) 1.8653598 1.8659235 1.8666563 1.8653589 1.8700306 2.4214036 1.891987

Fig. 29. Confidence intervals (95%) of the Tukey-Kramer multiple comparisons
(Post hoc) test for the results of the welded beam design problem.

Table 20
Kruskal-Wallis table for the results of the welded beam design problem.

Source SS df MS χ2 p-value

Groups 661,891 6 110315.2 179.2554 4.88E–36
Error 109830.5 203 541.0369 – –
Total 771721.5 209 – – –

A. Mohammadi-Balani et al.

https://doi.org/10.1016/j.compchemeng.2015.12.008
https://doi.org/10.1016/j.compchemeng.2015.12.008
https://doi.org/10.1016/j.compstruc.2016.03.001
https://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm
http://refhub.elsevier.com/S0360-8352(20)30720-8/h0020
http://refhub.elsevier.com/S0360-8352(20)30720-8/h0020
https://doi.org/10.1016/j.ins.2017.08.078
https://doi.org/10.1016/j.ins.2017.08.078
https://doi.org/10.1016/j.comcom.2019.06.009
https://doi.org/10.1016/j.comcom.2019.06.009
https://doi.org/10.1016/j.energy.2017.02.174
https://doi.org/10.1016/j.energy.2017.02.174
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1016/j.advengsoft.2017.05.014
https://doi.org/10.1016/j.knosys.2018.06.001
https://doi.org/10.1016/j.knosys.2018.06.001
https://doi.org/10.1016/j.knosys.2018.11.024
https://en.wikipedia.org/w/index.php%3ftitle%3dEagle_(heraldry)%26oldid%3d943863753
https://en.wikipedia.org/w/index.php%3ftitle%3dEagle_(heraldry)%26oldid%3d943863753
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1016/j.biosystems.2017.07.010
https://doi.org/10.1016/j.biosystems.2017.07.010
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1023/A:1022602019183

Computers & Industrial Engineering 152 (2021) 107050

30

Golden eagle, Wikipedia. (2020). https://en.wikipedia.org/w/index.php?title=Golden
_eagle&oldid=943393767 (accessed March 2, 2020).

Golden eagles in human culture, Wikipedia. (2020). https://en.wikipedia.org/w/index.
php?title=Golden_eagles_in_human_culture&oldid=942701659 (accessed April 12,
2020).

Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W., & Mirjalili, S. (2019).
Henry gas solubility optimization: A novel physics-based algorithm. Future
Generation Computer Systems., 101, 646–667. https://doi.org/10.1016/j.
future.2019.07.015

Hayyolalam, V., & Pourhaji Kazem, A. A. (2020). Black Widow Optimization Algorithm:
A novel meta-heuristic approach for solving engineering optimization problems.
Engineering Applications of Artificial Intelligence., 87, Article 103249. https://doi.org/
10.1016/j.engappai.2019.103249

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris
hawks optimization: Algorithm and applications. Future Generation Computer
Systems., 97, 849–872. https://doi.org/10.1016/j.future.2019.02.028

Hunting with eagles, Wikipedia. (2020). https://en.wikipedia.org/w/index.php?title
=Hunting_with_eagles&oldid=940982958 (accessed April 12, 2020).

Husseinzadeh Kashan, A. (2015). A new metaheuristic for optimization: Optics inspired
optimization (OIO). Computers & Operations Research., 55, 99–125. https://doi.org/
10.1016/j.cor.2014.10.011

Husseinzadeh Kashan, A., Tavakkoli-Moghaddam, R., & Gen, M. (2019). Find-Fix-Finish-
Exploit-Analyze (F3EA) meta-heuristic algorithm: An effective algorithm with new
evolutionary operators for global optimization. Computers & Industrial Engineering,
128, 192–218. https://doi.org/10.1016/j.cie.2018.12.033

Jahani, E., & Chizari, M. (2018). Tackling global optimization problems with a novel
algorithm – Mouth Brooding Fish algorithm. Applied Soft Computing., 62, 987–1002.
https://doi.org/10.1016/j.asoc.2017.09.035

Jain, M., Singh, V., & Rani, A. (2019). A novel nature-inspired algorithm for
optimization: Squirrel search algorithm. Swarm and Evolutionary Computation., 44,
148–175. https://doi.org/10.1016/j.swevo.2018.02.013

Kaveh, A., & Dadras, A. (2017). A novel meta-heuristic optimization algorithm: Thermal
exchange optimization. Advances in Engineering Software., 110, 69–84. https://doi.
org/10.1016/j.advengsoft.2017.03.014

Kaveh, A., & Mahdavi, V. R. (2014). Colliding bodies optimization: A novel meta-
heuristic method. Computers & Structures., 139, 18–27. https://doi.org/10.1016/j.
compstruc.2014.04.005

Kennedy, J., Eberhart, R. (1948) Particle swarm optimization. In: Proceedings of
ICNN’95 - International Conference on Neural Networks, IEEE, Perth, WA, Australia,
1995: pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968.

Khoroshiltseva, M., Slanzi, D., & Poli, I. (2016). A Pareto-based multi-objective
optimization algorithm to design energy-efficient shading devices. Applied Energy.,
184, 1400–1410. https://doi.org/10.1016/j.apenergy.2016.05.015

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated
Annealing. Science, 220, 671–680. https://doi.org/10.1126/science.220.4598.671

Martín, A., & Schütze, O. (2018). Pareto Tracer: A predictor–corrector method for multi-
objective optimization problems. Engineering Optimization., 50, 516–536. https://doi.
org/10.1080/0305215X.2017.1327579

Massan, S.-R., Wagan, A. I., & Shaikh, M. M. (2020). A new metaheuristic optimization
algorithm inspired by human dynasties with an application to the wind turbine
micrositing problem. Applied Soft Computing., 90, Article 106176. https://doi.org/
10.1016/j.asoc.2020.106176

Mavrovouniotis, M., Li, C., & Yang, S. (2017). A survey of swarm intelligence for
dynamic optimization: Algorithms and applications. Swarm and Evolutionary
Computation., 33, 1–17. https://doi.org/10.1016/j.swevo.2016.12.005

Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.
https://doi.org/10.1016/j.advengsoft.2015.01.010

Mirjalili, S. (2016). Dragonfly algorithm: A new meta-heuristic optimization technique
for solving single-objective, discrete, and multi-objective problems. Neural
Computing & Applications, 27, 1053–1073. https://doi.org/10.1007/s00521-015-
1920-1

Mirjalili, S. (2016). SCA: A Sine Cosine Algorithm for solving optimization problems.
Knowledge-Based Systems., 96, 120–133. https://doi.org/10.1016/j.
knosys.2015.12.022

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017).
Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems.
Advances in Engineering Software., 114, 163–191. https://doi.org/10.1016/j.
advengsoft.2017.07.002

Mirjalili, S., Jangir, P., & Saremi, S. (2017). Multi-objective ant lion optimizer: A multi-
objective optimization algorithm for solving engineering problems. Applied
Intelligence, 46, 79–95. https://doi.org/10.1007/s10489-016-0825-8

Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-Verse Optimizer: A nature-
inspired algorithm for global optimization. Neural Computing & Applications, 27,
495–513. https://doi.org/10.1007/s00521-015-1870-7

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in
Engineering Software., 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., & Aljarah, I. (2018). Grasshopper
optimization algorithm for multi-objective optimization problems. Applied
Intelligence, 48, 805–820. https://doi.org/10.1007/s10489-017-1019-8

Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. dos S. (2016). Multi-objective grey
wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Systems
with Applications., 47, 106–119. https://doi.org/10.1016/j.eswa.2015.10.039

Nematollahi, A. F., Rahiminejad, A., & Vahidi, B. (2017). A novel physical based meta-
heuristic optimization method known as Lightning Attachment Procedure

Optimization. Applied Soft Computing., 59, 596–621. https://doi.org/10.1016/j.
asoc.2017.06.033

Nematollahi, A. F., Rahiminejad, A., & Vahidi, B. (2020). A novel meta-heuristic
optimization method based on golden ratio in nature. Soft Computing, 24,
1117–1151. https://doi.org/10.1007/s00500-019-03949-w

Piotrowski, A. P., Napiorkowski, M. J., Napiorkowski, J. J., & Rowinski, P. M. (2017).
Swarm intelligence and evolutionary algorithms: Performance versus speed.
Information Sciences., 384, 34–85. https://doi.org/10.1016/j.ins.2016.12.028

Qi, X., Zhu, Y., & Zhang, H. (2017). A new meta-heuristic butterfly-inspired algorithm.
Journal of Computational Science., 23, 226–239. https://doi.org/10.1016/j.
jocs.2017.06.003

Rahmanzadeh, S., & Pishvaee, M. S. (2019). Electron radar search algorithm: A novel
developed meta-heuristic algorithm. Soft Computing. https://doi.org/10.1007/
s00500-019-04410-8

Rakotonirainy, R. G., & van Vuuren, J. H. (2020). Improved metaheuristics for the two-
dimensional strip packing problem. Applied Soft Computing. , Article 106268. https://
doi.org/10.1016/j.asoc.2020.106268

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based
optimization: A novel method for constrained mechanical design optimization
problems. Computer-Aided Design., 43, 303–315. https://doi.org/10.1016/j.
cad.2010.12.015

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search
Algorithm. Information Sciences., 179, 2232–2248. https://doi.org/10.1016/j.
ins.2009.03.004

Salimi, H. (2015). Stochastic Fractal Search: A powerful metaheuristic algorithm.
Knowledge-Based Systems., 75, 1–18. https://doi.org/10.1016/j.knosys.2014.07.025

Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper Optimisation Algorithm: Theory
and application. Advances in Engineering Software., 105, 30–47. https://doi.org/
10.1016/j.advengsoft.2017.01.004

Shadravan, S., Naji, H. R., & Bardsiri, V. K. (2019). The Sailfish Optimizer: A novel
nature-inspired metaheuristic algorithm for solving constrained engineering
optimization problems. Engineering Applications of Artificial Intelligence., 80, 20–34.
https://doi.org/10.1016/j.engappai.2019.01.001

Sierra, M. R., & Coello Coello, C. A. (2005). Improving PSO-Based Multi-objective
Optimization Using Crowding, Mutation and ∈-Dominance. In C. A. Coello Coello,
A. Hernández Aguirre, & E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimization
(pp. 505–519). Berlin Heidelberg, Berlin, Heidelberg: Springer. https://doi.org/
10.1007/978-3-540-31880-4_35.

Tabari, A., & Ahmad, A. (2017). A new optimization method: Electro-Search algorithm.
Computers & Chemical Engineering., 103, 1–11. https://doi.org/10.1016/j.
compchemeng.2017.01.046

Tack, J. D., Noon, B. R., Bowen, Z. H., Fedy, B. C. (2020) Ecosystem processes, land
cover, climate, and human settlement shape dynamic distributions for golden eagle
across the western US. Animal Conservation 23 (2020) 72–82. https://doi.org/
10.1111/acv.12511.

Tikkanen, H., Rytkönen, S., Karlin, O.-P., Ollila, T., Pakanen, V.-M., Tuohimaa, H., &
Orell, M. (2018). Modelling golden eagle habitat selection and flight activity in their
home ranges for safer wind farm planning. Environmental Impact Assessment Review.,
71, 120–131. https://doi.org/10.1016/j.eiar.2018.04.006

Van Veldhuizen, D. A., & Lamont, G. B. (1998). Multiobjective evolutionary algorithm
research: A history and analysis. Citeseer.

Veldman, R., 2018. Golden eagle, (2018). https://pixabay.com/photos/golden-eagle
-bird-raptor-eagle-4780267/ (accessed March 4, 2020).

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1, 67–82. https://doi.org/10.1109/
4235.585893

Yang, X.-S. (2014). Nature-inspired optimization algorithms (First edition). Amsterdam;
Boston: Elsevier.

Yang, X.-S., Karamanoglu, M., 2013. Swarm Intelligence and Bio-Inspired Computation.
In: Swarm Intelligence and Bio-Inspired Computation, Elsevier, 2013: pp. 3–23.
https://doi.org/10.1016/B978-0-12-405163-8.00001-6.

Yapici, H., & Cetinkaya, N. (2019). A new meta-heuristic optimizer: Pathfinder
algorithm. Applied Soft Computing., 78, 545–568. https://doi.org/10.1016/j.
asoc.2019.03.012

Zahedi, Z. M., Akbari, R., Shokouhifar, M., Safaei, F., & Jalali, A. (2016). Swarm
intelligence based fuzzy routing protocol for clustered wireless sensor networks.
Expert Systems with Applications., 55, 313–328. https://doi.org/10.1016/j.
eswa.2016.02.016

Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., & Tiwari, S. (2009)
Multiobjective optimization Test Instances for the CEC 2009 Special Session and
Competition, https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC09-
MOEA/CEC09-MOEA.htm (accessed April 13, 2020).

Zhang, Y., Gong, D., Sun, J., & Qu, B. (2018). A decomposition-based archiving approach
for multi-objective evolutionary optimization. Information Sciences., 430–431,
397–413. https://doi.org/10.1016/j.ins.2017.11.052

Zhang, Y., & Jin, Z. (2020). Group teaching optimization algorithm: A novel
metaheuristic method for solving global optimization problems. Expert Systems with
Applications., 148, Article 113246. https://doi.org/10.1016/j.eswa.2020.113246

Zhang, J., Xiao, M., Gao, L., & Pan, Q. (2018). Queuing search algorithm: A novel
metaheuristic algorithm for solving engineering optimization problems. Applied
Mathematical Modelling., 63, 464–490. https://doi.org/10.1016/j.apm.2018.06.036

Zhao, W., Wang, L., & Zhang, Z. (2019). A novel atom search optimization for dispersion
coefficient estimation in groundwater. Future Generation Computer Systems., 91,
601–610. https://doi.org/10.1016/j.future.2018.05.037

A. Mohammadi-Balani et al.

https://en.wikipedia.org/w/index.php%3ftitle%3dGolden_eagle%26oldid%3d943393767
https://en.wikipedia.org/w/index.php%3ftitle%3dGolden_eagle%26oldid%3d943393767
https://en.wikipedia.org/w/index.php%3ftitle%3dGolden_eagles_in_human_culture%26oldid%3d942701659
https://en.wikipedia.org/w/index.php%3ftitle%3dGolden_eagles_in_human_culture%26oldid%3d942701659
https://doi.org/10.1016/j.future.2019.07.015
https://doi.org/10.1016/j.future.2019.07.015
https://doi.org/10.1016/j.engappai.2019.103249
https://doi.org/10.1016/j.engappai.2019.103249
https://doi.org/10.1016/j.future.2019.02.028
https://en.wikipedia.org/w/index.php%3ftitle%3dHunting_with_eagles%26oldid%3d940982958
https://en.wikipedia.org/w/index.php%3ftitle%3dHunting_with_eagles%26oldid%3d940982958
https://doi.org/10.1016/j.cor.2014.10.011
https://doi.org/10.1016/j.cor.2014.10.011
https://doi.org/10.1016/j.cie.2018.12.033
https://doi.org/10.1016/j.asoc.2017.09.035
https://doi.org/10.1016/j.swevo.2018.02.013
https://doi.org/10.1016/j.advengsoft.2017.03.014
https://doi.org/10.1016/j.advengsoft.2017.03.014
https://doi.org/10.1016/j.compstruc.2014.04.005
https://doi.org/10.1016/j.compstruc.2014.04.005
https://doi.org/10.1016/j.apenergy.2016.05.015
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1080/0305215X.2017.1327579
https://doi.org/10.1080/0305215X.2017.1327579
https://doi.org/10.1016/j.asoc.2020.106176
https://doi.org/10.1016/j.asoc.2020.106176
https://doi.org/10.1016/j.swevo.2016.12.005
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1007/s10489-017-1019-8
https://doi.org/10.1016/j.eswa.2015.10.039
https://doi.org/10.1016/j.asoc.2017.06.033
https://doi.org/10.1016/j.asoc.2017.06.033
https://doi.org/10.1007/s00500-019-03949-w
https://doi.org/10.1016/j.ins.2016.12.028
https://doi.org/10.1016/j.jocs.2017.06.003
https://doi.org/10.1016/j.jocs.2017.06.003
https://doi.org/10.1007/s00500-019-04410-8
https://doi.org/10.1007/s00500-019-04410-8
https://doi.org/10.1016/j.asoc.2020.106268
https://doi.org/10.1016/j.asoc.2020.106268
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.knosys.2014.07.025
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1016/j.engappai.2019.01.001
https://doi.org/10.1007/978-3-540-31880-4_35
https://doi.org/10.1007/978-3-540-31880-4_35
https://doi.org/10.1016/j.compchemeng.2017.01.046
https://doi.org/10.1016/j.compchemeng.2017.01.046
https://doi.org/10.1016/j.eiar.2018.04.006
http://refhub.elsevier.com/S0360-8352(20)30720-8/h0325
http://refhub.elsevier.com/S0360-8352(20)30720-8/h0325
https://pixabay.com/photos/golden-eagle-bird-raptor-eagle-4780267/
https://pixabay.com/photos/golden-eagle-bird-raptor-eagle-4780267/
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
http://refhub.elsevier.com/S0360-8352(20)30720-8/h0340
http://refhub.elsevier.com/S0360-8352(20)30720-8/h0340
https://doi.org/10.1016/j.asoc.2019.03.012
https://doi.org/10.1016/j.asoc.2019.03.012
https://doi.org/10.1016/j.eswa.2016.02.016
https://doi.org/10.1016/j.eswa.2016.02.016
https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC09-MOEA/CEC09-MOEA.htm
https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC09-MOEA/CEC09-MOEA.htm
https://doi.org/10.1016/j.ins.2017.11.052
https://doi.org/10.1016/j.eswa.2020.113246
https://doi.org/10.1016/j.apm.2018.06.036
https://doi.org/10.1016/j.future.2018.05.037

	Golden eagle optimizer: A nature-inspired metaheuristic algorithm
	1 Introduction
	2 Golden Eagle Optimizer (GEO)
	2.1 Inspiration
	2.2 Mathematical model and optimization algorithm
	2.2.1 The spiral motion of golden eagles
	2.2.2 Prey selection
	2.2.3 Attack (exploitation)
	2.2.4 Cruise (exploration)
	2.2.5 Moving to new positions
	2.2.6 Transition from exploration to exploitation
	2.2.7 Single-objective golden eagle Optimizer (GEO)
	2.2.8 Computational complexity of GEO

	2.3 Golden Eagle Optimizer for multi-objective problems
	2.3.1 Multi-objective optimization
	2.3.2 Multi-objective golden eagle Optimizer (MOGEO)
	2.3.3 Computational complexity of MOGEO

	2.4 Software (toolbox) and source code for GEO and MOGEO

	3 Single-objective optimization results for GEO
	3.1 Parameter setting
	3.2 Experimental setup and compared algorithms
	3.3 Benchmark functions
	3.4 Qualitative results
	3.5 Quantitative results
	3.6 Convergence analysis
	3.7 Scalability analysis

	4 Multi-objective optimization results for MOGEO
	5 Engineering benchmark tests
	5.1 Constraint handling method
	5.2 Three-bar truss design
	5.3 Cantilever beam design
	5.4 Tension/compression spring design
	5.5 Welded beam design

	6 Conclusion
	CRediT authorship contribution statement
	Acknowledgements
	References

